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Abstract

Let (P,D) be a primal-dual pair of SDPs with a nonzero finite duality gap. Under
such circumstances, P and D are weakly feasible and if we perturb the problem data
to recover strong feasibility, the (common) optimal value function v as a function of
the perturbation is not well-defined at zero (unperturbed data) since there are “two
different optimal values” v(P) and v(D), where v(P) and v(D) are the optimal values
of P and D respectively. Thus, continuity of v is lost at zero though v is continuous
elsewhere. Nevertheless, we show that a limiting version va of v is a well-defined mono-
tone decreasing continuous bijective function connecting v(P) and v(D) with domain
[0, π/2] under the assumption that both P and D have singularity degree one. The
domain [0, π/2] corresponds to directions of perturbation defined in a certain manner.
Thus, va “completely fills” the nonzero duality gap under a mild regularity condition.
Our result is tight in that there exists an instance with singularity degree two for which
va is not continuous.
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1 Introduction

Consider the standard form dual pair of semidefinite programs:

min
X

C •X s.t. Ai •X = bi, i = 1, . . . ,m,X � 0 (P)

max
y,S

bT y s.t. C −
m∑
i=1

Aiyi = S, S � 0, (D)

where C, Ai, i = 1, . . . ,m, X, and S are real symmetric n × n matrices and y ∈ Rm. We

denote the optimal values of P and D by v(P) and v(D), respectively. We use analogous

notation throughout this paper to represent optimal values. We assume that P and D are

feasible but not necessarily strongly feasible, i.e., neither P nor D satisfy Slater’s condition.

Under this assumption, P and D may have a finite nonzero duality gap as shown in the

following famous example adapted from Ramana [12]:

Example 1.1 ([12, Example 4]) The problem D is

max y1 s.t.

 1− y1 0 0
0 −y2 −y1

0 −y1 0

 � 0.

With that, we have

C =

 1 0 0
0 0 0
0 0 0

 , A1 =

 1 0 0
0 0 1
0 1 0

 , A2 =

 0 0 0
0 1 0
0 0 0

 , b1 = 1.

We have v(D) = 0 for this problem, because y1 = 0 is the only possible value for the

lower-right 2× 2 submatrix to be positive semidefinite.

The associated primal P is

min x11 s.t. x11 + 2x23 = 1, x22 = 0,

 x11 x12 x13

x12 x22 x23

x13 x23 x33

 � 0.

We have v(P) = 1 for this problem, because x23 = 0 must hold for positive semidefiniteness

of the lower-right 2× 2 submatrix, which drives x11 to be 1.

In general, P and D might fail to have interior feasible solutions and this opens the

possibility of nonzero duality gaps as in Example 1.1. On the other hand, most algorithms

for SDP are constructed under the assumption that P and D have interior feasible solutions.

This leads naturally to the question of how to solve SDPs with finite nonzero duality gaps

with the usual algorithms. A simple approach to fix that is to perturb the problem data

so that constraint qualifications are satisfied [11,15,17]. We can consider, for example, the

following perturbed/regularized system P(ε, η) and D(ε, η) from [17].
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Regularized Primal-Dual Standard Form SDP (RPD-SDP)

P(ε, η) : min
X

(C + εI) •X s.t. Ai •X = bi + ηAi • I, i = 1, . . . ,m, X � 0 (1.1)

and

D(ε, η) : max
y,S

m∑
i=1

(bi + ηAi • I)yi s.t. C −
m∑
i=1

Aiyi + εI = S, S � 0, (1.2)

where I denotes the n× n identity matrix. We call the pair (1.1) and (1.2) the Regularized

Primal-Dual Standard Form SDP or RPD-SDP for short. P(ε, η) and D(ε, η) reduce to P

and D when ε and η are set to zero. RPD-SDP is obtained by relaxing the semidefinite

constraints X � 0 of P and S � 0 of D to X � −ηI and S � −εI, respectively, and by

redefining X := X + ηI and S := S + εI.

Under the assumption that P and D are feasible, the perturbed problems admit interior

feasible solutions for any ε > 0 and η > 0, so, in this sense, the lack of interior solutions

of P and D is fixed. However, this is only useful if something can be said about how the

optimal values of D(ε, η) and P(ε, η) relate to the optimal values of the original P and D,

so let us briefly examine this issue.

For ε > 0 and η > 0, Slater’s condition is satisfied at both (1.1) and (1.2), so they have

optimal solutions and a common optimal value, which we denote by v(ε, η). In the sequel,

v(·, ·) is referred to as pd-regularized optimal value function. We note that v(ε, 0) and v(0, η)

are also well-defined for any ε > 0 and η > 0, since P(ε, 0) and D(0, η) have interior feasible

solution for any ε > 0 and η > 0 and there is no duality gap in these cases according to the

standard duality theory for convex programming.

But v(0, 0) is different since it is not well-defined when there exists a finite nonzero

duality gap, and ironically, the value of v(0, 0) is what we really wish to compute. Thus,

the perturbation/regularization approach might not be theoretically sound when there are

nonzero duality gaps.

That said, we have recently analyzed the behavior of the pd-regularized optimal value

function v(ε, η) in the neighbourhood of (ε, η) = (0, 0) and demonstrated that v(ε, η) have

a directional limit when approaching (0, 0), see [17]. Let us define the directional limit

va(θ) := lim
t↓0

v(t cos θ, t sin θ). (1.3)

The function va is referred to as limiting pd-regularized optimal value function. Then, the

following theorem holds.

Theorem 1.2 ([17, Theorem 2]) If P and D are feasible, the limiting pd-regularized

optimal value function va(θ) has the following properties.

1. va(0) = v(P), va(π/2) = v(D).

2. va(θ) is monotone decreasing in [0, π/2] and is continuous on (0, π/2).
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In the case of Example 1.1, va(θ) is written as follows:

va(θ) =

{
1− tan θ if 0 ≤ tan θ ≤ 1

2 ,
1
4 cot θ if 1/2 ≤ tan θ.

(1.4)

See [17, Example 1] for its derivation1. In this instance, it can be shown that va is a

strictly monotone decreasing continuous function on the closed interval [0, π/2]. This implies

that, for each value w ∈ [v(D), v(P)], there exists a unique angle θ ∈ [0, π/2] such that

va(θ) = w holds. Thus, the limiting pd-regularized optimal value function va is a continuous

bijection from [0, π/2] to [v(D), v(P)]. This shows that the gap is only superficial and hidden

continuity behind the gap was brought to the surface. We may say that the nonzero duality

gap is “filled completely” because we may reach any value in [v(D), v(P)] by appropriately

selecting θ. It would be nice if this structure existed for any SDP with a finite nonzero

duality gap.

