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Abstract In this paper, a descent method for nonsmooth multiobjective op-
timization problems on complete Riemannian manifolds is proposed. The ob-
jective functions are only assumed to be locally Lipschitz continuous instead
of convexity used in existing methods. A necessary condition for Pareto opti-
mality in Euclidean space is generalized to the Riemannian setting. At every
iteration, an acceptable descent direction is obtained by constructing a convex
hull of some Riemannian ε-subgradients. And then a Riemannian Armijo-type
line search is executed to produce the next iterate. The convergence result
is established in the sense that a point satisfying the necessary condition for
Pareto optimality can be generated by the algorithm in a finite number of it-
erations. Finally, some preliminary numerical results are reported, which show
that the proposed method is efficient.
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1 Introduction

In the field of optimization, minimizing multiple objective functions at the
same time is called multiobjective optimization. Usually, these objective func-
tions are conflicting with each other, instead of having some common minimum
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points. For example, producers want to create higher value and make the cost
as low as possible in production and manufacturing. Similar problems arise
in many applications such as engineering design [17], management science [4,
25], environmental analysis [32,19], etc. Due to its wide practical applications,
multiobjective optimization has always been a hot topic, and a rich literature
was produced; see the monographs [1,14,38] and the references therein.

In most cases, the solution of multiobjective optimization problem is not
a single point but a set of all optimal compromises, namely, the Pareto set. In
traditional multiobjective optimization, one of the most popular methods is
the scalarization approach [23], whose idea is to convert a multiobjective prob-
lem to a single or a family of single objective optimization problems. However,
in this method, the users need to select some necessary parameters because
they are not known in advance, which may bring an additional cost. To over-
come this shortcoming, there have other methods to solve such optimization
problems, such as descent methods [20,16,24], Newton-type methods [21,36],
proximal point methods [8,11] and proximal bundle methods [35], etc. These
methods are almost all developed from a single objective optimization. In this
paper, we are particularly interested in the case where the objective functions
are not necessarily differentiable or convex. Recently, Gebken and Peitz [24]
proposed a descent method for locally Lipschitz multiobjective optimization,
in which an acceptable descent direction for all objectives is selected as the
element which has the smallest norm in the negative convex hull of certain
subgradients of the objective functions.

In recent years, many traditional single objective optimization theories and
methods have been extended from Euclidean space to Riemannian manifolds;
see, e.g., [2,5,27,28,30,31,37,40]. Comparatively, for Riemannian multiobjec-
tive optimization, the relevant literature is very scarce, especially for nons-
mooth cases. In [9] and [10], a steepest descent method and an inexact version
with Armijo rule for multiobjective optimization in the Riemannian context
are presented, respectivley. Both methods require the objective functions to
be continuously differentiable for partial convergence, and further assume that
the objective vector function is quasi-convex and the manifold has nonnega-
tive curvature for full convergence. In [12], a proximal point method for non-
smooth multiobjective optimization on Hadamard manifold is developed. In
[6], a subgradient-type method for Riemannian nonsmooth multiobjective op-
timization is presented, which requires the objective vector function to be
convex. In [18], a trust region method for Riemannian smooth multiobjective
optimization problems is proposed. As far as we know, numerical results are
not reported in the existing literature for Riemannian nonsmooth multiobjec-
tive optimization.

Based on the above observations, the aim of this paper is to develop a
practical implementable method for nonconvex nonsmooth multiobjective op-
timization problems on general Riemannian manifolds. More precisely, we pro-
pose a descent method for locally Lipschitz multiobjective optimization prob-
lems on complete Riemannian manifolds, which can be regarded as an exten-
sion of the work [24] in Euclidean space. To the best of our knowledge, our
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work is the first to consider the setting discussed here. The classical necessary
condition of the Pareto optimal points for nonsmooth multiobjective opti-
mization (see [34]) is generalized to the Riemannian setting. The Riemannian
ε-subdifferential is introduced by using the isometric vector transports which
satisfy a locking condition [29]. And then show that there exists a common
descent direction for each objective, which is just the element with the small-
est norm in the set consisting of the negative convex hull of the Riemannian
ε-subdifferentials of all objective functions. Of course, it is generally not easy
to compute the ε-subdifferentials of a nonsmooth function especially when its
domain is a manifold. In order to save computational effort, inspired by the
strategy adopted in the traditional methods [33,24], we use the convex hull of
a special set to approximate the convex hull of Riemannian ε-subdifferentials
of all objective functions. For this set, at the beginning, it consists of a single
ε-subgradient of each objective function, then some new ε-subgradients are
systematically computed and added to enrich the set, until the element with
the smallest norm in its convex hull is an acceptable direction for each objec-
tive function. Furthermore, a Riemannian Armijo-type line search is executed
to produce the next iterate. The convergence result is established in the sense
that an (ε, δ)-critical point which is an approximation of the Pareto optimal
point can be generated in a finite number of iterations. Finally, some prelimi-
nary numerical results are reported, which show that the proposed method is
efficient.

This paper is organized as follows. In section 2, we recall some basic no-
tations and definitions regarding Riemannian manifolds and locally Lipschitz
function. In section 3, the necessary condition for Pareto optimality regarding
locally Lipschitz multiobjective optimization problems is generalized to Rie-
mannian manifolds, and the details of our method is presented. In section 4, we
establish the convergence result of our method. In section 5, some preliminary
numerical experiments are given.

2 Preliminaries

Throughout of the paper, we denote by clS and convS the closure and the
convex hull of a set S, respectively. Letting M be a complete d-dimensional
(d ≥ 1) smooth manifold endowed with a Riemannian metric ⟨·, ·⟩x on the
tangent space TxM, we denote by ∥·∥x the norm which induced by Riemannian
metric. We will often omit subscripts when they do not cause confusion and
simply write ⟨·, ·⟩ and ∥ · ∥ to ⟨·, ·⟩x and ∥ · ∥x, respectively. The Riemannian
distance from x to y is denoted by dist(x,y), where the points x, y ∈ M.
Denote B(x, σ) = {y ∈ M| dist(x, y) < σ}, and the tangent bundle by TM.

