
MOSDEX Proposal Final Revised
2/9/2023 -1- ©2022 Jeremy A. Bloom

MOSDEX: A New Standard for Data Exchange with Optimization Solvers

Jeremy A. Bloom

Retired

Sunnyvale CA 94087

jeremyblmca@gmail.com

Matthew Saltzman

School of Mathematical and Statistical Sciences, Clemson University, Clemson SC 29634-0975

mjs@clemson.edu

Alan King

IBM Thomas J. Watson Research Center, Yorktown Heights, NY USA 10598

kingaj@us.ibm.com

December 14, 2022

Abstract

This paper offers a new standard, called MOSDEX (Mathematical Optimization Solver Data EXchange),

for managing the interaction of data with solvers for mathematical optimization. The rationale for this

standard is to take advantage of modern software tools that can efficiently handle very large datasets

that have become the norm for data analytics in the past few years. MOSDEX is based on several

principles: independence from and support for multiple optimization solvers and multiple algebraic

modeling languages, separation of model and data, relational data modeling using SQL, and

incorporation of standard optimization modeling artifacts. MOSDEX uses the widely adopted JSON data

format standard to take advantage of JSON support in a variety of programming languages including

Java, C++, Python, and Julia. The paper demonstrates the principles of MOSDEX through examples taken

from a well-known optimization problem. On-line resources provide a full description of the MOSDEX

syntax, a working implementation of its Reference architecture, and a library of examples of MOSDEX

representations of optimization problems.

1 Introduction and Basic Rationale

This paper offers a new standard, called MOSDEX (Mathematical Optimization Solver Data EXchange),

for managing the interaction of data with solvers for mathematical optimization. The rationale for this

standard is to take advantage of modern software tools that can efficiently handle very large datasets

that have become the norm for data analytics in the past few years. Much of the voluminous literature

on mathematical optimization, even in recent times, has focused almost entirely on the efficiency of

solution algorithms, to the neglect of the computational effort required to prepare the data for those

algorithms and to retrieve solutions from a solver. Yet, in our experience, the effort, both intellectual

and computational, required for the latter two activities often dominates the effort required for the

algorithms themselves. The standard we propose aims to remedy that deficiency.

Our thinking is guided by the view that solving an optimization problem is but one step in a sequence of

transformations of data from its origins in an enterprise data store to its ultimate destination in

operational systems that implement enterprise decisions. The proposed MOSDEX standard intends to

support this entire stack. The key to this endeavor lies in three principles:

mailto:jeremyblmca@gmail.com
mailto:mjs@clemson.edu
mailto:kingaj@us.ibm.com

MOSDEX Proposal Final Revised
2/9/2023 -2- ©2022 Jeremy A. Bloom

1. Treat data as a stream in which, to the greatest extent possible, transformations occur without

intermediate realizations in memory;

2. Use a data manipulation language (i.e. Structured Query Language) to implement and document

the transformations that take place;

3. To the greatest extent possible, provide a standard that is implementable and neutral with

respect to the host programming language, the optimization solver, and the data management

system employed.

Prior work, summarized in the next section, addresses several different approaches for specifying data

for optimization. At one end of a spectrum, instance formats, which include the venerable MPS as well

as LP, OSiL, and many others, provide specific data for a solver’s representation of an optimization

problem; frequently, the instance data maps directly to the solver’s internal data structures. At the

other end, algebraic modeling languages (AML), such as AMPL, GAMS, and OPL, provide a mathematical

representation of an optimization model and, typically, use a separate representation of the data for a

particular instance; the language processor transforms the model and data to populate a solver’s

internal data structures. While MOSDEX intends to supersede existing instance formats, we believe it is

complementary to AMLs, providing standardization of the data representation within the mathematical

syntax for representing a model.

The chief issue with instance formats is that they represent the end product of a series of

transformations upstream of the solver. These transformations are often ad hoc, not standardized, and

often they are undocumented. In essence, most applications that use optimization are custom designed,

and a great deal of effort is needed to create the data manipulations upstream and downstream of the

solver (see figure 1). MOSDEX is designed to support this entire architecture, using data transformation

tools based on SQL.

This paper is organized as follows: Section 2 reviews relevant prior work on instance formats, structure-

conveying formats, algebraic modeling languages, and SQL for optimization, focusing on the unique

capabilities that MOSDEX offers for melding SQL with optimization. Section 3 introduces MOSDEX

through its design principles, and sections 4 and 5 provide a detailed example MOSDEX in instance form

and query form respectively. Section 6 discusses the importance of indexing and structure in

optimization models and how MOSDEX addresses these aspects. Section 7 discusses how MOSDEX

specifies outputs of solver results. Section 8 discusses additional capabilities of MOSDEX and

contemplated extensions to address modular models, such as decomposition and stochastic

programming, and non-linear models. Section 9 summarizes the Reference Architecture for

implementing optimization applications based on MOSDEX. Section 10 provides our conclusions. The

two Appendices provide more details of the MOSDEX examples shown in sections 4 and 5. In addition to

this paper, interested readers are directed to the websiteii which contains working code implementing

the MOSDEX RefArc using Java, Apache Spark and IBM CPLEX. This website also includes a specification

of the MOSDEX syntax, both as a plain language documentxi and as a JSON Schemaxii, Javadoc

documentation of the codei, and a number of working examples of optimization problems using

MOSDEX.

MOSDEX Proposal Final Revised
2/9/2023 -3- ©2022 Jeremy A. Bloom

Figure 1: Data Flow in an Optimization Application

2 Prior Work

While mathematical optimization has, of course, a voluminous literature stretching back to its invention

by George Dantzig, spanning both algorithms for solving optimization problems and formulation of

optimization models, work on preparing data for optimization is somewhat sparse. What prior work on

this topic exists falls into four categories: instance formats, structure conveying formats, algebraic

modeling languages, and use of SQL in optimization. We survey each of these categories below.

2.1 Instance Formats

An instance of an optimization model is a representation of the data that maps directly to the model’s

variables, constraints, objectives, and terms (collectively, the modeling artifacts) that a solver uses in

computing a solution (Gassmann, Ma, & Martin, 2011). The most widely used instance format is MPS,

developed in the 1970s by IBM, which “has emerged as a de facto standard ASCII medium among most

of the commercial LP solvers.” (Wikipedia, MPS format, 2018). MPS brings several advantages that, we

believe, should be preserved when considering an alternative:

 Sparsity: MPS supports a sparse data format that requires specifying only non-zero elements of

the data. Since most real-world optimization problems are highly sparse (1-10% non-zeros), this

feature results in substantial reduction of data volume and computational effort. In addition, all

professional-grade solvers use sparse data structures internally.

 Text-based: MPS files are ordinary text files and are reasonably easy for humans to read.

 Non-proprietary: Although MPS began as a proprietary standard for an IBM solver, it became

widely adopted, and today almost all solvers support it.

MOSDEX Proposal Final Revised
2/9/2023 -4- ©2022 Jeremy A. Bloom

However, despite these advantages, MPS and other instance-based formats suffer from a number of

shortcomings. Among these, MPS’s fixed-column format, while archaic, is perhaps the least important,

since that aspect is rather easily overcome and many solvers that accept MPS files do not enforce it.

More important are the following:

a. Lack of an output standard: MPS is a format for input and there exists no corresponding

standard for output from an optimization solver. Some other instance formats do specify

output standards, but many solvers use unique output formats.

b. Lack of model/data separation: This aspect means that the model’s artifacts are

intertwined with the data that populates them rather than specified independently of the

data comprising any particular instance. It is considered a best practice to separate them,

for a number of reasons discussed below. Furthermore, the widely used algebraic modeling

languages are designed for model/data separation.

c. Difficulty in scaling: One reason for specifying the model and data separately is that it

allows for scalability – the model remains unchanged as the size of the data changes. In

practice, an optimization application often consists of a family of related instances in which

a model, representing, for example, a distribution network, does not change but the data

represents different numbers of entities, such as warehouses, stores, and routes between

them.

d. Unable to represent structure: Instance formats generally are unable to elucidate the

higher level structure of an optimization problem. We elaborate in Section 6.

e. Lack of indexing: One way to achieve scalability and convey structure is to use indexing to

represent groups of related variables or constraints, a common practice in mathematics. In

MPS and other instance formats, each variable is represented as a column and thus there is

a column record for each. With indexing, each family of variables could be represented by a

single artifact (although the use of columns to specify matrix data would also need to be

revised as discussed in the next item).

f. Column orientation: In MPS, the matrix elements (i.e. the coefficients of each variable in the

constraints) are specified in the column records. (This aspect is probably an historical artifact

of the way that a sparse matrix was specified in the original IBM solver.) LP is a row-oriented

format; other instance formats (notably OSiL) can use either orientation. While column

orientation is appropriate for some optimization models (for example a model constructed

using Dantzig-Wolfe decomposition), for others a row orientation is more appropriate.

Indeed, in mathematical notation, an optimization model is usually represented by its

constraints, and most of the widely adopted modeling languages favor specification by

constraint (row orientation) over specification by variable (column orientation).

g. Extensions beyond linear models: Originally, MPS was intended to represent purely linear

optimization problems. As solvers began to support integer and mixed-integer problems,

their developers extended the MPS format to accommodate them, although no standard for

such extensions emerged. Furthermore, solvers began to exploit special model structures in

their algorithms, such as special-ordered sets or indicator constraints, again extending the

MPS format to represent them. A modern data exchange standard needs to support these

extensions, as well as quadratic, conic, and other nonlinear formulations, in a standard way.

MOSDEX Proposal Final Revised
2/9/2023 -5- ©2022 Jeremy A. Bloom

A more modern alternative to MPS is called Optimization Services instance Language (OSiL) (Fourer, R.,

Ma, J., and Martin, K. , 2010). OSiL is part of an overall architecture called Optimization Services (OS)

(Fourer, Ma, & Martin, 2010), which focuses on implementing optimization solving as a service over the

internet. The use case for OSiL differs from that of MOSDEX. While OSiL contemplates a situation in

which the solver is deployed on a remote server, such as NEOS, where the solver runs independently of

any other software, MOSDEX represents the case, more common in business applications, in which the

solver runs as a web-based service in a container such as Docker, possibly remote, with other software

components, especially a database; this is the model that is emerging for IBM Watson Studio, Amazon

Sagemaker, and other machine learning systems. OSiL represents instances of optimization problems

including linear programs, mixed integer programs, quadratic programs, and nonlinear programs. OSiL

uses a widely adopted data format language, XML; however, given the complexity of XML and its

consequent difficulty for human readers, we have chosen to implement MOSDEX in JSON, which has a

much simpler syntax and which has been widely adopted for similar applications. While OSiL represents

a significant update to the MPS standard, it nevertheless has significant limitations.

A recent innovation is MathOptInterface (Legat, 2022), and its JSON representation MathOptFormat,

which has many useful ideas. Less a data exchange format than a model exchange standard,

MathOptInterface defines a canonical form that accommodates many special structures beyond the

usual linear, quadratic, and mixed integer models. It does so by defining a small set of functional forms

and domain sets that occur frequently in optimization models. One of the key innovations in the work is

an algorithm for transforming an optimization model defined in terms of these functions and sets into

another, equivalent model. Although MathOptInterface is implemented in the Julia programming

language, the authors envision wider adoption in other languages, and MathOptInterface targets

multiple optimization solvers.

However, at bottom, MathOptInterface is an instance format that suffers from the limitations discussed

above. It does not separate model from data, as each functional form and domain set includes within it

its terms data. Nor does MathOptInterface support indexing or index sets and thus, does not represent

higher level structures, beyond its limited functional forms and domain sets. It is unclear from the paper,

whether or how MathOptInterface models would scale.

Some of the ideas in MathOptInterface might usefully be adopted in MOSDEX. In particular, one could

define new types of variables, constraints, objectives, and terms corresponding to MathOptInterface’s

function and set artifacts. Terms could be defined by formulas, as discussed in section 8, capturing

MathOptInterface’s artifacts. These extensions would bring the power of SQL to describe indexing and

structure.

Instance formats generally suffer from several limitations. First, because an instance format maps

directly into a solver’s corresponding in-memory representation of a problem instance, it also does not

convey the higher-level structure that exists in many large optimization models, notably stochastic

programs, that can be exploited in specialized solver algorithms (see Section 6). Furthermore, they

represent the end product of a series of transformations upstream of the solver; in effect, they

implement the “Create Solver Artifacts” transformation (step 3 in Figure 1), without addressing the

other upstream and downstream transformations. These other transformations are often ad hoc, not

standardized, and often they are not well documented. This is the gap that MOSDEX intends to fill.

