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Abstract

In a previous paper [R. Andreani, G. Haeser, L. M. Mito, H. Ramı́rez, T. P. Silveira. First-
and second-order optimality conditions for second-order cone and semidefinite programming under
a constant rank condition. Mathematical Programming, 2023. DOI: 10.1007/s10107-023-01942-8]
we introduced a constant rank constraint qualification for nonlinear semidefinite and second-order
cone programming by considering all faces of the underlying cone. This condition is independent
of Robinson’s condition and it implies a strong second-order necessary optimality condition which
depends on a single Lagrange multiplier instead of the full set of Lagrange multipliers. In this paper we
expand on this result in several directions, namely, we consider the larger class of C2−cone reducible
constraints and we show that it is not necessary to consider all faces of the cone; instead a single
specific face should be considered (which turns out to be weaker than Robinson’s condition) in order
for the first order necessary optimality condition to hold. This gives rise to a notion of facial reduction
for nonlinear conic programming, that allows locally redefining the original problem only in terms
of this specific face instead of the whole cone, providing a more robust formulation of the problem
in which Robinson’s condition holds. We were also able to prove the strong second-order necessary
optimality condition in this context by considering only the subfaces of this particular face, which is
a new result even in nonlinear programming.

Keywords: Constraint qualifications, second-order necessary optimality conditions, cone reducibility,
facial reduction, conic programming.

1 Introduction

In this paper we are interested in the general nonlinear conic optimization problem with smooth data.
In most references on this problem, at least Robinson’s constraint qualification is usually assumed in
order to guarantee certain stability of the underlying problem. Under this condition, the set of Lagrange
multipliers at a local solution is non-empty and bounded and a second-order necessary optimality condi-
tion may also be formulated. On the other hand, for standard nonlinear programming problems where
the cone is the non-negative orthant, several other constraint qualifications are available with different
characteristics. Recently a geometric definition of a constant rank constraint qualification has been pro-
posed in [5], extending the well known nonlinear programming concept proposed by Janin in [21] to the
context of nonlinear second-order cone and semidefinite programming. In this paper we propose a much
more general approach for general reducible cones, where the proofs turn out to be significantly simplified
while considerably broadening the results.

A key concept in our analysis is cone-reducibility, which is able to treat every point of a cone as a
point on the vertex of a reduced cone. Then, the constant rank conditions formulated for second-order
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Universidad de Chile, Santiago, Chile. Email: hramirez@dim.uchile.cl

1



cone and semidefinite programming may be stated as the local constant dimension of a linearization of
the feasible set along the subspace orthogonal to each of the faces of the underlying cone, which turns
out to be the adequate definition for any general reducible cone. Besides showing that this condition is
able to ensure existence of Lagrange multipliers (which may now be an unbounded set), we also prove
a second-order necessary optimality condition that is stronger than the one fulfilled at local solutions
that satisfy Robinson’s condition. Namely, we show that under our constant rank condition (which is
independent of Robinson’s condition), the usual second-order term associated with a nonlinear conic
programming (that is, the Hessian of the Lagrangian minus the so-called “sigma term”, evaluated at any
direction of the critical cone) is non-negative and invariant to the choice of the Lagrange multiplier. This
shows that any Lagrange multiplier can be used to check the standard second-order necessary optimality
condition instead of considering the whole set of Lagrange multipliers to deal with different directions on
the critical cone, as it is the case when one assumes Robinson’s condition to hold.

Somewhat surprisingly, differently from what was done in [5], we where able to formulate two different
conditions, both weaker than the constant rank condition; one for the first-order results and a slightly
stronger one for the second-order results. Namely, instead of considering all faces of the cone in the
formulation of our constant rank assumption, we ask for the constant rank along one particular face F ,
which is the minimal face of the cone that contains the standard linearization cone. The condition for the
second-order result is obtained considering all subfaces of F . The first-order condition is a generalization
of what is known as constant rank of the subspace component (CRSC, [9]) in nonlinear programming
(strictly weaker than Robinson’s/Mangasarian-Fromovitz’s condition), while the second-order result is
new even in this context. Notice that it is well known that the strong second-order necessary optimality
condition does not hold under Robinson’s condition or CRSC (see the extended version of [11]); thus
our stronger version of CRSC (which is independent of Robinson’s condition) provides an adequate
new condition, even for nonlinear programming, which gurantees the validity of the strong second-order
necessary optimality condition.

Acknowledging that Robinson’s condition is a very desirable property of a conic programming prob-
lem to have, we provide a useful application of CRSC by showing that it allows a conic programming
problem to be locally equivalently rewritten by replacing the original cone by the minimal face F , where
the reformulated problem satisfies Robinson’s condition. This procedure is well known in the literature of
linear conic programming [15, 29, 10, 16, 34, 28, 33] but its extension to the nonlinear case has not been
previously considered. Unaware of the developments in the conic programming literature, in [9] it was
shown that for a nonlinear programming problem that satisfies CRSC, a particular index set of inequality
constraints are locally equivalent to equality constraints, while [23] shows that the reformulated problem
satisfies Robinson’s condition under a constant rank assumption. This can be viewed as a nonlinear
programming analogue of the facial reduction procedure known in linear conic programming. Our result
extends both approaches by providing a nonlinear facial reduction procedure in the general context of
nonlinear conic programming.

Summary of contributions:

• We consider the constant rank constraint qualification (CRCQ) defined in [21] for nonlinear pro-
gramming and in [5] for nonlinear second-order cone and semidefinite programming and we extend
its definition to the more general class of nonlinear C2−cone reducible constraints, showing the
existence of a Lagrange multiplier at local solutions;

• Under CRCQ a strong second-order necessary optimality condition is proved to hold; the difference
with the standard second-order condition (obtained under Robinson’s condition) is that it can be
checked with any Lagrange multiplier, obtaining thus a stronger second-order necessary optimality
condition, even though CRCQ is a condition independent of Robinson’s condition.

• An explanation of the previous result is presented by means of showing that CRCQ guarantees that
the standard second-order term evaluated at a given direction of the critical cone is independent of
the chosen Lagrange multiplier. This result was previously proved only for nonlinear programming
[17, 11]; however, even in this context, this result does not seem to be well-known.

• All previous results were in fact obtained for general reducible cones under two statements weaker
than CRCQ, which considerably simplifies the proofs. That is, by considering only a particular
face F of the underlying reduced cone (instead of all of them), we define the constant rank of the
subspace component (CRSC, [9]), which is weaker than Robinson’s condition but is enough for
proving most results presented in the paper. The exception corresponds to our second-order result,
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which requires a stronger variant of CRSC (strong-CRSC) formulated in terms of all subfaces of F .
The latter is new even in nonlinear programming.