Theorem 1.2, however, does not exclude the possibility that va is discontinuous on the

boundary of domain at θ = 0 and θ = π/2. In particular, the continuity of va(θ) over the

entire interval [0, π/2] was left open in [17]. If va turns out to be continuous on the both end

points θ = 0 and θ = π/2, then, va is a continuous function from [0, π/2] to [v(D), v(P)],

and as a consequence, by controlling the direction to which (t cos θ, t sin θ) approaches (0, 0)

we may force va(θ) to assume any value in [v(D), v(P)].

Now we are ready to state our goal in this paper. We presents two results under the

assumption of a finite nonzero duality gap, one is positive and the other negative. First,

we will show that va is continuous at θ = 0 and θ = π/2 if the singularity degree of D

and P are both one, and consequently, the limiting pd-regularized optimal value function

va is a continuous bijective function from [0, π/2] to [v(D), v(P)] in that case. Here, the

singularity degree for a feasible SDP is defined as the minimum number of facial reduction

steps necessary to regularize the problem (see Section 2). Then, second, we present an

instance where va is discontinuous at θ = π/2, thus showing that continuity cannot be

expected to hold in general.

This paper is organized as follows. In Section 2, we discuss the notation and some

prerequisite notions. In Section 3, we analyze the continuity of va under the assumption

that the problems have singularity degree one. In Section 4 we present an instance to show

that va may be discontinuous in general. Section 5 presents some concluding remarks.

2 Preliminaries

In this section, we introduce some terminology and mathematical definitions. The space of

real p× p symmetric matrices will be denoted by Sp. The space of p× q real matrices will

be denoted by Rp×q. The cone of semidefinite matrices in Sp will be denoted by Sp+. The

p-dimensional nonnegative orthant will be denoted by Rp+. In this paper, we are using the

1The formula obtained in [17] is slightly different than (1.4). But we obtain exactly the same formula by
letting α = cos θ and β = sin θ.
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convention that whenever the identity matrix I appears in a expression it has the “correct

size” as to make the expression well-defined.

We recall that P is said to be strongly feasible if there exists a positive definite feasible

solution X to P. This is the same as saying that P satisfies Slater’s condition. P is said to

be weakly feasible if it is feasible but not strongly feasible. Similar definitions apply to D.

In semidefinite programming it sometimes happens that the optimal value of P or D

is finite, but no optimal solution exists2. In any case, provided that P is feasible, there

exists a sequence of matrices {Xk} such that the Xk are feasible to P and C •Xk converges

to v(P). We say that such a sequence is an optimal sequence (for P). Analogously, an

optimal sequence for D is a sequence {(yk, Sk)} for which C −
∑m

i=1A
iyki = Sk, Sk � 0

and bT yk → v(D) holds.

Singularity Degree Let K ⊆ E be a closed convex cone contained in a finite-dimensional

Euclidean space E equipped with an inner product 〈·, ·〉. For a convex set C ⊆ E , let

ri C denote its relative interior. Also, let C∗ and C⊥ denote the dual cone and orthogonal

complement of C with respect to 〈·, ·〉, respectively.

Let V ⊆ E be an affine space such that V ∩ K 6= ∅ and consider the following feasibility

problem:

find x ∈ V ∩ K. (Feas)

In this case, there exists an unique minimal face F of K with the property that (V∩K) ⊆ F
and V ∩ (riF) 6= ∅. When (Feas) satisfies Slater’s condition (i.e., V ∩ (riK) 6= ∅), then the

face F is K itself.

The process of finding the minimal face F is known as facial reduction and is one of

the standard approaches for handling conic linear programs that fail to satisfy constraint

qualifications, e.g., [2–4,7,9,16,19]. While the original problem might suffer from pathologies

arising from a lack of constraint qualifications, identifying F makes it possible to construct

a new equivalent problem where the absence of constraint qualifications is fixed.

The basic facial reduction algorithm as described, say, in [19], is based on the following

observation. We have V ∩ (riK) = ∅ (i.e., Slater’s condition fails) if and only if V and

riK can be properly separated by a hyperplane that does not contain riK entirely, see

[13, Theorem 20.2]. Under the hypothesis that V ∩ K 6= ∅, this implies the existence of

s ∈ (V⊥ ∩ K∗) \ K⊥, e.g., see [19, Lemma 3.2]. Then, letting

F := K ∩ {s}⊥,

F is a face of K strictly contained in K (since s 6∈ K⊥) with the property that V∩K ⊆ F . If it

turns out that V ∩ riF 6= ∅, then we are done. Otherwise, we can apply the same separation

result again to V and F and repeat the process. Since the dimension of faces decrease at

each step, this process must end in a finite number of steps, e.g., [19, Theorem 3.2]. This

leads to a chain of ` faces of K
F` ( · · · ( F1 = K

2Consider, for example, minx11 s.t.
(
x11 1
1 x22

)
∈ S2

+. The optimal value is 0 but not attained.
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and `− 1 reducing directions {s1, . . . , s`−1} such that:

(i) for all i ∈ {1, . . . , `− 1}, we have

si ∈ F∗i ∩ V⊥ and Fi+1 = Fi ∩ {si}⊥. (2.1)

(ii) F` ∩ V = K ∩ V and V ∩ (riF`) 6= ∅.

We note that ` must be bounded above by the dimension of K, see also [7] for tighter

bounds. Furthermore, item (ii) implies that F` is the minimal face of K containing K ∩ V.

There is freedom in the choice of the si in item (i), so difference choices of si’s might

lead to a smaller or larger `. The singularity degree of (Feas) is the minimal number of

facial reduction steps (i.e., the `) in order to find the minimal face of (Feas) as in items

(i) and (ii). The singularity degree was discussed extensively by Sturm in [16], although

Sturm’s definition of singularity degree is slightly different from the most current usage of

the term, see [7, Footnote 3].

For the main result of this paper, we will only need a discussion of problems having

singularity degree one, so we shall focus on that. (Feas) is said to have singularity degree

one if it is feasible and there exists s ∈ (V⊥ ∩ K∗) \ K⊥ such that

V ∩ (ri (K ∩ {s}⊥)) 6= ∅.

In the following, we discuss what this definition means for the problems P and D. Letting

E := Sn, K := Sn+ and V := C + L, where L is the span of the Ai in D, the problem (Feas)

correspond to the feasible “slacks” associated to dual problem D. Then, D has singularity

degree one if and only if there exists a nonzero X ∈ Sn+, with C •X = 0 and Ai •X = 0 for

all i in such a way that there exists y ∈ Rm satisfying

C −
m∑
i=1

Aiyi ∈ ri (K ∩ {X}⊥).

Before we move further, we need to recall a classical characterization of the faces of Sn+.