MOSDEX Proposal Final Revised
2/9/2023 -6- ©2022 Jeremy A. Bloom

2.2 Structure Conveying Formats

Addressing the desirability of conveying structure, Colombo et al. (2009) develop an object-oriented

format that breaks an optimization model into parametrized blocks of sub-models, each of which is

identified to a solver, which enables applying specialized algorithms. Their approach is implemented as a

combination of pre-and post-processing phases of an algebraic modeling language, AMPL. Unlike

traditional modeling languages, their approach does not scramble the block structure of the model.

While not strictly a data exchange format, the ideas developed are not limited to a particular modeling

language and can be adapted more generally (see Section 8).

2.3 Algebraic Modeling Languages

Algebraic modeling languages (AML), among them AMPL (AMPL Optimization Inc.), GAMS (GAMS

Development Corp.), and OPL (IBM Corporation), have represented a significant advance in optimization

modeling, enabling creating models as quasi-mathematical constructs familiar to most operations

research developers. However, from an architectural perspective, an AML is merely a way to prepare

data for the solver; that is, they provide one way to create solver the artifacts, the third box in Figure

1.There are many ideas embodied in algebraic languages that can be usefully employed in a data

exchange format as well, especially the notion of model/data separation. They provide a layer of syntax

above a data exchange format that includes both mathematical operators, such as summation, and

sophisticated methods for manipulating index sets, such as slicing, which, in our opinion, are essential to

conveying structure in optimization models. Thus, if one uses an AML, there is probably no advantage

to adopting the MOSDEX’s modeling artifacts for specifying a model’s variables, constraints, and

objective function.

However, the MOSDEX data tables might usefully be employed in an AML. The advantage of using the

MOSDEX standard for data exchange is twofold: first, integrating upstream and downstream data

transformations, and second, representing of the data independently from the particular AML. So, while

MOSDEX is not intended to replace the modeling artifacts in an AML, it compliments an AML in

standardizing the upstream and downstream dataflows.

2.4 Relational Data Model

Finally, there are a few papers that address the relationship between optimization modeling and data

manipulation languages, most notably SQL. Several authors have, apparently, independently observed

the strong relationship between these two domains. MOSDEX itself was inspired by previous work by

one of the authors (Bloom, 2017). In a remarkable paper from 30 years ago, Choobineh (1991) proposes

an extension of SQL to implement the modeling artifacts for optimization; however, this work seems to

have generated no follow-up nor usable software. Fourer (1997) discussed the fundamental principles of

database construction for large-scale mathematical programming, using a steel mill planning model as

an example. In particular, he demonstrated how different formulations of the optimization model

generated different database structures. Fourer’s paper uses relational algebra to describe the tables

that underlie the model formulation. A little later, Atamturk et al. (2000) discussed optimization

modeling based on relational algebra, in which modeling related activities, such as model formulation,

model instantiation, and model and instance management, are done using relational operations such as

selection, projection, and predicated join. Atamturk’s paper explicitly formulates SQL queries that create

the tables that underlie the example model formulation, a production and distribution example.

MOSDEX Proposal Final Revised
2/9/2023 -7- ©2022 Jeremy A. Bloom

Periodically, the same insights have been rediscovered by others. Despite this history, however, the

relationship between modeling and databases has not become part of the main stream in optimization

modeling. This relationship derives from the fundamental role index sets play in optimization models

(see Section 6). However, to our knowledge, these prior works seem to have been one-off efforts that

did not produce generally applicable standards or software. Perhaps the separation reflects a long-

standing cultural difference between mathematical modeling and data engineering. However, we

believe that, with modern database technology and the increasing use of application architectures

linking data to optimization in an integrated stack, the time has come to take advantage of this synergy.

3 MOSDEX Design Principles

Below, we will explain in detail MOSDEX, the proposed new standard. However, here is a brief summary

our design principles:

a. Efficient for machines, readable by humans: From an architectural perspective, the role of a

model is to move data from its source in enterprise systems into (and out of) the solver's

internal data structures. Since many optimization applications are highly automated, data

must flow with as little processing overhead as possible. However, since humans design,

implement, and use these applications, it is essential that they be able to read easily the

content of data files. People need to verify the model design and to correct any bugs, such

as misaligned indices and malformed row and column labels. Instance formats generally do

not facilitate such tasks. Even LP format, arguably one of the most user friendly, becomes

very difficult to read with more than a handful of variables and constraints. Furthermore,

the ability to see the larger structure of the model contributes significantly to readability,

and instance formats generally do not show such structure. Thus, MOSDEX design also has a

primary goal to support readability by humans.

b. Represent the data in relational form: Use the well-known structure of relational data

bases, that is, a set of 2-dimensional tables each consisting of a fixed column schema and an

indeterminate number of rows.

c. Use the JSON (JavaScript Object Notation) standard: Tie the standard format for

optimization problems to a widely used data format standard to take advantage of support

for the standard in various programming languages.

d. When necessary, augment the data representation with mathematical modeling artifacts

in the new standard: When using a modeling language, the data representation should be

sufficient to fully specify an optimization problem. However, a full replacement of MPS

would also need to specify the modeling artifacts. The MOSDEX standard supports linear,

integer, and mixed-integer linear models. It is also possible to extend MOSDEX to

accommodate quadratic formulations and various special structures (see Section 8).

However, MOSDEX currently does not support general nonlinear formulations, which

increase complexity enormously due to the need to represent more general mathematical

expressions. (Note however, that the relational data representation would also support

nonlinear formulations.)

e. Extensibility: Enable extension of MOSDEX to accommodate modeling designs beyond linear

and quadratic models, in particular decomposition, stochastic and general non-linear

models (see Section 8). To the extent possible, make extensions systematic and

MOSDEX Proposal Final Revised
2/9/2023 -8- ©2022 Jeremy A. Bloom

parsimonious, based on a few core structures, and avoid proliferation of ad hoc artifacts.

We believe that use of JSON and SQL facilitates extension of MOSDEX.

4 MOSDEX Overview

At the highest level, a MOSDEX File is a collection of Modules, which represent either data only or an

optimization problem (modeling artifacts with or without data). Each Module in turn is a collection of

Tables. A Table represents a table in a relational database. Subclasses of Table represent Data and

modeling artifacts, such as Variable and Constraint. Every Table has a Schema, which defines its fields

and their data types. Data tables can have any reasonable schema, while the schemas of the modeling

artifacts are largely fixed by the requirements of an optimization solver. A Table can have either instance

or query form. Instance-form tables contain data while query-form tables use SQL queries to reshape

and populate data from other tables. A MODEX Module can contain both instance- and query-form

tables, although using query-form tables presupposes the presence of a database in the software stack

that executes the optimization application.

In order to illustrate specification of a simple linear program in MOSDEX, consider Equation 1, a

transshipment network borrowed from AMPL (Fourer, Gay, & Kernigan, 2003).

Equation 1: The Transshipment Model

This example will develop two MOSDEX representations. One uses purely instance-form tables,

illustrative of how MOSDEX compares with MPS and other instance formats, while the other uses query-

form tables, illustrative of the advantages of SQL in this context. To be clear, MOSDEX can be used in

either form or in combination. A few general comments are in order before we delve into the details of

this example. First, MOSDEX is a derivative of JavaScript Object Notation (JSON), and therefore, MOSDEX

files adhere to the JSON standard (see (JSON)). Second, MOSDEX is specified using a standard JSON

Schema (see (JSON Schema))ii. Among other uses, the MOSDEX schema enables validating a MOSDEX file

to assure conformance with the MOSDEX standard. Third, the example has been laid out visually to

facilitate clarity for human readers; however, the visual layout is not part of the standard, and generally

JSON does not enforce any particular layout (although many parsers offer a “pretty print” option).

Certain elements of the MOSDEX standard, such as the HEADING objects, are present specifically to

provide information for human readers and are not processed by a MOSDEX parser; such elements are

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑜𝑠𝑡[𝑖, 𝑗] ∗ 𝑠ℎ𝑖𝑝[𝑖, 𝑗]

(𝑖,𝑗) 𝑖𝑛 𝑟𝑜𝑢𝑡𝑒𝑠

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨:

𝐟𝐨𝐫 𝐚𝐥𝐥 {𝑘 𝑖𝑛 𝑐𝑖𝑡𝑖𝑒𝑠}

𝑏𝑎𝑙𝑎𝑛𝑐𝑒[𝑘]: ∑ 𝑠ℎ𝑖𝑝[𝑘, 𝑗] − ∑ 𝑠ℎ𝑖𝑝[𝑖, 𝑘] = 𝑠𝑢𝑝𝑝𝑙𝑦[𝑘] − 𝑑𝑒𝑚𝑎𝑛𝑑[𝑘]

(𝑖,𝑘) 𝑖𝑛 𝑟𝑜𝑢𝑡𝑒𝑠(𝑘,𝑗) 𝑖𝑛 𝑟𝑜𝑢𝑡𝑒𝑠

0 ≤ 𝑠ℎ𝑖𝑝[𝑖, 𝑗] ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦[𝑖, 𝑗] 𝐟𝐨𝐫 𝐚𝐥𝐥 (𝑖, 𝑗) 𝑖𝑛 𝑟𝑜𝑢𝑡𝑒𝑠

MOSDEX Proposal Final Revised
2/9/2023 -9- ©2022 Jeremy A. Bloom

generally optional. Since the JSON standard does not allow comments (although many JSON parsers

support C-style comments), these MOSDEX elements provide an alternative means to annotate a file.

Finally, JSON has three fundamental elements: objects, arrays, and primitives. A JSON object (similar to a

Python dictionary or a Java map) is an unordered list of key : element pairs, or members, where each

key, or field name, is a string; it is enclosed within curly braces, { and }, and a member’s key and element

are separated by a colon, with the object’s members separated by commas. Keys must be unique within

an object. In MOSDEX, the field name is always a keyword, denoted by using all capital letters.

A JSON array (similar to an array or list in Python or Java) is an ordered list of elements; it is enclosed in

square brackets, [and], and the elements are separated by commas. Array elements may be of mixed

types. Both objects and arrays can be nested within each other.

Finally, JSON supports the following primitive types: strings of Unicode characters enclosed in double

quotes, decimal integers, decimal floating point numbers with or without an exponent (double in Java),

and null. (boolean, another JSON primitive, is not used in MOSDEX.) Additionally, MOSDEX allows

another number type, IEEE Doubles. These are represented as strings of hexadecimal digits, according to

the IEEE 754 standard; IEEE doubles are represented as JSON strings and converted to ordinary doubles

internally. Because optimization solvers generally use this format, it provides the most precise way to

exchange numerical data with a solver. Extending standard JSON, MOSDEX also allows ‘infinity’ and

‘-infinity’ in any numeric field holding a double or integer value; the MOSDEX parser translates these

values into an internal form acceptable to the host language. MOSDEX also accepts default values in

relevant fields, enabling a MOSDEX table to elide a field if it has a default value (e.g. infinity is the

default value for an upper bound on a continuous or integer decision variable).

The following discussion (Figure 2) highlights some of the key constructs of MOSDEX. Full example is

shown in Appendix 1.

