
OPTIMIZATION

A subspace inertial method for derivative-free nonlinear
monotone equations

Morteza Kimiaeia, Abdulkarim Hassan Ibrahimb, Susan Ghaderic
aFakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien,
Austria; bInterdisciplinary Research Center (IRC) for Smart Mobility and Logistics, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; cLeuven.AI - KU
Leuven Institute for AI, B-3000, Leuven, Belgium

ARTICLE HISTORY
Compiled September 11, 2023

ABSTRACT
We introduce a subspace inertial line search algorithm (SILSA), for finding solutions
of nonlinear monotone equations (NME). At each iteration, a new point is generated
in a subspace generated by the previous points. Of all finite points forming the
subspace, a point with the largest residual norm is replaced by the new point to
update the subspace. In this way, SILSA leaves regions far from the solution of NME
and approaches regions near it, leading to a fast convergence to the solution. This
study analyzes global convergence and complexity upper bounds on the number of
iterations and the number of function evaluations required for SILSA. Numerical
results show that SILSA is promising compared to the basic line search algorithm
with several known derivative-free directions.

KEYWORDS
Monotone equations; derivative-free optimization; inertial technique; global
convergence; complexity result

1. Introduction

This paper introduces an efficient derivative-free algorithm for solving monotone equa-
tions

F (x) = 0, x ∈ Rn, (1)

where x is a vector in Rn and F : Rn → Rn is a monotone function, possibly with
large n. In finite precision arithmetic, for a given threshold ε > 0 and an initial point
x0 ∈ Rn, the algorithm finds an ε-approximate solution xε of the problem (1), where
the residual norm of xε is below min(ε, ∥F (x0)∥). Here ∥ · ∥ is the Euclidean norm.

CONTACT Morteza Kimiaei. Email: kimiaeim83@univie.ac.at

The problem (1) appears in various practical applications, including constrained neural
networks [1], nonlinear compressed sensing [2], phase retrieval [3], and economic and
chemical equilibrium problems [4].

Different algorithms [5–17] have been proposed and analyzed for finding an ε-
approximate solution of the problem (1). However, these approaches either require the
computation of the (real) Jacobian matrix, which can be computationally expensive
and memory-intensive, making them unsuitable for high-dimensional problems, or use
its approximation, which may require a large number of function evaluations in high
dimensions. As a result, these methods are not ideal for tackling large scale nonlinear
systems of equations.

To address these limitations, Solodov and Svaiter [18] proposed a basic line search algo-
rithm (BLSA) augmented with a projected scheme for finding an ε-approximate solution
of (1). Compared to methods that require the (real) Jacobian matrix or its approx-
imation, derivative-free methods [19–38] have a simpler structure and lower memory
requirements, making them suitable for solving large-scale problems. Nevertheless, it
should be noted that BLSA does not provide a guarantee for reducing the residual norm
at every accepted point. Instead, the residual norm can non-monotonically jump down
or up until an ε-approximate solution of (1) is obtained. Hence, the convergence rate of
BLSA is relatively slow.

To accelerate the convergence rate of BLSA and obtain an ε-approximate solution of
(1), one potential approach is to integrate BLSA with inertial methods, such as those
proposed in [39–45], which construct steps based on the two previous accepted points,
as described in [29–31]. Despite using two previous points to generate new points, these
methods still do not guarantee that the resulting points have the lowest residual norms
in comparison to the prior accepted points. Another potential approach proposed in
[46] is to augment the algorithm with an extrapolation step in the line search condition
to enforce residual norm reduction at each accepted point. However, in ill-conditioned
problems, this technique may face challenges in finding such points since it does not
accept points whose residual norms have not been reduced.

The global convergence of BLSA with various derivative-free directions to find an ε-
approximate solution of (1), has been established in [24,29–32,35]. However, based on
our knowledge, no attempt has been made to find out the maximum number of iterations
and the maximum number of function evaluations required to find an ε-approximate
solution of (1) for BLSA. Thus, if complexity upper bounds on the number of function
evaluations and the number of iterations are found, it would be interesting to know the
cost of the algorithm before the algorithm is implemented and to know what parameters
are appeared in such complexity bounds.

1.1. Contribution

This study proposes a new derivative-free line search algorithm, named subspace in-
ertial line search algorithm (SILSA), which aims to find an ε-approximate solution of
the problem (1) in Euclidean space. The underlying mapping of (1) is monotone and
Lipschitz continuous. The proposed subspace inertial point uses the information of the
previous evaluated points. It uses a procedure to replace a point with the largest resid-
ual norm in the subspace with a new evaluated point. Due to this replacement, SILSA

2

moves from regions containing points with large residual norms to regions containing
points with low residual norms, leading to a fast convergence to an ε-approximate solu-
tion of the problem (1). Additionally, the algorithm employs a spectral derivative-free
direction based on the efficient direction of Liu and Storey [32], along with an improved
version of BLSA by Solodov and Svaiter [18]. Moreover, we establish the global conver-
gence property of SILSA under mild conditions and derive complexity upper bounds on
the number of iterations and the number of function evaluations required by SILSA to
find an ε-approximate solution of (1).

1.2. Organization of the paper

The paper is structured as follows. Section 2 provides preliminaries. Section 3 introduces
SILSA, which comprises a new subspace inertial technique in Subsection 3.1 and a new
derivative-free direction in Subsection 3.2. Section 4 investigates theoretical results for
SILSA, which include auxiliary results in Subsection 4.1, global convergence in Subsec-
tion 4.2, and complexity results in Subsection 4.3. In Section 5, we compare SILSA with
BLSA using several known derivative-free directions. Conclusion is given in Section 6.

2. Preliminaries

A mapping F : Rn → Rn is said to be monotone if the condition

(F (x) − F (y))T (x − y) ≥ 0, ∀x, y ∈ Rn (2)

holds in a Euclidean space Rn.

In this paper, we assume the following assumptions:

(A1) The function F : Rn → Rn is continuously differentiable and Lipschitz continuous
with the Lipschitz constant L > 0.

(A2) F is monotone, i.e., the condition (2) holds.
(A3) The solution set X∗ of the system (1) is nonempty.

In the following subsections, we review the important concepts (basic line search, least
and most promising points, inertial point, and complexity bound) that we are using
during our study.

2.1. Basic line search algorithm (BLSA)

In this subsection, we introduce the concept of BLSA, which generates a sequence of
iterates, denoted as {yk}k≥0, to find an ε-approximate solution of (1). It enforces the
condition that yk must satisfy the line search condition

−F (yk + αkdk)T dk ≥ σαk∥F (yk + αkdk)∥∥dk∥2. (3)

3

After the direction dk satisfies the descent condition

F (yk)T dk ≤ −c∥F (yk)∥2, with 0 < c < 1 (4)

and the step size αk is found by satisfying the line search condition (3), BLSA accepts
the new point

yk+1 := yk + αkdk, ∀k ≥ 0. (5)

2.2. Least and most promising points

In this subsection, we define two important concepts, which are needed to clarify our
algorithm: the least promising point (LP point), defined as the point with the highest
residual norm among the evaluated points, and the most promising point (MP point),
defined as the point with the lowest residual norm among the evaluated points. These
definitions are motivated by the fact that there is no guarantee of a residual norm
reduction in each step of BLSA.

2.3. Inertial step

In this subsection, the traditional inertial point

vk = yk + ek(yk − yk−1) (6)

is defined, where yk−1, yk ∈ Rn are the two distinct points generated by BLSA and
ek ∈ [0, 1) is called extrapolation step size, which can be updated in various ways [29–
31,39–43,45], one of which is

ek = min
{

emax, k−2∥yk − yk−1∥−2
}

, (7)

where 0 < emax ≤ 1 is a tuning parameter. This choice guarantees the global convergence
for BLSA in combination with the initial step (7), e.g., see [29, Lemma 4.5].

Due to existing of no guarantee of producing yk−1 and yk as MP points by applying
BLSA, it may decrease the effectiveness of inertial point. However, employing a subspace
inertial point based on the previous MP points, gives us this chance to generate a new MP
point or a point close to two previous MP points. In this way, the new generated point
would be far from the previous LP points.