Namely, every face F of Sn+ is linearly isomorphic to a smaller positive semidefinite cone.

Furthermore, there exists r ≤ n and a nonsingular matrix V such that

V FV T =

{
X ∈ Sn | X =

(
Y 0
0 0

)
, Y ∈ Sr+

}
, (2.2)

e.g., see [8] and also [1, Section 6].

Now we are ready to state the following proposition which plays a fundamental role in

our analysis.

Proposition 2.1 Suppose that D is feasible. Then the following statements hold.
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1. After appropriate rescaling3, there exists r ≤ n such that defining L(y) := C −∑m
i=1A

iyi, the following items hold:

(a) L(y) ∈ Sn+ if and only if

L(y) ∈
{
X ∈ Sn | X =

(
Y 0
0 0

)
, Y ∈ Sr+

}
.

(b) (Slater’s condition is satisfied for the reduced problem) There exists y ∈ Rm such

that L(y) =

(
Y 0
0 0

)
, Y ∈ ri (Sr+) (i.e., Y � 0).

In particular, defining L11 : Rm → Sr, L12 : Rm → Rr×(n−r), L22 : Rm → Sn−r so that

L(y) =

(
L11(y) L12(y)
LT12(y) L22(y)

)
, ∀y ∈ Rm,

D is equivalent to the following strongly feasible problem

RD max
y

bT y, s.t. L11(y) � 0, L12(y) = 0, L22(y) = 0

and the optimal value of RD is equal to v(D).

2. Under the setting of item 1, let

T :=

{
tI = t

(
I11 0
0 I22

)
∈ Sn

∣∣∣∣ t ∈ R
}
,

L :=

{(
0 L12(ŷ)

L12(ŷ)T L22(ŷ)

)
∈ Sn

∣∣∣∣ ŷ ∈ Rm
}
,

where I11 ∈ Sr and I22 ∈ Sn−r are identity matrices. Note that L is a linear space

because it contains the zero matrix (see RD). We take T +L = T ⊕L as perturbation

space, and consider the following SDP

RD(S) max
y

bT y, s.t. L11(y) + s11I11 � 0, L12(y) = S12, L22(y) + s11I22 = S22

obtained by adding the perturbation

S =

(
S11 S12

ST12 S22

)
= s11I +

(
0 S12

ST12 S22 − s11I22

)
∈ T ⊕ L

to RD, where S11 ∈ Sr, S22 ∈ Sn−r and S12 ∈ Rr×(n−r), and s11 ∈ R is the (1, 1)-

element of S. We note that S is decomposed as the sum of s11I ∈ T and S−s11I ∈ L,

which implies that L22(ŷ) = S22 − s11I22 holds for some ŷ ∈ Rm.

Let w(S) be the optimal value function of the perturbed system4 RD(S). Then,

w(0) = v(D) and w(S) is continuous at S = 0.

3Rescaling D corresponds to selecting a nonsingular matrix V and replacing the C and the Ai with
V CV T and V AiV T . This transformation preserves the set of y that are feasible for D and also preserves
the presence (or absence) of duality gaps. For the purposes of this paper, there is no difference between
analyzing a problem or its rescalings.

4Compared with RD, the first constraint of RD(S) is perturbed by S11 = s11I11, the second is shifted
by S12 from 0, and the third is shifted by S22 − s11I22 from 0.
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3. Under the setting of item 1, if the singularity degree of D is one, then there exists a

nonzero X ∈ Sn+ of rank n− r satisfying

C •X = 0, Ai •X = 0, i = 0, 1, . . . ,m, X � 0 (2.3)

with the form

X =

(
0 0
0 X22

)
, X22 � 0. (2.4)

Proof. Items 1 and 3 are an amalgam of well-known results about Sn+ and minimal faces,

so we only present a sketch of the proof. Let V := C + L, where L is the span of the Ai in

D. Let F the minimal face of Sn+ containing V ∩ Sn+. As discussed previously, such a face

must be as in (2.2) and have the property that (V ∩Sn+) ⊆ F and V ∩ (riF) 6= ∅. Rescaling

the C and Ai using V leads to the proof of item 1.

As for item 3, if the singularity degree is 1, then F = K∩ {X}⊥, where X ∈ Sn+ ∩V⊥ is

nonzero and satisfies V ∩ (ri (Sn+ ∩ {X}⊥)). In view of (2.2), X has rank n− r and satisfies

(2.3) and (2.4).

It remains to prove item 2. Since w(0) corresponds to the unperturbed problem, we have

w(0) = v(D). Then, since RD satisfies Slater’s condition, continuity of w(S) at S = 0 in

item 2 is obtained as a consequence of Theorem 4.1.9 of [20]. For the sake of completeness,

we describe a detailed proof in Appendix A.

We note that even though Proposition 2.1 is presented for problems in dual format, a

completely analogous discussion can be done for P if we let K := Sn+, V := {X ∈ Sn |
Ai •X = bi, i = 1, . . . ,m} in (Feas).

3 Main Result and Proof

In this section, we show continuity of the limiting pd-regularized optimal value function va
defined in (1.3) at θ = 0 and θ = π/2 under the assumption that the singularity degree of

P and D is one. We also show bijectivity of va. More precisely, we prove the following.

Theorem 3.1 Suppose that P and D are feasible. Then the following statements hold on

the limiting pd-regularized optimal value function va : [0, π/2]→ R.

1. If the singularity degree of D is one, then va(θ) is continuous at θ = π/2.

2. If the singularity degree of P is one, then va(θ) is continuous at θ = 0.

3. If the singularity degree of both P and D is one, then va(θ) is continuous at θ = 0 and

θ = π/2. Furthermore, va is a monotonically decreasing continuous bijective function

from [0, π/2] to [v(D), v(P)].

In [17], we introduced the function ṽ : R+ ∪ {∞} → R as

ṽ(β) := lim
t↓0

v(t, tβ) (0 ≤ β <∞), ṽ(∞) := lim
t↓0

v(0, t). (3.1)
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In what follows, we define the function v̄ : R+ ∪ {∞} → R given by

v̄(α) := lim
t↓0

v(tα, t) (0 ≤ α <∞), v̄(∞) := lim
t↓0

v(t, 0). (3.2)

The existence of the limit in (3.1) and (3.2) is shown in [17, Theorem 1]. We see, under the

convention that 1/0 =∞ and 1/∞ = 0, that

v̄(α) = ṽ

(
1

α

)
, ṽ(β) = v̄

(
1

β

)
. (3.3)

It also follows that

va(θ) = lim
t↓0

v(t cos θ, t sin θ) = ṽ(tan θ) = v̄(cot θ). (3.4)

We provide the following proposition on a few fundamental properties of ṽ and v̄.