MOSDEX Proposal Final Revised
2/9/2023 -10- ©2022 Jeremy A. Bloom

Figure 2: Excerpts of the Transshipment Example in Instance Form

 { "NAME": "ship", 25

 "CLASS": "VARIABLE", 26

 "KIND": "CONTINUOUS", 27

 "SCHEMA": { 28

 "FIELDS": 29

 ["Name", "origin", "destination", "Column", "LowerBound", "UpperBound", "Value"], 30

 "TYPES": 31

 ["STRING","STRING", "STRING", "STRING", "DOUBLE", "DOUBLE", "DOUBLE_FUNCTION"] 32

 }, 33

 "INSTANCE": [34

 ["ship", "PITT", "NE", "ship_PITT_NE", 0.0, 250.0, "PrimalValue(Column)"], 35

 ["ship", "PITT", "SE", "ship_PITT_SE", 0.0, 250.0, "PrimalValue(Column)"], 36

 ["ship", "NE", "BOS", "ship_NE_BOS", 0.0, 100.0, "PrimalValue(Column)"], 37

 ["ship", "NE", "EWR", "ship_NE_EWR", 0.0, 100.0, "PrimalValue(Column)"], 38

 ["ship", "NE", "BWI", "ship_NE_BWI", 0.0, 100.0, "PrimalValue(Column)"], 39

 ["ship", "SE", "EWR", "ship_SE_EWR", 0.0, 100.0, "PrimalValue(Column)"], 40

 ["ship", "SE", "BWI", "ship_SE_BWI", 0.0, 100.0, "PrimalValue(Column)"], 41

 ["ship", "SE", "ATL", "ship_SE_ATL", 0.0, 100.0, "PrimalValue(Column)"], 42

 ["ship", "SE", "MCO", "ship_SE_MCO", 0.0, 100.0, "PrimalValue(Column)"] 43

] 44

 }, 45

 { "NAME": "balance", 46

 "CLASS": "CONSTRAINT", 47

 "KIND": "LINEAR", 48

 "SCHEMA": { 49

 "FIELDS": 50

 ["Name", "city", "Row", "Sense", "RHS" , "Dual"], 51

 "TYPES": 52

 ["STRING", "STRING", "STRING", "STRING", "DOUBLE", "DOUBLE_FUNCTION"] 53

 }, 54

 "INSTANCE": [55

 ["balance", "PITT", "balance_PITT", "EQ", 450.0, "DualValue(Row)"], 56

 ["balance", "NE", "balance_NE", "EQ", 0.0, "DualValue(Row)"], 57

 ["balance", "SE", "balance_SE", "EQ", 0.0, "DualValue(Row)"], 58

 ["balance", "BOS", "balance_BOS", "EQ", -90.0, "DualValue(Row)"], 59

 ["balance", "EWR", "balance_EWR", "EQ", -120.0, "DualValue(Row)"], 60

 ["balance", "BWI", "balance_BWI", "EQ", -120.0, "DualValue(Row)"], 61

 ["balance", "ATL", "balance_ATL", "EQ", -70.0, "DualValue(Row)"], 62

 ["balance", "MCO", "balance_MCO", "EQ", -50.0 , "DualValue(Row)"] 63

] 64
 }, 65

 { "NAME": "balance_shipFrom", 75
 "CLASS": "TERM", 76
 "KIND": "LINEAR", 77
 "SCHEMA": { 78
 "FIELDS": 79
 ["Row", "Column", "Coefficient"], 80
 "TYPES": 81
 ["STRING", "STRING", "DOUBLE"] 82
 }, 83
 "INSTANCE": [84
 ["balance_PITT", "ship_PITT_NE", 1.0], 85
 ["balance_PITT", "ship_PITT_SE", 1.0], 86
 ["balance_NE", "ship_NE_BOS", 1.0], 87
 ["balance_NE", "ship_NE_EWR", 1.0], 88
 ["balance_NE", "ship_NE_BWI", 1.0], 89
 ["balance_SE", "ship_SE_EWR", 1.0], 90
 ["balance_SE", "ship_SE_BWI", 1.0], 91
 ["balance_SE", "ship_SE_ATL", 1.0], 92
 ["balance_SE", "ship_SE_MCO", 1.0] 93
] 94
 } 95

Ship Table represents a decision variable artifact

Table Schema and Instance data

Outputs specified by Function Call fields

MOSDEX Proposal Final Revised
2/9/2023 -11- ©2022 Jeremy A. Bloom

Lines 25-45: The main elements of a MOSDEX file are its Tables. Conceptually, a table is a two-

dimensional object with a fixed number of columns, or fields, and an indefinite number of rows, or

records; think of a table in a relational database. Data and the modeling artifacts, Variable,

Constraint, Objective, and Term, are subclasses of Table. A Table’s Class and Kind are specified as

its first two elements.

The Table ship represents the decision variables of the generalTransshipment problem. These

variables have a two-dimensional key, by origin and destination. As in a database, the key uniquely

identifies each record in a table.

Lines 28-33: As an instance-form Table, ship requires an explicit Schema which defines the names

and types of its fields. The Schema of this Variable includes the key fields and several other fields

related to the variable class. In particular, the Column field provides a mapping from the two-

dimensional ship variable to a column of the optimization problem. MOSDEX does not prescribe a

particular encoding for the Column field, which may either be a string or an integer; the encoding

for this example (a concatenation of the variable name with its keys) has been chosen to make

inspection by a human reader easy to decode. The Value field is a placeholder for the solution

value computed by the solver; its type is DOUBLE_FUNCTION, which indicates a call to a solver

method (see discussion in Section 7).

Lines 34-44: The Instance array of the ship Variable contains actual data. In an Instance array, the

individual items in each Record are unlabeled and can only be parsed using the Table’s Schema.

The schema’s field names, the Fields array, are aligned to serve as a visual guide for a human

reader, although MOSDEX does not enforce any particular layout of the text. Notice that, in

contrast to MPS and other instance formats, MOSDEX does not include coefficient data among the

data specifying a Variable. Instead, coefficients are specified in separate Terms Tables, discussed in

Lines 75-95 below.

Lines 30, 32, and 35: Solution values this example are specified by fields in the modeling artifact

tables. For instance, the Value field of the ship table has the type DOUBLE_FUNCTION denoting a

function call that gets data from the solver. The item PrimalValue(Column) in each record will be

replaced by its value once the solver has computed an optimal value. As discussed in Section 5 on

query-form tables below, MOSDEX also provides a capability to precisely reshape the output data

into tables suitable for consumption by down-stream applications.

Lines 46-65: The Table balance represents the constraints of the generalTransshipment problem.

These constraints have a one-dimensional key, by city. The Schema and Instance objects of this

Constraint are analogous to those discussed for the ship Variable. This Table has a one-

dimensional key, by city, and a row encoding of the name of the table followed by the key,

although again, MOSDEX does not prescribe a particular encoding.

Lines 75-95: The Term Table balance_shipFrom represents the first of several tables that specify

the coefficients of the generalTransshipment problem. The name of a Term Table is not prescribed

by MOSDEX – any legitimate identifier is acceptable; the choice to use the concatenation of the

names of the Constraint and Variable in this example is purely for the convenience of human

readers. The schema of a Term Table identifies the Row and Column to which each coefficient

MOSDEX Proposal Final Revised
2/9/2023 -12- ©2022 Jeremy A. Bloom

corresponds. Note that Term Tables are also used to specify coefficients for an Objective as well.

Because MOSDEX specifies the coefficients in Term Tables separate from the corresponding

Variable and Constraint or Objective, it does not favor column-wise or row-wise formulations,

unlike other formats, such as MPS or LP.

5 Query-Form Tables and the Relational Data Model

The instance-form Tables of MOSDEX shown in the example of the previous Section 4 probably seem

familiar to many, especially those who have used MPS or another instance format, since while different

in detail, the two standards are similar in structure. However, neither MPS nor instance-form MOSDEX

represent data as it exists in its native form. In many cases, especially where an optimization application

runs as part of an enterprise decision support system such as MRP, the data originates in an enterprise

data store, often a relational database management system. The data streams through a bridge from its

origin in an enterprise data store into the optimization application. This process is a critical part of

designing and operating an optimization application, often entailing substantial software development

and computational effort.

Conceptually, mathematical optimization solvers (for linear, mixed integer, and quadratic problems)

typically work with a matrix representation of a problem internally, and thus it is the most natural way

of presenting the data for a particular instance to a solver. However, the internal form masks a

significant aspect of most optimization problems: the internal form (even when implemented as sparse

data structures) consists essentially of one- and two-dimensional objects, while data is often

multidimensional. Thus, one of the key steps in developing an optimization model is encoding the

natural multidimensional indices of the data into the one- or two-dimensional indices used by the

solver; indeed automatic encoding is one of the main reasons for using an algebraic modeling language.

In addition, the data is usually very sparse in practical applications. Solvers, in fact, take advantage of

that sparsity in their algorithms to significantly reduce computational effort and speed up solving time.

However, data handling ahead of solving can also take advantage of sparsity to reduce the volume of

data exchanged with the solver.

The impact of structure, especially sparsity, on data handling up-stream of the solver should not be

underestimated by the designers of mathematical optimization models. Sometimes the designer has a

lot of control over the format of the source data and can structure it to conform to the requirements of

the optimization solver. However, more often, the source data resides in some kind of enterprise data

store that is outside of her control. In that case, the data must be reshaped for input to the solver. Such

transformations can be performed by a custom data bridge, usually called the extraction, validation,

transformation, and load (EVTL) process. For realistic problems encountered in practice, the amount of

computational effort required to reshape the instance data into a solver’s internal form is non-trivial,

but it is often unrecognized. It is sometimes said, for example, that modeling languages add a lot of

“overhead” in forming an instance for submission to a solver; however, that “overhead” may simply be

the unrecognized data transformation effort, which nevertheless must occur, whether in the modeling

layer or as part of the EVTL bridge. Another source of misperception arises because “textbook”

optimization examples are often so small that the transformations can be done manually, so that the

reader is unaware that they have taken place at all. It is thus important for optimization application

developers to recognize and account for the data restructuring effort wherever it occurs, rather than

simply focusing on solver effort as a benchmark.

MOSDEX Proposal Final Revised
2/9/2023 -13- ©2022 Jeremy A. Bloom

As discussed in the paper by Bloom (2017), there is a deep relationship between the structure of the

data used in optimization modeling and the artifacts of an optimization model. In fact, as demonstrated

in that paper, one can view the modeling layer of an optimization application as transforming the data

from its external form in some sort of data store into its internal form in the solver’s data structures.

These transformations naturally take the form of SELECT queries in SQL. We refer to this relationship

between the structure of the data and its relationship to the modeling artifacts of optimization as the

relational data model.

MOSDEX recognizes the utility of the relational data model by offering an alternative form for specifying

a Table, called the query form. The following example, Figure 3, shows the same transshipment example

of Section 4 but in query form:

MOSDEX Proposal Final Revised
2/9/2023 -14- ©2022 Jeremy A. Bloom

Figure 3: Excerpts of the Transshipment Example in Query Form

 { 27
 "NAME":"ship", 28
 "CLASS": "VARIABLE", 29
 "KIND": "CONTINUOUS", 30
 "QUERY": { 31
 "SELECT": [32
 "'ship' AS Name -- STRING", 33
 "routes.origin AS origin -- STRING", 34
 "routes.destination AS destination -- STRING", 35
 "CONCAT('ship', '_', origin, '_', destination) AS Column -- STRING", 36
 "CAST(0.0 AS DOUBLE) AS LowerBound -- DOUBLE", 37
 "routes.capacity AS UpperBound -- DOUBLE", 38
 "'PrimalValue(Column)' AS value -- DOUBLE_FUNCTION" 39
], 40
 "FROM": "routes" 41
 } 42
 }, 43
 { 44
 "NAME": "balance", 45
 "CLASS": "CONSTRAINT", 46
 "KIND": "LINEAR", 47
 "QUERY": { 48
 "SELECT": [49
 "'balance' AS Name -- STRING", 50
 "cities.city AS city -- STRING", 51
 "CONCAT('balance', '_', city) AS Row -- STRING", 52
 "'EQ' AS Sense -- STRING", 53
 "(cities.supply-cities.demand) AS RHS -- DOUBLE", 54
 "'DualValue(Row)' AS dual -- DOUBLE_FUNCTION" 55
], 56
 "FROM": "cities" 57
 } 58
 }, 59

 { 70
 "NAME": "balance_shipFrom", 71
 "CLASS": "TERM", 72
 "KIND": "LINEAR", 73
 "QUERY": { 74
 "SELECT": [75
 "balance.Row AS Row -- STRING", 76
 "ship.Column AS Column -- STRING", 77
 "CAST(1.0 AS DOUBLE) AS Coefficient -- DOUBLE" 78
], 79
 "FROM": "balance", 80
 "JOIN": "ship", 81
 "ON": "balance.city = ship.origin" 82
 } 83
 },84

 { 175
 "NAME": "shipments", 176
 "CLASS": "DATA", 177
 "KIND": "OUTPUT", 178
 "QUERY": { 179
 "SELECT": [180
 "ship.origin AS origin -- STRING", 181
 "ship.destination AS destination -- STRING", 182
 "ship.value AS value -- DOUBLE" 183
], 184
 "FROM": "ship" 185
 } 186
 }, 187

Ship Table represents a decision variable artifact

SQL Query specifies how data are

constructed from other Tables

MOSDEX schema is specified as part of the

Select clause

Shipments Table represents an output data object

SQL Query facilitates reshaping results for consumption by downstream

applications

Complex query illustrates joining two tables

MOSDEX Proposal Final Revised
2/9/2023 -15- ©2022 Jeremy A. Bloom

Lines 27-43: As in figure 2, the Table ship represents the decision variables of the

generalTransshipment problem. However, in Figure 6, this modeling artifact is defined by an SQL

query rather by instance data.

Lines 31-42: A MOSDEX Query represents an SQL statement that specifies how the data are

constructed from other Tables or from an external database. A Query consists of a list of clauses,

each of which specifies a directive, which is a SQL command, and one or more predicates, the

arguments of the directive, as the Query for the ship Variable illustrates. The SELECT clause’s

predicate specifies how the table’s fields are accessed or computed from the fields of the parent

table, routes. The column encoding is computed as the concatenation of the variable name and the

two keys (again, MOSDEX does not specify the column encoding, and the modeler is free to choose

any convenient encoding as a string or integer, provided there is no duplication). MOSDEX does not

parse SQL, but the directives and predicates must be interpreted directly as valid SQL by the

database engine; thus MOSDEX does not specify the specific dialect of SQL, since there are many

supported by different RDBMS. MOSDEX simply passes the SQL to the database with minimal

parsing, leaving it to the database to insure that the SQL passed to it is legal. It is recommended

limiting SQL to an ANSI standard for compatibility across different RDBMS. Furthermore, many

RDBMS permit user-defined functions, and the RefArc allows for them, at the cost of additional

programming. By tying MOSDEX to SQL, moreover, we take advantage of wide-spread expertise and

computational systems available to support relational database systems.

