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Abstract

In this paper, we introduce cameras view-frame placement problem (denoted by
CFP) in the presence an adversary whose objective is to minimize the maximum cov-
erage by p cameras in response to input provided by n autonomous agents in a remote
location. We allow uncertainty in the success of attacks, incomplete information of
the probability distribution associated with the uncertain data, and varying levels of
risk-appetite of the adversary. We present an exact cutting planes based algorithm to
solve this problem along with conditions under which it is finitely convergent. Since
this approach solves deterministic CFP in each iteration, we also present improved
exact method for CFP with p = 1, approximation algorithm and heuristics for Multi-
CFP with p ≥ 2, and Multi-CFP with fixed tilt of the cameras. To evaluate the
effectiveness and performance of the proposed approaches, we conduct computational
experiments using randomly generated instances and simulation experiments where
these approaches are utilized to find a hidden object in a remote location.

Note to Practitioners– This paper is motivated from application of cameras view-
frame placement problem for military surveillance and reconnaissance in the presence of
an adversary. We formulate this problem as a game played between an attacker and the
camera-system user that captures uncertainty in the success of attacks and risk-appetite
of the players. Its optimal solution, obtained using the proposed solution approaches,
provides insight to both decision-makers/players. Especially, the camera-system user
can identify the set of agents that are susceptible to attacks by a reasonable (risk-averse)
attacker, and hence, can plan to have backup agents as well. Likewise, the proposed
algebraic modeling framework and solution approaches are also applicable for planning
interdiction actions to minimize the information acquisition by an evader/enemy.

Keywords: adversarial camera view-frame placement, distributionally robust optimization,
pan-tilt-zoom cameras, exact and approximate algorithm, cutting planes
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1 Introduction

Telerobotic cameras (standalone or installed on autonomous ground/aerial vehicles and satel-
lites) enable multiple users and researchers in healthcare [10], distance learning, natural en-
vironment observation [18], surveillance [15, 13], and space exploration [7], to interact with
a remote physical environment using shared resources. They provide information (videos
and images) to decision makers for conducting operations such as intelligence, surveillance
and reconnaissance, in environment where it is tedious for humans to collect information.
Oftentimes, there are multiple (n) agents in the remote region to inform a decision maker
about potential regions of threat along with the intensity of the threat. However, given
a limited number of cameras (p << n) with adjustable pan, tilt, and zoom, the decision
maker can focus the view-frame of the cameras on only a subset of these regions such that
subregions with maximum threat (or reward) are covered, in a given time window. More-
over, in adversarial environment, the agents are likely to be attacked or incapacitated by an
adversary whose aim is to minimize the maximum information acquisition by the decision
maker. This leads to a game played between two players (or decision-makers): an attacker
and a defender. Because of limited resources, the attacker attacks a subset of the agents
with the objective of minimizing the defender’s maximization objective. The defender has a
“wait and see” strategy, i.e., they use input from the agents after observing success or failure
of the attacks, and then decide location and dimensions of cameras rectangular view-frame
by adjusting pan, tilt, and zoom of the cameras such that maximum reward is covered.

In this paper, we consider uncertainty in the success of the attacks on the agents and
represent it using a random variable defined over a sample space (a set of events or realiza-
tions of the random variable). In case probability distribution associated with this variable
is known, the adversary’s objective is to minimize the expected maximum covered reward
of the defender. However, in many applications such as military operations, availability of
probability of occurrence of the events is limited. To tackle this aspect of uncertainty, we
construct a set of distributions (referred to as ambiguity set) using the limited knowledge
such as bounds on mean, variance, and/or higher order moments, and then define the ad-
versary’s objective as minimizing the expected maximum covered reward function for the
worst-case probability distribution within the ambiguity set. By solving this problem, the
defender gets information about vulnerable agents whose destruction can significantly im-
pact their objective. Observe that by adjusting the ambiguity set, this framework also allows
adjustments based on varying levels of risk-appetite of the adversary.

Mathematically, the adversarial camera-view frame placement problem is defined as fol-
lows. Let N = {1, . . . , n} be a set of n agents, and σ = (σ1, . . . , σn) ∈ {0, 1}n denotes
adversary’s decision variables: σi = 1 if agent i is attacked, and 0 otherwise. Given the
maximum number of agents the adversary can attack, i.e., b, the adversary’s objective is

min
σ∈{0,1}n

{
Φ(σ) := max

P∈P
EP [Q(σ, ξ)]

∣∣∣∣ n∑
i=1

σi ≤ b

}
(1)

where P denotes the ambiguity set, EP [.] and ξ are expectation operator and random vari-
able with distribution P , respectively. Function Q(σ, ξ) returns defender’s optimal objective
function value for given σ and each realization of ξ; refer to Section 1.3 for more details
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about Q(·). Notice that the inner maximization is to find decisions for worst-case probabil-
ity distribution within P , thereby providing distributionally risk-averse (or robust) solution.
For |P| = 1, formulation (1) reduces to risk-neutral problem, and when P is defined by all
probability distributions supported on the sample space of ξ, it reduces to robust optimiza-
tion model where adversary makes most-conservative risk-averse decisions for the worst-case
realization of the random variable ξ.

1.1 Literature Review

Only special cases of problem (1) in the absence of any adversary (i.e., b = 0) have been
studied in the literature [2, 15, 14, 20]. Specifically, Song et al. [15] introduced camera
view-frame placement problem (denoted by CFP) with single camera in the context of satel-
lite imaging where the camera/satellite receives a rectangular region as request from each of
the n users along with reward rate (per-unit area) for each request. They presented exact
algorithms for placing rectangular view-frame of the camera and selecting its resolution level
such that maximum reward is covered. Note that the resolution level impacts dimensions of
the view-frame and reward rate of covered requests. Xu et al. [19] provided an exact algo-
rithm for CFP with two cameras having non-overlapping view-frames. Bansal and Kianfar
[2] proved that CFP with p cameras is NP-hard if p is a part of the input, and presented an
exact algorithm for this problem under the assumption that all cameras have same and fixed
resolution level. Approximation algorithms have also been developed for CFP with polygon
shape of the requests [14, 20]. In this paper, we present theoretical results that improve
the efficiency of exact algorithms by [15] for CFP with single camera along with heuris-
tics, approximation algorithms for CFP with multiple cameras having continuous resolution
levels.