Proposition 3.2 The following items hold.

1. ṽ(β) is monotone decreasing on R+∪{∞}, convex on R+ and continuous on R+\{0}.

2. v̄(α) is monotone increasing on R+∪{∞}, concave on R+ and continuous on R+\{0}.

Proof. Monotonicity and convexity of ṽ is given in [17, Theorem 4]. Given the convexity

of ṽ on R+, continuity of ṽ(α) on R+\{0} follows from the well-known fact that a convex

function is continuous over the relative interior of its domain, e.g., [14, Theorem 10.1]. Item 2

is the dual counterpart to item 1, and follows in a similar manner as outlined below. It was

shown in [17, item 2 of Proposition 2] that for any fixed t > 0, v(tα, t) is a concave function

in α. Furthermore, since the feasible region of D(tα, t) gets larger as α increases (with

respect to the y variable) while the objective function is unchanged, v(tα, t) is a monotone

increasing function in α for any fixed t > 0. Thus, v(tα, t) is monotone increasing and

concave in α for any fixed t > 0. Since v̄(α) = limt→0 v(tα, t), monotonicity and concavity

of v̄ is proved by taking the limit as t→ 0 in the similar manner as was done in the proof

of monotonicity and convexity of ṽ in [17, Theorem 4].

Now we are ready to prove Theorem 3.1. Before proceeding to the proof, we com-

ment on the linear independence of the A1, . . . , Am. Theorem 3.1 itself does not require

the assumption of linear independence of A1, . . . , Am to hold. Nevertheless, we assume

linear independence of A1, . . . , Am in some parts of the proof. We remark that this is not

an essential assumption and it avoids certain unnecessary complications. Indeed, even if

A1, . . . , Am are not linearly independent, we can choose a subset {Ai1 , . . . , Aip}, say, as a

basis of the linear space spanned by A1, . . . , Am. The pd-regularized optimal value function

v(ε, η) remains unchanged no matter whether {A1, . . . , Am} or {Ai1 , . . . , Aip} is used for

representing the SDP under consideration.
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3.1 Proof of item 1.

First we prove item 1 of Theorem 3.1. We start by recalling our main assumption for this

proof.

We assume feasibility of P and D, and assume that the singularity degree of D is one.

Furthermore, we assume that the problem data has been rescaled as in item 1 of Propo-

sition 2.1. And, since the singularity degree is assumed to be one, we can further assume

that we are in the setting of item 3 of Proposition 2.1. With that, by definition, v(tα, t) is

the optimal value of the following problem,

D(tα, t) max bT y − t(l(y)− c) s.t. L(y) + tαI � 0, (3.5)

where we define

l(y) := L(y) • I, c := C • I.

In what follows we will use the following convention, given an arbitrary Z ∈ Sn, we will use

Z11, Z22 and Z12 to denote the blocks of Z according to the block division in Proposition 2.1,

so that Z =

(
Z11 Z12

ZT12 Z22

)
with Z11 ∈ Sr, Z22 ∈ Sn−r, Z12 ∈ Rr×(n−r).

We start the proof with the following two preliminary lemmas.

Lemma 3.3 The following statements hold:

1. v(D) ≤ v̄(α) ≤ v(P).

2. For t > 0, v(t, 0) is finite and limt↓0 v(t, 0) = v̄(∞) = v(P).

3. For t > 0, v(0, t) is finite and limt↓0 v(0, t) = v̄(0) = v(D).

Proof. Item 1 readily follows from Theorem 1.2, since v̄ is the function va with a different

parametrization, see (3.4). To prove item 2, we observe that P and P(t, 0) have the same

feasible region. Since P is feasible, P(t, 0) is feasible and v(t, 0) < +∞. Since D is feasible,

D(t, 0) is also feasible. This means that −∞ < v(t, 0). Thus, v(t, 0) is finite. It follows

from item 1 of Theorem 1.2 that limt↓0 v(t, 0) = v(P). Item 3 is the dual counterpart of

item 2 and follows analogously.

Lemma 3.4 There exists a constant M > 0 such that for every t ≥ 0 the following impli-

cation holds:

L22(y) + tI22 � 0 =⇒ tMI22 � L22(y) + tI22 � 0. (3.6)

Proof. Recall that we are under the setting of item 1 of Proposition 2.1 and D has

singularity degree one. With X as in item 3 of Proposition 2.1, the rank of X22 is n − r.
Since X22 is positive definite, there exists a constant κ > 0 such that

‖Y ‖ ≤ κX22 • Y, ∀Y ∈ Sn−r+ , (3.7)

e.g., [5, Lemma 26].
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Next, given some arbitrary t > 0, we define

Ct := {Y ∈ Sn−r+ | Y = L22(y) + tI22 � 0, y ∈ Rm}.

By the assumptions on X we have 0 = X •Ai = Ai22 •X22 and 0 = C •X = C22 •X22.

That is, L22(y) •X22 = 0 holds for every y. In view of (3.7), for Y ∈ Ct, since Y belongs to

Sn−r+ as well, we conclude that the following bound holds.

‖Y ‖ ≤ κX22 • (L22(y) + tI22) = κt(X22 • I22).

In particular, letting M := κ(X22 • I22), we conclude that the maximum eigenvalue of

an arbitrary Y ∈ Ct satisfies λmax(Y ) ≤ tM and M does not depend on t. In particular,

tMI22 � L22(y) + tI22 holds for all y such that L22(y) + tI22 � 0.

In the following, we define

l212(y) := L12(y) • LT12(y),

l11(y) := L11(y) • I11,

l22(y) := L22(y) • I22.

(3.8)

We will use M as a global constant satisfying (3.6) in Lemma 3.4. Let us consider the

following problem.

RD1(α, t) max bT y − l212(y)

Mα
, s.t.

(
L11(y) + tαI11 L12(y)

LT12(y) L22(y) + tαI22

)
� 0.

Let u1(α, t) be the optimal value function of RD1(α, t). We show that v(tα, t) is majorized

by the optimal value u1(α, t) as follows.

Lemma 3.5 For t > 0 and α > 0, we have

v(0, t) ≤ v(tα, t) ≤ u1(α, t) + t2αn+ tc. (3.9)

Proof. We prove the first inequality. Recall that v(0, t) is the optimal value of D(0, t) and

v(tα, t) is the optimal value of D(tα, t). Since the objective functions of the two problems

are identical and the feasible region of D(tα, t) contains the feasible region of D(0, t) (with

respect to the y variable), we have v(0, t) ≤ v(tα, t).

Now we prove the second inequality. Recalling the definitions in (3.8) and (3.5), D(tα, t)

can be written as follows.

max bT y + t(c− l11(y)− l22(y)), s.t.