2.4. Complexity bound

In this subsection, we define the complexity bound, i.e., the maximum number of
iterations and the maximum number of function evaluations required to find an ε-

4

approximate solution xε of the problem (1) that satisfies the theoretical criterion

∥F (xε)∥ ≤ min(ε, ∥F (x0)∥). (8)

Let us define f(x) := 1
2∥F (x)∥2 and its true gradient by g(x) := J(x)T F (x) of F at

x, where J(x) denotes the true Jacobian of F at x. Using the linear approximation of
F (x + d) ≈ F (x) + J(x)T d, we have

f(x + d) ≈ q(d) := f(x) + g(x)T d + 1
2∥J(x)d∥2,

where the function q(d) is a convex function. Assumptions (A1)–(A2) implies that for
every x, d ∈ Rn, we have

f(x + d) − f(x) = g(x)T d + 1
2γ2∥d∥2, (9)

where γ depends on x and d and also satisfies

|γ| ≤ L (general case), 0 ≤ γ ≤ L (convex case). (10)

The following result is a variant of [47, Proposition 2], which is a crucial component to
obtain the complexity bound for our algorithm. This result is independent of a particular
derivative-free line search. Here we use the basic line search algorithm, which is different
from the line search algorithm of [47].

Proposition 2.1. Consider x, d ∈ Rn and ∆f ≥ 0, where ∆f is a threshold on f .
Then, we show that at least one of the following conditions is satisfied:

(i) f(x + d) < f(x) − ∆f ,
(ii) f(x + d) > f(x) + ∆f and f(x − d) < f(x) − ∆f ,

(iii) |g(x)T d| ≤ ∆f + 1
2L2∥d∥2.

Proof. We assume that (iii) does not satisfy. Hence, we have

|g(x)T d| > ∆f + 1
2L2∥d∥2.

Although the condition (4) holds, we cannot guarantee g(x)T d < 0 because the true
matrix J(x) at x is not available in g(x) = J(x)T F (x). Hence, we consider the proof in
the following two cases:
Case 1. If g(x)T d ≤ 0, from (9) and (10), we have

f(x + d) − f(x) ≤ g(x)T d + 1
2L2∥d∥2 = −|g(x)T d| + 1

2L2∥d∥2 < −∆f ; (11)

5

hence (i) holds.
Case 2. If g(x)T d ≥ 0, from (9) and (10), we have

f(x − d) − f(x) ≤ g(x)T (−d) + 1
2L2∥d∥2 = −|g(x)T d| + 1

2L2∥d∥2 < −∆f ; (12)

hence the second inequality of (ii) holds. The first inequality of (ii)

f(x + d) − f(x) ≥ g(x)T d − 1
2L2∥d∥2 > ∆f

is obtained.

In exact precision arithmetic, the aim is to obtain an exact solution of the problem
(1). However, in the presence of finite precision arithmetic, the algorithm may get stuck
before finding an approximate solution of (1), especially in nearly flat areas of the
search space. For a finite termination, the theoretical criterion (8) is used to find an
ε-approximate solution of (1).

2.5. Existing derivative-free directions

We here discuss several conjugate gradient (CG) type directions and their derivative-free
variants.

Let us begin with a well-known CG method that aims to minimize an unconstrained
smooth function f : Rn → R, using the iterative formula:

xk+1 = xk + αkdk, ∀k ≥ 0, (13)

where αk is a step size determined by a line search procedure. The search direction

d0 := −g(x0), dk := −g(xk) + βkdk−1, ∀k ≥ 1 (14)

is computed, where g(xk) is the true gradient of f(x) at xk and βk ∈ R is the CG
parameter.

Some classical famous formulas of the CG parameter are

(i) βP RP
k := g(xk)T vk−1

∥g(xk−1)∥2 of Polak–Ribere–Polyak (PRP) [36,37], where vk := g(xk) −

g(xk−1);

(ii) βF R
k := ∥g(xk)∥2

∥g(xk−1)∥2 of Fletcher–Reeves (FR) [26];

(iii) βLS
k := g(xk)T vk−1

−dT
k−1g(xk−1) of Liu–Storey (LS) [32];

(iv) βDY
k := ∥g(xk)∥2

dT
k−1vk−1

of Dai–Yuan (DY) [25].

6

(v) βDL
k := g(xk)T vk−1

dT
k−1vk−1

− t
g(xk)T sk−1

dT
k−1vk−1

of Dai–Liao (DL) [48], where t ≥ 0 and sk :=

xk − xk−1.

For the other CG type directions; see the survey [28].

To identify an ε-approximate solution of (1), BLSA generates the sequence {xk}k≥0 given
by

xk+1 = xk − λkF (zk), λk = F (zk)T (xk − zk)
∥F (zk)∥2 (15)

with the trial point zk = xk + αkdk. As a cheap and useful choice for dk, based on CG
directions this paper focuses on the following three derivative-free search directions:

(a) Motivated by the PRP method, the derivative-free direction

d0 = −F (x0), dk = −F (xk) + βkdk−1

was proposed in [24], where βk = F (xk)T yk−1

∥F (xk−1)∥ and yk = F (xk) − F (xk−1).

(b) Inspired by the FR method, the derivative-free direction

d0 = −F (x0), dk = −F (xk) + βF R
k vk−1 − θkF (xk)

was proposed in [35] with βF R
k = ∥F (xk)∥2

∥F (xk−1)∥2 and the three different choices

θ
(1)
k = F (xk)T vk−1

∥F (xk−1)∥2 , θ
(2)
k = ∥F (xk)∥2∥vk−1∥2

∥F (xk−1)∥4 , θ
(3)
k = θ

(1)
k + (βF R

k)2,

where vk = zk − xk.

(c) Motivated by the LS method, the derivative-free direction

d0 = −F (x0), dk = −F (xk) + βELS
k dk−1

was proposed in [49], where βELS
k = F (xk)T yk−1

F (xk−1)T dk−1
− t

∥yk−1∥2F (xk)T dk−1

(F (xk−1)T dk−1)2 and

t ≥ 1
4.

These methods are particularly well-suited for tackling large-scale non-smooth problems,
since they utilize only function values and require minimal memory. Furthermore, the
stability of the search directions is independent of the type of line search employed. It
has been demonstrated that the sequence {xk}k≥0 generated by these methods globally
converges to the solution of (1), provided that the underlying mapping F is monotone

7

and L-Lipschitz continuous [18]. In Section 5, we present and evaluate several derivative-
free directions that are based on the well-known CG directions and compare them with
our proposed method.

3. Modified derivative-free algorithm

As mentioned in the introduction, several iterative inertial methods have been proposed
in [29–31] for obtaining an ε-approximate solution of nonlinear monotone equations
(1) in Euclidean space. The authors established that the sequences generated by their
methods converge globally to the solution of the problem under mild conditions. Their
primary contribution is in achieving an ε-approximate solution to (1) at a faster rate.

As discussed in Section 2, the concepts of MP and LP points were defined. Since BLSA
cannot guarantee that the two points used to construct the inertial method are the
previous MP points, the traditional inertial point has a low probability of being an MP
point. To address this issue, the inertial point must ideally be constructed based on the
previous MP points, or at the very least, a point in close proximity to the previous MP
points. Hence, SILSA reduces the oscillation intensity of the residual norm by moving
from regions containing LP points to regions containing MP points.

3.1. Novel subspace inertial method

In this section, we present a novel subspace inertial method that chooses the ingredients
of the subspace from the previous MP points, thereby accelerating convergence to an ε-
approximate solution of (1).

Let {xk}k≥0 be the sequence generated by our method. At the kth iteration of SILSA,
we save the points generated by SILSA as the columns of the matrix Xn×m and their
residual norms as the components of the vector

NFk
1×m :=

(
∥F (Xk

:1)∥, . . . , ∥F (Xk
:m)∥

)
Here the jth column of Xk is denoted by Xk

:j and m is the subspace dimension. We now
introduce our novel subspace inertial point

wk := xk + ek

m−1∑
j=1

λj(Xk
:j+1 − Xk

:j), (16)

where the extrapolation step size

ek := min

emax, k−2
∥∥∥ m−1∑

j=1
λj(Xk

:j+1 − Xk
:j)

∥∥∥−2
 (17)

8

is computed, so that the condition

∞∑
k=1

∥∥∥ m−1∑
j=1

λj(Xk
:j+1 − Xk

:j)
∥∥∥ < ∞ (18)

is satisfied. Here 0 < emax ≤ 1 is the maximum value for ek and 0 < λj < 1 for
j = 1, · · · , m − 1 are called subspace step sizes, satisfying

m−1∑
j=1

λj = 1. (19)

These subspace step sizes will be chosen in Section 5 such that (19) holds. The condition
(18) results in αk∥dk∥ → 0 (see Lemma 4.1, below), where αk satisfies the line search
condition (3). This result guarantees the global convergence for SILSA (see Theorem
4.3, below).