Relation of CFP with Other Computational Geometry Problems. For the sake of com-
pleteness, we also review computational geometry problems related to CFP, in particular
planar maximum coverage location problems (PMCLP) with Manhattan distances. This
problem is analogous to CFP with points as requests and squares having fixed dimensions
as view-frames to represent demand and service zone of a facility with fixed service range,
respectively. The goal of PMCLP is to find location of these facilities anywhere on a two-
dimensional plane such that maximum demand is covered by them [5, 11, 16]. Murray and
Tong [12] presented a binary formulation for an extension of PMCLP with line segments and
polygon as requests under an assumption that view-frames can either completely cover the
requests or not covered at all. Bansal and Kianfar [2] relaxed this assumption by allowing
partial overlap between the (rectangular) requests and view-frames, thereby leading to CFP
with multiple cameras. Both of these studies assume that the view-frames have fixed and
same dimensions.

In another direction, optimization problems involving two non-cooperating players who
play a zero-sum Stackelberg game are well-known in the context of network interdiction [6,
8]. In these games, an interdictor (also referred to as leader or adversary) attacks arcs and/or
nodes of a network that is used by an evader (also referred to as follower or defender) to
transport illegal drugs or nuclear material. The goal of the evader is to either maximize the
flow [17] or minimize the shortest path [8] from source node to destination node, and the
interdictor’s aim is to minimize or maximize, respectively, the evader’s objective. Since the
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flow maximization and shortest path problems can be formulated as linear programs, the
dual of these linear program are being utilized to get either lower-bound approximation of
Q(σ, ξ) or an overall monolithic minimization problem. In contrast, no explicit (or closed
form) definition of functions Q(σ, ξ) and Φ(σ) in Problem (1) is known. Moreover, most
of these network interdiction literature assumes that either all data parameters or complete
description of the probability distribution are known, except in [9] where formulation akin
to (1) is considered to relax the foregoing assumption in the aforementioned shortest path
network interdiction problem.

1.2 Contributions and Organization of this Paper

As per our knowledge, no solution approach is known in the literature for solving formulation
(1), primarily because no explicit (or closed form) definition of functions Q(σ, ξ) and Φ(σ)
is known. Therefore, we first introduce a class of valid inequalities to derive lower-bound
approximation of function Φ(σ). We then embed these cuts within a branch-and-cut based
decomposition algorithm to exactly solve this problem, and provide conditions under which
this algorithm is finitely convergent (Section 2). Since this approach solves deterministic
CFP (in the absence of uncertainty and adversary) in each iteration, we also introduce com-
putationally efficient solution approaches for solving CFP with single and multiple cameras.

Specifically, we consider algorithms by [15] for single camera with reduced solution search
space, thereby making them four times faster (Section 3). In Section 4, we present two
heuristics (greedy and clustering-based methods) for CFP with multiple cameras and a
heuristic for CFP with two cameras. Also, we prove that the approximation ratio of the
greedy method is 1− 1/e where e is natural logarithm constant (or Euler’s number). Lastly,
for CFP with multiple cameras having fixed tilt, a finite set of values for pan and adjustable
zoom, we provide an heuristic algorithm to solve it (Section 5). Note that this special case
has applications in street/border/river surveillance.

To evaluate the effectiveness and performance of the proposed approaches, we conduct
computational experiments using randomly generated instances and simulation experiments
where these approaches are utilized to find a hidden object in a remote location (Section 6).
In Section 8, we provide concluding remarks and potential future research directions.

1.3 Notations and Definitions

In this section, we formally define defender’s problem, i.e., Q(σ, ξ), along with other notations
and definitions needed for the algorithms presented in the ensuing sections.

Definition 1.1. Let di denotes a rectangular region requested by agent i ∈ N := {1, . . . , n},
that is defined by coordinates of its lower left corner (xi, yi), width wi, height hi, reward rate
ri (per-unit area), and desired resolution zi. Define D = {di, i ∈ N} as set of all requests.

It is important to note that the proposed solution approach for solving (1) is applicable for
any spatial region (polygon, circle, etc.) as request by an agent. For simplicity of exposition,
we present results for only rectangular requests.
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Definition 1.2. Rectangular view-frame of camera j ∈ {1, . . . , p} is denoted by sj =
[(xsj , ysj), wsj , hsj , zsj ] where coordinates of its lower left corner (xsj , ysj), width wsj , height
hsj , and resolution zsj are unknown. Width and height of sj depend on its resolution, i.e.,
the size of the view-frame increases as zsj increases, but the quality of the information (image
or video) decreases. Define S := {s1, . . . , sp}.

Definition 1.3 ([15]). Let αi = zi
zs

for request di and view-frame s. Define discount function
g(αi) that satisfies the conditions:

• g(αi) = 1, when αi ≥ 1;

• 0 ≤ g(αi) ≤ 1, when αi ≤ 1;

• g(αi) is an increasing function.

Normally, g(αi) = min{(αi)b, 1} where b is some constant. Assume b = 1, the reward from re-
quest di covered by camera frame s ∈ S with resolution level zs is equal to riA (di ∩ s) g(αi) =
riA (di ∩ s) min{αi, 1} where A(·) returns the area of its argument.

Definition 1.4. Function R
(
di ∩

(
∪pj=1sj

))
returns reward from request di covered by the

union of p camera-view frames sj ∈ S with resolution level zsj for j ∈ {1, . . . , p}.

Let Ω := {ω1, . . . , ω|Ω|} be a finite set of possible realizations of the random variable
ξ ∈ {0, 1}n. Each realization ξω ∈ {0, 1}n of the random variable occurs with probability pω
where ξωi = 1 (or ξωi = 0) implies the success (or failure) of attack on agent i ∈ N . For ω ∈ Ω,
let µωi ∈ R+ denotes the total reward from request di captured by p view-frames with given
position and resolution in scenario ω ∈ Ω. We refer to µω ∈ Rn

+ as reward-coverage vector.
Since the defender cannot get any reward from request di in case the attack on agent i is
successful, µωi ≤ riwihi(1−σiξωi ) for all i ∈ N and ω ∈ Ω. Note that optimal covered-reward
µω∗i = R

(
di ∩

(
∪pj=1s

∗
j,ω

))
where {s∗j,ω}

p
j=1 denotes an optimal solution of the defender in

scenario ω ∈ Ω, and

Q(σ, ω) =
∑
i∈Iω

µω∗i where Iω := {i ∈ N : σiξ
ω
i = 0}.