(
L11(y) + tαI11 L12(y)

LT12(y) L22(y) + tαI22

)
� 0. (3.10)

We note that D(tα, t) and RD1(α, t) share the same feasible region. Furthermore, D(tα, t)

satisfies Slater’s condition so there exists a sequence of yk corresponding to feasible solu-

tions to D(tα, t) such that the corresponding matrices are all positive definite and (bT yk −
tl11(yk)− tl22(yk) + tc) converges to the optimal value D(tα, t). Thus, in order to establish
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the second inequality in (3.9), it is enough to examine the y’s that correspond to positive

definite matrices.

So, let y be feasible solution to D(tα, t) associated to a positive definite matrix. First,

we find an upper bound on −tl11(y). Computing the Schur complement, we obtain

L11(y) + tαI11 − L12(y)(L22(y) + tαI22)−1LT12(y) � 0. (3.11)

Since L22(y)+tαI22 � 0, we obtainMtαI22 � (L22(y)+tαI22) from (3.6). So each eigenvalue

of (L22(y)+tαI22) is less than or equal to Mtα. This implies that (L22(y)+tαI22)−1 � I22
Mtα .

Therefore, we have

L12(y)

(
(L22 + tαI22)−1 − I22

Mtα

)
L12(y)T � 0,

which implies that

L12(y)(L22 + tαI22)−1L12(y)T � L12(y)
I22

Mtα
L12(y)T .

Then, in view of (3.11), we obtain

L11(y) + tαI11 −
1

tMα
L12(y)L12(y)T � 0.

Taking the inner-product with I11 and multiplying by t, we obtain

tl11(y) + t2αr − 1

Mα
l212(y) ≥ 0. (3.12)

Since L22(y) + tαI22 � 0, we have −tl22(y) ≤ t2α(n− r). From this inequality and (3.12),

we see that the objective function of (3.10) is majorized by the objective function of RD1

plus a constant t2αn+ tc as follows.

bT y + t(c− l11(y)− l22(y)) ≤ bT y − l212(y)

Mα
+ t2αn+ tc.

Since the optimal value of (3.10) (or equivalently D(tα, t)) is v(tα, t) and the optimal

value of RD1(α, t) is u1(α, t), the second inequality of (3.9) follows immediately from this

inequality.

Lemma 3.6 Let α > 0. Then, there exists a constant t̂α > 0 depending on α such that, if

t ∈ (0, t̂α) and {yk} is an optimal sequence of RD1(α, t)5 then the following bound holds

for sufficiently large k:

l212(yk) ≤M(v(P)− v(D) + 2)α = Kα, (3.13)

where K := M(v(P)− v(D) + 2) and M is a constant as in Lemma 3.4.

5RD1(α, t) is not a linear SDP, but we can define optimal sequences analogously as in Section 2.
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Proof. Recall that limt↓0 v(tα, 0) = v(P) and let t̂α > 0 be small enough such that

v(tα, 0) ≤ v(P) +
1

2
(3.14)

holds for 0 < t < t̂α.

Let t ∈ (0, t̂α) and let {yk} be an optimal sequence to RD1(α, t). Each yk is also a

feasible solution to D(tα, 0), so the following inequality holds for every k

bT yk ≤ v(tα, 0). (3.15)

Next, let {ykD} be an optimal sequence to D. Then limk→∞ b
T ykD = v(D). Recalling that

we are under the setting of Proposition 2.1, we have that L12(ykD) = 0 holds which implies

that l212(ykD) = 0 holds as well, see (3.8). Furthermore, each ykD is feasible to RD1(α, t)

as well. In view for these facts, for sufficiently large k, we have v(D) − 1 ≤ bT ykD ≤ v(D)

which leads to

v(D)− 1 ≤ bT ykD

= bT ykD −
1

Mα
l212(ykD)

≤ v(RD1(α, t))

≤ bT yk − 1

Mα
l212(yk) +

1

2

≤ v(tα, 0)− 1

Mα
l212(yk) +

1

2

≤ v(P) + 1− 1

Mα
l212(yk),

where the first equality holds because l212(ykD) = 0, the second inequality holds because ykD is

feasible for RD1(α, t), and the third inequality holds (for sufficiently large k) because {yk}
is an optimal sequence. Moreover, the last two inequalities follow from (3.15) and (3.14),

respectively. Overall, we have

1

Mα
l212(yk) ≤ v(P)− v(D) + 2,

for sufficiently large k.

Now we consider

RD2(α, t) max bT y, s.t.

(
L11(y) + tαI11 L12(y)

LT12(y) L22(y) + tαI22

)
� 0, l212(y) ≤ Kα,

where K is as in Lemma 3.6. Let us denote by u2(α, t) the optimal value of RD2(α, t).

Lemma 3.7 For α > 0, the function defined by ū(α) := limt↓0 u2(α, t) is well-defined and

finite.
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Proof. We note that v(tα, 0) is the optimal value of D(tα, 0) and D(tα, 0) is precisely

the problem obtained by removing the constraint “l212(y) ≤ Kα” from RD2. Therefore, we

have

u2(α, t) ≤ v(tα, 0).

By item 2 of Lemma 3.3, for sufficiently small t > 0, v(tα, 0) is bounded from above by a

finite value, which implies that the same is true for u2(α, t). For fixed α, if we increase t,

the feasible region of RD2(α, t) enlarges (more precisely, it does not shrink). Therefore,

u2(α, t) ≤ u2(α, t̂) holds if 0 < t ≤ t̂, namely, u2(α, t) is a monotone increasing function

with respect to t. In addition, u2(α, t) is bounded below by v(D), since any feasible solution

to D is feasible to RD2(α, t) (again, we recall that we assume that Proposition 2.1 holds,

so L12(y) = 0 and L22(y) = 0 if y is feasible to D). Therefore, limt→0 u2(α, t) exists and is

finite, thus showing that ū(α) is a well-defined function assuming finite values.

Now we are ready to finish the proof of item 1 of Theorem 3.1. For α > 0 and t̂α > 0 as

in Lemma 3.6, an optimal sequence {yk} to RD1(α, t) satisfies (3.13) for sufficiently large

k. Furthermore, for each yk, the objective value associated to RD2(α, t) is greater or equal

than the corresponding objective value associated to the problem RD1(α, t). In view of

these facts and of Lemma 3.6, we see that u1(α, t) ≤ u2(α, t). Combined with Lemma 3.5,

we obtain

v(0, t) ≤ v(tα, t) ≤ u1(α, t) + t2αn+ tc ≤ u2(α, t) + t2αn+ tc. (3.16)

Recalling the definitions of v̄ and ū in (3.2) and Lemma 3.7, respectively, and invoking

item 1 of Theorem 1.2, we let t→ 0 in (3.16) in order to obtain

v(D) ≤ v̄(α) ≤ ū(α).