Firstly, we introduce the definition of locally Lipschitz functions on Rie-
mannian manifolds; see, e.g., [27].
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Definition 2.1 Let x ∈ M, L > 0, and N ⊂ M be a neighborhood of x. If
f : M → R satisfies

|f(x)− f(y)| ≤ Ldist(x, y), for all y ∈ N ,

we say that f is Lipschitz continuous near x with the constant L. Furthermore,
if for all x ∈ M, f is Lipschitz continuous near x, then we say that f is a locally
Lipschitz (continuous) function on M.

Now we consider the Riemannian nonsmooth multiobjective optimization
problem:

min
x∈M

F (x) :=

 f1(x)
...

fm(x)

 , (1)

where F : M → Rm is called objective vector function, and the components
fi : M → R for i ∈ {1, · · · ,m} are called objective functions, which are
assumed to be locally Lipschitz continuous on M. Clearly, the concept of op-
timality for real-valued function no longer applies, since the objective function
of problem (1) is vector valued. So we introduce the following so-called Pareto
optimality (see [15, Ch. 2]), and our aim is to find (approximate) Pareto op-
timal points on manifolds.

Definition 2.2 Let x ∈ M. If there is no y ∈ M such that

fi(y) ≤ fi(x) ∀i ∈ {1, · · · ,m} and fj(y) < fj(x) for some j ∈ {1, · · · ,m},

then we say that x is a Pareto optimal point for the problem (1). Pareto set
is the set consisting of all Pareto optimal points.

For optimization problems posed on nonlinear manifolds, the concept of
retraction can help us to develop a theory which is similar to line search
methods in Rn; see [2, Def. 4.1.1].

Definition 2.3 A smooth mapping R : TM → M is called a retraction on a
manifold M if it has the following properties:

(i) Rx(0x) = x, where 0x denotes the zero element of TxM;
(ii) with the canonical identification T0xTxM ≃ TxM, Rx satisfies

DRx(0x) = idTxM,

where Rx is the restriction of R to TxM, and idTxM denotes the identity
mapping on TxM.

It is further assumed that there is a constant κ such that

dist(Rx(ξx), x) ≤ κ∥ξx∥ (2)

for all x ∈ M and ξx ∈ TxM. Intuitively, the inequality (2) implies that the
distance between x and Rx(ξx) is bounded when the vector ξx is bounded.
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Furthermore, it can ensure that the point Rx(ξx) is in the neighborhood of x
when ∥ξx∥ is small enough. This does not constitute any restriction in most
cases of interest; see [27]. Denote BR(x, r) = {Rx(ηx)| ∥ηx∥ < r}, which is an
open ball centered at x with radius r if the retraction R is the exponential
mapping; see [29].

Since we will work in different tangent spaces, it is necessary to introduce
the concept of vector transport (see [2, Def. 8.1.1]). As its name implies, it
serves to move vectors in different tangent spaces to the same tangent space.
Particularly, parallel translation along geodesics is a vector transport.

Definition 2.4 A smooth mapping T : TM ⊕ TM → TM : (ηx, ξx) 7→
Tηx

(ξx) is said to be a vector transport associated to a retraction R if for all
(ηx, ξx), the following conditions hold:

(i) Tηx : TxM → TRx(ηx)M is a linear map;
(ii) T0x(ξx) = ξx for all ξx ∈ TxM.

Briefly, if ξx ∈ TxM and R(ηx) = y, then Tηx
transports vector ξx from

the tangent space of M at x to the tangent space at y. In order to obtain
convergence results, the following conditions are also required.

• The vector transport T preserves inner products, i.e.,

⟨Tηx
(ξx), Tηx

(ζx)⟩ = ⟨ξx, ζx⟩. (3)

• The following locking condition is satisfied for T , i.e.,

Tξx(ξx) = βξxTRξx
(ξx), βξx =

∥ξx∥
∥TRξx

(ξx)∥
, (4)

where

TRηx
(ξx) = DRx(ηx)[ξx] =

d

dt
Rx(ηx + tξx)|t=0.

The above conditions are satisfied with βξx = 1 if the retraction and vector
transport are selected as the exponential map and parallel transport, respec-
tively; see [28] for more details. For simplicity, the following intuitive notations
are used:

Tx→y(ξx) := Tηx(ξx), and Tx←y(ξx) := (Tηx)
−1(ξy) whenever y = Rx(ηx).

In addition, it is necessary to introduce the notion of injectivity radius
for Rx, since we need to transport subgradients from tangent spaces at some
points lying in the neighborhood of x ∈ M to the tangent space at x; see [29].

Definition 2.5 Let

ι(x) := sup{ε > 0| Rx : B(0x, ε) → BR(x, ε) is injective},

where B(0x, ε) = {ξx| ∥ξx∥ < ε} ⊂ TxM. Furthermore, for this retraction R,
the injectivity radius of M is defined as

ι(M) := inf
x∈M

ι(x).
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Remark 2.1 (i) As in usual we assume that ι(M) > 0, and that an explicit
positive lower bound of ι(M) is available, which will be used as an input of
the algorithm. In fact, when M is compact, we at least know that ι(M) > 0.
(ii) Clearly, Tx←y(ξx) is well defined for all y ∈ BR(x, ι(x)), especially, for all
y ∈ BR(x, ι(M)). In what follows, it will always be ensured that Tx←y(ξx) is
well defined when we use it.

We close this section by recalling the notion of Riemannian subdifferential,
which is an extension of the classical Clarke subdifferential; see [29]. If X is a
Hilbert space, and ϕ is a locally Lipschitz function defined from X to R, the
Clarke generalized directional derivative of ϕ at x in direction v is defined as

ϕ◦(x; v) = lim sup
y→x, t↓0

ϕ(y + tv)− ϕ(y)

t
,

and the Clarke subdifferential of ϕ at x is then given by

∂ϕ(x) := {ξ ∈ X | ⟨ξ, v⟩ ≤ ϕ◦(x; v) for all v ∈ X}.