We assume that the probability distribution {pω}ω∈Ω of the random variable ξ belongs to an
ambiguity set P . In the literature, this set has been defined in different way; refer to [3, 1, 9]
and references therein. We present algorithm that will be applicable to any definition of the
ambiguity set. Only for our computational experiments, we restrict the first m moments of
the random variable within predetermined bounds to get a so-called moment matching set:

P =

{
{pω}ω∈Ω : lq ≤

∑
ω∈Ω

pωvq(ω) ≤ uq for q = 1, . . . ,m;

∑
ω∈Ω

pω = 1; pω ≥ 0 ∀ω ∈ Ω

}
,

where lq and uq denote the predetermined lower bound and upper bound vector on qth
moment vector of random variable for restricting the moments, and vq is a measurable
function defined on Ω and its sigma-algebra F .
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2 Adversarial Cameras View-Frame Placement Prob-

lem with Distributional Ambiguity

We first present a family of valid inequalities in the following theorem that provides lower
bound approximations for the function Φ(σ). Then, we incorporate these inequalities in a
decomposition framework to solve the original problem (1).

Theorem 2.1. Given an adversary’s solution σ̃ ∈ X := {σ ∈ {0, 1}n :
∑

i∈N σi ≤ b} and
the associated defender’s optimal reward-coverage vector µ̃ω for ω ∈ Ω, the inequality:

Φ(σ) ≥ Φ(σ̃)−
∑
i∈N

∑
ω∈Ω

p̃ωµ̃
ω
i ξ

ω
i σi (2)

where {p̃}ω∈Ω = arg max
{pω}ω∈P

∑
ω∈Ω

pωQ(σ̃, ω), is valid for σ ∈ X .

Proof. Given σ̃ ∈ X and scenario ω ∈ Ω, let Ĩω := {i ∈ N : σ̃iξ
ω
i = 0} be the set of

agents/requests that are not impacted by adversary’s solution σ̃, and an optimal defender’s
solution and associated reward-coverage vector be denoted by S̃ω =

(
s̃ω1 , . . . , s̃

ω
p

)
and µ̃ω,

respectively. For any σ ∈ X , define reward-coverage vector µω that returns reward from
requests in Iω = {i ∈ N : σiξ

ω
i = 0} covered by S̃ω, i.e.,

µωi =


µ̃ωi , if i ∈ Iω ∩ Ĩω
R
(
di ∩

(
∪pj=1s̃

ω
j

))
, if i ∈ Iω \ Ĩω

0, otherwise.

Notice that µωi ≥ µ̃ωi (1−σiξωi ) for all i ∈ N . Moreover, the optimal solution value Q(σ, ω) ≥∑
i∈N u

ω
i as S̃ω is a feasible solution. Let P = {pω}ω∈Ω. Then,

Φ(σ) = max
P∈P

∑
ω∈Ω

pωQ(σ, ω)

≥
∑
ω∈Ω

p̃ω
∑
i∈N

uωi ∵ {p̃ω}ω∈Ω ∈ P

≥
∑
ω∈Ω

p̃ω
∑
i∈N

µ̃ωi (1− ξωi σi)

= Φ(σ̃)−
∑
i∈N

∑
ω∈Ω

p̃ωµ̃
ω
i ξ

ω
i σi,

for any σ ∈ X . This completes the proof.

Next, we present a decomposition method that iteratively derives inequalities (2) to get
tighter lower bound approximations of problem (1) in each iteration; refer to Algorithm 1
for its pseudocode. We initialize this algorithm by setting iteration counter L = 1, upper
bound θub ← ∞, lower bound θlb ← −∞, and an initial feasible solution σ̃1 ∈ X . In it-
eration L ≥ 1, we set σ̃ = σ̃L and solve the defender’s problem for each scenario ω ∈ Ω
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in Line 4 to get Q(σ̃, ω) =
∑

i∈N µ̃
ω
i . Then, in line 6 and 7, we get an extremal probabil-

ity distribution {p̃ω}ω∈Ω, an optimal solution of so-called distribution separation problem
max{

∑
ω∈Ω pωQ(σ̃, ω) : {pω}ω∈Ω ∈ P}, and thereby, obtain Φ(σ̃) =

∑
ω∈Ω p̃ωQ(σ̃, ω). If Φ(σ̃)

is smaller than the best known upper bound θub, we update θub to Φ(σ̃) and the best known
adversary’s solution σ̃∗ to σ̃. In Line 11, we add an inequality of the form (2) in ML−1, a
lower-bound approximation of (1), to get ML:

θlb := min
σ∈X

η (3)

s.t. η ≥ Φ(σ̃)−
∑
i∈N

∑
ω∈Ω

p̃ωµ̃
ω
i ξ

ω
i σi, for σ̃ ∈ {σ̃1, . . . , σ̃L}

which is a tighter lower bound approximation. Note thatM0 has no constraints other than
constraints of X . We solve ML, L ≥ 1, in Line 12 to get an optimal solution (ηL+1, σ̃L+1)
and update the best-known lower bound θlb to ηL+1. We terminate the algorithm when the
optimality gap (θub − θlb) lies within a predetermined threshold ε.

Algorithm 1 Decomposition method for Problem (1)

1: Let L← 1, θlb ← −∞, θub ←∞, σ̃ ← σ̃1 ∈ X ;
2: while θub − θlb > ε do
3: for ω ∈ Ω do
4: Solve defender’s problem to get Q(σ̃, ω);
5: end for
6: Compute {p̃}ω∈Ω = arg max

P∈P

∑
ω∈Ω

pωQ(σ̃, ω);

7: Obtain Φ(σ̃) =
∑

ω∈Ω p̃ωQ(σ̃, ω);
8: if θub > Φ(σ̃) then
9: θub ← Φ(σ̃) and σ̃∗ ← σ̃;

10: end if
11: Add the following inequality in ML−1 to get ML:

η ≥ Φ(σ̃)−
∑
i∈N

∑
ω∈Ω

p̃ωµ̃
ω
i ξ

ω
i σi;

12: Solve ML to get optimal solution (ηL+1, σ̃L+1);
13: Update the lower bound θlb ← ηL+1 and σ̃ ← σ̃L+1;
14: L← L+ 1;
15: end while
16: Return: θub, σ̃∗

Observation 2.1. Inequality (2) is tight (which implies satisfied at equality) for σ = σ̃,
i.e.,

∑
ω∈Ω p̃ω

∑
i∈N µ̃

ω
i ξ

ω
i σ̃i = 0. This is because for each i ∈ N , either ξωi σ̃i = 0 (request

not impacted by attack) or µ̃ωi = 0 (covered reward is zero, in case request is successfully
attacked).
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Theorem 2.2. Algorithm 1 solves problem (1) in a finite number of iterations if there exist
finitely convergent algorithms to compute Q(σ̂, ω) for each (σ̂, ω) ∈ X × Ω, and to solve
problem max{

∑
ω∈Ω pωQ(σ̂, ω) : {pω}ω∈Ω ∈ P}.