Therefore, if we can show that

lim
α↓0

ū(α) = lim
α↓0

lim
t↓0

u2(α, t) = v(D), (3.17)

then limα↓0 v̄(α) = v(D) will hold as well, which, in view of (3.4) and Theorem 1.2 implies

the continuity of va at θ = π/2, which is what we wanted to show. We will prove (3.17) by

contradiction.

Proof of (3.17): First, we recall that, in view of item 1 of Proposition 2.1, every y that is

feasible to D is feasible to RD2(α, t), for every α > 0, t > 0. Therefore

v(D) ≤ u2(α, t), ∀α > 0,∀t > 0,

which implies that

v(D) ≤ ū(α), ∀α > 0.

If (3.17) does not hold, there exists δ > 0 and a positive sequence {αk} such that limk→∞ α
k =

0 for which

0 < 2δ ≤ |ū(αk)− v(D)| = ū(αk)− v(D)
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holds for sufficiently large k. Next, since ū(αk) = limt↓0 u2(αk, t), for any given k, we can

pick tk ∈ (0, 1/k] such that |ū(αk)− u2(αk, tk)| ≤ 1/k.

Therefore, there exists a sequence (αk, tk)→ (0, 0) such that

u2(αk, tk) > v(D) + δ

holds for sufficiently large k. Then, for each k sufficiently large, there exists a feasible

solution yk to RD2(αk, tk) satisfying

bT yk ≥ v(D) + δ.

Next, we define Sk11 := tkαkI11, Sk22 := L22(yk) + tkαkI22, Sk12 := L12(yk) and Sk :=(
Sk11 Sk12

(Sk12)T Sk22

)
. Note that Sk ∈ T ⊕ L holds, where T ⊕ L was introduced as pertur-

bation space in item 2 of Proposition 2.1. By definition, yk is a feasible solution to the

following problem.

RD3 max
y

bT y, s.t.

(
L11(y) + Sk11 L12(y)

LT12(y) L22(y) + tkαkI22

)
� 0,

L22(y) + tkαkI22 = Sk22, L12(y) = Sk12, l212(y) ≤ Kαk.

Because yk is also feasible to RD2(αk, tk), we have Sk22 = L22(yk) + tkαkI22 � 0 and by

Lemma 3.4, Sk22 goes to 0 as tk and αk goes to zero. Similarly, since L12(yk) • L12(yk) =

l212(yk) ≤ Kαk holds, Sk12 also goes to zero as αk goes to 0. By definition, Sk11 goes to zero

as tk and αk goes to 0. So, overall Sk goes to 0 as k →∞.

Finally, recalling item 2 of Proposition 2.1, we note that yk is also a feasible solution to

RD(Sk) satisfying bT yk ≥ v(D) + δ. Therefore, w(Sk) ≥ v(D) + δ and Sk → 0 holds as k

goes to infinity. But this contradicts the continuity of w(S) at S = 0, that is, the conclusion

of item 2 of Proposition 2.1.

Thus, (3.17) must hold, and the proof of item 1 of Theorem 3.1 is complete.

3.2 Proof of item 2

Now, we proceed to prove item 2 of Theorem 3.1. Item 2 is the dual counterpart of item 1,

and therefore one may argue that item 2 follows automatically from item 1 by primal-dual

symmetry. But to be more precise, we proceed as follows. Our purpose is to show that

va(θ) is continuous at θ = 0, which is equivalent to continuity of ṽ(β) at β = 0. To this

end, we rewrite P in the dual format and apply item 1.

Without loss of generality, we may assume the matrices A1, . . . , Am are linearly inde-

pendent. Let n̄ := n×(n+1)/2−m. We rewrite P(ε, η) in the dual format by taking a basis

A1
⊥, . . . , A

n̄
⊥ of the space X := {X ∈ Sn | Ai•X = 0, i = 1, . . . ,m}. Let X∗ be a n×n matrix

satisfying Ai •X∗i = bi for i = 1, . . . ,m. Representing X as {X̃ ∈ Sn | X̃ = −
∑n̄

i=1A
i
⊥ỹi}

and reversing the sign of the objective function to flip “max” and “min”, we obtain the

following representation of P(ε, η).
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max
ỹ,X̃

∑n̄
i=1(b̃i + εAi⊥ • I)ỹi − (C + εI) • (X∗ + ηI)

s.t. (X∗ + ηI)−
∑n̄

i=1A
i
⊥ỹi = X̃, X̃ � 0,

where b̃i = Ci • Ai⊥ for i = 1, . . . , n̄. The optimal value of this problem is −v(ε, η) if

(ε, η) 6= 0, and −v(P) if (ε, η) = 0.

Dropping the constant term −(C + εI) • (X∗ + ηI), we obtain the following problem.

DP(η, ε) : max
ỹ,X̃

∑n̄
i=1(b̃i + εAi⊥ • I)ỹi

s.t. (X∗ + ηI)−
∑n̄

i=1A
i
⊥ỹi = X̃, X̃ � 0.

The dual problem of DP(η, ε) is

PD(η, ε) : min
S̃

(X∗ + εI) • S̃
s.t. Ai⊥ • S̃ = b̃i + ηAi⊥ • I, i = 1, . . . , n̄, S̃ � 0,

Note that PD(η, ε) coincides with D(ε, η) represented in standard form using Ai⊥ (i =

1, . . . , n̄) and X∗, except that min and max are flipped by multiplying the objective function

by −1 and the constant term −(C + εI) • (X∗ + ηI) is dropped.

Let us denote by v1(η, ε) the common optimal value of PD(η, ε) and DP(η, ε) (if it

exists). Since X part of P(ε, η) and X̃ part of DP(η, ε) coincide, and since S part of D(ε, η)

and S̃ part of PD(ε, η) coincide, v1(η, ε) is well-defined if and only if v(ε, η) is well-defined,

and the two functions are connected by the relation

v1(η, ε) = −v(ε, η) + (C + εI) • (X∗ + ηI) (3.18)

for (ε, η) 6= (0, 0). In the case of (ε, η) = (0, 0), we have

v(DP(0, 0)) = −v(P) + C •X∗, v(PD(0, 0)) = −v(D) + C •X∗. (3.19)

Now, consider the primal-dual pair DP(0, 0) and PD(0, 0). It follows from (3.19) that

PD(0, 0) and DP(0, 0) have a finite nonzero duality gap that is equal to the duality gap

between P and D. Furthermore, the singularity degree of DP(0, 0) and PD(0, 0) is one,

because applying facial reduction to DP(0, 0) and PD(0, 0) corresponds to applying facial

reduction to P and D, respectively, which finishes in one step. Therefore, we can apply the

result of item 1 to DP(0, 0).