To update the matrix Xk and the vector NFk at the kth iteration of SILSA, we replace
the LP point with a new MP point (if any). Therefore, we use the new subspace inertial
point (16), which involves a weighted average of the m previous MP points. This increases
the chance of discovering an MP point by SILSA, i.e., xb with b = argmin

i=1:m
(NFk

i).

It should be noted that when m = 2, the traditional inertial point (6) differs from our
subspace inertial point (16), because (16) replaces the LP point among the previous MP
points with a new point. This means that (16) is not restricted to using only the two
previous points xk−1 and xk, while the traditional inertial point (6) is limited to exactly
these two points. If these two points are LP points, then BLSA using (6) cannot move
quickly from regions with LP points to regions with MP points, while SILSA using (16)
has a good chance of having more MP points in the subspace inertial, since the subspace
inertial is updated by removing LP points as described above.

3.2. Novel derivative-free direction

Motivated by the CG method given in [32], we introduce the spectral derivative-free
direction

dk :=
{

−θ0F (wk) if k = 0,
−θkF (wk) + βDF LS

k dk−1 if k ≥ 1, (20)

with the scalar parameter

βDF LS
k := − F (wk)T yk−1

F (wk−1)T dk−1
(21)

9

and the spectral parameter

θk :=


c if k = 0,

c + βDF LS
k

F (wk)T dk−1

∥F (wk)∥2 if k ≥ 1, (22)

where 0 < c < 1 is given and wk comes from (16).

Lemma 3.1. The search direction dk computed by (20) for k ≥ 0 satisfies the descent
condition (4).

Proof. For the tuning parameter 0 < c < 1, dT
0 F (w0) = −c∥F (w0)∥2 and

dT
k F (wk) =

(
− θkF (wk) + βDF LS

k dk−1
)T

F (wk)

= −
(
c + βDF LS

k

F (wk)T dk−1

∥F (wk)∥2

)
∥F (wk)∥2 + βDF LS

k F (wk)T dk−1

= −c∥F (wk)∥2 for k ≥ 1;

hence dk satisfies (4) for all k ≥ 0.

3.3. Subspace inertial line search with SILSA

In this subsection, we introduce a detailed description of our subspace inertial derivative-
free algorithm, which we call SILSA. This algorithm is designed to find an ε-approximate
solution of (1) and is an improved version of BLSA that incorporates the subspace inertial
method for faster convergence. In practice, the new subspace inertial method generates
points that are, at worst, close to the previous MP points. Specifically, the new method
replaces one of the previous MP points with the greatest residual norm. This substitution
causes SILSA to move from regions with LP points to regions with MP points, and in
practice quickly finds an approximate solution of (1).

10

Algorithm 1 SILSA, subspace inertial line search algorithm for (1)
1: Given above tuning parameters.

S0 (initialization)
2: choose x0 ∈ Rn and λj ∈ (0, 1) for j = 1, · · · , m − 1;
3: Set w0 = x0, d0 = −F (w0), F (w0) = F (x0), NF0

:0 = ∥F (x0)∥, X0
:0 = x0, e0 = emax,

and δ0 = δmax;
4: for k = 0, 1, 2, · · · do ▷ start of the main loop

S1 (performing the line search along dk)
5: run [zk, F (zk)] = lineSearch(δk, dk, σ, r, wk);
6: if ∥F (zk)∥ < ε then, set xk = zk; return; ▷ the stopping test
7: else

S2 (checking reduction in the residual norm)
8: run [δk+1, ek+1] = checkDec(γ, δmax, emax, ωd, δk, ek, F (wk), F (zk));

S3 (projecting wk into Hyperplane H := {w ∈ Rn | F (zk)T (w − zk) = 0})
9: run [xk+1, F (xk+1)] = projectPoint(zk, F (zk), wk);

10: if ∥F (xk+1)∥ < ε, then, return; end if ▷ the stopping test
S4 (update the subspace information)

11: run [Xk+1, NFk+1] = updateSubspace(k, m, Xk, NFk, xk+1, F (xk+1));
S5 (update the (k + 1)th subspace inertial point)

12: compute wk+1 by (16);
13: if ∥F (wk+1)∥ < ε, then, set xk+1 = wk+1; return end if ▷ the stopping test
14: if δk+1 ≤ δmin, then return; end if ▷ the stopping test
15: set yk = F (wk+1) − F (wk);

S6 (computing the (k + 1)th search direction)
16: run dk+1 = searchDir(c, wk, wk+1, yk, dk);
17: end if
18: end for ▷ end of the main loop

11

The SILSA algorithm incorporates several tuning parameters: σ > 0 and 0 < γ < 1
(the line search parameters), 0 ≤ δmin < 1 (the minimum threshold for δk), 0 < δmin <
δmax ≤ 1 (the initial value for δk), ωd > 1 (the parameter for updating δk), 0 < c < 1
(the parameter for computing dk), m ≥ 2 (the subspace dimension), r ∈ (0, 1) (the
parameter for reducing αk), and 0 ≤ emax < 1 (the maximum value for ek).

We now describe how SILSA algorithm works:

(S0) (Initialization) First, we choose an initial point x0 ∈ Rn. Next, we select
the inertial weights 0 < λj < 1, for j = 1, · · · , m − 1 such that the condition∑m−1

j=1 λj = 1 is satisfied. We then choose the initial inertial point w0 = x0,
and set the search direction to the negative residual vector at x0. The initial
parameter e0 for adjusting the inertial point is set to the tuning parameter
0 < emax ≤ 1, while the initial step size 0 < δ0 < ∞ is set to the tuning
parameter 0 < δmax ≤ 1.

(S1) (Line search algorithm) At the kthe iteration, SILSA performs lineSearch
(line 5) along the derivative-free direction dk (dk is computed by searchDir in
line 16 for k ≥ 1). Initially, lineSearch sets j = 0 and takes the initial step size

αk,0 := δk. (23)

The other step sizes are then reduced by a given factor 0 < r < 1 according to

αk,j+1 := rαk,j for j ≥ 0, (24)

and j is increased until the line search condition

−F (wk + αk,jdk)T dk ≥ σαk,j∥F (wk + αk,jdk)∥∥dk∥2 (25)

is satisfied. Once this condition holds, we set αk := αk,j and compute the accepted
point

zk := wk + αkdk (26)

and its residual vector F (zk). If ∥F (zk)∥ is below a given threshold ε > 0, zk is
chosen as an approximate solution of (1), and SILSA terminates.

(S2) (Checking reduction of the residual norm) If ∥F (zk)∥ > ε, then checkDec
(line 8) checks whether or not the decrease condition

f(zk) < f(wk) − γδk (27)

holds, where f(zk) := 1
2∥F (zk)∥2 and f(wk) := 1

2∥F (wk)∥2. Accordingly, using the
tuning parameter ωd > 1, it then either increases the step size δk of the decrease
condition (27), i.e.,

δk+1 := min(ωdδk, δmax) (28)

12

or decreases it, i.e.,

δk+1 := δk/ωd. (29)

Moreover, the extrapolation step size ek is computed by (17).

(S3) (Projection of wk into the hyperplane H := {w ∈ Rn | F (zk)T (w −zk) = 0})
The point wk is projected into H by projectPoint (line 9) and then the new
point

xk+1 := wk − µkF (zk) (30)

is computed with the step size µk := F (zk)T (wk − zk)
∥F (zk)∥2 , and its residual norm

∥F (xk+1)∥. If ∥F (xk+1)∥ is below a given threshold ε > 0, xk+1 is chosen as an
approximate solution of (1) and SILSA ends.

(S4) (Update of the subspace of the old points) If the norm of the residual vector
at the next point xk+1, denoted by ∥F (xk+1)∥, is greater than a given threshold
ε > 0 then updateSubspace updates the information of the subspace inertial
point, which includes the matrix Xk and the vector NFk (defined in Section 3.1)
in line 11. If the current iteration k + 1 ≥ m holds, then a new point is added to
the subspace. Specifically, we find the index iw of the previous MP point with the
largest residual norm and replace it with the new point xk+1, i.e.,

iw := argmax
i=1:m

{NFk+1
:i }, Xk+1

:iw
= xk+1, NFk+1

:iw
= ∥F (xk+1)∥.