• Finally, under CRSC, we show that a nonlinear conic programming problem can be recast by
considering in the constraint only the particular face F instead of the whole cone, which provides a
locally equivalent problem where Robinson’s condition is satisfied. This generalizes the identification
of inequality constraints that locally behave as equalities, known in nonlinear programming, while
also extending what is known as the facial reduction procedure in linear conic programming, showing
that these apparent non-related results are in fact two manifestations of the same phenomenon.

Notation:
For any positive integer n, we denote by Rn the set of n-dimensional vectors of real numbers equipped

with the usual inner product and corresponding norm ‖ · ‖. By Rn+ we denote the subset of Rn composed
of those vectors with non-negative entries. For G : F → E, where F and E are finite dimensional
vector spaces with inner product 〈·, ·〉, we denote by DG(x)[·] : F → E the derivative of G at x ∈ F and
DG(x)∗[·] its adjoint operator. The second-order derivative of G at x ∈ F evaluated at d ∈ F is denoted by
D2G(x)[d, d] ∈ E. Given a set C ⊆ E, the polar cone of C is denoted by Co .

= {z ∈ E : 〈z, x〉 ≤ 0,∀x ∈ C}.
The interior and relative interior of C are denoted respectively by int(C) and ri(C), while the subspace
generated by C is denoted by span(C) and its lineality space is denoted by lin(C). We denote by C⊥

the subspace orthogonal to span(C). The image and kernel of a linear operator A : F → E are denoted
respectively by ImA and KerA. The cardinality of a finite set S is denoted by |S|.

2 Constraint qualifications, reducibility and faces

Let E be a finite-dimensional linear space equipped with an inner product 〈·, ·〉, and let K ⊆ E be a
non-empty closed convex cone. The main object of our study in this paper is the following problem:

Minimize
x∈Rn

f(x),

subject to G(x) ∈ K,
(NCP)

where f : Rn → R and G : Rn → E are at least twice continuously differentiable functions. We will
denote the feasible set of (NCP) by Ω

.
= G−1(K). This general formulation covers important classes

of optimization problems such as nonlinear programming (NLP) with K = Rm+ ; nonlinear semidefinite
programming (NSDP) with K = Sm+

.
= {A ∈ Rm×m : v>Av ≥ 0 ∀v ∈ Rm}, and nonlinear second-order

cone programming (NSOCP) with K = ΠM
i=1Lmi and Lmi

.
= {v ∈ Rmi : v1 ≥ ‖(v2, ..., vmi)‖}. For

simplicity we do not consider equality constraints, however, equality constraints may be included in a
somewhat standard way similarly to the discussion conducted in [5].

To contextualize our contribution and introduce some notation, let us recall some general aspects
of (NCP). To start let x ∈ Ω and consider the set

TΩ(x)
.
= {d ∈ Rn : dist(x+ td,Ω) = o(t), ∀t > 0}

which is known as the (Bouligand) tangent cone to Ω at x. For nonlinear optimization problems, the set
TΩ(x) is not always directly computable, but it admits an outer approximation in terms of the tangent
cone to K at G(x), defined as follows:

LΩ(x)
.
= DG(x)−1(TK(G(x))) = {d ∈ Rn : DG(x)d ∈ TK(G(x))}.

This cone is often called the linearized tangent cone (or simply linearized/linearization cone) to Ω at x,
and as mentioned before, TΩ(x) ⊆ LΩ(x). Moreover, as it was shown by Guignard [19] and others, the
polar of LΩ(x) is given by the closure of the set

H(x)
.
= DG(x)∗[TK(G(x))o]

.
= {DG(x)∗[Y ] : Y ∈ TK(G(x))o} (1)

and hence if H(x) is closed, then LΩ(x)o = H(x) – see [19, Proposition 1] or alternatively [5, Lemma
2.1]. Characterizing the polar cone of LΩ(x) is of great importance in the study of optimality conditions
for (NCP) because one of the classical ways of doing so is by noticing that if x is a local minimizer
of (NCP), then −∇f(x) ∈ TΩ(x)o, and if, in addition, the equality TΩ(x)o = LΩ(x)o holds true and H(x)
is closed, then

−∇f(x) ∈ H(x). (2)
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Equation (2) is widely known in the literature as the Karush/Kuhn-Tucker (KKT) condition, and every
element of the set

Λ(x)
.
= {Y ∈ TK(G(x))o : −∇f(x) = DG(x)∗[Y ]}

is called a Lagrange multiplier associated with x. Furthermore, any condition (not depending on the
objective function f) that ensures that the KKT condition is necessary for local optimality of a given
x ∈ Ω is called a constraint qualification (CQ) for (NCP) at x. For instance, the condition we just
mentioned:

TΩ(x)o = LΩ(x)o and H(x) is closed

is known as Guignard’s CQ, and in fact, it is also the weakest possible CQ in the sense that it must be
implied by any other CQ (see Gould and Tolle [18]).

Stronger constraint qualifications may have additional potentially interesting properties; for instance,
the classical Robinson’s CQ [30] (at x):

0 ∈ int(ImDG(x)−K +G(x)) (3)

ensures that Λ(x) is a nonempty compact set [14, Theorem 3.9], which is a powerful tool for obtaining
results regarding convergence of algorithms and error bounds, whereas the transversality (or nondegen-
eracy) condition (at x):

ImDG(x) + lin(TK(G(x))) = E, (4)

originally presented for nonlinear semidefinite programming by Shapiro and Fan [32] and later generalized
to (NCP) by Shapiro [31], implies that Λ(x) is a singleton; for this reason, nondegeneracy is also widely
used as a standard CQ in the conic programming literature.

Recently, in Andreani et al. [5], it was introduced a constant rank-type CQ for nonlinear semidefinite
programming and nonlinear second-order cone programming that, as we interpret, stands upon two basic
geometric notions from the literature: cone reducibility and faces. The first contribution of this paper is
to extend this condition (along with all of its known properties) to a general context of (NCP) where the
notion of reducibility may still be applied, and then we will proceed to our main results. To do so, let
us first review these fundamental concepts, starting with cone reducibility, following the classical book of
Bonnans and Shapiro [14].