Definition 2.6 Let f : M → R be a locally Lipschitz function and for x ∈ M,
denote f̂x = f◦Rx. The Riemannian directional derivative of f at x in direction
p ∈ TxM is defined as

f◦(x; p) = f̂◦x(0x, p),

where f̂◦x(0x, p) is the Clarke generalized directional derivative of f̂x : TxM →
R at 0x in direction p ∈ TxM. Then the Riemannian subdifferential of f at x
is defined as

∂f(x) = ∂f̂x(0x).

The following lemma shows some important properties of the Rieman-
nian subdifferential, which are similar to those of the Clarke subdifferential in
Hilbert space; see [29, Thm. 2.2].

Lemma 2.1 Let f : M → R be a locally Lipschitz function, then the set
∂f(x) is a nonempty, compact and convex subset of TxM, and ∥ξ∥ ≤ L for
all ξ ∈ ∂f(x), where L is the Lipschitz constant near x.

The Riemannian ε-subdifferential and ε-subgradient of f can be also de-
fined; see [29].

Definition 2.7 Let ε ∈
(
0, 1

2 ι(x)
)
, 1 then the Riemannian ε-subdifferential of

a locally Lipschitz function f on a Riemannian manifold M at x is defined as

∂εf(x) := cl conv{β−1η Tx←y(∂f(y)) : y ∈ clBR(x, ε) and η = R−1x (y)},

where βη = ∥η∥
∥TRη (η)∥

. Every element of ∂εf(x) is called a (Riemannian) ε-

subgradient.

1 Note that y ∈ clBR(x, ε), so the coefficient 1
2
ensures that the inverse vector transports

on the boundary of BR(x, ε) are well defined.
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Lemma 2.2 The set ∂εf(x) is a nonempty, compact and convex subset of
TxM.

Proof From [29, Thm. 2.15] we know that the set ∂εf(x) is bounded. This
together with Lemma 2.1 and Definition 2.7 shows the claim. ⊓⊔

3 A descent method for Riemannian nonsmooth multiobjective
optimization

In this section, we present the details of our algorithm, which contains two
procedures that help us to find a descent direction. We first introduce the
definition of global weak Pareto optimal and local weak Pareto optimal for
problem (1) as follows; see [15, Ch. 2].

Definition 3.1 Let x ∈ M. If there is no y ∈ M such that fi(y) < fi(x) for
all i = 1, · · · ,m, then we say that x is a weak Pareto optimal of problem (1). If
there exists some σ > 0 such that x is a (weak) Pareto optimal on B(x, σ)∩M,
then we say that x is a local (weak) Pareto optimal of problem (1).

It is clear that if x is a Pareto optimal of problem (1), then it is a global
weak Pareto optimal of problem (1), so it also must be a local weak Pareto
optimal of problem (1). Next, we generalize the necessary condition for Pareto
optimality in Euclidean space (see [34]) to the Riemannian setting.

Theorem 3.1 Let x ∈ M be a local weak Pareto optimal of problem (1), then
we have

0x ∈ convG(x), (5)

where G(x) =
⋃m

i=1 ∂fi(x).

Proof We first show that G(x) = ∅, where

G(x) = {d ∈ TxM| ⟨d, ξ⟩ < 0 for all ξ ∈ G(x)}.

By Definition 3.1, there exists a σ > 0 such that for every y ∈ M ∩ B(x, σ)
there is an index i ∈ {1, · · · ,m} such that inequality fi(y) ≥ fi(x) holds. Let
d ∈ TxM be arbitrary, then there exist sequences {dk} ⊆ TxM and {tk} such
that dk → d and tk ↓ 0. Set ε̃ = min{σ

κ , ι(x)} and ε ∈ (0, ε̃). It is clear that
there exists a constant N > 0 such that tkdk ∈ B(0x, ε) for all k > N . By (2),
we have Rx(tkdk) ∈ M ∩ B(x, σ) for all k > N . Then for every k > N there
exists an index ik ∈ {1, · · · ,m} such that fik(Rx(tkdk)) ≥ fik(x). Since m is
finite, there must be an index i0 ∈ {1, · · · ,m} and subsequences {dkj} ⊂ {dk}
and {tkj} ⊂ {tk} such that

fi0
(
Rx(tkjdkj )

)
≥ fi0(x) = fi0(Rx(0x)),

for all kj > N . Denote K = {kj | kj > N}. Since f̂i0x = fi0 ◦ Rx is a locally
Lipschiz function on B(0x, ε), by the mean value theorem ([13, Thm. 2.3.7]),
it follows that for all k̄ ∈ K, there exists a t̃k̄ ∈ (0, tk̄) such that

f̂i0x(tk̄dk̄)− f̂i0x(0x) ∈ ⟨∂f̂i0x(t̃k̄dk̄), tk̄dk̄⟩.
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Then from [13, Prop. 2.1.2 (b)], we obtain

f̂◦i0x(t̃k̄dk̄; dk̄) = max
ξ∈∂f̂i0x(t̃k̄dk̄)

⟨ξ, dk̄⟩ ≥
1

tk̄
(f̂i0x(tk̄dk̄)− f̂i0x(0x)) ≥ 0.

Thus, for all k̄ ∈ K we have f̂◦i0x(t̃k̄dk̄; dk̄) ≥ 0. Since dk̄ → d and t̃k̄dk̄ → 0x,

from the upper semicontinuous of function f̂◦i0x (see [13, Prop. 2.1.1 (b)]) and
Definition 2.6, we obtain

f◦i0(x, d) = f̂◦i0x(0x; d) = lim sup
k̄→∞

f̂◦i0x(t̃k̄dk̄; dk̄) ≥ 0.

By [29, Thm. 2.2 (b)], we have f◦i0(x, d) = maxξ∈∂fi0 (x)⟨ξ, d⟩. Therefore, there
exists a ξ̄ ∈ ∂fi0(x) ⊆ G(x) such that ⟨ξ̄, d⟩ ≥ 0, which implies d /∈ G(x), and
thus G(x) = ∅.