On the other hand, if k + 1 < m, we set Xk+1
:k+1 = xk+1 and NFk+1

:k+1 = ∥F (xk+1)∥.
By adding more points with the lower residual norm to the subspace, this strategy
increases the chance of finding an ε-approximate solution of (1).

(S5) (Computation of a new inertial point) After calculating the new subspace
inertial point wk+1 by (16) and determining its residual norm, if the value of
∥F (wk+1)∥ is found to be less than a certain specified threshold ε > 0, then
wk+1 is considered as an approximate solution for (1), and SILSA terminates.
Alternatively, if δk is found to be less than a given threshold δmin > 0, then wk is
considered as an approximate solution for (1), and SILSA terminates.

(S6) (Computation of the search direction) If the value of ∥F (wk+1)∥ is greater
than ε, the difference between the residual at the inertial points wk+1 and wk,
denoted by yk := F (wk+1)−F (wk), is computed. Then the derivative-free direction
dk+1 is computed by (20), whose step sizes βDF LS

k and θk+1 have been computed
by (21) and (22), which depend on the values of yk, dk, wk, and wk+1.
The tuning parameters δmax, δmin, ωd, and r appear in the complexity bound on
the number of function evaluations, which is discussed in Section 4.3. It is worth
noting that, based on the update rules for δk in (28) and (29), δk is always less
than or equal to δmax for all values of k.

13

4. Convergence analysis and complexity

In this section, we first present several auxiliary results, that are necessary to establish
global convergence and the complexity bounds, and then the main theoretical results.

4.1. Some auxiliary results

The following results have a key role in proving global convergence.

Lemma 4.1. Let {wk}k≥0 and {xk}k≥0 be the two sequences generated by SILSA,
assume that the assumptions (A1)–(A3) hold, and define ∆k := max

j=1:m−1
|Xk

:j+1 − Xk
:j |.

Then:

(i) The inequality

∥xk+1 − x∗∥2 ≤ ∥wk − x∗∥2 − σ2∥wk − zk∥4 (31)

holds.

(ii) The sequence {xk}k≥0 is bounded,

∞∑
k=0

∥wk − zk∥4 < ∞

and so

lim
k→∞

∥wk − zk∥ = lim
k→∞

αk∥dk∥ = 0. (32)

(iii) ∆k is finite and

m−1∑
j=1

λj∥Xk
:j+1 − Xk

:j∥ ≤ (m − 1)∆k < ∞. (33)

(iv) There exists a positive constant Γw such that

∥F (wk)∥ ≤ Γw, ∀k ≥ 0. (34)

(v) If the direction dk is bounded, i.e., ∥dk∥ ≤ Γd for a positive constant Γd, then there
exists a positive constant Γz such that

∥F (zk)∥ ≤ Γz, ∀k ≥ 0. (35)

Here, zk is from (26).

14

(vi) If F (wk) ̸= 0 for any k, then ∥dk∥ ≥ c∥F (wk)∥ and dk ̸= 0.

Proof. Let x∗ be the solution of equation (1) and x∗ ∈ X∗ ⊂ Rn be the set of feasible
solutions.

(i-ii) The proof can be done like the proof of [29, Lemma 4.5], but with the difference
that the extrapolation step size (17) and the condition (18) are used instead of
the traditional extrapolation step size (6) and the condition (7), respectively.

(iii) There exist two positive integers k > k′ such that

∆k = max
j=1:m−1

∥Xk
:j+1 − Xk

:j∥ = ∥xk − xk′∥ ≤ ∥xk∥ + ∥xk′∥ < ∞

due to (ii). Then, the condition (33) holds, because 0 < m < ∞ and
∑m−1

j=1 λj = 1.
(iv) From (ii), since {xk}k≥0 is bounded, there exists a positive constant Γ0 such that

∥xk∥ ≤ Γ0 for all k ≥ 0. From (17) and since 0 < emax ≤ 1, we obtain ek ≤ emax ≤
1 for all k. Hence, by (16) and (33), the sequence {wk}k≥0 is bounded above, i.e.,

∥wk∥ =
∥∥∥xk + ek

m−1∑
j=1

λj(X:j+1 − X:j)
∥∥∥

≤ ∥xk∥ + ek

m−1∑
j=1

λj∥X:j+1 − X:j∥

≤ Γ0 + 2Γ0(m − 1) = (2m − 1)Γ0;

hence F is continuous from (A1) and therefore (34) is valid.

(v) From (23), (28), and since 0 < δmax ≤ 1, we obtain αk ≤ δmax ≤ 1 for all k. Hence,
(26) and (iv) result in

∥zk∥ = ∥wk + αkdk∥ ≤ ∥wk∥ + ∥dk∥ ≤ (2m − 1)Γ0 + Γd.

Therefore the continuity of F implies that (35) is valid.

(vi) From (4) and the fact that F (wk) ̸= 0 for all k, we have

−∥dk∥ ≤ F (wk)T dk

∥F (wk)∥ ≤ −c∥F (wk)∥ < 0,

resulting in dk ̸= 0.

In the following result, under the assumption that the residual norms are bounded
below, upper and lower bounds for search directions and step sizes are restricted.

15

Proposition 4.2. Let {xk}k≥0 and {wk}k≥0 be the two sequences generated by SILSA
and assume that the assumptions (A1)–(A3) hold. If there is a positive constant Γw

such that ∥F (wk)∥ ≥ Γw for all k, then the following two statements are valid:

(i) The search directions dk are bounded above, i.e.,

0 < ∥dk∥ ≤ Γd := cΓw + 4Γ2
w

cΓ2
wσ

∀k, (36)

where σ is from the line search condition (25), Γw is from (34), and c is from (4).

(ii) If the line search condition (25) cannot be satisfied, then line search step sizes αk

are bounded, i.e.,

α := rcΓ2
w

(L + σΓz)Γ2
d

≤ αk ≤ δmax ≤ 1. (37)

where r is from the line search condition (25), L is from (A2), and δmax is a
tuning parameter.

Proof. By the Cauchy-Schwartz inequality and (25), we have

∥F (zk)∥∥wk − zk∥ ≥ F (zk)T (wk − zk) ≥ σα2
k,j∥F (zk)∥∥dk∥2 = σ∥F (zk)∥∥wk − zk∥2.

Thus, we obtain

σ∥wk − zk∥ ≤ 1, ∀k ≥ 0. (38)

It follows from Lemma 4.1(iv), (4), (20), (34), and (38) that,

|θk| =
∣∣∣∣∣c − (F (wk)T yk−1)(F (wk)T dk−1)

F (wk−1)T dk−1∥F (wk)∥2

∣∣∣∣∣
≤ c + ∥F (wk)∥∥yk−1∥∥F (wk)∥∥dk−1∥

|F (wk−1)T dk−1|∥F (wk)∥2

and |βDF LS
k | =

∣∣∣∣∣ F (wk)T yk−1

F (wk−1)T dk−1

∣∣∣∣∣ ≤ ∥F (wk)∥∥yk−1∥
|F (wk−1)T dk−1|

, resulting in

0 < ∥dk∥ =
∥∥∥∥ − θkF (wk) + βDF LS

k dk−1

∥∥∥∥ ≤ c∥F (wk)∥ + 2 ∥F (wk)∥∥yk−1∥
|F (wk−1)T dk−1|

∥dk−1∥

≤ c∥F (wk)∥ + 4 Γ2
w

c∥F (wk−1)∥2 ∥wk−1 − zk−1∥ ≤ Γd = cΓw + 4Γ2
w

cΓ2
wσ

.