Proof. In iteration L of Algorithm 1, we add an optimality cut toML−1 and solve it (a mixed
binary program) using branch-and-cut algorithm that is finitely convergent. If solving ML

provides an adversary’s solution σ̃L that was also found in iteration K < L, then σ̃L is an
optimal solution because Observation (2.1) leads to θlb = θub. Otherwise, since |X | is finite,
the algorithm converges in finite iterations.

Remark 2.1. Conditions of Theorem 2.2 are automatically satisfied when: (a) P is a poly-
tope (e.g. moment matching set), and (b) CFP is solved in finite iterations.

3 Algorithms for Single Camera View-Frame Place-

ment Problem

We study the single camera view-frame placement problem (denoted by S-CFP). The ob-
jective of S-CFP is to find the position and resolution level of the camera view-frame
s = [(xs, ys), ws, hs, zs] to maximize the reward covered by s, i.e.,

max
xs,ys,zs

{
f(xs, ys, zs) =

∑
i∈N

g(αi)riA(di ∩ s)

}
.

Definition 3.1 (Base Vertex [15]). Given request di = [(xi, yi), wi, hi, ri, zi], we define xileft =
xi, x

i
right = xi + wi, y

i
bot = yi and yitop = yi + hi for i ∈ N . Then, the set of all base vertices

B from requests {di}i∈N is given by:

B :=
{

(x, y) : x ∈ {xileft, xiright}i∈N , y ∈ {y
j
bot, y

j
top}j∈N

}
.

In simple words, a base vertex (BV) corresponds to a corner of a request or intersection of
extended edges of any two requests.

Figure 1: Illustration of BVs when two requests d1 and d2 are given.
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Lemma 3.1 ([15]). For a given instance of S-CFP and any fixed resolution ẑs ∈ R+, there
exists an optimal solution ŝ = [(x̂s, ŷs), ŵs, ĥs, ẑs] such that either of the following conditions
are satisfied:

(a) (x̂s, ŷs) ∈ B,

(b) (x̂s + ŵs, ŷs) ∈ B,

(c) (x̂s, ŷs + ĥs) ∈ B,

(d) (x̂s + ŵs, ŷs + ĥs) ∈ B.

Exact Algorithms for S-CFP. Lemma 3.1 reduces the solution space for the location of the
camera view-frame from continuous space (R2) to a discrete set of BVs, such that an optimal
solution has one of its corner at a BV. Song et al. [15] introduced two exact algorithms for S-
CFP, referred as BV algorithm and BV-IC algorithm that work as follows. In each iteration,
a corner of the frame is placed at a BV as per Lemma 3.1 and then derive a univariate
piecewise polynomial function of zs. (The breakpoints of this polynomial function of zs are
called critical z values.) Using an explicit description of each piece of this function, it is
maximized to get a feasible solution for the original problem. This process is repeated until
all the cases of Lemma 3.1 are explored.

The subsequent proposition further reduces the solution search space for S-CFP by prov-
ing that it is sufficient to place a corner at BVs in a subset of B to get an optimal solution.
We refer to BV and BV-IC algorithms where a corner of the frame is placed at a BV based
on this theorem as Improved BV and Improved BV-IC algorithms. From our computational
experiments, we observe that this theoretical result reduces the run time of the algorithms
in [15] for S-CFP by up to 68%.

Proposition 3.1. For a given instance of S-CFP and any fixed resolution ẑs ∈ R+, there
exists an optimal frame ŝ = [(x̂s, ŷs), ŵs, ĥs, ẑs] such that either of the following conditions
are satisfied:

(a) (x̂s, ŷs) ∈ B1,

(b) (x̂s + ŵs, ŷs) ∈ B2,

(c) (x̂s, ŷs + ĥs) ∈ B3,

(d) (x̂s + ŵs, ŷs + ĥs) ∈ B4,

where B1 ∪ B2 ∪ B3 ∪ B4 = B, and

B1 :=
{

(x, y) : x ∈ {xileft}i∈N , y ∈ {y
j
bot}j∈N

}
⊂ B,

B2 :=
{

(x, y) : x ∈ {xiright}i∈N , y ∈ {y
j
bot}j∈N

}
⊂ B,

B3 :=
{

(x, y) : x ∈ {xileft}i∈N , y ∈ {y
j
top}j∈N

}
⊂ B,

B4 :=
{

(x, y) : x ∈ {xiright}i∈N , y ∈ {y
j
top}j∈N

}
⊂ B.

Remark 3.1. This result is similar to Theorem 2 of [2] that is written in the context of a fa-
cility location problem. However, in [2], the resolution is fixed and therefore, the implications
of reduced search space on (S-)CFP with varying resolution levels have not been evaluated.
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4 Approximation Algorithm and Heuristics for Multi

Cameras View-Frame Problem

In this section, we present three solution approaches for CFP with multiple cameras, i.e.,
p ≥ 2 (denoted by M-CFP).

Greedy Algorithm. Similar to the generic greedy-framework, we solve S-CFP multiple (p)
times sequentially to get a feasible solution for M-CFP. We prove that the approximation
ratio of this approach is 1−1/e where e is the base of natural logarithm, i.e., it provides a so-
lution whose objective value is at least 1−1/e times the optimal solution value. Interestingly,
this result is applicable for CFP with any two-dimensional spatial object (circle, polygon,
etc.) as request and view-frame. Therefore, we first introduce the following notations to
incorporate this generality.

Definition 4.1. Let Dgj be a set of (general) requests that is an input to S-CFP in the jth

iteration of the greedy algorithm. Also, let ψjg denotes the optimal covered reward returned
by (general) view-frame sj for Dgj .

Observation 4.1. Since ψjg is the optimal objective value of S-CFP with Dgj as input, pψjg
provides an upper bound for the optimal solution value of the p camera view-frame placement
problem when its input is Dgj , denoted by ζgj , i.e., pψjg ≥ ζgj .

Theorem 4.1. Let γg denotes the approximation ratio for the greedy algorithm, i.e., ratio
of the objective value of the greedy solution and optimal objective value of general M-CFP.
Then

γg > 1− 1

e
(4)

where e is the base of natural logarithm.