Now, we show that 0x ∈ convG(x). Note that G(x) = ∅, then for any
d ∈ TxM, there exists some ξ0 ∈ G(x) ⊆ convG(x) such that

⟨d, ξ0⟩ ≥ 0. (6)

Suppose 0x /∈ convG(x). Since the sets convG(x) and {0x} are closed convex
sets, there exist d ∈ TxM and a ∈ R such that

0 = ⟨d, 0x⟩ ≥ a and ⟨d, ξ⟩ < a for all ξ ∈ convG(x)

according to the separation theorem. The above relations imply that ⟨d, ξ⟩ < 0
for all ξ ∈ convG(x), which is a contradiction with inequality (6). Hence
0x ∈ convG(x). ⊓⊔

From Theorem 3.1 and the previous results, we know that 0x ∈ convG(x) if
x is a Pareto optimum of problem (1). Conversely, when the objective functions
are strictly convex, the point satisfying (5) is Pareto optimum of problem (1);
see the lemma below.

Lemma 3.1 Suppose that the objective functions of problem (1) are all strictly
convex on M.2 Then every point satisfying (5) is Pareto optimal of problem
(1).

Proof By [3, Lem. 1.3], we immediately obtain this result. ⊓⊔

The method proposed in this paper is a descent method based on the line
search strategy. In particular, for each iteration k, we hope to find a descent
direction gk ∈ Txk

M and a stepsize tk > 0 such that fi(xk+1) < fi(xk) for
all i ∈ {1, · · · ,m}, where xk+1 = Rxk

(tkgk). Next, we will explain how to find
such gk.

2 A function f : M → R is said to be convex if the composition f ◦ γ : [−ν, ν] → R is
convex for any geodesic segment γ : [−ν, ν] → M with ν > 0; see [7]. The function f is said
to be strictly convex if the composition f ◦ γ : [−ν, ν] → R is strictly convex.
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Definition 3.2 For ε ∈
(
0, 1

2 ι(x)
)
, the ε-subdifferential of the objective vector

F (x) of problem (1) is defined as

Gε(x) := conv

(
m⋃
i=1

∂εfi(x)

)
⊂ TxM.

It is clear that Gε(x) is nonempty, convex and compact by Lemma 2.2.

Lemma 3.2 Let ε ∈
(
0, 1

2 ι(x)
)
.

(i) If x is Pareto optimal of problem (1) , then 0x ∈ Gε(x).
(ii) Let x ∈ M and

ḡ := argmin
ξ∈−Gε(x)

∥ξ∥. (7)

Then, either ḡ = 0x or ḡ ̸= 0x and

⟨ḡ, ξ⟩ ≤ −∥ḡ∥2 < 0, ∀ξ ∈ Gε(x). (8)

Proof (i) It is obvious that convG(x) ⊆ Gε(x), then combining with Theorem
3.1 we immediately obtain 0x ∈ Gε(x). (ii) Since the set Gε(x) is nonempty
and compact, then there exists some ḡ such that ḡ = argminξ∈−Gε(x) ∥ξ∥. If
ḡ ̸= 0x, we have −ḡ = argminξ∈Gε(x)∥ξ∥ by (7). Note that the set Gε(x) is
convex, so we have the inequality ⟨ξ−(−ḡ),−(−ḡ)⟩ ≤ 0, which implies (8). ⊓⊔

By Lemma 3.2, we still have the necessary optimality condition 0x ∈ Gε(x)
when working with the ε-subdifferential instead of convG(x). The following
lemma shows that for each objective function fi, there exists a common lower
bound for a stepsize to guarante descent when using the direction ḡ defined
by (7) as a search direction. We extend the result of [24, Lem. 3.2] to the
Riemannian setting as follows.

Lemma 3.3 Let ε ∈
(
0, 1

2 ι(x)
)
and ḡ be the solution of (7). Then

fi(Rx(tḡ)) ≤ fi(x)− t∥ḡ∥2, ∀ 0 ≤ t ≤ ε

∥ḡ∥
, i ∈ {1, · · · ,m}.

Proof For all t ∈
[
0, ε
∥ḡ∥

]
, by Lebourg’s mean value theorem [26, Thm. 3.3],

there exist θ ∈ (0, 1) and ξ ∈ ∂fi(Rx(θtḡ)) such that

fi(Rx(tḡ))− fi(x) = ⟨ξ,DRx(θtḡ)[tḡ]⟩, i ∈ {1, · · · ,m}.

It is clear that ∥θtḡ∥ < ε. Combining (3) and the locking condition (4) of the
vector transport, we have that

fi(Rx(tḡ))− fi(x) =
t

βθtḡ
⟨Tx←Rx(θtḡ)(ξ), ḡ⟩, i ∈ {1, · · · ,m}.

Since ∥θtḡ∥ < ε, it follows that 1
βθtḡ

Tx←Rx(θtḡ)(ξ) ∈ ∂εfi(x) ⊂ Gε(x), then

from (8) we obtain

fi(Rx(tḡ))− fi(x) ≤ −t∥ḡ∥2, i ∈ {1, · · · ,m}.

This completes the proof. ⊓⊔
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Lemma 3.3 states that ḡ is a descent direction of fi for every i ∈ {1 · · · ,m}.
However, it is not easy to compute ḡ in practice, since the set Gε(x) is usually
unknown. A natural idea is to approximate Gε(x) by the convex hull of a
certain set W , which is expected to have at least two properties: (i) it is much
easier to compute than Gε(x); (ii) g̃ = argminξ∈−convW ∥ξ∥ can be used instead
of ḡ as an approximate descent direction of fi for every i ∈ {1 · · · ,m}.

Now, we present the details of our algorithm (Algorithm 1) as follows.

Algorithm 1: A descent method for Riemannian nonsmooth multi-
objective optimization

0 Select an initial point x0 ∈ M, ε ∈
(
0, 1

2 ι(M)
)
, tolerance δ > 0, and

Armijo parameters c ∈ (0, 1), α > 1, t0 > 0. Let k = 0.
1 Compute an acceptable descent direction: gk = Pdd(xk, ε, δ, c), where

Pdd is a procedure given below.
2 If ∥gk∥ ≤ δ, then STOP.