(ii) From Lemma 4.1(vi), dk ̸= 0. We show that lineSearch always terminates in a
finite number of steps. From (23), we have αk,0 = δk. Then according to the role of

16

updating αk,j in (24) we have αk,j = r−jδk. If the condition (25) with αk,j = r−jδk does
not hold, i.e.,

−F (wk + r−jδkdk)T dk < σr−jδk∥F (wk + r−jδkdk)∥∥dk∥2, (39)

as j goes to infinity, we have −F (wk)T dk < 0, which contradicts (4), since δk ≤ δmax,
∥dk∥ ≤ Γd (from (i)), and ∥F (wk + r−jδkdk)∥ = ∥F (wk)∥ ≤ Γz. Hence lineSearch
terminates finitely; there is a positive integer j′ such that

αk = αk,j′ = r−j′
δk,

satisfying (25). As long as (39) holds, applying (22) into (4) and using (A2), we have

c∥F (wk)∥2 = −F (wk)T dk

= (F (wk + r−(j′−1)δk, dk)T dk − F (wk)T dk) − F (wk + r−(j′−1)δkdk)T dk

≤ Lr−(j′−1)δk∥dk∥2 + σr−(j′−1)δk∥F (wk + r−(j′−1)δkdk)∥∥dk∥2,

leading to

δmax ≥ αk = r−j′
δk ≥ rc∥F (wk)∥2

(L + σ∥F (wk + r−(j′−1)δkdk)∥)∥dk∥2 ≥ α = rcΓ2
w

(L + σΓz)Γ2
d

from Lemma 1(iv).

4.2. Convergence analysis

The following result is the main global convergence of SILSA. The variants of this result
can be found in [29–31], but with the different inertial point.

Theorem 4.3. Suppose that (A1)–(A3) hold and {wk}k≥0, {zk}k≥0, {xk}k≥0 are the
three sequences generated by SILSA. Let δmin = 0. Then, at least one of

lim
k→∞

∥F (zk)∥ = 0, lim
k→∞

∥F (wk)∥ = 0, lim
k→∞

∥F (xk)∥ = 0 (40)

holds. Moreover, the sequences {xk}k≥0 and {wk}k≥0 converge to a solution of (1).

Proof. If ∥F (wk)∥ = 0, then SILSA terminates and accepts wk as a solution of (1)
(see line 13 of SILSA). Otherwise, SILSA performs and therefore there is a positive
constant Γw such that ∥F (wk)∥ > Γw, for all k, holds. Hence Proposition 4.2(i) results
in that there is a positive constant Γd such that 0 < ∥dk∥ ≤ Γd for all k (dk ̸= 0
from Lemma 4.1(vi)). Moreover, if ∥F (wk + r−j′

δkdk)∥ = 0, then SILSA terminates and
accepts zk = wk + r−j′

δkdk as a solution of (1) (here j′ is a positive integer value such
that αk = αk,j′ = r−j′

δk satisfying (25)). Otherwise, from Lemma 4.1(iv), there is a

17

positive constant Γz such that

0 < ∥F (zk)∥ ≤ Γz with zk = wk + r−j′
δkdk.

As such, the assumptions of Proposition 4.2(ii) are verified and this proposition results
in that there is a positive constant α such that αk ≥ α for all k. Hence, from Lemma
4.1(vi), we obtain αk∥dk∥ > αc∥F (wk)∥ > αcΓw > 0 for all k, which contradicts (32).
Therefore, ∥F (wk)∥ = 0 is obtained. From (32), lim

k→∞
∥xk − wk∥ = 0 and the continuity

of F results in

lim
k→∞

∥F (xk)∥ − lim
k→∞

∥F (wk)∥ ≤ lim
k→∞

∥F (xk) − F (wk)∥ ≤ L lim
k→∞

∥xk − wk∥ = 0,

which consequently implies

lim
k→∞

∥F (xk)∥ = 0. (41)

From the continuity of F , the boundedness of {xk}k≥0 and (41), it implies that the
sequence {xk}k≥0, generated by SILSA, has an accumulation point x∗ such that F (x∗) =
0. On the other hand, the sequence {xk − x∗}k≥0 is convergent by Lemma 4.1, which
means that the sequence {xk}k≥0 globally converges to the solution x∗ of (1).

4.3. Complexity results

This section concerns an investigation of the complexity of SILSA. Firstly, we establish
an upper limit on the number of function evaluations required by lineSearch. Following
that, we determine an upper bound on the number of iterations needed for SILSA to
converge, with or without a reduction in residual norms. Consequently, we derive an
upper threshold for the total number of function evaluations necessary to successfully
find an approximate solution of (1) by SILSA.

Proposition 4.4. Let {xk}k≥0 be the sequence generated by SILSA and assumes that
(A1)–(A3) hold. Assuming that the initial step size is bounded by 0 < δmax ≤ 1 and that
the parameter 0 < r < 1 is utilized to decrease the step size in lineSearch, the number
nf of function evaluations used by lineSearch (line 5 of SILSA) can be constrained by

⌈
logr−1

δmax

α

⌉
,

where α is a positive constant derived from Proposition 4.2(ii).

Proof. From Proposition 4.2(ii), we have αk,nf ≥ α for all k. By (23) and (24), we
have

rnf δmax ≥ αk,nf = rnf δk ≥ α,

18

leading to

nf ≤
⌈
logr−1

δmax

α

⌉

since r ∈ (0, 1).

By means of (27), we define the index set Ik as the set of all iterations k such that
f(zk) < f(wk) − γδk. This set encompasses iterations exhibiting at most γδk reductions
in the residual norms, while the index set Ic

k is the complement of Ik.

Theorem 4.5. Let {wk}k≥0, {zk}k≥0, {xk}k≥0 be the sequences generated by SILSA,
let xε be an ε-approximate solution of (1) found by SILSA, and assume that (A1)–
(A3) hold. Moreover, the tuning parameters 0 < γ < 1 (parameter for line search),
0 < δmin < δmax ≤ 1 (initial and minimal threshold for the step size δk), 0 < r < 1
(parameter for reducing step size by lineSearch), 1 ≤ ωd < ∞ (parameter for updating
the step size δk) are given. Then the following statements are valid:

(i) The number of iterations of SILSA with reductions in the residual norms is bounded
by

|Ik| ≤ f(x0) − f(xε)
γδmin

. (42)

(ii) The number of iterations of SILSA without reductions in the residual norms is
bounded by

|Ic
k| ≤ logωd

δmax

δmin
. (43)

(iii) The number of iterations of SILSA is bounded by

N = |Ik| + |Ic
k| ≤ f(x0) − f(xε)

γδmin
+ logωd

δmax

δmin
= O(δ−1

min).

(iv) The number of function evaluations of SILSA is bounded by

nftotal ≤ N

⌈
logr−1

δmax

α

⌉
.

(v) If there is a positive constant M0 such that

∥g(wk)∥ ≤ M0∥F (wk)∥ (44)

for all k and SILSA has no iteration with a reduction in the residual norm, SILSA
finds at least a point wk with at most O(ε−2) function evaluations satisfying
∥F (wk)∥ = O(ε). Here g(wk) = J(wk)T F (wk) comes from Section 2.

19

Proof. (i) The index set Ik is defined as {k | f(zk) < f(wk) − γδk}. By the definition
of Ik, we have:

f(x0) − f(xε) ≥
∑
j∈Ik

(f(wj) − f(zj)) ≥ γ
∑
j∈Ik

δk ≥ γ
∑
j∈Ik

δmin = |Ik|γδmin,

which yields the result in (42).
(ii) The set Ic

k is defined as {1, 2, · · · , k} \ Ik. Updating δk = δk−1/ωd guarantees that
δmin ≤ δk ≤ δmax, which leads to the derivation of (43).

(iii) Combining the results from (i) and (ii) yields the desired outcome.
(iv) The result is obtained from (iii) and Proposition 4.4.
(v) Consider any j ∈ N ∪ {0} with j < ∞. During the execution of lineSearch, the

trial points wk + αk,jdk are generated, the last of which satisfies the line search
condition (25) and is accepted as zk. However, the condition (27) along ±dk may
not be satisfied. In the worst case, we assume that (27) is not satisfied. Then, by
applying Proposition 2.1(iii), we have:

|g(wk)T (αkdk)| ≤ γδk + L

2 ∥αkdk∥2.

We now consider the following two cases:
Case 1: If ∥F (wk)∥ ≤ ε :=

√
δmin, then xk = wk is a solution of (1). Hence

SILSA finds a point xk whose residual norm is less than ε with at most
O(ε−2) function evaluations.