Proof. Let the optimal solution value for (general) M-CFP be denoted by f ∗. Then, the
approximation ratio is given by

γg =
1

f ∗

(
p∑
l=1

ψlg

)
. (5)

Note that for j = 1, Dg1 = D and hence ζg1 = f ∗. Also, since after each iteration
l ∈ {1, . . . , j − 1} of the greedy algorithm, we trim out the requests of total reward ψlg, we
get,

pψjg ≥ ζgj ≥ f ∗ −
j−1∑
l=1

ψlg (6)

where ψ0
g = 0. This implies,

p

j∑
l=1

ψlg ≥ f ∗ + (p− 1)

j−1∑
l=1

ψlg

≥ f ∗

(
1 +

p− 1

p
+

(
p− 1

p

)2

+ . . .+

(
p− 1

p

)j−1
)
.
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By setting j = p in the foregoing inequality, we derive

γg =
1

f ∗

(
p∑
l=1

ψlg

)
≥
(

1−
(
p− 1

p

)p)
(7)

Because the function in the right-hand side of the inequality is decreasing in p, we can get
the limit of this function as p approaches infinity, i.e., γg > 1− 1/e.

Iterative Extreme BV Algorithm. To obtain a solution better than the greedy solution, we
present a heuristic for M-CFP with two rectangular view-frames and n rectangular requests
where a corner of each frame lies at an extreme BV.

Definition 4.2. Let

xmax = max{xiright : i ∈ N}, xmin = min{xileft : i ∈ N},
ymax = max{yitop : i ∈ N}, ymin = min{yibot : i ∈ N}.

We define a set of extreme BVs as follows:

EB =
{

(x, y) ∈ B : x ∈ {xmax, xmin} or y ∈ {ymin, ymax}
}
.

We place view-frame at one of extreme BVs based on Theorem 3.1, derive corresponding
set of critical z values, and pick a critical z value as resolution level of the view-frame.

For the second camera, we solve S-CFP using improved BV algorithm with only extreme
BVs to determine the position and resolution level of the second view-frame. We store the
summation of the reward captured by both frames. However, in case there is a subregion
covered by both frames, only the reward captured by the frame that provides better resolu-
tion/reward is included in the solution value. We repeat this process for each extreme BV
and associated critical z values as a solution for the first view-frame.
Clustering Algorithm. To deal with M-CFP instances with large number of requests and
camera view-frames, we divide the set of requests into multiple (≤ p) clusters (or subsets of
requests), and solve S-CFP or M-CFP with p1 < p cameras for each cluster in parallel.

5 Heuristic Method for Multi-Cameras View-Frame

Placement Problem with Fixed Tilt of Cameras

In this section, we present a heuristic algorithm for CFP with cameras having continuous res-
olution levels, while the tilt of cameras (i.e., y coordinate of their view-frames) are fixed and
their x coordinates belong to a predetermined set of candidate locations L = {xl1 , . . . , xlm}.
Since the cameras have fixed and same tilt, the M-CFP is equivalent to 1-dimensional prob-
lem where requests and view-frames are represented by line segments. This problem (denoted
by M-CFP-F) arise in surveillance of borders, streets, and rivers, among other narrow re-
gions. In the ensuing sections, we examine the challenges involved in addressing M-CFP-F
and propose a branch and bound-based heuristic that outperforms other heuristics in terms
of solution quality. Assume that ws0 is base width such that wsj = ws0zsj for j ∈ {1, . . . , p}.
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Figure 2: An example of request di overlapping with view-frame s1

5.1 Theoretical Properties for M-CFP-F

In fig. 2, we consider a request di, view-frame s1 with fixed x-coordinate x̄s1 and resolution
level z̄s1 , and view-frame s2 with only fixed x-coordinate x̄s2 = xl1 . We analyze covered-
reward function fi(xs, zs) with respect to zs2 . We observe that function fi(x̄s1 , x̄s2 , z̄s1 , zs2)
has six breakpoints, referred to as z-critical values:

(
xi − x̄s2
ws0

,
xi + wi − x̄s2

ws0
, zi,

x̄s1 − x̄s2
ws0

,
x̄s1 + ws0 z̄s1 − x̄s2

ws0
, z̄s1

)
(8)

In (8), there are two types of critical z values. The first type of critical z values are generated
by the presence of request di, and are denoted as zRCVs. The second type of critical z values
are generated by the existence of a fixed view-frame, s1, and are referred to as zFCVs. A
formal definition of both subsets of the z critical values is provided below.

Definition 5.1. (zRCVs) For any xlk ∈ L, the set of z-critical values generated by the
request di is defined by

Zdi,xlk =

{
xi − xlk
ws0

,
xi + wi − xlk

ws0
, zi

}
.

We denote set of all zRCVs for all elements in L by

ZR = ∪i∈N ∪xlk∈L Zdi,xlk .

Definition 5.2. (zFCVs) Let {sj}j∈J be the set of camera view-frames with known position
xsj and resolution zsj where J ⊂ P = {1, . . . , p}. We define zFCVs generated by sj, j ∈ J
and xlk ∈ L as follows.

Zsj ,xlk =

{
xsj − xlk
ws0

,
xsj + ws0zsj − xlk

ws0
, zsj

}
. (9)

Thus, for {sj}j∈J , we define the set of all zFCVs as

Z(J ) = ∪j∈J ∪xlk∈L Zsj ,xlk .

For 2-CFP-F, notice that function fi(x̄s1 , x̄s2 , z̄s1 , zs2) = R(di ∩ s1) + R(di ∩ s2) − Ri
12

where R(di ∩ s2) = riA (di ∩ s2)×min

(
zi
zs2
, 1

)
,

Ri
12 = R(di ∩ s1 ∩ s2) = riA (di ∩ s1 ∩ s2)×min

(
zi
z̄s1
,
zi
zs2
, 1

)
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and R(di ∩ s1) is constant. Since

A(di ∩ s2) = {min (xi + wi, x̄s2 + ws0zs2)−max(xi, x̄s2)}
+

A(di ∩ s1 ∩ s2) = {min(xi + wi, x̄s1 + ws0 z̄s1 , x̄s2 + ws0zs2)

−max(xi, x̄s1 , x̄s2)}+,

where operator a+ returns a if a > 0 and 0 if a ≤ 0, function fi(x̄s1 , x̄s2 , z̄s1 , zs2) can be
written as

fi(x̄s1 , x̄s2 , z̄s1 , zs2) = g0zs2 + g1z
−1
s2

+ g2

where coefficients g0, g1 and g2 known.
If g1 ≥ 0, then f

′′
i ≥ 0 which implies that the function is convex. Also, if g1 < 0 and

g0 ≥ 0, then f
′
i ≥ 0 and f

′′
i < 0. This implies that the function is a non-decreasing concave

function. For both cases, when a interval [zt1 , zt2 ] is given, defined by the two consecutive
z-critical values, the function fi(x̄s1 , x̄s2 , z̄s1 , zs2) attains maximum value within the interval
at zt1 and/or zt2 . Therefore, it is suffices to consider the set of z-critical values to obtain the
optimal solution.