Lines 32-40: The ship Variable Table does not contain a Schema object, per se. Instead the schema is

generated from the query. Specifically, the fields are named in the AS part of each item in the

SELECT clause predicate; furthermore, their types are specified following the “--“ symbol, which SQL

reads as a comment (as distinguished from comments in JSON, which are not part of its standard).

Lines 74-83: The queries in this example illustrate the power of SQL to create compact but efficient

data structures for optimization modeling. By joining tables, MOSDEX can use filtering, or slicing, to

match data elements with variables and constraints. Such operations are typically computationally

intensive and so are best performed using a database engine rather than hand-coded loops that are

available in most programming languages.

Lines 174-186: The output data table shipments is separated from the modeling artifacts. SQL

queries facilitate reshaping results for consumption by downstream applications.

Figure 4 shows the MOSDEX results file after a solve using IBM CPLEX. The solver result items are

highlighted in green.

MOSDEX Proposal Final Revised
2/9/2023 -16- ©2022 Jeremy A. Bloom

Figure 4: Results after CPLEX Solve

 {

 "NAME”: "results",

 "KIND”: "MODULE",

 "HEADING”: {

 "DESCRIPTION”: ["Results from General Transshipment Problem"]

 },

 "TABLES”: [

 {

 "NAME”: "shipments",

 "CLASS”: "DATA",

 "KIND”: "OUTPUT",

 "SCHEMA”: {

 "FIELDS”: ["origin", "destination", "value"],

 "TYPES”: ["STRING", "STRING", "DOUBLE"] },

 "INSTANCE”: [

 ["PITT", "NE", 250.0],

 ["PITT", "SE", 200.0],

 ["NE", "BOS", 90.0],

 ["NE", "EWR", 100.0],

 ["NE", "BWI", 60.0],

 ["SE", "EWR", 20.0],

 ["SE", "BWI", 60.0],

 ["SE", "ATL", 70.0],

 ["SE", "MCO", 50.0]]

 },

 {

 "NAME”: "objective",

 "CLASS”: "DATA",

 "KIND”: "OUTPUT",

 "SCHEMA”: {

 "FIELDS”: ["cost"],

 "TYPES”: ["DOUBLE"]},

 "INSTANCE”: [[1819.0]]

 }]

 }]

}

Solver outputs from CPLEX solve

Results Module

MOSDEX Proposal Final Revised
2/9/2023 -17- ©2022 Jeremy A. Bloom

6 Indexing, Scaling and Structure in MOSDEX

Optimization models frequently (in fact, almost always) use indexing to represent groups of related

variables or constraints, a common practice in mathematics. For example, instead of giving each variable

a distinct name, such as x, y, z, one uses an index like this x1, x2, x3. To a solver, a problem instance has a

representation (conceptually) as a two-dimensional array in which the column dimension represents the

variables and row dimension represents the constraints and objectives (in fact, of course, the array is

sparse, so that it is not literally represented as a matrix in memory). However, in many models, the data

behind these artifacts has more dimensions. For instance, in the transshipment model discussed above

(Equation 1), the ship variables themselves have two dimensions, the origin and the destination, neither

of which alone corresponds to a column. Thus, one of the key steps in developing an optimization model

is encoding the natural multidimensional indices of the data into the one- or two-dimensional indices

used by the solver.

Different solver implementations use various means to identify columns and rows. Some allow symbolic

names while others use integers. Instance formats often deal with indexing in the way they assign

identifiers to the columns and rows. The encoding is often ad hoc, not standardized, and many times

undocumented. Furthermore, encoded identifiers are cumbersome to work with; for instance, an

operation such as slicing, say collecting all the shipments with a common destination, are hard to do

with symbolic identifiers and impossible with integer encoding.

6.1 Indexing in Algebraic Modeling Languages

Algebraic modeling languages point the way to a more general view of indexing. These languages

introduce the idea that an index is an element of a set. An index set need not consist solely of positive

integers (as is traditional in mathematics), but instead may comprise other scalar values, such as strings,

or tuples of values (e.g. pairs, triples, etc.). Furthermore, index sets can be constructed from other sets

through operations such as joins, unions, or slicing. A slice is a subset of tuples in which certain

components have fixed values. The algebraic languages then map these abstract index sets to actual row

and column identifiers in a process which is transparent to the modeler.

In our view, the representation and construction of abstract index sets is an aspect of modeling that is

too often neglected in optimization education. This lacuna is reinforced by the traditional mathematical

notation used specifying optimization models, where indices are relegated to subscripts (and sometimes

superscripts) and where the index sets are either encoded as integers or are described (somewhat

vaguely) in text rather than in specific mathematical formulas. Yet, perhaps surprisingly to many

readers, there is already a rich mathematical theory that supports abstract indexing, namely relational

algebra, and its widely used implementation in Structured Query Language (SQL); see, for example, the

article on Relational Algebra (Wikipedia, 2022).

6.2 Indexing in MOSDEX

MOSDEX uses an indexing strategy based on SQL. MOSDEX does not dictate a particular naming pattern

for column and row identifiers. The generalTransshipment example uses a concatenation of the name

of the Table with its keys, but this method is a convenience rather than a requirement of MOSDEX.

Rather, a MOSDEX modeling artifact table has a record schema that includes both the primary keys of

the underlying data (e.g. the origin and destination of the ship variable) and the column or row identifier

MOSDEX Proposal Final Revised
2/9/2023 -18- ©2022 Jeremy A. Bloom

as a foreign key (see Figure 3, line 36). Using SQL, MOSDEX tables then can implement index set

operations using the primary keys and can access the solver-specific modeling artifacts through the

foreign key.

6.3 Scaling in MOSDEX

Use of SQL enables MOSDEX data files to scale more compactly than instance formats, which scale

linearly in the number of variables and constraints. Consider the ship variable in the transshipment

model discussed above. In instance form (Figure 2, lines 25-45), it has one record for each route;

however, in query form (Figure 3, lines 27-43), it has a single SQL statement that does not change size as

the number of routes changes. While it may seem that we have simply moved the large instance array

upstream from the modeling artifact to the input data, in fact the input data may not even reside in

MOSDEX but rather in a table of the enterprise data store accessed by the optimization application.

Furthermore, the difference in scaling also affects the coefficients in the balance_shipFrom term. In

instance form (Figure 2, lines 75-94), it has the constant coefficient 1.0 for each route out of each origin,

and it scales linearly in the number of such combinations. However, in query form (Figure 3, lines 70-84),

again it has a single SQL statement that does not change size as the number of origins and routes

changes, and there is no upstream data table since the coefficient entries are constants. One could

argue that such a flow conservation constraint in a network model could be handled in an instance

format by a special structure (and indeed, many offer a special “network” syntax), especially since it is

very common, but why should we proliferate special structures when a general artifact will do?

6.4 Conveying Structure in MOSDEX

Use of SQL also enables MOSDEX to represent the structure of an optimization problem. As is well-

known, most non-trivial mathematical optimization models have a great deal structure. Beyond the

obvious fact of data sparsity, many models have repeating blocks of variables and constraints that differ

only in their location in the row and/or column spaces of the problem matrix. Solvers almost always take

advantage of sparsity, but specialized solution algorithms, such as decomposition, can be designed to

exploit other structural constructs, which can greatly speed-up solving and, in some cases, might be the

only feasible way to find a solution. Stochastic programs, in particular, represent the one of the most

important categories of large problem instances, for which development of specialized algorithms has

been a major area for research.

As is evident from the two examples discussed above (Figure 2 and Figure 3), MOSDEX tables mirror the

block structure of the underlying model. MOSDEX modules are intended to support decomposition and

specialized solver algorithms (see the discussion in section 8).

Furthermore, not only can explicit structure enable specialized solution algorithms, but it can also

facilitate analysis of a model for purposes of validation, debugging, and qualitative explanation of

solution properties to decision makers. The importance of these activities and the kind of software tools

that support them are the subject of the paper by Saltzman (2021), who surveys the prior contributions

of Greenberg. While Greenberg’s work was mostly based on MPS, we believe that analogous tools using

the more powerful artifacts of MOSDEX would enhance their utility.

The use of SQL to create an optimization problem is more than a practical matter of software

engineering; the underlying relational algebra provides a computational model for data flows

MOSDEX Proposal Final Revised
2/9/2023 -19- ©2022 Jeremy A. Bloom

surrounding an optimization solver, clearly elucidating the complexity of the transformations involved,

which may be useful in other, more theoretical contexts.

7 Retrieving Solutions and Formatting Output in MOSDEX

Optimization solvers can produce a plethora of information about the solution of a model, such as

 optimal primal value, reduced cost, and basis status of a variable,

 optimal dual value and slack of a constraint, and

 optimal value of the objective function.

MOSDEX takes a simple approach to specifying solution results that does not require a lot of special

syntax.

In MOSDEX, solution items are denoted as part of the schema of a modeling artifact table, with one of

the special function types denoted as

 DOUBLE_FUNCTION,

 IEEEDOUBLE_FUNCTION,

 INTEGER_FUNCTION,

 STRING_FUNCTION,

where the prefix indicates the type of the item returned. Their field names are not pre-specified in the

record schema in order to leave the opportunity for the MOSDEX user to choose her own. The value

assigned to each such field, either in an instance or in a query, is a function call string of the form

“functionName(argumentField1, ...argumentFieldN)”

where the argumentFields are the names of the fields in the current record where the arguments are
found (usually, there is only one argument field, a column or a row, in a function call); see Figure 3, line
39.

The functionName links to a method of the solver’s API that retrieves the relevant value from its
solution. After the solve, MOSDEX creates a solution output table from the modeling artifact, in which
that value is substituted for the function call string, and it replaces the function type with the
corresponding return type in the output table’s schema.

In order to feed to downstream stages of the application stack, it might be desirable to transform the

solution (and other information from the upstream stages) by creating other output tables from queries

of the solution tables. Thus, MOSDEX allows the user to specify the format of the output tables using

SQL.

8 Additional Capabilities of MOSDEX

Modern optimization solvers support a variety of problem types beyond purely linear programs. As a

result, a data exchange format needs to support these additional capabilities, with general artifacts that

can support a variety of solver-specific syntax that are not readily extensible. MOSDEX is designed both

to accommodate many additional capabilities and also be extensible in a systematic fashion. Among the

features of MOSDEX that provide these extensions are as follows:

MOSDEX Proposal Final Revised
2/9/2023 -20- ©2022 Jeremy A. Bloom

8.1 Linear, Mixed Integer, and Quadratic Problems

The Kind element of a Variable can be designated as Continuous, Integer, or Binary. The Kind element of

a Term can be designated as Linear or Quadratic. A standard schema is defined for each type of object. A

MOSDEX parser should create the corresponding objects of the solver’s API. Here are some examples

using these capabilities:

 Simple linear program – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/volsay_2-0.json iii

 Network (instance form) – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/net1b_2-1.json iv

 Network (query form) – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/net1a_2-1.json v

 LP with lagged variables – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/sailco_2-0.json vi

 Warehouse location (MIP) – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/warehousing_2-0.json vii

 Traffic Network (QP) – https://github.com/coin-modeling-dev/MOSDEX-

Examples/blob/master/MOSDEX-2.0/trafficNetworkQP_2-0.jsonviii

Although not implemented yet, MOSDEX is extensible to special structures such as special ordered sets,

indicator variables, and so on.

8.2 Modular Structures

Modular structures arise when two or more Modules interact with each other. Perhaps the most

familiar modular structure is decomposition, in which one problem, designated the master, interchanges

information iteratively with one or more subproblems. However, modular structures can also occur in

stochastic optimization and in combined optimization/simulation applications. As an example consider a

stochastic version of the warehouse location problemix. This model is formulated as a two-stage

stochastic program with recourse. The first stage determines the locations and capacities of warehouses

to open. The second stage determines how much product to ship to each store, where the demand at

each store is uncertain. Solved by decomposition (often Benders decomposition), the master problem

comprises the first stage, and the subproblems, one for each demand scenario, comprise the second

stage. While this aspect is still under development, our current thinking proposes several constructs that

enable building modular structures in MOSDEX. First, each modeling Module (that is, any containing

modeling artifacts) is associated with its own solver instance, for example, one processor node in a

distributed solver. Second, a Table can be initialized or updated from another Module, in order to

facilitate communication among them.