We define v̄1(β) = limt↓0 v1(tβ, t). Then it follows from item 1 that v̄1(β) is continuous

at β = 0. Due to (3.18) and the definition of v̄1, we have v̄1(β) = −ṽ(β) + C • X∗.
Consequently, ṽ(β) is continuous at β = 0, as we desired.

3.3 Proof of item 3

We move on to a proof of item 3 of Theorem 3.1. The first half of item 3 follows immediately

from items 1 and 2. In the following, we deal with the second half of item 3. Since
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monotonicity and continuity of va on [0, π/2] was already established, we focus on the

bijectivity of va. To this end, we make use of Proposition 3.2, which ensures monotonicity,

convexity/concavity, and continuity of ṽ and v̄.

In view of (3.4), it is enough to argue that v̄ is bijection from [0,∞) ∪ {+∞} to

[v(D), v(P)] with the convention that v̄(+∞) = limα→+∞ v̄(α) = v(P) as in (3.2).

By contradiction, assume that v̄(α) is (monotone increasing but) not strictly monotone

increasing. Then, there exists an interval J ⊆ R+ where v̄ is constant. Slightly abusing the

notation, let us denote this constant by v̄(J). There are three cases to be considered:

(i) v̄(J) = v̄(0) = v(D);

(ii) v(D) = v̄(0) < v̄(J) < v̄(∞) = v(P);

(iii) v̄(J) = v̄(∞) = v(P).

In case (i), we recall that v̄ is monotone increasing, so v(D) is the minimum value of v̄

throughout R+. Since this minimum value is attained in an interval and v̄ is concave,

v̄ must be constant throughout R+, see [14, Theorem 32.1] for the analogous fact about

convex functions. That is, v̄(α) = v(D) < v(P) holds for all α > 0. This contradicts the

fact that limα→∞ v̄(α) = v(P). So case (i) cannot occur.

In case (ii), let x be a point in the relative interior of J , then x would be a local

maximum of v̄ that is not global. This contradicts the concavity of v̄ and cannot occur.

Finally, in case (iii), since v̄ is monotone increasing and v(P) is the maximum value, J

can be taken to be a closed half line of the form [α∗,+∞), with α∗ > 0. Now we turn our

attentions to ṽ and recall that v̄ and ṽ are related as in (3.3). We have v̄(α) = ṽ(1/α) = v(P)

for all α ≥ α∗. Recall that ṽ(0) = v(P), and thus ṽ(0) = ṽ(1/α) = v(P), for all α ≥ α∗.

Since v(P) is the maximum value of the convex function ṽ, ṽ must be constant throughout

its domain, again by [14, Theorem 32.1]. Therefore, ṽ(β) = v(P) holds for all β ∈ R+.

Therefore,

lim
α↓0

v̄(α) = lim
α↓0

ṽ(1/α) = v(P) > v(D) = v̄(0),

which contradicts the continuity of v̄ at α = 0.

4 A Counter-Example

In the previous section, we established that the limiting pd-regularized optimal value

function va is a monotonically decreasing continuous bijective function from [0, π/2] to

[v(D), v(P)] if P and D admit a finite nonzero duality gap and the singularity degree

of P and D is one. In this section, we present a counter-example where va([0, π/2]) 6=
[v(D), v(P)]. The instance is obtained by modifying Example 1.1 and the singularity de-

gree of this instance is two. We will show that continuity of va(θ) is violated at θ = π/2.
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Let us consider the following semidefinite program in dual format:

max
y∈R3

y1 s.t.


1− y1 0 −y3 −y3

0 −y2 −y1 0
−y3 −y1 −y3 0
−y3 0 0 0

 � 0. (4.1)

The (4, 4)-element of the matrix in (4.1) is zero, this forces y3 to be 0 in order for y ∈ R3

to be feasible. This, however, implies that the (3, 3)-element is 0, which leads to y1 = 0.

Therefore, the optimal value of (4.1) is 0.

The corresponding primal P is

min
X∈S4

X11 s.t. X11 + 2X23 = 1, X22 = 0, X33 + 2(X13 +X14) = 0, X � 0. (4.2)

If X is feasible for (4.2), then we must have X22 = 0 and X23 = 0, which implies that

X11 = 1. Therefore the optimal value of (4.2) is 1.

In conclusion, there is a duality gap between the primal dual pair of problems (4.1),

(4.2). However, in contrast to Example 1.1, the singularity degree of (4.1) is two6, so we

are outside of the scope of Theorem 3.1.

Now we consider the problem D(ε, η) as in (1.2):

max
y∈R3

(1 + η)y1 + ηy2 + ηy3 s.t.


1 + ε− y1 0 −y3 −y3

0 ε− y2 −y1 0
−y3 −y1 −y3 + ε 0
−y3 0 0 ε

 � 0.

Recalling the definition va in (3.4), we prove the following theorem, which states that

the range of va is {0, 1}. Therefore, in this case, duality gap fails to be filled completely in

the sense of Theorem 3.1.

Theorem 4.1 The following statements hold for the problem (4.1):

1. va(θ) = v(P) = 1 for all θ ∈ [0, π/2),

2. va(π/2) = v(D) = 0.

Proof. In view of (3.4), it is enough to analyze v̄ (defined in (3.2)). We will show that

v̄(0) = 0 and v̄(α) = 1 for all α > 0. Since v(D) = v̄(0) = 0 and v(P) = v̄(∞) = 1, this

will imply that v̄ is discontinuous at 0 and is continuous at +∞. We analyze the problem

D(tα, t):

max
y∈R3

(1 + t)y1 + ty2 + ty3 s.t.


1 + tα− y1 0 −y3 −y3

0 tα− y2 −y1 0
−y3 −y1 −y3 + tα 0
−y3 0 0 tα

 � 0. (4.3)

6To see that, we observe that the first reducing direction s1 in (2.1) must be a 4× 4 matrix whose only
nonzero and positive entry is its (4,4)-element. One can then confirm that the SDP obtained by performing
one step of facial reduction with s1 is essentially Example 1.1 which requires one more step of facial reduction
to recover strong feasibility.
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We already know that 0 ≤ v̄(α) ≤ 1 for 0 ≤ α ≤ ∞. Let α > 0 be fixed. In view of the

definition of v̄ in (3.2), in order to prove that v̄(α) = 1 holds, it is enough to show that for

any δ > 0, if t > 0 is sufficiently small, the problem (4.3) admits a feasible solution yt ∈ R3

with objective value at least 1− δ, i.e.,

(1 + t)yt1 + tyt2 + tyt3 ≥ 1− δ. (4.4)

This would imply v(tα, t) ≥ 1− δ for sufficiently small t and thus v̄(α) ≥ 1− δ holds. Then,

since δ is arbitrary, we obtain v̄(α) = 1.