Case 2: Assuming that ∥F (wk)∥ > ε for all k, we can apply Proposition 4.2(i)
to obtain the condition (36), which ensures that ∥dk∥ ≤ Γd for all k. Addi-
tionally, Lemma 4.1(iv) and Proposition 4.2(ii) guarantee that the condition
(37) holds, i.e., αk ≥ α for all k. Consequently, after a finite number of
iterations, SILSA terminates due to the role of updating δk in (29), which
implies the existence of a positive integer k0 such that αk ≤ δk ≤ δmin for
k ≥ k0. Considering the worst-case scenario where there is no reduction of
the residual norm at zk for all k (i.e., Ik is empty), we can use Proposition
2.1, (36), (37), and (44) to obtain

M0|F (wk)T (αkdk)| ≤ |g(wk)T (αkdk)| ≤ γδk + L

2 ∥αkdk∥2 ≤ γδmin + L

2 α2
kΓ2

d

for all k ≥ k0, i.e.,

c∥F (wk)∥2 = |F (wk)T dk| ≤ γδmin

M0αk
+ L

2M0
Γ2

dαk ≤
(γ

M0α
+ LΓ2

d

2M0

)
δmin.

Combining the results of the two cases, we obtain ∥F (wk)∥ = O(ε) =
O(

√
δmin), which completes the proof.

As stated in the introduction, our complexity bound is of the same order as the bounds

20

obtained by Cartis et al. [50], Curtis et al. [51], Dodangeh and Vicente [52], Dodangeh
et al. [53], Kimiaei and Neumaier [47], and Vicente [54] for other optimization methods.

5. Numerical experiments

In this section, we present a comparative analysis of our algorithm, SILSA, with 10 well-
known algorithms (discussed below) on a set of 18 test problems with the dimensions

n ∈ {10, 50, 300, 500, 1000, 5000}.

This results in a total of 108 test functions. The Matlab codes of these 18 problems are
available in the Section 7. To ensure that all test problems used are monotone in finite
precision arithmetic, we randomly generated 106 distinct points x and y and verified
that the condition

(x − y)T (F (x) − F (y))
|x − y|T (|F (x)| + |F (y)|) + 1 ≤ −0.1

was fulfilled.

We compare SILSA with the following algorithms:

(1) BLSA-DY, BLSA with the derivative-free direction using the CG direction of Dai and
Yuan [25].

(2) BLSA-HZ, BLSA with the derivative-free direction using the CG direction of Hager
and Zhang [27].

(3) BLSA-PR, BLSA with the derivative-free direction using the CG direction of Polak-
Ribere-Polyak (PRP) [36,37].

(4) BLSA-FR, BLSA with the derivative-free direction using the CG direction of Fletcher
and Reeves (FR) [26].

(5) BLSA-3PR, BLSA with the derivative-free direction using the CG direction of Zhang
et al. [38].

(6) BLSA-3A, BLSA with the derivative-free direction using the CG direction of Andrei
[22].

(7) BLSA-IM, BLSA with the derivative-free direction of Ivanov et al. [55].
(8) BLSA-AK, BLSA with the derivative-free direction of Abubakar and Kumam [56].
(9) BLSA-HD, BLSA with the derivative-free direction of Huang et al. [57].

(10) BLSA-SS, BLSA with the derivative-free direction of Sabi'u et al. [58].

In our comparison, the line search parameters for all algorithms were set to σ = 0.01
and r = 0.5. We performed a tuning process to choose these two values for the selected
test problems. The values of the other tuning parameters of the proposed algorithms
are default values. For SILSA, the default values of the tuning parameters are as follows:
δmax = 0.5 (the initial step size δk), δmin = 0 (the minimum threshold for the step
size δk), ωd = 2 (the parameter for updating the step size δk), c = 0.5 (the direction
parameter), emax = 10−4 (maximum value for ek), γ = 10−20 (the line search param-
eter), λ0

i = ln(µ + 1
2) − ln i (the initial values for weights), and m = 10 (the subspace

21

inertial dimension). Here µ = 4 + ⌊3 ln n⌋ was chosen and the normalized version λ0
i of

λi := λ0
i /

∑m−1
j=1 λ0

j for i = 1, 2, · · · , m − 1 was computed.

Following the data profile of Mor’e and Wild [59] and the performance profile of Dolan
and Mor’e [60],
• the data profile δs(κ) of the solver s for a positive value of κ measures the fraction of
problems that the solver s can solve with at most κ(n + 1) function evaluations, where
n is the dimension of problems,
• the performance profile ρs(τ) of the solver s for a positive value of τ measures the
relative efficiency of the solver s in solving the set of problems.

In particular, the fraction of problems that the solver s wins compared to the other
solvers is ρs(1) and the fraction of problems for sufficiently large τ (or κ) that the solver
s can solve is ρs(τ) (or δs(κ)). The measure for efficiency considered in this paper is
the number nf of function evaluations. The efficiency with respect to nf is called nf
efficiency. All algorithms terminated when exactly one of the conditions ∥F (xε)∥ ≤ 10−5,
nf ≤ nfmax = 10000, and sec ≤ secmax = 360 sec was satisfied. Here sec denotes time
in seconds.

To evaluate their robustness and efficiency, we plot the data and performance profiles
of all algorithms. From Figure 1, we conclude that SILSA is competitive with the other
algorithms. Of the 112 test functions, SILSA is able to solve 95% of them, while also
having the lowest number of function evaluations on 45% of these problems.

10
-2

10
0

10
2

: Cost ratio

0

0.2

0.4

0.6

0.8

1

(
):

 D
a

ta
 p

ro
fi
le

s

nfmax=10000, secmax=360, =1e-05

BLSA_AK

BLSA_FR

BLSA_DY

BLSA_PR

BLSA_HZ

BLSA_3A

BLSA_3PR

BLSA_SS

BLSA_HD

BLSA_IM

10
0

10
1

10
2

10
3

: Performance ratio

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

nfmax=10000, secmax=360, =1e-05

BLSA_AK

BLSA_FR

BLSA_DY

BLSA_PR

BLSA_HZ

BLSA_3A

BLSA_3PR

BLSA_SS

BLSA_HD

BLSA_IM

Figure 1.: Results for problems with n ∈ {10, 50, 300, 500, 1000, 5000}, the maximum
number of function reevaluations (nfmax = 10000), the maximum time in seconds
(secmax = 360 sec), and ε = 10−5: Data profiles δ(κ) (left) in dependence of a bound κ
on the cost ratio, performance profiles ρ(τ) (right) in dependence of a bound τ on the
performance ratio, in terms of nf. Problems solved by no solver are ignored.

22

6. Conclusion

The paper discusses an improved derivative-free line search method for nonlinear mono-
tone equations. Our line search is a combination of the basic line search algorithm pro-
posed by Solodov and Svaiter [18] and a novel subspace inertial point whose goal is
to speed up reaching an approximate solution of nonlinear monotone equations. The
subspace is generated based on a finite number of the previous MP points such that a
point with largest residual norm among the previous MP points is replaced by a new
evaluated point. The global convergence and worst case complexity results are proved.
Numerical results show that our improved line search method is competitive with the
state-of-the-art derivative-free methods.

7. Test problems in Matlab

The Matlab codes of all 18 test problems are as follows:
Problem 1
i=2:(n -1);
F(1) =2*x(1)+sin(x(1)) -1;
F(i)=-x(i -1) +2*(x(i))+sin(x(i)) -1;
F(n)=2*x(n)+sin(x(n)) -1;

Problem 2
i=1:(n);F(i)=2*x(i)-sin(abs(x(i)));

Problem 3
i=1:(n);F(i)=exp(x(i)) -1;

Problem 4
h=1/(n+1);i=2:(n -1);
F(1)=x(1) -exp(cos(h*(x(1)+x(2))));
F(i)=x(i)-exp(cos(h.*(x(i -1)+x(i)+x(i+1))));
F(n)=x(n)-exp(cos(h*(x(n -1)+x(n))));

Problem 5
i=2:(n -1);
F(1)=x(1) *(x(1) ˆ2+2*x(2) ˆ2) -1;
F(i)=x(i).*(x(i -1) .ˆ2+2*x(i).ˆ2+x(i+1) .ˆ2) -1;
F(n)=x(n).*(x(n -1) .ˆ2+x(n).ˆ2);

Problem 6
i=2:(n -1);
F(1) =2.5*x(1)+x(2) -1;
F(i)=x(i -1) +2.5*(x(i))+x(i+1) -1;
F(n)=x(n -1) +2.5*(x(n)) -1;