Figure 5 below illustrates additional MOSDEX constructs for modular structures relevant for the

subproblems of the stochastic warehouse location problem.

https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/volsay_2-0.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/volsay_2-0.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/net1b_2-1.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/net1b_2-1.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/net1a_2-1.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/net1a_2-1.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/sailco_2-0.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/sailco_2-0.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/warehousing_2-0.json
https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-2.0/warehousing_2-0.json

MOSDEX Proposal Final Revised
2/9/2023 -21- ©2022 Jeremy A. Bloom

Figure 5: Extract of Subproblem Module from Stochastic Warehouse Location Model

"FOR_EACH": {
 "scenario": ["scenarios"]
},
"TABLES": [
 {
 "NAME": "scenarios",
 "CLASS": "STRUCTURE",
 "QUERY": {
 "SELECT": [
 "'subproblem' AS module -- STRING",
 "2 AS stage -- INTEGER",
 "demands.id AS id -- INTEGER",
 "demands.weeks/52.0 AS probability -- DOUBLE",
 "'masterProblem' AS parent -- STRING",
 "'solveStatus(module, id)' AS status -- STRING_FUNCTION"
],
 "FROM": ["demands"]
 }
 },
 {
 "NAME": "ship",
 "CLASS": "VARIABLE",
 "KIND": "CONTINUOUS",
 "QUERY": {
 "SELECT": [
 "'ship' AS Name -- STRING",
 "scenario.id AS id -- INTEGER",
 "routes.location AS location -- STRING",
 "routes.store AS store -- STRING",
 "ID4('ship', id, location, store) AS Column -- STRING",
 "0.0D AS LowerBound -- DOUBLE",
 "1.0D AS UpperBound -- DOUBLE",
 "PrimalValue('Column') AS Value -- DOUBLE_FUNCTION"
],
 "FROM": ["scenario", "routes"]
 }
 },
...
]

As a third new construct, MOSDEX provides a STRUCTURE class, a subclass of Table, which contains
information relating to its relationship to other Modules. MOSDEX offers some flexibility regarding the
schema of a Structure Table; however, in many cases, the solver algorithm will dictate its schema and
content. For instance, in this example, the Structure Table will has a field called module to distinguish
the master problem from the subproblems, a field called stage to distinguish the stage or time, and a
field called id to distinguish among the subproblems by scenario or state. Many modular models
organize their various subproblems in a tree structure, so the field parent identifies its parent Module.

As a fourth new construct, MOSDEX provides a capability to replicate Modules. One of the key features

of modular structure is the replication of a block of variables and constraints at different locations in the

problem matrix. The stochastic warehouse location example has multiple versions of a minimum cost

flow problem, one for each realization of the stores’ demands. MOSDEX can represent this replication by

parameterizing a Module so that one Module can provide a template for multiple blocks. The

parameterization is represented by an object in the Module denoted by the key word FOR_EACH.

In the FOR_EACH object in Figure 5, scenario represents a placeholder for a record in the structure table
scenarios. MOSDEX then interprets the Module containing the FOR_EACH as a family of replicas, one

FOR_EACH replicates a Module

STRUCTURE Table indicates relationships among Modules

Placeholder scenario refers to a record in the Structure Table

MOSDEX Proposal Final Revised
2/9/2023 -22- ©2022 Jeremy A. Bloom

for each of the records cited in the FOR_EACH object, and the Tables in the Module can use the record in
their queries to distinguish among the replicas.

The placeholder scenario is used in the queries creating the various modeling artifacts that are specific
to the subproblem. For instance, there is one instance of the ship variable for each demand scenario, so
the scenario id is included as a field in the variable’s Select query.

It is important to understand that MOSDEX itself does not provide an algorithm for solving modular

problems; that is the province of a solver. For example, setting up a column generation structure in

MOSDEX will not be sufficient for an ordinary solver of linear programs to execute the decomposition.

The solver part of the software stack must have a control structure that alternately solves the master

problem and subproblems, checks the convergence criterion, and terminates the solve process.

Furthermore, the solver algorithm’s requirements will determine, in part, how the problems are set up

in MOSDEX. What MOSDEX does provide are standards to specify the Modules that the solver executes,

how they exchange data and coordinate during execution.

8.3 Nonlinear Problems

This experimental aspect of MOSDEX is an attempt to support nonlinear models. It would require a

suitable optimization solver and a software bridge capable to construct the nonlinear functions specified

by MOSDEX. As an example, consider the Traffic Networkviii problem, a quadratic program. Figure 6

shows the two nonlinear terms as quadratics specified in the current version of MOSDEX. Note that they

both involve references (i.e. foreign keys) to two columns, one for each decision variable factor.

Figure 6: Quadratic Terms Example

{
 "NAME": "delayDef_flowSq",
 "CLASS": "TERM",
 "KIND": "QUADRATIC",
 "QUERY": {
 "SELECT": [
 "delayDef.Row AS Row -- STRING",
 "flow.Column AS Column -- STRING",
 "flow.Column AS Column2 -- STRING",
 "roads.sensitivity AS Coefficient -- DOUBLE"
],
 "FROM": ["delayDef"],
 "JOIN": ["flow"], "USING": ["(origin, destination)"],
 "JOIN#2": ["roads"], "USING#2": ["(origin, destination)"]
 }
},
{
 "NAME": "delayDef_delay_slack",
 "CLASS": "TERM",
 "KIND": "QUADRATIC",
 "QUERY": {
 "SELECT": [
 "delayDef.Row AS Row -- STRING",
 "delay.Column AS Column -- STRING",
 "slack.Column AS Column2 -- STRING",
 "CAST(-1.0 AS DOUBLE) AS Coefficient -- DOUBLE"
],
 "FROM": ["delayDef"],
 "JOIN": ["delay"], "USING": ["(origin, destination)"],
 "JOIN#2": ["slack"], "USING#2": ["(origin, destination)"]
 }
}

MOSDEX Proposal Final Revised
2/9/2023 -23- ©2022 Jeremy A. Bloom

While an extension of MOSDEX for general nonlinear terms is still under development, our current

thinking proposes two new constructs to enable building nonlinear models. First, we define, in addition

to instance- and query-form tables, a formula form, with syntax illustrated in Figure 7.

Figure 7: Nonlinear Terms Example

{
 "NAME": "delayDef_flowSq",
 "CLASS": "TERM",
 "KIND": "NONLINEAR",
 "FORMULA": {
 "CALCULATE": {"x": "#sensitivity * #flow^2"},
 "VARIABLES": ["flow"],
 "PARAMETERS": ["sensitivity"]
 },
 "QUERY": {
 "SELECT": [
 "delayDef.Row AS Row -- STRING",
 "flow.Value AS flow -- DOUBLE",
 "roads.sensitivity AS sensitivity -- DOUBLE",
 "'Calculate(x)' -- DOUBLE_FUNCTION"
],
 "FROM": ["delayDef"],
 "JOIN": ["flow"], "USING": ["(origin, destination)"],
 "JOIN#2": ["roads"], "USING#2": ["(origin, destination)"]
 }
},
{
 "NAME": "delayDef_delay_slack",
 "CLASS": "TERM",
 "KIND": "NONLINEAR",
 "FORMULA": {
 "CALCULATE": {"y": "#Coefficient * #slack * #delay"},
 "VARIABLES": ["slack", "delay"],
 "PARAMETERS": ["Coefficient"]
 },
 "QUERY": {
 "SELECT": [
 "delayDef.Row AS Row -- STRING",
 "delay.Column AS delay -- STRING",
 "slack.Column AS slack -- STRING",
 "CAST(-1.0 AS DOUBLE) AS Coefficient -- DOUBLE",
 "'Calculate(y)' -- DOUBLE_FUNCTION"
],
 "FROM": ["delayDef"],
 "JOIN": ["delay"], "USING": ["(origin, destination)"],
 "JOIN#2": ["slack"], "USING#2": ["(origin, destination)"]
 }
}

Second, we propose a specific syntax for the FORMULA object in MOSDEX, which includes several fields.

The CALCULATE field defines one or more symbolic expressions, which might be as simple as a single

unary or binary operation or much more complex combinations of such operations. As with SQL queries,

we don’t intend for MOSDEX to have a parser for such calculations; instead, as with SQL, we expect to

rely on a widely utilized library, such as Spring Expression Language (SpEL).

The VARIABLES field identifies the linkages with the decision variables of the optimization problem; they

would be the Column identifiers in a Variables table. The PARAMETERS field identifies other data items

that do not depend on the optimization result. The CALCULATE field identifies the results of the

calculation. All these fields’ components would also appear in an instance or query object in the same

FORMULA defines a nonlinear calculation

MOSDEX Proposal Final Revised
2/9/2023 -24- ©2022 Jeremy A. Bloom

table, thus linking the formula to the other modeling artifacts. The double function Calculate links the

formula result to the query.

Formula-form Tables behave like other Tables (i.e. they each have a defined schema, and they can have

Instance or Query form). The main innovation in MOSDEX is that a formula-form Table has

dimensionality as specified by its key fields. Thus MOSDEX implements families of formulas that

correspond to the structure of the optimization problem that it represents. This represents yet another

aspect of the scaling in MOSDEX discussed in Section 6. Other formats for nonlinear expressions, notably

nl format (Gay, 2005), resemble instance format, in which each instance of a nonlinear term requires its

own specification of the formula, even if the underlying calculation is the same.

One issue that arises, almost uniquely, in optimization models is the need to evaluate derivatives of the

nonlinear expressions. The current state of the art on this issue uses the syntax tree of the expression to

symbolically compute its derivatives (see (Bell, 2022)). Therefore, an expression library should have an

accessible syntax tree; SpEL meets this requirement, although it does not appear to have a symbolic

differentiation capability.

Again, MOSDEX itself does not provide an algorithm for solving nonlinear problems; that is the province

of a solver. The solver algorithm’s requirements will determine, in part, how the problems are set up in

MOSDEX. What MOSDEX does provide are standards to specify the expressions that the solver

evaluates.

9 Architectural Considerations

MOSDEX files serve as repositories for the data (and modeling artifacts, where needed) that support

optimization-based decision applications. They are, in effect, the source and destination ends of a

process, or bridge, that transforms information into decisions. In this section, we consider that process

and how MOSDEX supports it.

9.1 Data Flow

The main steps of the data flow for an optimization-based application are as follows (see Figure 1: Data

Flow in an Optimization Application):

1. Data are extracted from one or more sources and are validated to insure that they represent a

well-formed problem instance. Validity checks could include, for example, coefficients falling

within acceptable limits or incidence maps ensuring topological connectivity of a network.

2. Data are transformed and reshaped to conform to the syntax of the optimization model. For

example, cost data must be associated with activities whose levels will be determined by

variables to be optimized and resource data must be associated with constraint limits.

3. Data populate the internal data structures of the optimization solver. How this step occurs is

determined by the application programming interface (API) of the solver, which presents its

public face. Different solvers have their own unique APIs, which can range from simple matrix

arguments in calls to the solver routines to sophisticated object-oriented class libraries.

4. The solver executes its optimization algorithm, and the results are exposed through its API.

5. Data retrieved from the solver are transformed and reshaped to conform with the requirements

of the applications that consume it, which can include both automated processes and interfaces

for human users.

MOSDEX Proposal Final Revised
2/9/2023 -25- ©2022 Jeremy A. Bloom

9.2 The MOSDEX Reference Architecture

In addition to documenting the MOSDEX syntax for data exchange, we have created a reference

architecture (RefArc) for the transformation of MOSDEX data to and from a solver, as illustrated in

Figure 8.

Figure 8: MOSDEX Reference Architecture

The MOSDEX RefArc has been implemented in Java using Apache Spark for the Dataframes, which hold

the instance data and execute the queries, and IBM CPLEX as the solver x

In steps 1 and 2 of the data flow (Figure 1), MOSDEX serves as the format that enables standardization.

MOSDEX’s use of query-form tables provides a means to document the execution of extraction,

validation, and transformation of data as it moves through this process. It does so in a platform

independent manner.

Typically, the results of the second step are captured in internal objects of some kind of business

application platform built on top of a programming language like Java or Python. Referring to Figure 8, a

MOSDEX parser translates the MOSDEX files into these internal objects, which mirror the MOSDEX

structure. That is, for example, a MOSDEX Table has a counterpart Table class in the underlying

programming language, say Java. This set of classes collectively are called the MOSDEX Object Model.

MOSDEX Proposal Final Revised
2/9/2023 -26- ©2022 Jeremy A. Bloom

Step 3 of the data flow (Figure 1) transforms the MOSDEX Object Model into classes of the solver’s API

(Figure 8). In this step, MOSDEX serves to standardize the object model.

Steps 4 and 5 (Figure 1) reverse the three input steps by transforming the API classes of the solver back

into the MOSDEX Object Model and then providing access to them by the consuming applications. As in

the first two steps, the MOSDEX standard serves to document the execution of these transformations.