3 Find the smallest integer ℓ ∈
{
0, 1, · · · ,

[
ln(t0∥gk∥)−lnε

lnα

]}
satisfying

fi(Rxk
(α−ℓt0gk)) ≤ fi(xk)− α−ℓt0c∥gk∥2, i ∈ {1, · · · ,m}.

If such an ℓ exists, set tk = α−ℓt0. Otherwise, set tk = ε
∥gk∥ .

4 Set xk+1 = Rxk
(tkgk), k = k + 1 and go to Step 1.

Remark 3.1 In step 1 of Algorithm 1, the aim of the inner procedure Pdd is
to find an acceptable descent direction of fi for every i ∈ {1 · · · ,m}, which
uses the substitute convW instead of Gε(x). In step 3, the symbol [ · ] denotes
the largest integer that does not exceed ·. In what follows, we will show that

ε
∥gk∥ is a common descent stepsize for all objective functions when using gk as

the search direction. The line search strategy of step 3 means that if there is a
longer stepsize α−ℓt0 than ε

∥gk∥ , then we use α−ℓt0 as the stepsize. Otherwise

we use the latter.

Next, we describe how we can obtain a good approximation of Gε(x) with-
out requiring full knowledge of the ε-subdifferential. Let W = {ξ1, · · · , ξr} ⊆
Gε(x) and

g̃ := argmin
g∈−convW

∥g∥. (9)

If g̃ ̸= 0x, then set c ∈ (0, 1) and check the following inequality:

fi

(
Rx

(
ε

∥g̃∥
g̃

))
≤ fi(x)− cε∥g̃∥, ∀ i ∈ {1, · · · ,m}. (10)

If (10) holds, then we can say convW is an acceptable approximation forGε(x),
and g̃ is an acceptable descent direction. Otherwise, the set I ⊆ {1, · · · ,m}
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consists of the indices for which (10) is not satisfied is nonempty, then we
hope to find a new ε-subgradient ξ′ ∈ Gε(x) such that W ∪ ξ′ yields a better
approximation to Gε(x). The following lemma can help us to find such an
ε-subgradient.

Lemma 3.4 Let c ∈ (0, 1), W = {ξ1, · · · , ξr} ⊆ Gε(x) and g̃ ̸= 0x be the
solution of (9). If

fj

(
Rx

(
ε

∥g̃∥
g̃

))
> fj(x)− cε∥g̃∥ (11)

for some j ∈ {1, · · · ,m}, then there exist some t′ ∈
[
0, ε
∥g̃∥

]
and ξ′ ∈ ∂fj(Rx(t

′g̃))

such that

⟨β−1t′g̃ Tx←Rx(t′g̃)ξ
′, g̃⟩ > −c∥g̃∥2, (12)

and

ξ = β−1t′g̃ Tx←Rx(t′g̃)ξ
′ ∈ Gε(x) \ convW. (13)

Proof Suppose for all t′ ∈
[
0, ε
∥g̃∥

]
and ξ′ ∈ ∂fj(Rx(t

′g̃)) we have

⟨β−1t′g̃ Tx←Rx(t′g̃)ξ
′, g̃⟩ ≤ −c∥g̃∥2. (14)

Next we show that it is impossible. In fact, by Lebourg’s mean value theorem,

there exist θ ∈ (0, 1) and ξ̃ ∈ ∂fj

(
Rx

(
θ ε
∥g̃∥ g̃

))
such that

fj

(
Rx

(
ε

∥g̃∥
g̃

))
− fj(x) =

〈
ξ̃,DRx

(
θ

ε

∥g̃∥
g̃

)[
ε

∥g̃∥
g̃

]〉
.

Note that ∥θ ε
∥g̃∥ g̃∥ < ε, then using (3) and the locking condition (4) of the

vector transport, we obtain

fj

(
Rx

(
ε

∥g̃∥
g̃

))
− fj(x) =

ε

∥g̃∥βθ ε
∥g̃∥ g̃

〈
Tx←Rx(θ ε

∥g̃∥ g̃)
(ξ̃), g̃

〉
.

This together with θ ∈ (0, 1) and (14) shows that

fj

(
Rx

(
ε

∥g̃∥
g̃

))
− fj(x) ≤

ε

∥g̃∥
(−c∥g̃∥2) = −cε∥g̃∥,

which is a contradiction with (11), and therefore (12) holds.

Finally, we prove (13). Note that t′ ∈
[
0, ε
∥g̃∥

]
, thus ∥t′g̃∥ ≤ ε, which implies

that ξ = β−1t′g̃ Tx←Rx(t′g̃)ξ
′ ∈ Gε(x). If ξ ∈ convW , we have ⟨ξ, g̃⟩ ≤ −∥g̃∥2 <

−c∥g̃∥2, which is a contradiction with (12). Thus (13) holds. ⊓⊔
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Lemma 3.4 above only implies that there exist t′ and ξ′ satisfying (12)
without showing a way how to obtain them. Now, we present a procedure
(Pns) which can help us to compute such t′ and ξ′ in practice. For simplicity,
denote

hj(t) := fj(Rx(tg̃))− fj(x) + ct∥g̃∥2

for j ∈ I, i.e., fj is not satisfied with (10).

Procedure: Find a new ε-subgradient: (t, ξ̃js) = Pns(j, xk, g̃s, ε, c)

0 Set a = 0, b = ε
∥g̃s∥ and t = a+b

2 .

1 Compute ξ̃js ∈ ∂fj(Rxk
(tg̃s)).

2 If ⟨β−1tg̃s
Txk←Rxk

(tg̃s)ξ̃
j
s , g̃s⟩ > −c∥g̃s∥2 then STOP.

3 If hj(b) > hj(t) set a = t. Else set b = t.

4 Set t = a+b
2 and go to step 1.

The following theorem shows some important properties of the procedure
Pns, which can be viewed as an extension of [24, Lem. 3.4].

Theorem 3.2 For the current point xk, let j ∈ I and {ti} be the sequence
generated by the procedure Pns.

(i) If {ti} is finite, then some ξ′ was found to satisfy (12).