Observation 5.1. Coefficients g0 < 0 and g1 < 0 only when

A(di ∩ s2) = ws0zs2 − (x̄s1 − x̄s2),
A(di ∩ s1 ∩ s2) = ws0zs2 − (x̄s2 −max(xi, x̄s1 , x̄s2))

and z̄s1 ≥ zs2 ≥ zi. Also, if g0 < 0 and g1 < 0 then g0 = −riws0zi/z̄s1 and g1 = −ri(xi −
x̄s2)zi.

In this case, the function is non-increasing concave function if following two assumptions
holds.

Assumption 1: There is an upper bound q for the resolution level of the view frame,
which implies that width of each view-frame cannot exceed ws0q.

Assumption 2: Request di is assumed to be covered only by a view-frame positioned at

the candidate point xlk ∈ L that satisfies xi − xlk ≤
ws0z

2
i

q
. This implies that no reward is

covered if the quality of coverage is below a certain threshold.
However, when considering request dj whose resolution zj satisfies zi ≤ zs2 ≤ zj ≤ z̄s1 ,

f(x̄s1 , x̄s2 , z̄s1 , zs2) =

(
rjws0 −

rjws0zj
z̄s1

− riws0zi
z̄s1

)
zs2

− ri(xi − x̄s2)
zs2

+ g′2

for some constant g′2. Even with the assumptions we made, the presence of the stationary
point within the interval [zi, zj] of the objective function depends on problem parameters,
such as reward rate and desired resolution. As a result, considering only z-critical values for
the view-frame s2 may lead to non-optimal solution, which in turn makes it challenging to
define a discrete solution space (that contains an optimal solution) for addressing M-CFP-F.
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5.2 Heuristic Algorithm for M-CFP-F

This section presents a heuristic method based on branch-and-bound framework for solv-
ing M-CFP-F. We assume that the solution space for resolution of camera view frames is
restricted to zRCVs and zFCVs, and there exists a camera view-frame s1 (wlog) such that
zs1 is a zRCV. To implement, we partition the entire set of feasible solutions (root node)
of M-CFP-F into smaller subsets (child nodes) and evaluate the smaller solution spaces by
computing their upper bounds. If a current node (reduced solution space) cannot provide a
solution better than the best solution obtained so far, we eliminate this node (pruning). The
overall methodology and terminology are similar to the algorithms discussed in [2], however,
we have modified the data structure and functions for our problem. The major difference
arises from the nature of the z-critical values. While in the algorithm presented in [2] the
values of x- and y-FCVs that need to be considered for unfixed frames are the same in the
algorithm, in our problem, for each candidate location xlk ∈ L, different values of zFCVs
must be considered.

To begin, a greedy algorithm is applied to get an initial feasible solution and the lower
bound. The root node, denoted as V0, is then established, containing p sets of elements
from L and ZR, with the jth set representing the solution space for the j-th view-frame
(j ∈ {1, . . . p}). Further information regarding the procedure and data structure can be
found in [2]. In the following, we briefly provide overall data structure and key functions of
this algorithm for M-CFP-F.

5.2.1 Upper Bound Function

For each xlj ∈ L = {xl1 , . . . , xlm}, we calculate the set of zRCVs, Zj = {zjq1 , . . . , z
j
qj
} where

qj is the number of zRCV defined by xlj . Then, we obtain the possible covered reward when
we locate the single view-frame at xlj with the resolution z ∈ Zj. We complete this process
for all xlj ∈ L and construct a matrix M whose rows and columns are indexed by the set
of xlj ∈ L, j ∈ {l1, . . . , lm} and zq ∈ ZR, q ∈ {1, . . . , |ZR|}, where M(xlj , zq) returns reward
covered by a view-frame when located at (xlj , zq). Note that M(xlj , zq) = 0 if zq /∈ Zj. The
remaining steps to obtain upper bound follows from [2].

5.2.2 Branching

The process of generating child nodes of the current node is called branching. We first branch
along with the x axis to determine the locations of the p view frames. After the x coordinate
of each frame has been fixed to one of the elements in L, branching continues along the z
axis to determine the resolution of each frame. As per assumption we made, the solution
space of the resolution for each frame is established. Whenever we fix the resolution of one
of the frames, we calculate the zFCVs that are needed to be considered for each xlk ∈ L
and these zFCVs are taken into account when determining the resolution of frames whose
resolution has not yet been determined.
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6 Computational Results for Random Instances

In this section, we present the results of our computational experiments on randomly gener-
ated instances to evaluate the performance of algorithms for adversarial CFP (Section 6.1)
and CFP with single and multiple cameras (Section 6.2). We generate these instances as
follows [2, 15]: In 1000 × 1000 region, we randomly generate three seed points with a cir-
cular range of radius 270. There are 93% chances that the lower-left corner of a request is
generated within a circular range of these three seed points and 7% chances that it will be
anywhere in the entire region. Additionally, wi, li ∼ uniform(5,50), zi ∼ uniform(1,10), and
ri ∼ uniform(1,30) for all i ∈ N . We also randomly generate a realization ξω ∈ {0, 1}n,
ω ∈ Ω from the Bernoulli distribution with probability 0.75, i.e., ξωi = 1 with probabil-
ity 0.75. For the moment-matching ambiguity set, we set m = 1, l1 = 0.95

∑
ω∈Ω ξ

ω/|Ω|
and u1 = 1.05

∑
ω∈Ω ξ

ω/|Ω|, i.e., bounds on first-moment. We implement all algorithms in
Python using Gurobi 9.1 as optimization solver on a machine with Intel Xeon(R) W-2255
processor (3.7 GHz) and 32GB RAM.