As noted above, the data transformations, or bridges, upstream and downstream of the solver are both

essential to an optimization-based application and also potentially computationally burdensome. Thus,

economy and efficiency of these bridges are often critical considerations in the application design, but

ones that are often neglected by domain experts in optimization. We believe that standardizing data

exchange along these bridges will lead to advances in both algorithm design and application design.

9.3 Parallelization and Streams

One such advance that is rapidly developing is the adaptation to optimization of parallelization

technologies in information processing. The latest wave of these technologies had its origin in the need

to manage massive data sets for internet search and machine learning, which resulted in development

of the Hadoop and Spark software libraries, among others. They provide the capability to distribute

processing across clusters of computers, operating in parallel.

Spark (Apache Spark), in particular, uses an abstraction for a bridge span called a resilient distributed

dataset (RDD), which partitions data items and distributes them onto the nodes of a cluster and which

enables certain operations on a span, called transformations, to occur in parallel. The prototype

transformation is map, which applies a function to each item of data without aggregating the results.

Transformations are lazy, in the sense that they are not executed immediately but instead are queued

until a triggering operation, or terminal action, requires returning a result to the calling program, or

driver. The queue can then be reordered to optimize computing all of its transformations. The prototype

terminal action is reduce, which aggregates the data items according to some function, such as a sum,

and returns a final result to the driver. A terminal action is often the final span of the bridge.

Spark can handle structured data (that is, data with a schema) using a dataframe, which is built on top

of RDD and inherits the ability to parallelize certain transformations. Dataframes can process their items

using SQL queries, executed in parallel, which makes them useful to hold MOSDEX objects containing

very large Instances. Very large optimization problem instances arise in a variety of domains, such as

stochastic programming for example. In these domains, there is often an intimate relationship between

the structure of the data and the optimization algorithm applied to it. Thus, MOSDEX is particularly

suited to specifying both the data and the modeling artifacts in a standard manner, facilitating algorithm

development.

Using parallelization makes it possible to build the upstream and downstream data bridges surrounding

the optimization solver as streams. In a stream, data items are processed sequentially as they are

generated and do not reside in memory until the entire bridge has been completed. Ideally, the data

rests only at the source and destination of the bridge and not at intermediate spans. Thus, streaming is

potentially both efficient and economical when dealing with very large data sets. We intend for MOSDEX

to support and facilitate streaming architectures for optimization-based applications.

MOSDEX Proposal Final Revised
2/9/2023 -27- ©2022 Jeremy A. Bloom

10 Conclusion

This paper has proposed a new standard called MOSDEX that improves on existing instance formats,

such as MPS, for data exchange with optimization solvers. MOSDEX is based on several principles:

independence from and support for multiple optimization solvers and their APIs and for multiple

algebraic modeling languages, model/data separation, relational data modeling, and incorporation of

standard optimization modeling artifacts. MOSDEX uses the widely adopted JSON data format standard

to take advantage of JSON support in a variety of programming languages including Java, C++, Python,

and Julia. The paper has demonstrated the principles of MOSDEX through examples taken from well-

known optimization problems.

Further details about MOSDEX, including documentation, examples, and Java code for the Reference

Architecture can be found at https://github.com/JeremyBloom/MOSDEX-Reference-

Architecture/blob/main/MOSDEXSchemaV2-0.json

MOSDEX Syntax: https://github.com/JeremyBloom/MOSDEX-Reference-

Architecture/blob/main/MOSDEX%20Syntax%20v2-0.pdfxi

MOSDEX Schema: https://github.com/JeremyBloom/MOSDEX-Reference-

Architecture/blob/main/MOSDEXSchemaV2-0.jsonxii

Javadoc Documentation of the Java implementation of the MOSDEX Reference Architecture:

https://jeremybloom.github.io/MOSDEX-Reference-Architecture/

References

AMPL Optimization Inc. (n.d.). AMPL. Retrieved from https://ampl.com/

Apache Spark. (n.d.). Retrieved from https://spark.apache.org/

Atamturk, A., Johnson, E. L., Linderoth, J. T., & Savelsbergh, M. (2000). A Relational Modeling System For

Linear and Integer Programming. Operations Research, 48 (6), 846–857.

Bell, B. (2022). A C++ Algorithmic Differentiation Package. Retrieved from CppAD: https://coin-

or.github.io/CppAD/doc/cppad.htm

Bloom, J. A. (2017). Optimization Modeling and Relational Data. Retrieved from

https://github.com/JeremyBloom/Optimization---Sample-

Notebooks/blob/master/Optimization%2BModeling%2Band%2BRelational%2BData%2Bpub.ipy

nb

Choobineh, J. (1991). SQLMP: A Data Sublanguage for Representation and Formulation of Linear

Mathematical Models. ORSA Journal on Computing, 3(4), 358-375.

Colombo, M., Grothey, A., Hogg, j., & et al. (2009). A structure-conveying modelling language for

mathematical and stochastic programming. Math. Prog. Comp., 1, 223–247. Retrieved from

https://doi.org/10.1007/s12532-009-0008-2

Fourer, R. (1997). Database structures for mathematical programming models. Decision Support

Systems, 20, 317-344.

https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEXSchemaV2-0.json
https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEXSchemaV2-0.json
https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEX%20Syntax%20v2-0.pdf
https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEX%20Syntax%20v2-0.pdf
https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEXSchemaV2-0.json
https://github.com/JeremyBloom/MOSDEX-Reference-Architecture/blob/main/MOSDEXSchemaV2-0.json

MOSDEX Proposal Final Revised
2/9/2023 -28- ©2022 Jeremy A. Bloom

Fourer, R., Gay, D. M., & Kernigan, B. W. (2003). AMPL: A Modeling Language for Mathematical

Prgramming. Pacific Grove, CA: Thomson. Retrieved from

https://ampl.com/BOOK/EXAMPLES/EXAMPLES2/net1.mod

Fourer, R., Ma, J., & Martin, K. (2010). Optimization Services: A Framework for Distributed Optimization.

Operations Research, 58(6), 1624-1636. Retrieved from https://doi.org/10.1287/opre.1100.0880

Fourer, R., Ma, J., and Martin, K. . (2010). OSiL: An Instance Language for Optimization. Comput. Optim.

Appl., 45(1), 181–203. Retrieved from Fourer, R., Ma, J. & Martin, K. OSiL: An instance language

for optihttps://doi.org/10.1007/s10589-008-9169-6

GAMS Development Corp. (n.d.). GAMS. Retrieved from https://www.gams.com/

Gassmann, H., Ma, J., & Martin, K. (2011). Instance Formats for Mathematical Optimization Models.

Retrieved from https://doi.org/10.1002/9780470400531.eorms0411

Gay, D. M. (2005). Writing .nl Files. Sandia National Laboratories. Retrieved from

https://ampl.github.io/nlwrite.pdf

IBM Corporation. (n.d.). OPL. Retrieved from https://www.ibm.com/docs/en/icos/12.8.0.0?topic=opl-

optimization-programming-language

JSON. (n.d.). Retrieved from http://json.org/

JSON Schema. (n.d.). Retrieved from http://json-schema.org/

Legat, B. D. (2022). MathOptInterface: A Data Structure for Mathematical Optimization Problems.

INFORMS Journal on Computing, 34(2), 672-689.

Saltzman, M. J. (2021). Software for an Intelligent Mathematical Programming System. In A. (. Holder,

Harvey Greenberg: A Legacy Bridging Operations Research and Computing, in International

Series in Operations Research & Management Science (pp. 47-63). Springer. Retrieved from

https://ideas.repec.org/h/spr/isochp/978-3-030-56429-2_3.html

SpEL. (n.d.). Retrieved from Spring Expression Language: https://docs.spring.io/spring-

framework/docs/4.3.10.RELEASE/spring-framework-reference/html/expressions.html

Wikipedia. (2018). MPS format. Retrieved from https://en.wikipedia.org/wiki/MPS_(format)

Wikipedia. (2022). Relational Algebra. Retrieved from Relational Algebra:

https://en.wikipedia.org/wiki/Relational_algebra

About the Authors

Dr. Jeremy A. Bloom retired in 2017 after a 40-year career in operations research. Most recently, he was

responsible for IBM’s Decision Optimization Center product, an application development and

deployment platform using IBM’s CPLEX optimization solver and its OPL algebraic modeling language.

Prior to joining IBM, he worked in technical sales and product marketing at ILOG before its acquisition by

IBM. Prior to joining ILOG, Dr. Bloom managed programs at the Electric Power Research Institute in

MOSDEX Proposal Final Revised
2/9/2023 -29- ©2022 Jeremy A. Bloom

power delivery asset management, retail market analysis and resource management for the

restructured power industry, distributed energy resources, and integrated resource planning. While at

EPRI, he was part of the leadership team of a spin-out providing information and market research for

retail energy markets, and he was responsible for technical leadership of a proposal to manage

California’s energy efficiency market transformation programs. Earlier, he spent a significant part of his

career at General Public Utilities, where he was responsible for resource planning and demand-side

management, including leading the company’s first efforts to procure demand-side resources through

competitive bidding. He began his career teaching operations research at Cornell University. Dr. Bloom

received his undergraduate degree in electrical engineering at Carnegie-Mellon University and his

graduate degrees in operations research from the Massachusetts Institute of Technology.

Matthew Saltzman is Associate Professor of Mathematical and Statistical Sciences at Clemson University

in Clemson, South Carolina. His research interests touch on many areas of computational optimization

and applications. He has published over 30 research papers in the field, including work in linear and

integer programming and high-performance computing. He was an original core team member on the

COIN-OR project and is the founding president of the COIN-OR Foundation, an educational nonprofit

publishisher of a wide variety of open-source software tools for computational operations research. He

is a co-developer of the COIN-OR Open Solver Interface and a co-designer of CHiPPS, the COIN-OR High-

Performance Parallel Search library. He holds an undergraduate degree in mathematics and computer

science from Cornell University and an MS in Operations Research and Ph.D. in Industrial Administration

from Carnegie Mellon University.

Dr. Alan J. King is a Research Manager at IBM's Thomas J. Watson Research Center, where currently he

manages projects in applying large scale graph machine learning technologies to financial applications.

His long-standing research interest is in stochastic programming, where he has made substantial

contributions to applications, modeling and solution of multistage stochastic programs. He is the

author, with Stein Wallace, of the introductory text "Modeling with Stochastic Programming". He has

published over 100 research papers, led the development of IBM's OSL Stochastic Extensions product,

and is currently the project manager for the open-source COIN-OR project Stochastic Modeling

Interface.

MOSDEX Proposal Final Revised
2/9/2023 -30- ©2022 Jeremy A. Bloom

Appendix 1. Instance-Form Example

This appendix gives the full MOSDEX File for the generalTransshipment model in instance form (Figure 9

and Figure 10).

A MOSDEX File consists of one of more Modules. (We use the term file generically for any input source.)

The example has just one module named generalTransshipment. It is useful to think of a Module as a

self-contained presentation of the data and modeling artifacts for a mathematical optimization problem;

however, MOSDEX can actually accommodate more general structures. For instance, when model/data

separation is used, the data may be presented in one or more separate Modules without modeling

artifacts.

Lines 6-23: A Heading element provides documentation for human readers. A Heading is required for a

Module, although only the Description is mandatory. In this example, the Heading also contains a Math

expression of the problem, in any suitable language, such as OPL, AMPL, or GAMS. The information in

the Heading, including the Math object, are not otherwise processed by MOSDEX.

Lines 24-138: The main elements of the Module are its Tables. Conceptually, a table is a two-

dimensional object with a fixed number of columns, or fields, and an indefinite number of rows, or

records; think of a table in a relational database. Data and the modeling artifacts, Variable, Constraint,

Objective, and Term, are subclasses of Table. A Table’s Class and Kind are specified as its first two

elements.

Lines 25-45: The Table ship represents the decision variables of the generalTransshipment problem.

These variables have a two-dimensional key, by origin and destination. As in a database, the key

uniquely identifies each record in a table.

Lines 28-33: As an instance-form Table, ship requires an explicit Schema which defines the names and

types of its fields. The Schema of this Variable includes the key fields and several other fields related to

the variable class. In particular, the Column field provides a mapping from the two-dimensional ship

variable to a column in the solver’s internal representation of the optimization problem. MOSDEX does

not prescribe a particular encoding for the Column field, which may either be a string or an integer; the

encoding for this example (a concatenation of the variable name with its keys) has been chosen to make

inspection by a human reader easy to decode. The Value field is a placeholder for the solution value

computed by the solver; its type is DOUBLE_FUNCTION, which indicates a call to a solver method (see

discussion in section 7).