Roughly speaking, the notion of reducibility allows one to visualize any given point of K as the vertex
of a potentially “smaller” pointed cone C in a smooth way. In more accurate terms:

Definition 2.1 (Definition 3.135 of [14]). Let E and F be finite-dimensional linear spaces, and let K ⊆ E
and C ⊆ F be non-empty closed convex cones; moreover, assume that C is pointed. We say that K
is reducible to C at a point Y ∈ K if there exists a neighborhood N of Y and a twice continuously
differentiable reduction function Ξ: N → F (possibly depending on Y ) such that

1. Ξ(Y ) = 0;

2. DΞ(Y ) is surjective;

3. K ∩N = {Z ∈ N : Ξ(Z) ∈ C}.

For the particular case of NLP, where E = Rm, K = Rm+ , and G(x)
.
= (g1(x), . . . , gm(x)), an ex-

ample of reduction is to isolate active constraints – that is, the constraints indexed by A(x)
.
= {j ∈

{1, . . . ,m} : gj(x) = 0} – in a neighborhood of G(x), for a given feasible point x ∈ Ω. Indeed, in this

case we have C = R|A(x)|
+ and the reduction mapping is given by Ξ(y1, . . . , ym)

.
= (yi)i∈A(x). Then, in a

neighborhood of x, the original constraint G(x) ∈ Rm+ is equivalent to the reduced constraint

G(x) ∈ R|A(x)|
+ , where G(x)

.
= Ξ(G(x)) = (gi(x))i∈A(x). (5)

On the other hand, it is well-known that second-order and semidefinite cones are reducible at every
point (see [13] and [14, Example 3.140], respectively). Indeed, for the case of a second order cone Lm (for
some given m), a reduction mapping depending on the point y ∈ Lm may be defined as follows: when
y ∈ int(Lm), then we can trivially choose its reduction as identically zero and C = {0}; when y = 0
then its reduction is the identity function and C = Lm; while when y is in the non-zero boundary of
Lm, then Ξ(y)

.
= y1 − ‖(y2, . . . , ym)‖ and C = R+. For the case of positive semidefinite matrices, for a

given A ∈ Sm+ we can locally construct an analytic function E(·) such that the columns of E(A) are an
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orthornormal eigenbasis of Ker A and the columns of E(A) correspond to an orthornormal basis of the
eigenspace associated with the smallest m− r eigenvalues of A, being r

.
= rankA. Then, a reduction for

Sm+ at A is given by C .
= Sm−r+ and

Ξ(A)
.
= E(A)>AE(A). (6)

Hence, the context of general cone-constrained optimization problems is quite similar to the NLP
case: if K is reducible to C at G(x) by the reduction function Ξ, define G .

= Ξ ◦ G and the reduced
constraint G(x) ∈ C turns out to be equivalent to the original constraint G(x) ∈ K in a sufficiently small
neighborhood of x with G(x) = 0. By replacing F with the affine hull of C, we will assume that C has
nonempty interior in F. With this in mind, from this point onwards we will focus on the reduced problem

Minimize
x∈Rn

f(x),

subject to G(x) ∈ C
(Red-NCP)

around a given point x ∈ Ω which will be clear from the context. In order to translate results about (Red-NCP)
back to the original problem language, we will briefly recall some classical correspondences between (NCP)
and (Red-NCP) that can also be found, for instance, in Bonnans and Shapiro’s book [14, Section 3.4.4].

As a start, observe that
DΞ(G(x))[TK(G(x))] = TC(G(x)) = C

because G(x) = 0 and, therefore, TK(G(x))o = DΞ(G(x))∗[Co], as it is also stated in [14, Equation 3.267].
Then, we use the chain rule

DG(x)[ · ] = DΞ(G(x))[DG(x)[ · ]]

to conclude that
LΩ(x) =

⋂
µ∈TK(G(x))o

{d ∈ Rn : 〈DG(x)[d], µ〉 6 0}

=
⋂
η∈Co
{d ∈ Rn : 〈DG(x)[d], DΞ(G(x))∗[η]〉 6 0}

=
⋂
η∈Co
{d ∈ Rn : 〈DG(x)[d], η〉 6 0}

= {d ∈ Rn : DG(x)[d] ∈ C};

(7)

that is, the linearized cone of (NCP) coincides with the linearized cone of the reduced problem (Red-NCP).
Similarly, recall the set H(x) defined in (1) and notice that

H(x) = DG(x)∗[TK(G(x))o]

= DG(x)∗[DΞ(G(x))∗[Co]]

= DG(x)∗[Co],

(8)

meaning it also coincides with its counterpart defined for the reduced problem (Red-NCP). Moreover,
the Lagrange multiplier sets Λ(x) and M(x), of (NCP) and (Red-NCP) respectively, both associated
with x, satisfy the relation

Λ(x) = DΞ(G(x))∗[M(x)].

This shows that the results we obtain for the reducible problem (Red-NCP) may be translated to
(NCP) in a standard way. Now, a key element in our analysis is the faces of C, which we recall the
definition as follows:

Definition 2.2 (Faces of a convex set). Let C ⊆ E be a closed convex set. We say that F is a face of C
when F is a convex subset of C such that for every y ∈ F and every z, w ∈ C such that y = αz+ (1−α)w
for some α ∈ (0, 1), we have that z, w ∈ F . We use the notation F E C to say that F is a face of C.

We recall also that given a set C ⊆ C, the minimal face associated with C, denoted by Fmin(C), is
defined as the smallest face of C that contains C. We also recall two very useful properties about minimal
faces from Pataki [26]:

Lemma 2.1 (Proposition 3.2.2 of [26]). Let C ⊆ E be a closed convex cone, F be a face of C, and C ⊆ C
be a convex set. Then:

1. F = Fmin(C) if, and only if, ri(F ) ∩ ri(C) 6= ∅;

2. If C ⊆ F and C ∩ ri(F ) 6= ∅, then F = Fmin(C).

In particular, Fmin({c}) is the unique face of C that contains c in its relative interior.
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3 Extending and improving the constant rank condition

Our extended definition of the constant rank constraint qualification proposed in [5] (originally stated
for NSDP and NSOCP) can be formulated as follows for the general problem (NCP), for any given point
x ∈ Ω such that K is locally reducible to a cone C ⊆ F in a neighborhood of G(x) by some reduction
mapping Ξ:

Definition 3.1 (CRCQ). The facial constant rank (FCR) property holds at x if there exists a neigh-
borhood V of x such that, for every F E C, the dimension of DG(x)∗[F⊥] remains constant for every
x ∈ V. Furthermore, the constant rank constraint qualification (CRCQ) holds at x if it satisfies the facial
constant rank property and, additionally, the set H(x) defined in (1) is closed.

Proving that CRCQ as in Definition 3.1 is indeed a CQ for (NCP), on the other hand, is not trivial
from the proofs presented in [5, Theorems 4.1 and 5.1]. But instead of proving directly that this extension
of CRCQ is a constraint qualification, we shall first present and discuss a refined form of it and then, at
the end of this section, we prove that this new refined condition is a constraint qualification which is a
conclusion that naturally extends to Definition 3.1. The core of such refinement lies in the fact that not
all faces of C are necessarily needed; instead, only one face is required.