6.1 Computational Results for Adversarial CFP

We conduct computational experiments on instances with different number of requests n ∈
{10, 15, 20}, number of target frames p ∈ {2, 3, 4, 5}, and the attackers’ budget b ∈ {2, 3, 4, 5}.
For each combination of (n, p, b), we generate 10 instances and report average over results
for these instances in Table 1. For |Ω| = 100, the column labeled as “DRA-CFP” reports
the distributionally risk-averse solution value, which is the expected covered reward by the
defender for the worst-case probability distribution, and solution time (in seconds). To
emphasize the significance of the distributionally robust solution, we introduce the Value
of the Distributionally robust Solution (VDS) that is computed as follows. For a given
instance, let σ∗ and Φ(σ∗) be an optimal solution of Problem (1) and the optimal solution
value, respectively. Assuming that all attacks are successful, i.e., ξωi = 1 for all i ∈ N and
ω ∈ Ω, we solve the foregoing instance and get a deterministic optimal solution, denoted by
σ̂D ∈ X , with φD as associated solution value. We report φD and Φ(σ̂D) after averaging over
10 instances with same (n, p, b) in Table 1. Note that Φ(σ̂D) returns the expected reward
covered after adversary’s action σ̂D but in the presence of uncertainty. Now,

VDS = Φ(σ̂D)− Φ(σ∗),

where VDS equal to zero implies that the deterministic solution when considered in uncer-
tain environment leads to same covered reward as given by the optimal solution value of
Problem (1). In Table 1, we report average VDS only for instances with VDS > 0. The
positive VDS can be analyzed from two different perspectives.

Interdictor’s Perspective. Assume that we pick the deterministic model, Problem (1)
with ξωi = 1 for all (ω, i), to decide interdiction actions σ̂D against an enemy and its
agents with the goal of minimizing the maximum information the enemy can cover. In
such case, even though the optimal covered reward φD reported by the deterministic
model is always better than Φ(σ∗), the “realistic” covered reward after incorporating
uncertainty in the success of attacks Φ(σ̂D) > Φ(σ∗) when VDS is positive. In other
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n p b
Deterministic DRA-CFP

Φ(σ̂D)
VDS

# of instances
VDS>0Reward φD Reward Φ(σ∗) Time(s)

10

2

2 388 523 12 529.5 6.5 3
3 317 465 12.3 477.3 12.3 2
4 299 416 11.7 429.3 13.3 3
5 260 372 11.7 409.7 37.7 4

3

2 768 907 24.0 925.6 18.6 3
3 629 820 23.3 865.1 45.1 3
4 560 793 23.2 807.9 14.9 4
5 395 781 20.1 848.3 67.3 4

4

2 1083 1227 36.0 1241.8 14.1 4
3 941 1160 36.3 1168.3 8.3 4
4 703 1131 39 1220.9 89.9 3
5 546 1112 33.3 1287.8 175.8 4

5

2 1526 1678 51.6 1751.0 73 3
3 1159 1451 54.0 1462.5 11.5 3
4 847 1434 48.1 1448.2 14.2 3
5 721 1362 45.2 1520.4 158.4 4

15

2

2 621 722 47.7 777.5 55.5 3
3 462 644 46.9 671.6 27.6 3
4 400 608 43.7 643.4 35.4 4
5 358 577 44.1 612.7 35.7 4

3

2 953 1015 80.7 1103.5 88.5 3
3 818 926 85.9 1043.9 117.9 4
4 668 913 83.6 1051.0 138 3
5 613 877 77.9 921.2 44.2 3

4

2 1384 1522 131.4 1572.6 50.6 3
3 1265 1460 132.8 1486.8 26.8 5
4 1095 1412 133.6 1484.6 72.6 4
5 1025 1392 122.2 1497.5 105.5 6

5

2 1622 2048 194.6 2137.8 89.8 6
3 1557 1948 220.9 2045.9 97.9 7
4 1192 1944 231.6 2072.8 128.8 6
5 1061 1868 223.1 2205.0 337 8

20

2

2 788 802 122.8 868.7 66.7 6
3 683 787 129.6 828.4 41.4 4
4 679 740 118.3 807.7 67.7 6
5 563 717 110.4 814.5 97.5 5

3

2 1189 1203 194.2 1321.3 118.3 5
3 1063 1089 196.8 1213.1 124.1 7
4 1019 1045 199.7 1126.5 81.5 6
5 851 1008 196.1 1093.0 85 5

4

2 1667 1731 297.6 1791.0 60 5
3 1482 1720 340.4 1830.0 110 6
4 1447 1696 350.3 1810.0 114 8
5 1226 1591 303.3 1663.0 72 6

5

2 2025 2143 396.1 2197.0 54 4
3 1875 2122 482.4 2207.0 85 6
4 1826 1999 496.4 2097.0 98 5
5 1566 1875 410.8 2055.5 180.5 8

Table 1: Computational Results for the Adversarial CFP (1)
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words, the enemy covers more reward when as an interdictor we do not incorporate
uncertainty.

Defender’s Perspective. In contrast, selecting the deterministic model as a defender to
analyze an adversary’s actions mislead the defender in two ways: (a) The defender
is overly cautious and overestimating the risk-appetite of the adversary, and (b) For
an adversary using model (1), the deterministic solution might not be optimal and
therefore, they would opt σ∗ actions as Φ(σ∗) < Φ(σ̂D) when VDS is positive. From
our computational experiments, we observe that for 92 out of 160 instances with n = 20,
σ∗ is different from σ̂D. This impacts defenders vulnerability analysis as well.

6.2 Computational Results for CFP without Adversary

We computationally evaluate the impact of the reduced search space (Theorem 3.1) on the
performance of two exact algorithms for S-CFP in [15], referred as BV algorithm and BV-IC
algorithm. We also evaluate effectiveness of proposed solution approaches for M-CFPs.

6.2.1 Results for S-CFP

In Table 2, each row also reports an average over 10 randomly generated instances. Columns
labelled as “BV” and “BV-IC” report solution time (in seconds) of the BV and BV-IC
algorithms, respectively, of [15]. Whereas, columns labelled as “Impr BV” and “Impr BV-
IC” report solution time (in seconds) of these approaches with the reduced search space,
according to Theorem 3.1. We report the reduction in computational time for each algorithm
as improvement, i.e., 100 × (1 − TI/TO) where TO and TI indicate the time taken by the
original algorithm and improved algorithm, respectively. We observe that the improvement
increases as the number of requests are increased, with more than 50% reduction in run
time for n ≥ 30. Moreover, Figure 3 shows that when n ≤ 100, the improved BV algorithm
outperforms original BV-IC algorithm even though it is an upgraded version of BV algorithm
proposed in the [15].

n
BV Impr BV Improvment BV-IC Impr BV-IC Improvement
TO(s) TI(s) % TO(s) TI(s) %

10 0.1 0.06 40 0.08 0.04 50
30 7.5 2.9 60 4.5 2.0 54
50 58 21 64 29 12 59
70 235 81 65 104 42 60
90 713 242 66 284 111 61
100 1,165 386 67 441 171 61
150 7,171 2,313 68 2,198 827 62
200 27,102 8,473 68 7,074 2,595 63
250 77,716 24,387 68 17,998 6,736 62

Table 2: Computational results for S-CFP
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Figure 3: Impact of Theorem 3.1 on performance of algorithms for S-CFP