(ii) If {ti} is infinite, then it converges to some t̄ ∈
[
0, ε
∥g̃s∥

]
such that

either there is some ξ′ ∈ ∂fj(Rxk
(t̄g̃s)) satisfying (12) or 0 ∈ ∂hj(t̄).

Proof (i) If {ti} is finite, by construction, the procedure Pns must have stopped
in step 2, then some ξ′ = ξ̃js was found to satisfy (12).

(ii) If {ti} is infinite, it is clear that {ti} must be convergent to some

t̄ ∈
[
0, ε
∥g̃s∥

]
. Additionally, we have hj(0) = 0 and hj

(
ε
∥g̃s∥

)
> 0 since (10) is

violated for the index j. Let {ai} and {bi} be the sequences corresponding to
a and b in procedure Pns.

We first show that t̄ ̸= 0. Suppose by contradiction that t̄ = 0. By the
construction of Pns, we have hj(ti) ≥ hj(bi) for all i ∈ N. Then

hj(ti) ≥ hj(bi) = hj(ti−1) ≥ hj(bi−1) = · · · = hj(t1) ≥ hj(b1) = hj

(
ε

∥g̃s∥

)
> 0.

Due to the continuity of hj , we obtain hj(0) = limi→∞ hj(ti) ≥ hj

(
ε
∥g̃s∥

)
> 0,

which is a contradiction.
So we must have t̄ > 0. Furthermore, it is clear that hj(bi) > hj(ai) for

all i ∈ N by the construction of Pns. Since the function hj is locally Lipschiz

continuous on
[
0, ε
∥g̃s∥

]
, by the mean value theorem there is some ri ∈ [ai, bi]

such that

0 < hj(bi)− hj(ai) ∈ (bi − ai)∂hj(ri).
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It is obvious that limi→∞ ri = t̄ and ai < bi, thus we have ∂hj(ri) ∩ R+ ̸= ∅
for all i ∈ N. Due to the upper semicontinuity of ∂hj , there must be some
v ∈ ∂hj(t̄) with v ≥ 0. By [26, Prop. 3.1], we obtain

0 ≤ v ∈ ∂hj(t̄) ⊆ ⟨∂fj(Rxk
(t̄g̃s)),DRxk

(t̄g̃s)[g̃s]⟩+ c∥g̃s∥2. (15)

Thus, if there is some ξ0 ∈ ∂fj(Rxk
(t̄g̃s)) with 0 < ⟨ξ0,DRxk

(t̄g̃s)[g̃s]⟩+c∥g̃s∥2,
i.e. ⟨ξ0,DRxk

(t̄g̃s)[g̃s]⟩ > −c∥g̃s∥2, then using (3) and the locking condition (4)
of vector transport, we have that

⟨β−1t̄g̃s
Txk←Rxk

(t̄g̃s)ξ0, g̃s⟩ > −c∥g̃s∥2,

which shows that ξ′ = ξ0 ∈ ∂fj(Rxk
(t̄g̃s)) satisfies (12). Otherwise, we obtain

⟨ξ,DRxk
(t̄g̃s)[g̃s]⟩+ c∥g̃s∥2 ≤ 0, ∀ξ ∈ ∂fj(Rxk

(t̄g̃s)).

This along (15) implies 0 = v ∈ ∂hi(t̄). ⊓⊔

We note that the procedure Pns will stop after finitely many iterations
in practice; see [24, Remark 3.1]. Based on this procedure, it is possible to
construct another procedure that can compute an acceptable descent direction
of fi for i ∈ {1 · · · ,m}, namely procedure Pdd used in step 1 of Algorithm 1.

Procedure: Compute a descent direction: gk = Pdd(xk, ε, δ, c)

0 Compute ξi ∈ ∂εfi(xk) for all i ∈ {1, · · · ,m}. Set W0 = {ξ1, · · · , ξm}
and s = 0.

1 Compute g̃s = argmin
g∈−convWs

∥g∥.

2 If ∥g̃s∥ ≤ δ, set gk = g̃s and STOP.
3 Find all indices for which there is no sufficient decrease:

Is =

{
j ∈ {1, · · · ,m} : fj

(
Rxk

(
ε

∥g̃s∥
g̃s

))
> fj(xk)− cε∥g̃s∥

}
.

If Is = ∅, set gk = g̃s, then STOP.
4 For each j ∈ Is, compute (t, ξ̃js) = Pns(j, xk, g̃s, ε, c), and set

ξjs = β−1tg̃s
Txk←Rxk

(tg̃s)ξ̃
j
s .

5 Set Ws+1 = Ws ∪ {ξjs : j ∈ Is}, s = s+ 1 and go to step 1.

We show that the procedure Pdd is well defined, that is, it terminates
in a finite number of iterations, and then an acceptable descent direction is
produced.

Theorem 3.3 The procedure Pdd terminates in a finite number of iterations.
In addition, let ĝ be the last element of {g̃s}, then either ∥ĝ∥ ≤ δ or ĝ is an
acceptable descent direction, that is

fi

(
Rxk

(
ε

∥ĝ∥
ĝ

))
≤ fi(xk)− cε∥ĝ∥, ∀i ∈ {1, · · · ,m}.
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Proof Suppose by contradiction that {g̃s} is an infinite sequence. Let s ≥ 1
and j ∈ Is−1. By the construction of Pdd, it follows that ξjs−1 ∈ Ws and
−g̃s−1 ∈ convWs−1 ⊆ convWs. Since g̃s = argming∈−convWs

∥g∥, for all λ ∈
(0, 1), we have

∥g̃s∥2 < ∥ − g̃s−1 + λ(ξjs−1 + g̃s−1)∥
= ∥g̃s−1∥2 − 2λ⟨g̃s−1, ξjs−1⟩ − 2λ∥g̃s−1∥2 + λ2∥ξjs−1 + g̃s−1∥2. (16)

Note that j ∈ Is−1, then by step 4 of Pdd and Pns, we obtain

⟨g̃s−1, ξjs−1⟩ > −c∥g̃s−1∥2. (17)

Additionally, since Gε(xk) is a compact subset of Txk
M, there is a constant

C > 0 such that ∥ξ∥ ≤ C for all ξ ∈ Gε(x). Thus

∥ξjs−1 + g̃s−1∥ ≤ 2C. (18)

Combining (16) with (17) and (18), we have

∥g̃s∥2 < ∥g̃s−1∥2 + 2λc∥g̃s−1∥2 − 2λ∥g̃s−1∥2 + 4λ2C2

= ∥g̃s−1∥2 − 2λ(1− c)∥g̃s−1∥2 + 4λ2C2.