To get some intuition on which face is the good one, let us drive our attention to the particular case
of NLP. That is, choose E = Rm and K = Rm+ , and in this case problem (NCP) takes the form:

Minimize f(x),
s.t. G(x)

.
= (g1(x), . . . , gm(x)) ∈ Rm+ ,

(NLP)

with the reduction mapping given by (5) at some x ∈ Ω. For the sake of simplicity, we will assume
that A(x) = {1, . . . ,m} in the next paragraphs, so G = G and C = K = Rm+ . In this case, CRCQ as in
Definition 3.1 becomes equivalent to the constant rank of the family {∇gi(x)}i∈J for x in a neighborhood
of x, for each J ⊆ {1, . . . ,m}, which follows from the fact that F E Rm+ if, and only if,

F = Rm+
⋂
j∈J
{ej}⊥

for some J ⊆ {1, . . . ,m} and, moreover, F and J are in a one-to-one correspondence. Above, ej denotes
the j-th vector of the canonical basis of Rm. The requirement of taking every subset J into consideration
was relaxed in [9], where the authors realized that only

J−
.
= {j ∈ {1, . . . ,m} : −∇gj(x) ∈ LΩ(x)o}

was needed. This gave rise to a condition they called the constant rank of the subspace component
(CRSC) [9, Definition 1.3], which holds at x when the family of vectors {∇gj(x)}j∈J− remains with

constant rank for every x in a neighborhood of x. The CRSC condition was then studied by Kruger et
al. [22] (under the name relaxed Mangasarian-Fromovitz condition), where they noticed that the set J−
can be equivalently written as

J− = {j ∈ {1, . . . ,m} : 〈∇gj(x), d〉 = 0, ∀d ∈ LΩ(x)}. (9)

Then, for every d ∈ LΩ(x) and every j ∈ J−, we obtain from (9) that

〈DG(x)d, ej〉 = 〈∇gj(x), d〉 = 0,

hence
DG(x)[LΩ(x)] ⊆ Rm+

⋂
j∈J−

{ej}⊥
.
= FJ− ,

where FJ− is the face of Rm+ defined by the set J−. Notice that for each j /∈ J− there is some dj ∈ LΩ(x)
such that 〈DG(x)dj , ej〉 > 0 so dJ−

.
=
∑
j∈J− dj ∈ LΩ(x) satisfies 〈DG(x)dJ− , ej〉 > 0 for every j /∈ J−

and, consequently,
DG(x)dJ− ∈ ri(FJ−) ∩DG(x)[LΩ(x)].

Thus, we conclude from Lemma 2.1 that

FJ− = Fmin (DG(x)[LΩ(x)]) .
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Back to the general problem (NCP) and its reduced counterpart (Red-NCP), we consider the subset
ΓC(x) of C given by

ΓC(x)
.
= DG(x)[LΩ(x)] (10)

and, based on the previous discussion, we consider the face FJ−
.
= Fmin(ΓC(x)) E C. Then, we can define

an extension of the CRSC condition to the context of NCP as follows:

Definition 3.2 (CRSC). We say that the constant rank of the subspace component (CRSC) condition
for (NCP) holds at x ∈ Ω if H(x) is closed and there exists a neighborhood V of x such that the dimension
of DG(x)∗[F⊥J− ] remains constant for every x ∈ V, where FJ−

.
= Fmin(ΓC(x)) E C.

From our previous discussion, it follows immediately that Definition 3.2 fully recovers the CRSC
condition from NLP when it is seen as a particular case of (NCP), since H(x) is always closed in this
case. Moreover, CRSC as in Definition 3.2 is clearly implied by CRCQ but the following example,
extracted from [9, Page 1113], shows that this implication is strict.

Example 3.1. Consider the constraint

G(x)
.
= (x,−x,−x2) ∈ R3

+

along with its unique feasible point x = 0 and the reduction mapping defined as the identity function, so
G = G, and C = K. Then, observe that

LΩ(x) = {0} ⊆ R, and ΓC(x) = FJ− = {0} ⊆ R3

and that
dim(DG(x)∗[F⊥J− ]) = rank(DG(x)) = 1, ∀x ∈ R

so CRSC holds at x, but taking the face F = span({(1, 0, 0), (0, 1, 0)}), we see that

dim(DG(x)∗[F⊥]) = dim(span({2x})) =

{
1, if x 6= 0,
0, if x = 0,

meaning CRCQ fails at x.

Next, we present a useful lemma that, although seems merely technical at this point, will inspire a
deeper discussion later in Section 5. To introduce it, recall that LΩ(x) = DG(x)−1(C) is the linearized
cone of both (NCP) and its reduced version (Red-NCP) at x; the lemma states that C may be replaced
with FJ− in the definition of LΩ(x).

Lemma 3.1. Let x ∈ Ω and FJ−
.
= Fmin(ΓC(x)) E C. Then, LΩ(x) = DG(x)−1(FJ−).

Proof. By definition, it holds that ΓC(x) ⊆ FJ− , which implies

DG(x)−1(DG(x)[DG(x)−1(C)]) ⊆ DG(x)−1(FJ−);

and on the other hand we have

DG(x)−1(C) ⊆ DG(x)−1(DG(x)[DG(x)−1(C)]),

which holds trivially. Combining the above statements, we get LΩ(x) = DG(x)−1(C) ⊆ DG(x)−1(FJ−),
and the reverse inclusion follows directly from the fact FJ− ⊆ C.

In order to prove that CRSC (and, consequently, CRCQ) is a constraint qualification for (NCP), we
will need some tools. The first one is an extension of a result by Andreani et al. [2, Proposition 3.1],
which is in turn a simplified version of a result originally presented by Janin [21, Proposition 2.2]. The
statement is as follows:

Proposition 3.1. ([2, Proposition 3.1]) Let {ζi(x)}i∈I be a finite family of differentiable functions
ζi : Rn → R, i ∈ I, such that the family of its gradients {∇ζi(x)}i∈I remains with constant rank in a
neighborhood of x, and consider the linear subspace

S .
= {y ∈ Rn : 〈∇ζi(x), y〉 = 0, i ∈ I}.

Then, there exists some neighborhoods V1 and V2 of x, and a diffeomorphism ψ : V1 → V2, such that:
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(i) ψ(x) = x;

(ii) Dψ(x) = In;

(iii) ζi(ψ
−1(x+ y)) = ζi(ψ

−1(x)) for every y ∈ S ∩ (V2 − x) and every i ∈ I.

To make this result suitable for the conic environment, we will extend it as follows:

Lemma 3.2 (Curve builder). Let G : Rn → F be twice differentiable, and let W ⊆ F be any subspace
with dimension N . Also, let x, d ∈ Rn be such that DG(x)d ∈ W⊥. If there exists a neighborhood V
of x such that DG(x)∗[W] remains with constant dimension for every x ∈ V, then there exists a twice
differentiable curve ξ : R → Rn such that 〈G(ξ(t)), V 〉 = 〈G(x), V 〉 for every t small enough and every
V ∈ W; moreover, ξ(0) = x and ξ′(0) = d.