Lines 34-44: The Instance array of the ship Variable contains actual data. In an Instance array, the

individual items in each Record are unlabeled and can only be parsed using the Table’s Schema. The

schema’s field names, the Fields array, are aligned to serve as a visual guide for a human reader,

although MOSDEX does not enforce any particular layout of the text. Notice that, in contrast to MPS and

other instance formats, MOSDEX does not include coefficient data among the data specifying a Variable.

Instead, coefficients are specified in separate Term Tables, discussed in lines 75-95 below.

Lines 46-65: The Table balance represents the constraints of the generalTransshipment problem. These

constraints have a one-dimensional key, by city. The Schema and Instance objects of this Constraint are

analogous to those discussed for the ship Variable. This Table has a one-dimensional key, by city, and a

MOSDEX Proposal Final Revised
2/9/2023 -31- ©2022 Jeremy A. Bloom

row encoding of the name of the table followed by the key, although again, MOSDEX does not prescribe

a particular encoding.

Lines 66-74: The Table totalCost represents the objective function of the generalTransshipment

problem. This table has a single row. Note that the Objective is assigned a Row identifier.

Lines 75-95: The Term Table balance_shipFrom represents the first of several tables that specify the

coefficients of the generalTransshipment problem. The name of a Term Table is not prescribed by

MOSDEX – any legitimate identifier is acceptable; the choice to use the concatenation of the names of

the Constraint and Variable Tables in this example is purely for the convenience of human readers. The

schema of a Term Table identifies the Row and Column to which each coefficient applies. Note that

Term Tables are also used to specify coefficients for an Objective as well. Because MOSDEX specifies the

coefficients in separate Tables from the corresponding Variable and Constraint or Objective, it does not

favor column-wise or row-wise formulations, unlike other formats, such as MPS or LP.

Lines 30, 32, and 35: Solution values this example are specified by Fields in the modeling artifact tables.

For instance, the Value field of the ship table has the type DOUBLE_FUNCTION denoting a function call

that gets data from the solver. The item PrimalValue(Column) in each record will be replaced by its

value once the solver has computed an optimal value. As discussed in the section on query-form tables

below, MOSDEX also provides a capability to precisely reshape the output data into tables suitable for

consumption by down-stream applications.

MOSDEX Proposal Final Revised
2/9/2023 -32- ©2022 Jeremy A. Bloom

Figure 9: Full Transshipment Example in Instance Form

{ 1
 "SYNTAX": "MOSDEX/MOSDEX v2/MOSDEXSchemaV2-0.json", 2
 "MODULES": [3
 { "NAME": "generalTransshipment", 4
 "CLASS": "MODEL", 5
 "HEADING": { 6
 "DESCRIPTION": [7
 "General Transshipment Problem", 8
 "instance form", "with a function calls for output", 9
 "MOSDEX 2-0 Syntax" 10
], 11
 "VERSION": "net1b 2-1", 12
 "REFERENCE": ["https://ampl.com/BOOK/EXAMPLES/EXAMPLES2/net1.mod"], 13
 "AUTHOR": ["Jeremy A. Bloom (jeremyblmca@gmail.com)"], 14
 "NOTICES": ["Copyright 2019 Jeremy A. Bloom"], 15
 "MATH": [16
 "var Ship {(i,j) in ROUTES} >= 0, <= capacity[i,j]; # packages to be shipped", 17
 "minimize Total_Cost: sum {(i,j) in ROUTES} cost[i,j] * Ship[i,j];", 18
 "subject to", 19
 "Balance {k in CITIES}: ", 20
 "sum {(k,j) in ROUTES} Ship[k,j] - sum {(i,k) in ROUTES} Ship[i,k] = supply[k] - demand[k];" 21
] 22
 }, 23
 "TABLES": [24
 { "NAME": "ship", 25
 "CLASS": "VARIABLE", 26
 "KIND": "CONTINUOUS", 27
 "SCHEMA": { 28
 "FIELDS": 29
 ["Name", "origin", "destination", "Column", "LowerBound", "UpperBound", "Value"], 30
 "TYPES": 31
 ["STRING","STRING", "STRING", "STRING", "DOUBLE", "DOUBLE", "DOUBLE_FUNCTION"] 32
 }, 33
 "INSTANCE": [34
 ["ship", "PITT", "NE", "ship_PITT_NE", 0.0, 250.0, "PrimalValue(Column)"], 35
 ["ship", "PITT", "SE", "ship_PITT_SE", 0.0, 250.0, "PrimalValue(Column)"], 36
 ["ship", "NE", "BOS", "ship_NE_BOS", 0.0, 100.0, "PrimalValue(Column)"], 37
 ["ship", "NE", "EWR", "ship_NE_EWR", 0.0, 100.0, "PrimalValue(Column)"], 38
 ["ship", "NE", "BWI", "ship_NE_BWI", 0.0, 100.0, "PrimalValue(Column)"], 39
 ["ship", "SE", "EWR", "ship_SE_EWR", 0.0, 100.0, "PrimalValue(Column)"], 40
 ["ship", "SE", "BWI", "ship_SE_BWI", 0.0, 100.0, "PrimalValue(Column)"], 41
 ["ship", "SE", "ATL", "ship_SE_ATL", 0.0, 100.0, "PrimalValue(Column)"], 42
 ["ship", "SE", "MCO", "ship_SE_MCO", 0.0, 100.0, "PrimalValue(Column)"] 43
] 44
 }, 45
 { "NAME": "balance", 46
 "CLASS": "CONSTRAINT", 47
 "KIND": "LINEAR", 48
 "SCHEMA": { 49
 "FIELDS": 50
 ["Name", "city", "Row", "Sense", "RHS" , "Dual"], 51
 "TYPES": 52
 ["STRING", "STRING", "STRING", "STRING", "DOUBLE", "DOUBLE_FUNCTION"] 53
 }, 54
 "INSTANCE": [55
 ["balance", "PITT", "balance_PITT", "EQ", 450.0, "DualValue(Row)"], 56
 ["balance", "NE", "balance_NE", "EQ", 0.0, "DualValue(Row)"], 57
 ["balance", "SE", "balance_SE", "EQ", 0.0, "DualValue(Row)"], 58
 ["balance", "BOS", "balance_BOS", "EQ", -90.0, "DualValue(Row)"], 59
 ["balance", "EWR", "balance_EWR", "EQ", -120.0, "DualValue(Row)"], 60
 ["balance", "BWI", "balance_BWI", "EQ", -120.0, "DualValue(Row)"], 61
 ["balance", "ATL", "balance_ATL", "EQ", -70.0, "DualValue(Row)"], 62
 ["balance", "MCO", "balance_MCO", "EQ", -50.0 , "DualValue(Row)"] 63
] 64
 }, 65
 { "NAME": "totalCost", 66
 "CLASS": "OBJECTIVE", 67
 "KIND": "LINEAR", 68
 "SCHEMA": { 69
 "FIELDS": ["Name", "Row", "Constant", "Sense", "Value"], 70
 "TYPES": ["STRING", "STRING", "DOUBLE", "STRING", "DOUBLE_FUNCTION"] 71
 }, 72
 "INSTANCE": [["totalCost", "totalCost", 0.0, "MINIMIZE", "ObjectiveValue(Row)"]] 73
 }, 74

Heading:

Optional information for human readers

not otherwise processed by MOSDEX

Math:

Problem formulation in any algebraic language

not otherwise processed by MOSDEX

Ship Table represents a decision variable artifact

Table Schema and Instance data

Outputs specified by Function Call fields

MOSDEX Proposal Final Revised
2/9/2023 -33- ©2022 Jeremy A. Bloom

Figure 10: Full Transshipment Example in Instance Form (continued)

 { "NAME": "balance_shipFrom", 75
 "CLASS": "TERM", 76
 "KIND": "LINEAR", 77
 "SCHEMA": { 78
 "FIELDS": 79
 ["Row", "Column", "Coefficient"], 80
 "TYPES": 81
 ["STRING", "STRING", "DOUBLE"] 82
 }, 83
 "INSTANCE": [84
 ["balance_PITT", "ship_PITT_NE", 1.0], 85
 ["balance_PITT", "ship_PITT_SE", 1.0], 86
 ["balance_NE", "ship_NE_BOS", 1.0], 87
 ["balance_NE", "ship_NE_EWR", 1.0], 88
 ["balance_NE", "ship_NE_BWI", 1.0], 89
 ["balance_SE", "ship_SE_EWR", 1.0], 90
 ["balance_SE", "ship_SE_BWI", 1.0], 91
 ["balance_SE", "ship_SE_ATL", 1.0], 92
 ["balance_SE", "ship_SE_MCO", 1.0] 93
] 94
 }, 95
 { "NAME": "balance_shipTo", 96
 "CLASS": "TERM", 97
 "KIND": "LINEAR", 98
 "SCHEMA": { 99
 "FIELDS": 100
 ["Row", "Column", "Coefficient"], 101
 "TYPES": 102
 ["STRING", "STRING", "DOUBLE"] 103
 }, 104
 "INSTANCE": [105
 ["balance_NE", "ship_PITT_NE", -1.0], 106
 ["balance_SE", "ship_PITT_SE", -1.0], 107
 ["balance_BOS", "ship_NE_BOS", -1.0], 108
 ["balance_EWR", "ship_NE_EWR", -1.0], 109
 ["balance_EWR", "ship_SE_EWR", -1.0], 110
 ["balance_BWI", "ship_NE_BWI", -1.0], 111
 ["balance_BWI", "ship_SE_BWI", -1.0], 112
 ["balance_ATL", "ship_SE_ATL", -1.0], 113
 ["balance_MCO", "ship_SE_MCO", -1.0] 114
] 115
 }, 116
 { "NAME": "total_ship", 117
 "CLASS": "TERM", 118
 "KIND": "LINEAR", 119
 "SCHEMA": { 120
 "FIELDS": 121
 ["Row", "Column", "Coefficient"], 122
 "TYPES": 123
 ["STRING", "STRING", "DOUBLE"] 124
 }, 125
 "INSTANCE": [126
 ["totalCost", "ship_PITT_NE", 2.5], 127
 ["totalCost", "ship_PITT_SE", 3.5], 128
 ["totalCost", "ship_NE_BOS", 1.7], 129
 ["totalCost", "ship_NE_EWR", 0.7], 130
 ["totalCost", "ship_NE_BWI", 1.3], 131
 ["totalCost", "ship_SE_EWR", 1.3], 132
 ["totalCost", "ship_SE_BWI", 0.8], 133
 ["totalCost", "ship_SE_ATL", 0.2], 134
 ["totalCost", "ship_SE_MCO", 2.1] 135
] 136
 } 137
] 138
 } 139
] 140
} 141

MOSDEX Proposal Final Revised
2/9/2023 -34- ©2022 Jeremy A. Bloom

Appendix 2. Query-Form Example

This appendix gives the full MOSDEX File for the generalTransshipment model in query form (Figure 11

through Figure 14).

Lines 3-199: Separate modules define the model, the data and the results.

Lines 8-25: The problem definition and Heading are the same as in Figure 11.

Lines 27-43: As in Figure 11, the Table ship represents the decision variables of the

generalTransshipment problem. However, in Figure 12, this modeling artifact is defined by an SQL

query rather by instance data.

Lines 31-42: A MOSDEX Query represents an SQL statement that specifies how the data are

constructed from other Tables or from an external database. A Query consists of a list of clauses,

each of which specifies a directive, which is a SQL command, and one or more predicates, the

arguments of the directive, as the Query for the ship Variable illustrates. The SELECT clause’s

predicate specifies how the table’s fields are accessed or computed from the fields of the parent

table, routes. The column encoding is computed as the concatenation of the variable name and the

two keys (again, MOSDEX does not specify the column encoding, and the modeler is free to choose

any convenient encoding as a string or integer, provided there is no duplication). MOSDEX does not

parse SQL, but the directives and predicates must be interpreted directly as valid SQL by the

database engine. By tying MOSDEX to SQL, moreover, we take advantage of wide-spread expertise

and computational systems available to support relational database systems.

Lines 32-40: The ship Variable table does not contain a Schema object, per se. Instead the schema is

generated from the query. Specifically, the fields are named in the AS part of each item in the

SELECT clause predicate; furthermore, their types are specified following the “--“ symbol, which SQL

reads as a comment.

Lines 74-83: The queries in this example illustrate the power of SQL to create compact but efficient

data structures for optimization modeling. By joining tables, MOSDEX can use filtering, or slicing, to

match data elements with variables and constraints. Such operations are typically computationally

intensive and so are best performed using a database engine rather than hand-coded loops that are

available in most programming languages.

Lines 118-166: The input data tables, cities and routes, are separated from the modeling artifacts.

Since there is no external source for the data such as a database, they are presented as instance-

form tables within the generalTransshipment problem; however, they also could be presented in a

separate MOSDEX file. Furthermore, in the latter case, the same model could be invoked with

completely different data. That is one advantage of using model/data separation.