23

Problem 7
i=2:(n);F(1)=exp(x(1)) -1;F(i)=exp(x(i))+x(i) -1;

Problem 8
i=1:n;F(i)=min(min ((x(i)),x(i).ˆ2) ,max ((x(i)),x(i).ˆ3));

Problem 9
i=1:(n);F(i)=(i/n)*exp(x(i)) -1;

Problem 10
i=1:(n);F(i)=x(i)-sin(abs(x(i) -1));

Problem 11
i=1:(n -1);F(i)= -4+4*x(i).*((x(i).ˆ2)+x(n).ˆ2);
F(n)=4*x(n).* sum(x(i).ˆ2+x(n).ˆ2);

Problem 12
i=1:(n);F(i)=(exp(x(i))).ˆ2+3* sin(x(i)).* cos(x(i)) -1;

Problem 13
i=1:(n);F(i)=((8) ˆ0.5)*x(i) -1;

Problem 14
F(1)=x(1);for i=2:n,F(i)=cos(x(i -1))+x(i) -1;end

Problem 15
h=1/(n+1);F(1) =2*x(1)+h*2*(x(1)+sin (x(1)))-x(2);
for i=2:n-1,

F(i)=2*x(i)+h*2*(x(i)+sin(x(i)))-x(i -1) -x(i+1);
end
F(n)=2*x(n)+h*2*(x(n)+sin(x(n)))-x(n -1);

Problem 16
mu=1e -5;m=n/2;s=x(1:m);y=x(m+1:n);i=1:m;
f(i)=min(min ((y(i)),y(i).ˆ2) ,max ((y(i)),y(i).ˆ3));f=f(:);
F(1:m)=s-f;F(m+1:n)=y+s-sqrt ((y-s).ˆ2+4* mu);

Problem 17
mu=1e -5;m=n/2;s=x(1:m);y=x(m+1:n);i=1:m;
f(i)=2*y(i)-sin(abs(y(i)));
f=f(:);F(1:m)=s-f; F(m+1:n)=y+s-sqrt ((y-s).ˆ2+4* mu);

Problem 18
mu=1e -5;m=n/2;s=x(1:m);y=x(m+1:n);f(1)=y(1);
for i=2:m,f(i)=cos(y(i -1))+y(i) -1;end
f=f(:);F(1:m)=s-f;F(m+1:n)=y+s-sqrt ((y-s).ˆ2+4

The problems 1-4, 6-8, 10, 13 are from [46], the problem 5 is from [14], the problems 9,
14, 15 are from [61], the problems 12 is from [62], and the problems 16-18 are from the

24

present paper. To obtain the problems 16-18, the nonlinear complementarity problem
(x, s) ≥ 0, s = F (x), xT s = 0 is converted to the nonsmooth equations

(
s − F (x)
min{x, s}

)
= 0, (45)

where F is a monotone operator. Following [63], by defining

ϕ(µ, a, b) := a + b −
√

(a − b)2 + 4µ for all (µ, a, b) ∈ R3,

the problem (45) is transformed into


s − F (x)

ϕ(µ, x1, s1)
ϕ(µ, x2, s2)

ϕ(µ, xn, sn)

 = 0.

For all test problems, the initial points were chosen to be xi = i/(i + 2) for i = 1, . . . , n.

Disclosure statement

Nopotential conflict of interest was reported by the author(s)

Funding

The first author acknowledges financial support of the Austrian Science Foundation
under Project No. P 34317. The second author is grateful to King Fahd University
of Petroleum and Minerals for providing excellent research facilities. The third author
is supported by an FWO junior postdoctoral fellowship [12AK924N]. In addition she
received funding from the Flemish Government (AI Research Program). Susan Ghaderi
is affiliated with Leuven.AI - KU Leuven Institute for AI, B-3000, Leuven, Belgium.

References

[1] Chorowski J, Zurada JM. Learning understandable neural networks with nonnegative
weight constraints. IEEE Trans Neural Netw Learn Syst. 2015;26(1):62–69.

[2] Blumensath T. Compressed sensing with nonlinear observations and related nonlinear
optimization problems. IEEE Trans. Inf. Theory. 2013;59:3466–3474.

[3] Candes EJ, Li X, Soltanolkotabi M. Phase retrieval via wirtinger flow: Theory and al-
gorithms. IEEE Trans. Inf. Theory. 2015 Apr;61(4):1985–2007. Available from: https:
//doi.org/10.1109/tit.2015.2399924.

[4] Dirkse SP, Ferris MC. Mcplib: a collection of nonlinear mixed complementarity problems.
Optim Methods Softw. 1995 Jan;5(4):319–345. Available from: https://doi.org/10.
1080/10556789508805619.

[5] Ahookhosh M, Amini K, Bahrami S. Two derivative-free projection approaches for systems
of large-scale nonlinear monotone equations. Numer Algorithms. 2012 Oct;64(1):21–42.
Available from: https://doi.org/10.1007/s11075-012-9653-z.

25

[6] Ahookhosh M, Artacho FJA, Fleming RMT, et al. Local convergence of the Leven-
berg–Marquardt method under hölder metric subregularity. Adv Comput Math. 2019 Jun;
45(5-6):2771–2806. Available from: https://doi.org/10.1007/s10444-019-09708-7.

[7] Ahookhosh M, Fleming RMT, Vuong PT. Finding zeros of hölder metrically subregu-
lar mappings via globally convergent Levenberg–Marquardt methods. Optim Methods
Softw. 2020 Jan;37(1):113–149. Available from: https://doi.org/10.1080/10556788.
2020.1712602.

[8] Amini K, Shiker MA, Kimiaei M. A line search trust-region algorithm with nonmonotone
adaptive radius for a system of nonlinear equations. 4OR. 2016;14(2):133–152.

[9] Brown PN, Saad Y. Convergence theory of nonlinear Newton–Krylov algorithms. SIAM
J Optim. 1994;4(2):297–330.

[10] Dennis JE, Moré JJ. A characterization of superlinear convergence and its application to
quasi-Newton methods. Math Comput. 1974;28(126):549–560.

[11] Esmaeili H, Kimiaei M. A trust-region method with improved adaptive radius for systems
of nonlinear equations. Math Methods Oper Res. 2016;83(1):109–125.

[12] Kimiaei M. Nonmonotone self-adaptive Levenberg–Marquardt approach for solving sys-
tems of nonlinear equations. Numer Funct Anal Optim. 2018;39(1):47–66.

[13] Kimiaei M, Esmaeili H. A trust-region approach with novel filter adaptive radius for
system of nonlinear equations. Numer Algorithms. 2016;73(4):999–1016.

[14] Li D, Fukushima M. A globally and superlinearly convergent Gauss–Newton-based bfgs
method for symmetric nonlinear equations. SIAM J Numer Anal. 1999;37(1):152–172.

[15] Yamashita N, Fukushima M. On the rate of convergence of the Levenberg-Marquardt
method. In: Topics in numerical analysis. Springer; 2001. p. 239–249.

[16] Yuan Y. Recent advances in numerical methods for nonlinear equations and nonlinear
least squares. NACO. 2011;1(1):15–34. Available from: https://doi.org/10.3934/naco.
2011.1.15.

[17] Zhou G, Toh KC. Superlinear convergence of a Newton-type algorithm for monotone
equations. J Optim Theory Appl. 2005;125(1):205–221.

[18] Solodov MV, Svaiter BF. A globally convergent inexact Newton method for systems of
monotone equations. In: Reformulation: Nonsmooth, piecewise smooth, semismooth and
smoothing methods. Springer; 1998. p. 355–369.

[19] Al-Baali M, Narushima Y, Yabe H. A family of three-term conjugate gradient
methods with sufficient descent property for unconstrained optimization. Comput
Optim Appl. 2014 May;60(1):89–110. Available from: https://doi.org/10.1007/
s10589-014-9662-z.

[20] Aminifard Z, Babaie-Kafaki S. A modified descent Polak–Ribiére–Polyak conjugate gra-
dient method with global convergence property for nonconvex functions. Calcolo. 2019;
56(2):1–11.

[21] Aminifard Z, Hosseini A, Babaie-Kafaki S. Modified conjugate gradient method for solving
sparse recovery problem with nonconvex penalty. Signal Process.. 2022;193:108424.