Proof. Let η1, . . . , ηN be a basis of W, and note that

DG(x)∗[W] = span
(
{DG(x)∗[ηi]}i∈{1,...,N}

)
. (11)

Therefore, the hypothesis on the constant dimension of DG(x)∗[W] can be equivalently stated as the
constant rank of the family

{DG(x)∗[ηi]}i∈{1,...,N}
for x in a neighborhood of x. Furthermore, let

ζi(x)
.
= 〈G(x), ηi〉

and note that
∇ζi(x) = DG(x)∗[ηi]

for every i ∈ {1, . . . , N}. Then, by Proposition 3.1, there exist neighborhoods V1 and V2 of x, and a curve
ψ : V1 → V2 such that:

• ψ(x) = x;

• Dψ(x) = In;

• ζi(ψ
−1(x+ y)) = ζi(x) for every i ∈ {1, . . . , N} and every y ∈ S ∩ (V2 − x);

where
S .

= {y ∈ Rn : 〈∇ζi(x), y〉 = 0, ∀i ∈ {1, . . . , N}} .
Since DG(x)d ∈ W⊥, we see that

〈d,DG(x)∗[ηi]〉 = 〈DG(x)d, ηi〉 = 0

for every i ∈ {1, . . . , N}, so d ∈ S. Then, define ξ(t)
.
= ψ−1(x + td) for every t such that x + td ∈ V2,

and note that ξ′(0) = d and ξ(0) = x. For every such t, we have 〈G(ξ(t)), ηi〉 = 〈G(x), ηi〉 for every
i ∈ {1, . . . , N}. Moreover, the degree of differentiability of ξ is the same as the one of G, which is a fact
that follows from [25, Page 328].

Now, we recall a classical lemma:

Lemma 3.3 (Proposition 2.1.12 of [20]). Let L be a linear mapping and let C be a convex set such that
L−1(ri(C)) 6= ∅. Then, ri(L−1(C)) = L−1(ri(C)).

The previous lemma allows us to compute the relative interior of LΩ(x) by considering L = DG(x)
and C = FJ− . Indeed, this is possible due to the next lemma:

Lemma 3.4. For every x ∈ Ω, there exists some d ∈ DG(x)−1(C) such that DG(x)d ∈ ri(FJ−).

Proof. Recall from the definition that FJ− is the smallest face of C that contains ΓC(x), which means
that ri(ΓC(x)) ∩ ri(FJ−) 6= ∅ (see Lemma 2.1 item 1). Therefore, there exists some d ∈ DG(x)−1(C) such
that DG(x)d ∈ ri(FJ−).

Note that Lemma 3.4 tells us that Slater’s CQ holds for the constraint DG(x)d ∈ FJ− regardless of
its fulfilment for the original linearized constraint DG(x)d ∈ C. This fact, together with Lemma 3.1,
suggests that FJ− has a special property that we will explore in Section 5. For now, as a consequence of
the previous two lemmas, we obtain:
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Lemma 3.5. Let x ∈ Ω. Then, ri(LΩ(x)) = DG(x)−1(ri(FJ−)).

Proof. Note that DG(x)−1(ri(FJ−)) 6= ∅ thanks to Lemma 3.4. Then, from Lemmas 3.1 and 3.3, we get

ri(LΩ(x)) = ri(DG(x)−1(FJ−)) = DG(x)−1(ri(FJ−)),

which is the desired result.

With these results at hand, it is simple to prove that CRSC is a constraint qualification:

Theorem 3.1. Let x ∈ Ω be such that the dimension of DG(x)∗[F⊥J− ] is constant for x in a neighborhood

of x. Then, TΩ(x) = LΩ(x).

Proof. First, note that TΩ(x) ⊆ LΩ(x). Then, since TΩ(x) is closed, it suffices to prove that ri(LΩ(x)) ⊆
TΩ(x) to conclude that LΩ(x) ⊆ TΩ(x), and consequently the desired equality. Let d ∈ ri(LΩ(x)) and we
have DG(x)d ∈ ri(FJ−) due to Lemma 3.5. By Lemma 3.2 with W = F⊥J− there exists some ε > 0 and a

curve ξ : (−ε, ε)→ Rn such that ξ(0) = x, ξ′(0) = d, and

〈G(ξ(t)), V 〉 = 〈G(x), V 〉 = 0

for every V ∈ F⊥J− and every t ∈ (−ε, ε). That is, G(ξ(t)) ∈ span(FJ−) for every such t. Taking the

Taylor expansion of G(ξ(t)), we see that

G(ξ(t)) = tDG(x)d+ o(t),

but since DG(x)d ∈ ri(FJ−), we have G(ξ(t)) ∈ ri(FJ−) as well, for every t ∈ (−ε, ε) shrinking ε if
necessary. Hence, d ∈ TΩ(x), but since d is arbitrary, it follows that ri(LΩ(x)) ⊆ TΩ(x).

Since the tangent cone of (NCP) coincides with the tangent cone of (Red-NCP) at any x ∈ Ω after
applying its respective reduction mapping, the condition

TΩ(x) = L(x) and H(x) is closed

characterizes a constraint qualification known as Abadie’s CQ for (Red-NCP). Thus, Theorem 3.1 tells
us that CRSC is a constraint qualification for the original problem (NCP) because of the correspondence
between Lagrange multipliers of (NCP) and (Red-NCP), and since CRCQ implies CRSC, we obtain as
a corollary that CRCQ is also a constraint qualification.

Corollary 3.1. Let x ∈ Ω be a local minimizer of (NCP) that satisfies CRSC (or CRCQ). Then x
satisfies the KKT condition for (NCP).

There are some counterexamples in NLP presented by Janin [21, Examples 2.1 and 2.2] that prove
that CRCQ is independent of Robinson’s CQ. On the other hand, Robinson’s CQ (strictly) implies CRSC.

Proposition 3.2. Let x satisfy Robinson’s CQ. Then, x satisfies CRSC.

Proof. Note that if Robinson’s CQ holds, then there exists some d ∈ Rn such that DG(x)d ∈ int(C),
which implies that

DG(x)[DG(x)−1(int(C))] ∩ int(C) 6= ∅,

so C = FJ− and DG(x)∗[F⊥J− ] = 0, which has constant rank (equal to zero) for every x ∈ Rn.