Let λ = 1−c
4C2 ∥g̃s−1∥2, then it follows from c ∈ (0, 1) and ∥gk−1∥ ≤ C that

λ ∈ (0, 1). Therefore

∥g̃s∥2 < ∥g̃s−1∥2 − 2
(1− c)2

4C2
∥g̃s−1∥4 +

(1− c)2

4C2
∥g̃s−1∥4

=

(
1− (1− c)2

4C2
∥g̃s−1∥2

)
∥g̃s−1∥2.

Since the Pdd does not terminate, it holds C ≥ ∥g̃s−1∥ > δ. Thus

∥g̃s∥2 <

(
1−

(
1− c

2C
δ

)2
)
∥g̃s−1∥2.

Set τ = 1− ( 1−c2C δ)2 ∈ (0, 1). By recursion, we obtain

∥g̃s∥2 < τ∥g̃s−1∥2 < τ2∥g̃s−2∥2 < · · · < τs−1∥g̃1∥2 ≤ τs−1C2.

This shows that ∥g̃s∥ ≤ δ for sufficiently large s, which is a contradiction. ⊓⊔
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4 Convergence analysis

In this section, we establish the convergence of Algorithm 1. The conception of
(ε, δ)-critical is extended from Rn (see [24, Def. 3.2]) to Riemannian manifolds.
Under the assumption of at least one objective function of problem (1) is
bounded below, we show that the sequence {xk} generated by Algorithm 1 is
finite with the last element being (ε, δ)-critical.

Definition 4.1 Let x ∈ M, ε ∈
(
0, 1

2 ι(M)
)
and δ > 0. Then, x is called

(ε, δ)-critical, if
min

g∈−Gε(x)
∥g∥ ≤ δ.

Clearly, if a point x ∈ M satisfies (5), then it is an (ε, δ)-critical point, but
the converse is not necessarily true.

Theorem 4.1 Assume that at least one objective function of problem (1) is
bounded below. Let {xk} be the sequence generated by Algorithm 1. Then {xk}
is finite with the last element being (ε, δ)-critical.

Proof Suppose by contradiction that {xk} is infinite. Then, we have ∥gk∥ > δ
for all k ∈ N. If tk = α−ℓt0 in step 3 of Algorithm 1, then we have α−ℓt0 ≥ ε

∥gk∥ .

This together with (3) shows that, for all i ∈ {1, · · · ,m},

fi(Rxk
(tkgk))− fi(xk) = fi(Rxk

(α−ℓt0gk))− fi(xk)

≤ −α−ℓt0c∥gk∥2

≤ −cε∥gk∥
< −cεδ.

(19)

Conversely, if tk = ε
∥gk∥ , we have ε

∥gk∥ ≥ α−ℓt0, then from Theorem 3.3, the

last inequality in (19) can be also obtained. In summary, we can conclude that
{fi(xk)} is unbounded below for each i ∈ {1, · · · ,m}, which is a contradic-
tion.Thus the sequence {xk} is finite.

Let x∗ and g∗ be the last elements of {xk} and {gk}, respectively. Since
the algorithm stopped, we must have ∥g∗∥ ≤ δ by step 2 of Algorithm 1. On
the other hand, by the construction of the procedures Pdd and Pns, there is a
set W∗ ⊆ Gε(x∗) such that g∗ = argming∈−convW∗

∥g∥. Thus

min
g∈−Gε(x∗)

∥g∥ ≤ min
g∈−conv(W∗)

∥g∥ = ∥g∗∥ ≤ δ,

which completes the proof. ⊓⊔

5 Numerical results

In this section, we will present numerical results of several examples for our
method. Most of the objective functions of these examples are of the classic
optimization problems on Riemannian manifolds.
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Example 5.1 We first consider a simple problem. Let m = 2 in problem (1),
and setM = S2 which is the Euclidean unit sphere in R3, f1(x) = max(0.5x1+
x3, 0.3x2 + 1.5x3) and f2(x) = |x1 − 0.5|+ x2 + x3.

Example 5.2 Recently, many researchers are interested in the geometric me-
dian on a Riemannian manifold M (see[31,22]). Let y1, · · · , yq ∈ M be some
given points, w = (w1, · · · , wq)

T ∈ Rq
+ and

∑q
j=1 wj = 1 be the correspond-

ing weights. This problem is to minimize
∑q

j=1 wjdist(x, yj) on M. Now, we

consider the multiobjective setting and set M = Sp−1 which is the Euclidean

unit sphere in Rp and fi(x) =
∑qi

j=1 w
i
jdist(x, y

i
j), where yi1, · · · , yiqi ∈ M,

wi ∈ Rqi

+ with
∑qi

j=1 w
i
j = 1 for all i ∈ {1, · · · ,m}.

Example 5.3 Eigenvalue problems are ubiquitous in scientific research and
practical applications, such as physical science and engineering design, etc.
Let A be a real symmetric matrix, the eigenvalue problem can be transformed

into a Rayleigh quotient problem whose objective function is xTAx
xT x

. This prob-
lem can be further viewed as an optimization problem on a sphere to minimize
xTAx; see [2]. Also, we consider the multiobjective setting, set M = Sp−1 and
fi(x) = xTAix, where Ai is a real symmetric matrix for each i ∈ {1, · · · ,m}.