6.2.2 Results for M-CFP using Approximation Algorithm and Heuristics

In Table 3, we compare the performance of greedy approach and extreme BV approach for
p = 2 and n ∈ {5, 10, . . . , 30}. As expected, the former is computationally efficient but
the latter provides better solution and reward coverage. We can observe that the increase
in n and p significantly increase the time taken by the greedy method. Recall that in
the clustering approach, the set of requests is divided into multiple clusters. We utilize k-
means clustering approach to create p clusters and then solve S-CFP for each cluster using
Improved BV-IC algorithm (both in series and in parallel). Based on table 3, this approach
(even without parallel computing) is much faster in comparison to the greedy method. For
example, for n = 500, the greedy algorithm takes more than 6100 seconds to position 10
frames, in comparison to 66 seconds taken by the clustering approach. Moreover, the latter
covers 99.9% of the reward covered by the former. In the worst case, when n = 400, the
clustering approach covers 87% of the reward covered by greedy method, but it takes only
0.67% of the time taken by greedy method.

6.2.3 Computational Results for M-CFP-F

We present the computational result for the M-CFP-F instances with continuous resolution
and L as the set of candidate locations. Each row reports an average of 10 instances.
We compare the three algorithms, branch and bound based heuristic, greedy algorithm
and clustering based algorithm by reporting solution time and relative reward percentage
(denoted by RelRew) assuming the reward captured by the heuristic is 100. The reward
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n p
Greedy Clustering Extreme BV

Reward Time (s) Reward
Time (s)

in parallel
Time (s)
in series

Reward Time (s)

5

2

1,061 0.01 885 3.00 0.03 1,072 1.37
10 1,160 0.12 939 2.00 0.04 1,247 113
20 1,497 1.12 1,239 2.47 0.13 1,501 3,350
30 1,553 4.42 1352 2.13 0.41 1,826 3600+
50 1,661 22.31 1590 2.03 2.41 1,960 3600+

100

10

7,216 244 8,026 3.2 0.8

N/A
200 13,430 1,089 12,983 4.6 8.0
300 17,139 2,787 15,991 12 31
400 22,891 4301 19,984 29 88
500 25,365 6101 25,055 66 204

Table 3: Computational results for M-CFP: Greedy, Clustering and Extreme BV Methods

p n |L| Heuristic Algorithm Greedy approach Clustering Approach
Time Reward Time Reward RelRew(%) Time Reward RelRew(%)

3

10
7 24 1002 0.002 863 86 0.02 797 79
10 33 1295 0.003 1166 90 0.02 1121 86

20
7 1216 1548 0.02 1323 86 0.03 1165 75
10 1339 1750 0.03 1629 93 0.03 1301 74
15 1156 2090 0.03 1753 84 0.03 1324 63

50
10 11816 3277 0.25 2931 89 0.03 2300 70
15 13,701 4074 0.28 3702 90 0.03 3090 75
20 14,745 4172 0.32 3799 91 0.03 3141 75

Table 4: Computational Results for M-CFP-F
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reported by the greedy approach is at least 84% (on average) of the reward reported by the
heuristic, in comparison to 132% by the clustering approach. In terms of solution time, the
cluster approach performs better than the greedy and heuristic algorithms. Note that the
clustering approach is a heuristic so it does not provide any guarantee the quality of solution.

7 Case Study

In this section, we present a case study to emphasize the effectiveness of the improved algo-
rithms for CFP and to also highlight the practicality of the camera view-frame placement
problem. The overall procedure of this case study is based on the framework (Hydra) pro-
posed by [4] to find a hidden object in a remote area using CFP. Below we provide a brief
summary of this framework that consists of the following steps.

1. Requests Generation: Given a set of n automated agents, each agent generates
a rectangular request based on its own probability distribution to detect the hidden
object. Specifically, an agent generates request that maximizes the information gain
calculated based on its current probability distribution. Note that the probability
distribution of the agent is initialized by the Dirichlet process and updated in the last
step of each iteration.

2. Placing Optimal Camera View Frame Given the set of n requests, optimal pan,
tilt, and zoom for multiple cameras (installed on aerial vehicles) is obtained by solving
CFP, M-CFP, or M-CFP-F.

3. Termination Conditions. The automated agents check whether or not the hidden
object lies within the subregions captured by the camera view-frames. Since there is
a possibility of false negative, the iteration will terminate when the hidden object is
captured by a camera with predetermined desired resolution level for the object.

4. Update Probability Distributions If automated agents conclude that a hidden ob-
ject is not detected, they update their own probability distribution by Bayes’ rule. This
updated probability distribution is used for generating requests in the next iteration.

Computational Results. In Table 5, we report average number of iterations and time taken to
find a hidden object using BV-IC and improved BV-IC algorithms for S-CFP. We consider
25× 25 and 50× 50 search areas. Since both are exact algorithms, the number of iterations
is same for both of them. However, as expected, we reduce computational time by using
improved BV-IC algorithm for placing the optimal camera view-frames.

8 Conclusion

We introduced adversarial CFP in the presence of uncertainty in the success of attacks and
distributional ambiguity. The proposed algebraic modeling framework allowed adjustments
based on risk-appetite of the decision makers. We presented valid inequalities to derive lower
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p Search Areas n
BV-IC Improved BV-IC

#Iterations Time (s) #Iterations Time (s)

1
25 × 25

5 6.0 0.05 6.0 0.03
7 3.8 0.03 3.8 0.02

50 × 50
15 17.8 20.2 17.8 11.0
20 19.6 24.2 19.6 12.1

Table 5: Computational result for simulation study: Hydra

bound approximations for the objective function and a decomposition algorithm to solve it
to optimality. We proved finite convergence of this decomposition algorithm.

We conducted extensive computational experiments to emphasize the utility of this prob-
lem and the solution approach. Moreover, we studied CFP with single or multiple cameras
(denoted by S-CFP and M-CFP, respectively), but in the absence of adversary and uncer-
tainty. We strengthened the theoretical properties introduced in [15] for S-CFP, and as a
result, we further reduced the solution search space and improved the computational effi-
ciency of algorithms for the S-CFP. We used these algorithms within a simulation framework
– Hydra– to find a hidden object. For M-CFP, we proposed: (a) an approximation algorithm
for p = 2, (b) a Greedy algorithm with approximation ratio of 1−1/e, (c) a clustering based
heuristics, and (d) another heuristic algorithm when tilt of cameras is fixed and their pan
belongs to a finite set of values. Again, we computationally evaluated performance of these
approaches along with the quality of solution.
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