4 Second-order analysis

In a previous work by Andreani et al. [5] for NSDP and NSOCP, the authors used CRCQ to obtain a
strong second-order optimality condition for (NCP) depending on any single given Lagrange multiplier.
This result is, in particular, stronger than the classical second-order condition of Bonnans, Cominetti,
and Shapiro [12]. However, since Robinson’s CQ is not enough for obtaining a similar result [11], the
same holds for CRSC. We can, though, define a new constraint qualification for (NCP) that is in-between
CRCQ and CRSC, which can be used to obtain the strong second-order condition of [5] by directly
applying CRCQ to the constraint G(x) ∈ FJ− (see also Section 5). That is:

Definition 4.1 (Strong-CRSC). Let x ∈ Ω and define FJ−
.
= Fmin(DG(x)[LΩ(x)]) E C. We say that

Strong-CRSC holds at x when H(x) is closed and there exists a neighborhood V of x such that for each
F E FJ− , the dimension of DG(x)∗[F⊥] remains constant for every x ∈ V.
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Observe that Strong-CRSC implies CRSC by taking F = FJ− , and note also that CRCQ implies
Strong-CRSC since all faces of FJ− are, in particular, faces of C. On the other hand, Example 3.1 proves
that Strong-CRSC is still strictly weaker than CRCQ since in that example FJ− = {0} and thus Strong-
CRSC coincides with CRSC there. Finally, it is worth mentioning that Strong-CRSC is new even in NLP,
and any second-order result involving it is also an improvement of the existing NLP results (which are
based on CRCQ [8]).

To proceed, let us prove the strong second-order condition under Strong-CRSC:

Theorem 4.1. Let x ∈ Ω be a local minimizer of (NCP) that satisfies Strong-CRSC. Then, for every
Y ∈ Λ(x) and every d ∈ C(x)

.
= LΩ(x) ∩ {∇f(x)}⊥, the following inequality is satisfied:

dT∇2f(x)d+
〈
D2G(x)[d, d], Y

〉
> σ(x, d, Y ), (12)

where
σ(x, d, Y )

.
= sup{〈W,Y 〉 : W ∈ T 2

K(G(x), DG(x)d)}

and T 2
K(G(x), DG(x)d) is the second-order tangent set to K at G(x) along DG(x)d.

Proof. Let Y ∈ Λ(x) and d ∈ C(x) be arbitrary; then DG(x)d ∈ FJ− thanks to Lemma 3.1. Moreover,
let F be the smallest face of FJ− that contains DG(x)d in its relative interior1. Then, by Strong-CRSC,
similarly to the proof of Theorem 3.1, there exists some ε > 0 and a twice continuously differentiable
curve ξ : (−ε, ε)→ Rn such that ξ(0) = x, ξ′(0) = d, and

G(ξ(t)) ∈ ri(F )

for all t ∈ [0, ε). Since x is a local minimizer of (NCP) and ξ(t) is, in particular, feasible for every
small t, then t = 0 is a local minimizer of the function φ(t)

.
= f(ξ(t)) subject to the constraint t ≥ 0.

Consequently,
φ′′(0) = dT∇2f(x)d+∇f(x)T ξ′′(0) > 0. (13)

The rest of the proof consists of computing the term ∇f(x)T ξ′′(0). To do so, let Y be such that
Y = DΞ(G(x))∗[Y], which is uniquely determined since DΞ(G(x))∗ is injective. By the KKT conditions,
we have that

〈d,∇f(x)〉 = −
〈
d,DG(x)∗[Y ]

〉
= −

〈
DG(x)d, Y

〉
= 0.

Therefore,

〈DG(x)d, Y 〉 = 〈DG(x)d,DΞ(G(x))∗[Y]〉 = 〈DΞ(G(x))DG(x)d,Y〉 = 〈DG(x)d,Y〉 = 0,

so DG(x)d ∈ F ∩{Y}⊥ which is also a face of C since Y ∈ Co, but since F is by construction the minimal
containing DG(x)d we must have F = F ∩ {Y}⊥, hence F ⊆ {Y}⊥ and, consequently, Y ∈ F⊥. Then,
consider the function

R(t)
.
=
〈
G(ξ(t)),Y

〉
and our previous reasoning implies that R(t) = 0 for every small t ≥ 0. Differentiating R(t), we obtain:

R′(t) =
〈
DΞ(G(ξ(t)))DG(ξ(t))ξ′(t),Y

〉
.

Differentiating it once more, and taking the limit t→ 0+, we obtain:

R′′(0) =
d

dt

〈
DΞ(G(ξ(t)))DG(ξ(t))ξ′(t),Y

〉
|t=0

=
〈
D2Ξ(G(x))[DG(x)d,DG(x)d] +DΞ(G(x))D2G(x)[d, d] +DΞ(G(x))DG(x)ξ′′(0),Y

〉
= 0.

Using the fact 〈
DΞ(G(x))DG(x)ξ′′(0),Y

〉
=
〈
ξ′′(0), DG(x)∗[Y ]

〉
= −∇f(x)T ξ′′(0),

it follows that

∇f(x)T ξ′′(0) =
〈
D2Ξ(G(x))[DG(x)d,DG(x)d],Y

〉
+
〈
D2G(x)[d, d], Y

〉
. (14)

1Noteworthy, if d ∈ ri(L(x)), this face if FJ− itself.
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Moreover, following Bonnans and Shapiro [14, Equations 3.274 and 3.275], we see that

σ(x, d, Y ) = −
〈
D2Ξ(G(x))[DG(x)d,DG(x)d],Y

〉
.

Thus, substituting the above expressions in (13), we conclude that

dT∇2f(x)d+
〈
D2G(x)[d, d], Y

〉
> σ(x, d, Y ).

Since d and Y were chosen arbitrarily, this proof is complete.

Remark 4.1. Notice that the closedness of H(x) (subsumed by the definition of Strong-CRSC) is actually
not needed in the proof of Theorem 4.1.

Using only CRSC, we can obtain a weaker result with an analogous proof (see Footnote 1). What
follows is a formal statement of such result:

Corollary 4.1. Let x ∈ Ω satisfy CRSC. Then, (12) holds for every Y ∈ Λ(x) and every d ∈ ri(LΩ(x))∩
{∇f(x)}⊥ ⊆ C(x).

Another interesting result that can be extracted from the proof of the previous theorem is the invari-
ance to Lagrange multiplier of the second-order term (12) induced by the Hessian of the Lagrangian for
each critical direction, stated below. Variants of this result have also been proposed by [11, Theorem 3.3]
for the directions in lin(C(x)) and by [17] for all directions in span(C(x)).

Proposition 4.1. Let x ∈ Ω satisfy Strong-CRSC. Then, for each d ∈ C(x), the second-order term (12)
is independent of the choice of the Lagrange multiplier Y ∈ Λ(x), that is, for each d ∈ C(x)

dT∇2f(x)d+
〈
D2G(x)[d, d], Y

〉
− σ(x, d, Y ) does not depend on Y . (15)

Proof. The conclusion follows directly from (14).