Example 5.4 The l1-regularized least squares problem (named as Lasso) was
proposed in [39], which has been used heavily in machine learning and basis
pursuit denoising, etc. The cost function of this problem is 1

2∥Ax−b∥2+λ∥x∥1,
where A ∈ Rn×p, b ∈ Rp and λ > 0. Here, we restrict x to the unit sphere
and consider the objective functions fi(x) = 1

2∥Aix − bi∥2 + λi∥x∥1, where
Ai ∈ Rn×p, bi ∈ Rp and λi > 0 for all i ∈ {1, · · · ,m}.

On sphere Sp−1, the Riemannian metric is inherited from the ambient space
Rp, and the Riemannian distance dist(x, y) = arccos⟨x, y⟩. Moreover, for all
instances, the exponential map and the parallel transport are employed as a
retraction and vector transport, respectively. More precisely, the retraction is
as follows

Rx(ξ) := expx(ξ) = cos(∥ξ∥)x+ sin(∥ξ∥) ξ

∥ξ∥
,

where ξ ∈ TxS
p−1. The vector transport associated with R is given by

Tx→γ(t) :=
(
Ip + (cos(∥γ̇(0)t∥)− 1)uuT − sin(∥γ̇(0)t∥xuT

)
ξ,

where γ is a geodesic on Sp−1 with γ(0) = x and u = γ̇(0)
∥γ̇(0)∥ . Note that

Tx←y(ξy) = Ty→σ(1), where σ(t) = expy(tv) denotes the geodesic connecting y

to x, and v can be computed by v = dist(x, y) (I−xxT )(y−x)
∥(I−xxT )(y−x)∥ . Therefore

Tx←y(ξy) =
(
Ip + (cos∥v∥ − 1)uuT − sin∥v∥yuT

)
ξy with u = v/∥v∥,

which is well defined for all y ̸= ±x; see [27].
All tests are implemented in MATLAB R2018b using IEEE double preci-

sion arithmetic and run on a laptop equipped with Intel Core i7, CPU 2.60
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GHz and 16 GB of RAM. The quadratic programming solver quadprog.m
in the MATLAB optimization toolbox is used to solve the convex quadratic
problem in step 1 of the procedure Pdd. For all examples, we set the algorithm
parameters as follows: ε = 10−4, δ = 10−3, c = 0.25, α = 2, t0 = 1.

The numerical results are shown in Figs. 1–7. In particular, the left of each
picture shows the value space generated by our algorithm for 100 random
starting points, and the right is the variation of the norm of gk with the
number of iterations for five different random starting points. In Fig. 2, we
set p = 100, m = 2, q1 = 6, w1 = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3)T , q2 = 4, w2 =
(0.1, 0.2, 0.3, 0.4)T and yij is randomly generated for i = 1, 2, j = 1, · · · , qi.
In Fig. 3, we set p = 100, m = 3, q1 = 6, w1 = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3)T ,
q2 = 4, w2 = (0.1, 0.2, 0.3, 0.4)T , q3 = 5, w3 = (0.1, 0.1, 0.2, 0.3, 0.3), and yij is

randomly generated for i = 1, 2, 3, j = 1, · · · , qi.

(a) (b)

Fig. 1 Numerical results for Example 5.1.

(a) (b)

Fig. 2 Numerical results for Example 5.2 with m = 2.

In Figs. 1(a)–7(a), the hollow points indicate the objective vector values of
the initial points, and these marked with red stars are the objective vector val-
ues of the final points (namely, the (ε, δ)-critical points). From these figures,
we see that nearly all of the final points generated by our method are (ap-
proximate) Pareto optimal points for the corresponding examples, except that
several points marked with black circles in Fig. 4(a) are not Pareto optimal,
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(a) (b)

Fig. 3 Numerical results for Example 5.2 with m = 3.

(a) (b)

Fig. 4 Numerical results for Example 5.3 with p = 100, m = 2, and Ai being randomly
generated for i = 1, 2.

which might be local (weak) Pareto optimal points. Thus, we can obtain the
approximations of Pareto sets for the above examples by Algorithm 1 when
some reasonable number of starting points are given. Furthermore, in Table 1,
we list the average number of iterations (ANI) for 100 random starting points
for all examples. In summary, the preliminary numerical results show that our
method is effective and promising.

Table 1 Average number of iterations

Example 5.1 5.2 (m = 2) 5.2 (m = 3) 5.3 (m = 2) 5.3 (m = 3) 5.4 (m = 2) 5.4 (m = 3)
ANI 4.4 13.0 13.0 266.3 192.4 98.8 102.1

6 Conclusions

In this paper, we have presented a descent method for multiobjective opti-
mization problems with locally Lipschitz components on complete Riemannian
manifolds. Our setting is much more general than certain convexities assumed
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(a) (b)

Fig. 5 Numerical results for Example 5.3 with p = 100, m = 3, and Ai being randomly
generated for i = 1, 2, 3.

(a) (b)

Fig. 6 Numerical results for Example 5.4 with n = 100, p = 60, m = 2, λ1 = 0.01,
λ2 = 0.02, Ai and bi being randomly generated for i = 1, 2.

in the existing works. To avoid computing the Riemannian ε-subdifferential of
the objective vector function, a convex hull of some Riemannian ε-subgradients
is constructed to obtain an acceptable descent direction, which greatly reduces
the computational complexity. Furthermore, we extend a necessary condition
of the Pareto optimal points to the Riemannian setting. Finite convergence
of the proposed algorithm is obtained under the assumption that at least one
objective function is bounded below and the employed retraction and vector
transport satisfy certain conditions. Finally, some preliminary numerical re-
sults illustrate the effectiveness of our method. As a future work, similar to
the idea in [29], we may further extend the norm in (9) by the P -norm and
choose the direction as P g̃, where P is a positive definite matrix.

Funding This work was supported by the National Natural Science Foundation
of China (12271113, 12171106, 12061013) and Guangxi Natural Science Foundation
(2020GXNSFDA238017).
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(a) (b)

Fig. 7 Numerical results for Example 5.4 with n = 100, p = 60, m = 3, λ1 = 0.01,
λ2 = 0.02, λ3 = 0.02, Ai and bi being randomly generated for i = 1, 2, 3.

Data availability The datasets generated and analysed during the current study are avail-
able from the corresponding author on reasonable request.
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