Lines 167-198: The output data tables, shipments and objective, are separated from the modeling

artifacts. SQL queries facilitate reshaping results for consumption by downstream applications.

Figure 4 shows the MOSDEX results file after a solve using IBM CPLEX. The solver result items are

highlighted in green.

MOSDEX Proposal Final Revised
2/9/2023 -35- ©2022 Jeremy A. Bloom

Figure 11: Full Transshipment Example in Query Form

{ 1
 "SYNTAX": "MOSDEX/MOSDEX v2/MOSDEXSchemaV2-0.json", 2
 "MODULES": [3
 { 4
 "NAME": "modelingObjects", 5
 "CLASS": "MODULE", 6
 "KIND": "MODEL", 7
 "HEADING": { 8
 "DESCRIPTION": [9
 "General Transshipment Problem", 10
 "query form", 11
 "MOSDEX 2-0 Syntax" 12
], 13
 "VERSION": "net1a 2-1", 14
 "REFERENCE": ["https://ampl.com/BOOK/EXAMPLES/EXAMPLES2/net1.mod"], 15
 "AUTHOR": ["Jeremy A. Bloom (jeremyblmca@gmail.com)"], 16
 "NOTICES": ["Copyright 2019 Jeremy A. Bloom"], 17
 "MATH": [18
 "var Ship {(i,j) in ROUTES} >= 0, <= capacity[i,j]; # packages to be shipped", 19
 "minimize Total_Cost: sum {(i,j) in ROUTES} cost[i,j] * Ship[i,j];", 20
 "subject to", 21
 "Balance {k in CITIES}: ", 22
 "sum {(k,j) in ROUTES} Ship[k,j] - sum {(i,k) in ROUTES} Ship[i,k] = supply[k] - demand[k];" 23
] 24
 }, 25
 "TABLES": [26
 { 27
 "NAME":"ship", 28
 "CLASS": "VARIABLE", 29
 "KIND": "CONTINUOUS", 30
 "QUERY": { 31
 "SELECT": [32
 "'ship' AS Name -- STRING", 33
 "routes.origin AS origin -- STRING", 34
 "routes.destination AS destination -- STRING", 35
 "CONCAT('ship', '_', origin, '_', destination) AS Column -- STRING", 36
 "CAST(0.0 AS DOUBLE) AS LowerBound -- DOUBLE", 37
 "routes.capacity AS UpperBound -- DOUBLE", 38
 "'PrimalValue(Column)' AS value -- DOUBLE_FUNCTION" 39
], 40
 "FROM": "routes" 41
 } 42
 }, 43
 { 44
 "NAME": "balance", 45
 "CLASS": "CONSTRAINT", 46
 "KIND": "LINEAR", 47
 "QUERY": { 48
 "SELECT": [49
 "'balance' AS Name -- STRING", 50
 "cities.city AS city -- STRING", 51
 "CONCAT('balance', '_', city) AS Row -- STRING", 52
 "'EQ' AS Sense -- STRING", 53
 "(cities.supply-cities.demand) AS RHS -- DOUBLE", 54
 "'DualValue(Row)' AS dual -- DOUBLE_FUNCTION" 55
], 56
 "FROM": "cities" 57
 } 58
 }, 59
 { 60
 "NAME": "totalCost", 61
 "CLASS": "OBJECTIVE", 62
 "KIND": "LINEAR", 63
 "SCHEMA": { 64
 "FIELDS": ["Name", "Row", "Constant", "Sense", "cost"], 65
 "TYPES": ["STRING", "STRING", "DOUBLE", "STRING", "DOUBLE_FUNCTION"] 66
 }, 67
 "INSTANCE": [["totalCost", "totalCost", 0.0, "MINIMIZE", "ObjectiveValue(Row)"]] 68
 }, 69

Modules separate model from data and results

Ship Table represents a decision variable artifact

SQL Query specifies how data are

constructed from other Tables

MOSDEX schema is specified as part

of the Select clause

Same Heading as

Figure 2

TotalCost Table represents an

objective function artifact

Can be specified either as an

instance or query

MOSDEX Proposal Final Revised
2/9/2023 -36- ©2022 Jeremy A. Bloom

Figure 12: Full Transshipment Example in Query Form (continued)

 { 70
 "NAME": "balance_shipFrom", 71
 "CLASS": "TERM", 72
 "KIND": "LINEAR", 73
 "QUERY": { 74
 "SELECT": [75
 "balance.Row AS Row -- STRING", 76
 "ship.Column AS Column -- STRING", 77
 "CAST(1.0 AS DOUBLE) AS Coefficient -- DOUBLE" 78
], 79
 "FROM": "balance", 80
 "JOIN": "ship", 81
 "ON": "balance.city = ship.origin" 82
 } 83
 }, 84
 { 85
 "NAME": "balance_shipTo", 86
 "CLASS": "TERM", 87
 "KIND": "LINEAR", 88
 "QUERY": { 89
 "SELECT": [90
 "balance.Row AS Row -- STRING", 91
 "ship.Column AS Column -- STRING", 92
 "CAST(-1.0 AS DOUBLE) AS Coefficient -- DOUBLE" 93
], 94
 "FROM": "balance", 95
 "JOIN": "ship", 96
 "ON": "balance.city = ship.destination" 97
 } 98
 }, 99
 { 100
 "NAME": "total_ship", 101
 "CLASS": "TERM", 102
 "KIND": "LINEAR", 103
 "QUERY": { 104
 "SELECT": [105
 "totalCost.Row AS Row -- STRING", 106
 "ship.Column AS Column -- STRING", 107
 "routes.cost AS Coefficient -- DOUBLE" 108
], 109
 "FROM": "totalCost", 110
 "CROSS JOIN": "ship", 111
 "JOIN": "routes", 112
 "ON": "routes.origin = ship.origin AND routes.destination = ship.destination" 113
 } 114
 } 115
] 116
 }, 117

Complex query illustrates joining two tables

MOSDEX Proposal Final Revised
2/9/2023 -37- ©2022 Jeremy A. Bloom

Figure 13: Full Transshipment Example in Query Form (continued)

 { 118
 "NAME": "data", 119
 "CLASS": "MODULE", 120
 "KIND": "DATA", 121
 "HEADING": { 122
 "DESCRIPTION": ["Data for General Transshipment Problem"] 123
 }, 124
 "TABLES": [125
 { 126
 "NAME": "cities", 127
 "CLASS": "DATA", 128
 "KIND": "INPUT", 129
 "SCHEMA": { 130
 "FIELDS": ["city", "supply", "demand"], 131
 "TYPES": ["STRING", "DOUBLE", "DOUBLE"] 132
 }, 133
 "INSTANCE": [134
 ["PITT", 450.0, 0.0], 135
 ["NE", 0.0, 0.0], 136
 ["SE", 0.0, 0.0], 137
 ["BOS", 0.0, 90.0], 138
 ["EWR", 0.0, 120.0], 139
 ["BWI", 0.0, 120.0], 140
 ["ATL", 0.0, 70.0], 141
 ["MCO", 0.0, 50.0] 142
] 143
 }, 144
 { 145
 "NAME": "routes", 146
 "CLASS": "DATA", 147
 "KIND": "INPUT", 148
 "SCHEMA": { 149
 "FIELDS": ["origin", "destination", "cost", "capacity"], 150
 "TYPES": ["STRING", "STRING", "DOUBLE", "DOUBLE"] 151
 }, 152
 "INSTANCE": [153
 ["PITT", "NE", 2.5, 250.0], 154
 ["PITT", "SE", 3.5, 250.0], 155
 ["NE", "BOS", 1.7, 100.0], 156
 ["NE", "EWR", 0.7, 100.0], 157
 ["NE", "BWI", 1.3, 100.0], 158
 ["SE", "EWR", 1.3, 100.0], 159
 ["SE", "BWI", 0.8, 100.0], 160
 ["SE", "ATL", 0.2, 100.0], 161
 ["SE", "MCO", 2.1, 100.0] 162
] 163
 } 164
] 165
 }, 166

Cities Table represents an input data object

Table Schema and Instance data

Data Module

MOSDEX Proposal Final Revised
2/9/2023 -38- ©2022 Jeremy A. Bloom

Figure 14: Full Transshipment Example in Query Form (continued)

 { 167
 "NAME": "results", 168
 "CLASS": "MODULE", 169
 "KIND": "DATA", 170
 "HEADING": { 171
 "DESCRIPTION": ["Results from General Transshipment Problem"] 172
 }, 173
 "TABLES": [174
 { 175
 "NAME": "shipments", 176
 "CLASS": "DATA", 177
 "KIND": "OUTPUT", 178
 "QUERY": { 179
 "SELECT": [180
 "ship.origin AS origin -- STRING", 181
 "ship.destination AS destination -- STRING", 182
 "ship.value AS value -- DOUBLE" 183
], 184
 "FROM": "ship" 185
 } 186
 }, 187
 { 188
 "NAME": "objective", 189
 "CLASS": "DATA", 190
 "KIND": "OUTPUT", 191
 "QUERY": { 192
 "SELECT": ["totalCost.cost AS cost -- DOUBLE"], 193
 "FROM": "totalCost" 194
 } 195
 } 196
] 197
 }, 198
] 199
} 200

Shipments Table represents an output data object

SQL Query facilitates reshaping results for consumption by

downstream applications

Results Module

MOSDEX Proposal Final Revised
2/9/2023 -39- ©2022 Jeremy A. Bloom

Figure 15: Results after CPLEX Solve

 {

 "NAME”: "results",

 "KIND”: "MODULE",

 "HEADING”: {

 "DESCRIPTION”: ["Results from General Transshipment Problem"]

 },

 "TABLES”: [

 {

 "NAME”: "shipments",

 "CLASS”: "DATA",

 "KIND”: "OUTPUT",

 "SCHEMA”: {

 "FIELDS”: ["origin", "destination", "value"],

 "TYPES”: ["STRING", "STRING", "DOUBLE"] },

 "INSTANCE”: [

 ["PITT", "NE", 250.0],

 ["PITT", "SE", 200.0],

 ["NE", "BOS", 90.0],

 ["NE", "EWR", 100.0],

 ["NE", "BWI", 60.0],

 ["SE", "EWR", 20.0],

 ["SE", "BWI", 60.0],

 ["SE", "ATL", 70.0],

 ["SE", "MCO", 50.0]]

 },

 {

 "NAME”: "objective",

 "CLASS”: "DATA",

 "KIND”: "OUTPUT",

 "SCHEMA”: {

 "FIELDS”: ["cost"],

 "TYPES”: ["DOUBLE"] },

 "INSTANCE”: [[1819.0]]

 }]

 }]

}

Solver outputs from CPLEX solve

Results Module

MOSDEX Proposal Final Revised
2/9/2023 -40- ©2022 Jeremy A. Bloom

MOSDEX Resources

i Javadoc documentation: https://jeremybloom.github.io/MOSDEX-Reference-Architecture/
ii MOSDEX Schema: https://github.com/JeremyBloom/MOSDEX-Reference-
Architecture/blob/main/MOSDEXSchemaV2-0.json
iii Simple linear program example: https://github.com/coin-modeling-dev/MOSDEX-
Examples/blob/master/MOSDEX-2.0/volsay_2-0.json
iv Network example (instance form): https://github.com/coin-modeling-dev/MOSDEX-
Examples/blob/master/MOSDEX-2.0/net1b_2-1.json
v Network example (query form): https://github.com/coin-modeling-dev/MOSDEX-
Examples/blob/master/MOSDEX-2.0/net1a_2-1.json
vi LP example with lagged variables: https://github.com/coin-modeling-dev/MOSDEX-
Examples/blob/master/MOSDEX-2.0/sailco_2-0.json
vii Warehouse location example (MIP): https://github.com/coin-modeling-dev/MOSDEX-
Examples/blob/master/MOSDEX-2.0/warehousing_2-0.json
viii Traffic Network QP: https://github.com/coin-modeling-dev/MOSDEX-Examples/blob/master/MOSDEX-
2.0/trafficNetworkQP_2-0.json
ix Warehouse Location with Stochastic Demand: https://github.com/JeremyBloom/Optimization---Sample-
Notebooks/blob/master/Locating%2BWarehouses%2Bto%2BMinimize%2BCosts%2BCase%2B2%2Bpub%2B3.html
x MOSDEX Reference Architecture: https://github.com/JeremyBloom/MOSDEX-Reference-Architecture
xi MOSDEX Syntax: https://github.com/JeremyBloom/MOSDEX-Reference-
Architecture/blob/main/MOSDEX%20Syntax%20v2-0.pdf
xii MOSDEX Schema: https://github.com/JeremyBloom/MOSDEX-Reference-
Architecture/blob/main/MOSDEXSchemaV2-0.json