Notice that if we assume that the dimension of DG(x)∗[F⊥] remains constant for all x in a neighbor-
hood of x, only for the face F = {0} ∈ C, then (15) holds true at least for every d ∈ lin(C(x)) = {d ∈
Rn : DG(x)d = 0}, which generalizes [11, Theorem 3.3].

5 Facial reduction for nonconvex optimization problems

Facial reduction is a preprocessing technique originally introduced for the convex case of (NCP)
by Wolkowicz and Borwein [15], which stood out for inducing strong duality results without constraint
qualifications in a mathematically elegant way. Their work was later revisited and improved by Pataki [28],
and Waki and Muramatsu [34], who provided a very simple derivation for the facial reduction algorithm
and its underlying results regarding linear conic problems.

More precisely, let us assume, for a moment, that the constraint of (NCP) has the form G(x)
.
= Ax+

B ∈ K, where A : Rn → E is a linear operator and B ∈ E. Let Ω
.
= G−1(K) 6= ∅ and Γ

.
= {Ax+B : x ∈ Ω}.

Then Ax + B ∈ K ⇔ Ax + B ∈ Fmin(Γ), where the latter satisfies Slater’s constraint qualification.
Interestingly, in the case of a linear problem, the minimal face Fmin(Γ) can be iteratively computed
by considering F

.
= K and computing S ∈ F o ∩ KerA∗ ∩ {B}⊥ in order to have F ∩ {S}⊥ E K with

Fmin(Γ) ⊆ F ∩ {S}⊥. Now the procedure can be repeated for F
.
= F ∩ {S}⊥ until F = Fmin(Γ). See [28]

for details.
Our goal is to show that in the general case of (NCP), condition CRSC gives the appropriate tool for

allowing the problem to be locally rewritten by replacing the cone with one of its faces, namely:

Minimize f(x),
s.t. G(x) ∈ FJ− .

(FRed-NCP)

Recall that Lemma 3.5 tells us that the linearized constraint DG(x)d ∈ C at a given point x ∈ Ω coincides
with the “facially reduced” constraint DG(x)d ∈ FJ− at x, which in turn always satisfies Slater’s CQ due
to Lemma 3.4. Notice that this also implies that Robinson’s condition is satisfied at x with respect to
problem (FRed-NCP).

The extension of the facial reduction procedure to the nonlinear case has been already conducted
under CRSC in [9] in the context of NLP, which was obtained as a consequence of a result by Lu [23]
regarding CRCQ. This interpretation of their result is what motivates the course of this section. Let us
start by recalling Lu’s result, as stated in [9]:
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Proposition 5.1. Let ζi : Rn → R, i = 1, . . . , s be continuously differentiable functions and x be such
that ζi(x) = 0 for every i = 1, . . . , s. Assume that the family {∇ζi(x)}si=1 has constant rank for all x in
a neighborhood of x. If there exists γ ∈ Rs with γi > 0 for all i = 1, . . . , s such that

s∑
i=1

∇ζi(x)γi = 0,

then there exists a neighborhood U of x such that for every i = 1, . . . , s and every x ∈ U , we have that
ζi(x) > 0 if, and only if, ζi(x) = 0.

In order to adapt this proposition the the conic context, let us consider first the following well-known
result regarding a characterization of the relative interior. We present a proof2 for completeness:

Lemma 5.1. Let C ⊆ E be a closed convex cone with dimension s > 1, and let 0 6= Y ∈ ri(C). Then,
there exist some linearly independent vectors η1, . . . , ηs ∈ C such that Y =

∑s
i=1 αiηi with αi > 0 for

every i ∈ {1, . . . , s}.

Proof. Let Z1, . . . , Zs−1 be a basis of span(C) ∩ {Y }⊥ and define Zs
.
= −(Z1 + . . . + Zs−1). Now, let

ε > 0 be such that ηi
.
= Y + εZi ∈ ri(C) for every i ∈ {1, . . . , s} and note that η1, . . . , ηs are linearly

independent, since

β1η1 + . . .+ βsηs = (β1 + . . .+ βs)Y + ε(β1 − βs)Z1 + . . .+ ε(βs−1 − βs)Zs−1 = 0

implies β1 = . . . = βs−1 = βs = 0. Define αi
.
= 1/s > 0 for every i ∈ {1, . . . , s} to conclude the proof.

To state the generalization of Proposition 5.1 to the conic programming context, we define the con-
jugate face F4 of a face F E C as F4

.
= −Co ∩ F⊥.

Proposition 5.2. Let x ∈ Ω and let F E C be such that:

1. There exists some 0 6= Y ∈ ri(F4) such that DG(x)∗[Y ] = 0;

2. The dimension of DG(x)∗[span(F4)] remains constant in a neighborhood V of x.

3. (F4)⊥ ∩ C = F .

Then, there exists a neighborhood U of x such that G−1(C) ∩ U = G−1(F ) ∩ U .

Proof. Let s
.
= dim(span(F4)) and let 0 6= Y ∈ ri(F4) be such that DG(x)∗[Y ] = 0; this implies that

s > 1. Also, let η1, . . . , ηs ∈ F4 be the vectors described in Lemma 5.1, which form a basis of span(F4)
and

Y =

s∑
i=1

αiηi,

for some vector of positive scalars α
.
= (α1, . . . , αs). Now, consider the functions

ζi(x)
.
= 〈G(x), ηi〉, i ∈ {1, . . . , s}

along with the vector function ζ(x)
.
= (ζ1(x), . . . , ζs(x)), and note that ∇ζi(x) = DG(x)∗[ηi] for every

i ∈ {1, . . . , s}. In particular, this implies that

rank({∇ζi(x)}i∈{1,...,s}) = dim(DG(x)∗[span(F4)])

for every x ∈ Rn and moreover,
Dζ(x)>α = DG(x)∗[Y ] = 0. (16)

Applying Proposition 5.1, we obtain a neighborhood U of x such that ζ(x) = 0 for every x ∈ U such
that ζ(x) > 0. However, note that ηi ∈ −Co for every i ∈ {1, . . . , s}, so in particular this holds for every
x ∈ Ω ∩ U because

Ω = {x ∈ Rn : 〈G(x), η〉 > 0, ∀η ∈ −Co}
⊆ {x ∈ Rn : ζ(x) > 0} .

Furthermore, since ζ(x) = 0 is equivalent to G(x) ∈ (F4)⊥ we conclude that

G−1(C) ∩ U = G−1((F4)⊥ ∩ C) ∩ U = G−1(F ) ∩ U .