[22] Andrei N. A simple three-term conjugate gradient algorithm for unconstrained optimiza-
tion. Comput Appl Math. 2013;241:19–29.

[23] Andrei N. Nonlinear conjugate gradient methods for unconstrained optimization.
Springer International Publishing; 2020. Available from: https://doi.org/10.1007/
978-3-030-42950-8.

[24] Cheng W. A PRP type method for systems of monotone equations. MCM. 2009;50(1-
2):15–20.

[25] Dai YH, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence
property. SIAM J Optim. 1999;10(1):177–182.

[26] Fletcher R, Reeves CM. Function minimization by conjugate gradients. Comput j. 1964;
7(2):149–154.

[27] Hager WW, Zhang H. A new conjugate gradient method with guaranteed descent and an
efficient line search. SIAM J Optim. 2005;16(1):170–192.

[28] Hager WW, Zhang H. A survey of nonlinear conjugate gradient methods. Pacific J Optim.

26

2006;2(1):35–58.
[29] Ibrahim A, Kumam P, Abubakar AB, et al. A method with inertial extrapolation step

for convex constrained monotone equations. J Inequal Appl. 2021;2021(1):1–25.
[30] Ibrahim AH, Kumam P, Abubakar AB, et al. Accelerated derivative-free method for

nonlinear monotone equations with an application. Numer Linear Algebra Appl. 2021
Nov;29(3). Available from: https://doi.org/10.1002/nla.2424.

[31] Ibrahim AH, Kumam P, Sun M, et al. Projection method with inertial step for nonlinear
equations: Application to signal recovery. J Ind Manag. 2021;.

[32] Liu Y, Storey C. Efficient generalized conjugate gradient algorithms, part 1: theory. J
Optim Theory Appl. 1991;69(1):129–137.

[33] Liu Y, Zhu Z, Zhang B. Two sufficient descent three-term conjugate gradient methods for
unconstrained optimization problems with applications in compressive sensing. J Appl
Math Comput. 2021;:1–30.

[34] Lotfi M, Mohammad Hosseini S. An efficient hybrid conjugate gradient method with
sufficient descent property for unconstrained optimization. Optim Methods Softw. 2021;
:1–15.

[35] Papp Z, Rapajić S. FR type methods for systems of large-scale nonlinear monotone equa-
tions. Appl Math Comput. 2015;269:816–823.

[36] Polak E, Ribiere G. Note sur la convergence de méthodes de directions conjuguées.
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique
et Analyse Numérique. 1969;3(R1):35–43.

[37] Polyak BT. The conjugate gradient method in extremal problems. USSR comput math
math phys. 1969;9(4):94–112.

[38] Zhang L, Zhou W, Li DH. A descent modified Polak–Ribière–Polyak conjugate gradient
method and its global convergence. IMA J Numer. 2006;26(4):629–640.

[39] Alvarez F. Weak convergence of a relaxed and inertial hybrid projection-proximal point
algorithm for maximal monotone operators in hilbert space. SIAM J Optim. 2004 Jan;
14(3):773–782. Available from: https://doi.org/10.1137/s1052623403427859.

[40] Alvarez F, Attouch H. An inertial proximal method for maximal monotone operators via
discretization of a nonlinear oscillator with damping. Set-Valued Var Anal. 2001;9(1):3–
11.

[41] Attouch H, Peypouquet J, Redont P. A dynamical approach to an inertial forward-
backward algorithm for convex minimization. SIAM J Optim. 2014;24(1):232–256.

[42] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J Imaging Sci. 2009;2(1):183–202.

[43] Boţ RI, Grad SM. Inertial forward–backward methods for solving vector optimization
problems. Optimization. 2018 Feb;67(7):959–974. Available from: https://doi.org/10.
1080/02331934.2018.1440553.

[44] Boţ RI, Nguyen DK. A forward–backward penalty scheme with inertial effects for mono-
tone inclusions. applications to convex bilevel programming. Optimization. 2018 Dec;
68(10):1855–1880. Available from: https://doi.org/10.1080/02331934.2018.1556662.

[45] Boţ R, Sedlmayer M, Vuong PT. A relaxed inertial forward-backward-forward algorithm
for solving monotone inclusions with application to GANs. arXiv e-prints. 2020 Mar;
:arXiv:2003.07886.

[46] Ibrahim AH, Kimiaei M, Kumam P. A new black box method for monotone nonlin-
ear equations. Optimization. 2021 Nov;:1–19Available from: https://doi.org/10.1080/
02331934.2021.2002326.

[47] Kimiaei M, Neumaier A. Efficient global unconstrained black box optimization. Math
Program Comput. 2022 feb;Available from: https://link.springer.com/article/10.
1007%2Fs12532-021-00215-9.

[48] Dai YH, Liao LZ. New conjugacy conditions and related nonlinear conjugate gradient
methods. Appl Math Optim. 2001 Jan;43(1):87–101. Available from: https://doi.org/
10.1007/s002450010019.

[49] Li M. An Liu-Storey-type method for solving large-scale nonlinear monotone equations.

27

Numer Funct Anal Optim. 2014;35(3):310–322.
[50] Cartis C, Sampaio P, Toint P. Worst-case evaluation complexity of non-monotone

gradient-related algorithms for unconstrained optimization. Optimization. 2014 Jan;
64(5):1349–1361. Available from: https://doi.org/10.1080/02331934.2013.869809.

[51] Curtis FE, Lubberts Z, Robinson DP. Concise complexity analyses for trust region meth-
ods. Optim. Lett. 2018 Jun;12(8):1713–1724. Available from: https://doi.org/10.1007/
s11590-018-1286-2.

[52] Dodangeh M, Vicente LN. Worst case complexity of direct search under convexity.
Math Program. 2014 Nov;155(1-2):307–332. Available from: https://doi.org/10.1007/
s10107-014-0847-0.

[53] Dodangeh M, Vicente LN, Zhang Z. On the optimal order of worst case complexity of
direct search. Optim. Lett. 2015 Jun;10(4):699–708. Available from: https://doi.org/
10.1007/s11590-015-0908-1.

[54] Vicente L. Worst case complexity of direct search. EURO J Comput Optim. 2013 May;
1(1-2):143–153. Available from: https://doi.org/10.1007/s13675-012-0003-7.

[55] Ivanov B, Milovanović GV, Stanimirović PS. Accelerated dai-liao projection method
for solving systems of monotone nonlinear equations with application to image deblur-
ring. J Glob Optim. 2022 Jul;85(2):377–420. Available from: https://doi.org/10.1007/
s10898-022-01213-4.

[56] Abubakar AB, Kumam P. A descent Dai-Liao conjugate gradient method for nonlinear
equations. Numer Algorithms. 2018 May;81(1):197–210. Available from: https://doi.
org/10.1007/s11075-018-0541-z.

[57] Huang F, Deng S, Tang J. A derivative-free memoryless BFGS hyperplane projection
method for solving large-scale nonlinear monotone equations. Soft Comput. 2022 Oct;
27(7):3805–3815. Available from: https://doi.org/10.1007/s00500-022-07536-4.

[58] Sabi'u J, Shah A, Stanimirović PS, et al. Modified optimal Perry conjugate gradient
method for solving system of monotone equations with applications. Appl Numer Math.
2023 Feb;184:431–445. Available from: https://doi.org/10.1016/j.apnum.2022.10.
016.

[59] Moré JJ, Wild SM. Benchmarking derivative-free optimization algorithms. SIAM J Op-
tim. 2009 Jan;20(1):172–191. Available from: https://doi.org/10.1137/080724083.

[60] Dolan ED, Moré JJ. Benchmarking optimization software with performance profiles.
Math Program. 2002 Jan;91(2):201–213. Available from: https://doi.org/10.1007/
s101070100263.

[61] La Cruz W, Mart́ınez J, Raydan M. Spectral residual method without gradient in-
formation for solving large-scale nonlinear systems of equations. Math Comput. 2006;
75(255):1429–1448.

[62] Gao P, He C. An efficient three-term conjugate gradient method for nonlinear monotone
equations with convex constraints. Calcolo. 2018 Nov;55(4). Available from: https://
doi.org/10.1007/s10092-018-0291-2.

[63] Geiger C, Kanzow C. On the resolution of monotone complementarity problems. Com-
put Optim Appl. 1996 Mar;5(2):155–173. Available from: https://doi.org/10.1007/
bf00249054.

28