2Thanks to Joe Higgins for providing this ingenious proof.
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In order to connect this result with CRSC, let us assume in addition that the cone C is nice, in the
sense that Co +F⊥ is closed for every F E C. Notice that the second-order and the semidefinite cones are
nice. In this context, we will make use of the following characterization of the closedness of the image of
a closed convex cone by a linear operator in terms of minimal faces:

Theorem 5.1 (Theorem 1 of [27]). Let C ⊆ F be a nice closed convex cone, let M : E → F be a linear
operator, and F

.
= Fmin(Im(M) ∩ C). The following statements are equivalent:

• M∗[Co] is closed;

• ri(F4) ∩Ker(M∗) 6= ∅ and Im(M) ∩ (F4)⊥ = Im(M) ∩ span(F );

• M∗[F4] = M∗[F⊥].

We are now finally able to state the main result of this section, which is a generalization of the result
of [9], and which can be interpreted as a facial reduction for the general (NCP):

Theorem 5.2. Let x ∈ Ω satisfy CRSC, suppose that C is nice, and let F
.
= Fmin(ΓC(x)). Assume that

there exists a neighborhood V of x such that:

A1. H(x) is closed for every x ∈ V;

A2. F = Fmin(ΓC(x)), for every x ∈ V;

A3. (F4)⊥ ∩ C = F .

Then, there exists a neighborhood U of x such that

G−1(C) ∩ U = G−1(FJ−) ∩ U .

Proof. First, note that
ΓC(x) = DG(x)[DG(x)−1(C)] = Im(DG(x)) ∩ C

so applying Theorem 5.2 with M
.
= DG(x), C

.
= C, and F

.
= Fmin(ΓC(x)), we see that there exists some

0 6= Y ∈ ri(F4J−) such that DG(x)∗[Y ] = 0 because in this case M∗[Co] = H(x) is closed. By CRSC the

dimension of DG(x)∗[F⊥] remains constant for every x in a neighborhood of x, which we can assume to
be V without loss of generality. On the other hand, by A1 and A2, DG(x)∗[Co] is closed for every x ∈ V
and F is the minimal face of ΓC(x), therefore the dimension of DG(x)∗[span(F4)] also remains constant
for every x ∈ V since by Theorem 5.1 we have that

DG(x)∗[F4] = DG(x)∗[F⊥]

for every such x; Proposition 5.2 then gives us a neighborhood U of x such that G−1(C) ∩ U = G−1(F ) ∩
U .

It is worth noticing that in NLP assumptions A1 and A2 are not required due to the polyhedricity
of C. Also, A3 is always true in NLP, NSOCP, and NSDP. Whether they can be removed from Theorem
5.2 or not in the general case is an open problem.

6 Conclusions

Constant rank constraint qualifications have become an important tool in the context of nonlinear
programming due to its broad range of applications [21, 24, 25, 2, 8, 9, 17, 1], being used in the study
of tilt stability, strong second-order optimality conditions, global convergence of first- and second-order
algorithms, derivative of the value function, among others. Notice that these constraint qualification con-
ditions allow some redundancy of the constraints; for instance, they hold for linear constraints without
requiring removing linearly dependent constraints, which would be necessary under other conditions. This
in particular gives someone building an optimization model more freedom, in the sense that redundant
constraints are allowed to be part of the model. For these reasons, very recently, we started extending
these conditions to the conic context by considering nonlinear second-order cone and semidefinite pro-
gramming. To be precise, we started by showing that a previous attempt of defining such conditions for
second-order cones was incorrect [3] and a first correct approach was defined in [4], by avoiding dealing
with the conic constraints. A complete definition suitable for global convergence of algorithms appeared
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in [7, 6]. Finally, a more geometric approach was presented in [5] by exploiting the facial structure of
semidefinite and second-order cones.

In this paper we extended the geometric approach to the more general case of reducible cones while
also presenting two interesting applications, namely, we showed that a strong second-order optimality
condition holds under the constant rank assumption and we showed that a facial reduction procedure
is available under this assumption, rewriting the problem equivalently using only a smaller face of the
cone in such a way that Robinson’s condition is fulfilled. In the process of doing so, we noticed that the
constant rank assumption could be enforced only along this particular face, which generalizes the results
from [9] to the conic context. This idea can also be carried out in order to obtain the strong second-order
necessary optimality condition under a weaker condition, which is new even in nonlinear programming.

It is interesting to notice that the second-order necessary optimality condition we showed is stronger
than the one obtained under Robinson’s condition. In particular, it may hold even when the set of
Lagrange multipliers is unbounded. We expect this second-order necessary optimality condition to be
particularly relevant in proving second-order stationarity of primal-dual second-order algorithms for conic
programming since it can be checked by means of a single dual approximation. This is not the case of the
condition proven under Robinson’s assumption, which depends on the full set of Lagrange multipliers and
is thus not suitable for some dual algorithms. We were also able to prove that, under our facial constant
rank condition, the numeric value of the second-order term is independent of the particular Lagrange
multiplier used, which is not well adopted by the nonlinear programming community and is yet a topic
to be fully exploited further.

Finally, in this paper we rely on the reduction approach, simplifying the analysis to consider only
points on the vertex of a reduced cone. However, we expect that our approach should be general enough
in order to tackle more general conic constraints, which we will investigate in a future work. Also, in
order to obtain our facial reduction result (Theorem 5.2), we assumed that the closedness of the set H(x)
and the minimality of the face F = Fmin(ΓC(x)) are stable in a neighborhood of x (assumptions A1 and
A2) which could possibly also be improved in the future.
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[20] J.-B. Hiriart-Urruty and C. Lamaréchal. Fundamentals of Convex Analysis. Springer-Verlag Berlin
Heidelberg, Berlin Heldelberg, 2001.

[21] R. Janin. Direction derivate of the marginal function in nonlinear programming. Mathematical
Programming Study, 21:110–126, 1984.

[22] A.Y. Kruger, L. Minchenko, and J.V. Outrata. On relaxing the Mangasarian-Fromovitz constraint
qualification. Positivity, 18(1):171–189, 2013.

[23] S. Lu. Implications of the constant rank constraint qualification. Mathematical Programming,
126:365–392, 2011.

[24] L. Minchenko and S. Stakhovski. On relaxed constant rank regularity condition in mathematical
programming. Optimization, 60(4):429–440, 2011.

[25] L. Minchenko and S. Stakhovski. Parametric nonlinear programming problems under the relaxed
constant rank condition. SIAM Journal on Optimization, 1:314–332, 2011.

[26] G. Pataki. The geometry of semidefinite programming. In R. Saigal, L. Vandenberghe, and
H. Wolkowicz, editors, Handbook of Semidefinite Programming., pages 29–65. Kluwer Academic
Publishers, Waterloo, Canada, 2000.

[27] G. Pataki. On the closedness of the linear image of a closed convex cone. Mathematics of Operations
Research, 32(2):395–412, 2007.

[28] G. Pataki. Strong duality in conic linear programming: Facial reduction and extended duals. In: Bai-
ley D. et al. (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics
& Statistics, 50:613–634, 2013.
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