In view of this, we focus our efforts on establishing the existence of feasible solutions as in

(4.4). We will proceed by analyzing what conditions must a feasible solution to (4.3) satisfy.

We note that since (4.3) is strongly feasible, there are feasible solutions corresponding to

positive definite matrices such that the objective value is arbitrarily close to the optimal

value. Therefore, it is enough to focus on analyzing the y’s that are feasible to (4.3) and

correspond to positive definite matrices.

So suppose that y ∈ R3 corresponds to a positive definite solution to (4.3). First, we

take the Shur complement with respect to the (4, 4)-element. Then, positive definiteness is

equivalent to  1 + tα− y1 −
y23
tα 0 −y3

0 tα− y2 −y1

−y3 −y1 −y3 + tα

 � 0. (4.5)

Next, we take the Shur complement of the left hand side of (4.5) with respect to the

(1, 1)-element. Then, positive definiteness is equivalent to the following conditions

1 + tα− y1 −
y2

3

tα
> 0,

 tα− y2 −y1

−y1 −y3 + tα− y23

1+tα−y1−
y23
tα

 � 0.

This is equivalent to

1 + tα− y1 −
y23
tα > 0,

tα− y2 > 0, (tα− y2)

(
−y3 + tα− y23

1+tα−y1−
y23
tα

)
− y2

1 > 0.
(4.6)

Diving the third inequality by

(
−y3 + tα− y23

1+tα−y1−
y23
tα

)
which is ensured to be positive

in view of (4.6), we obtain that

tα− y2 > 0, 1 + tα− y1 −
y23
tα > 0,

tα− y21

−y3+tα−
y23

1+tα−y1−
y23
tα

> y2, −y3 + tα− y23

1+tα−y1−
y23
tα

> 0. (4.7)

is equivalent to (4.6). Therefore, if y ∈ R3 satisfies (4.7), then y is a feasible solution to

(4.3) corresponding to a positive definite matrix.
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Let y3 := −γ
√
αt, and let y1 := 1− γ2 − ζ, where γ, ζ are arbitrary positive numbers.

Then, we have

1 + tα− y1 −
y2

3

tα
= 1 + tα− y1 − γ2 = tα+ ζ > 0

and

−y3 + tα− y2
3

1 + tα− y1 −
y23
tα

= γ
√
αt+ αt− γ2αt

αt+ ζ
.

Furthermore, let

y2 := tα− y2
1

−y3 + tα− y23

1+tα−y1−
y23
tα

− ξ = tα− (1− γ2 − ζ)2

γ
√
αt+ αt− γ2αt

αt+ζ

− ξ,

where ξ > 0 is an arbitrary positive number. Then y := (y1, y2, y3) defined as above

constitutes a strict feasible solution to (4.3) when t > 0 is sufficiently small, since they

satisfy (4.7) when t > 0 is sufficiently small. Furthermore, the objective value

(1 + tα)y1 + ty2 + ty3 = (1 + tα)(1− γ2 − ζ) + t2α− t(1− γ2 − ζ)2

γ
√
αt+ αt− γ2αt

αt+ζ

−tξ − γt
√
αt,

which can be arbitrarily close to 1 − γ2 − ζ, if t > 0 is taken sufficiently close to zero.

By taking γ2 + ζ = δ/2, we obtain a strict feasible solution to (4.3) satisfying (4.4) for t

sufficiently close to 0, as we desired.

5 Concluding Discussion

In this paper, we analyzed the behavior of va(θ) which was introduced in [17] to bridge the

primal and dual optimal value in the presence of a nonzero duality gap. We assumed that

P and D are feasible and they have nonzero duality gap, and showed that, surprisingly, va
is a monotone bijective function from [0, π/2] to [v(D), v(P)] if the singularity degrees of P

and D are both one, thus filling the duality gap completely. However, we also produced an

example showing that when the singularity degree is higher, then va can be discontinuous

at θ = 0. The study of deeper relations between the discontinuity of va and the singularity

degree of P and D is an interesting topic for further research. Another interesting direction

of further research is to extend the results to the case where either P or D is weakly

infeasible (or both!). We note that there are several papers focused on weakly infeasible

problems and their underlying structure [6, 10, 18]. These works may provide clues on how

to extend our results to the weakly infeasible case.
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A Proof of item 2 of Proposition 2.1

In this appendix, we provide a proof of item 2 of Proposition 2.1. Without loss of generality,

we may assume that A1, . . . , Am are linearly independent. Let V := {
∑m

i=1A
iyi | y ∈ Rm}.

Since RD is feasible, the subspace

W := {W =
m∑
i=1

Aiyi | y ∈ Rm, W12 = 0,W22 = 0}

of V is nonempty. Here we are using the convention that given Z ∈ Sn, the matrices

Z11 ∈ Sr, Z12 ∈ Rr×(n−r), Z22 ∈ Sn−r denote the blocks of Z according to the division given

in Proposition 2.1. We also recall that, in view of item (1) of Proposition 2.1, there exists

at least one y for which L12(y) = 0 and L22(y) = 0. This implies that L satisfies

L =

{(
0

∑m
i=1A

i
12yi∑m

i=1(Ai12)T yi
∑m

i=1A
i
22yi

) ∣∣∣∣ y ∈ Rm
}

and (
0 C12

CT12 C22

)
∈ L. (A.1)

In particular, L is a linear space. We define Y as the subspace of Sn whose (1, 1)-block is

zero, i.e., Y ∈ Sn belongs to Y if and only if Y11 = 0. Then, let π : Sn → Y denote the

orthogonal projection onto Y so that the following holds for every Y ∈ Sn:

π

((
Y11 Y12

Y T
12 Y22

))
=

(
0 Y12

Y T
12 Y22

)
.
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Recall that our perturbation space is T ⊕L. Given S ∈ T ⊕L, S is represented uniquely

as the sum of ST ∈ T and SL ∈ L. This decomposition is given as

S = s11I +

(
0 S12

ST12 S22 − s11I22

)
,

where I =

(
I11 0
0 I22

)
. With that, we have

ST = s11I ∈ T , SL =

(
0 S12

ST12 S22 − s11I22

)
∈ L. (A.2)

Now we are ready to proceed. For the proof of item 2 of Proposition 2.1, we take a

suitable basis of V as described in the following proposition.

Proposition A.1 There are matrices B1, . . . , Bm ∈ Sn with the following properties:

1. {B1, . . . , Bm} forms a basis of V.

2. {B1, . . . , Bk} forms a basis of W (k < m), in particular, Bi
12 = 0 and Bi

22 = 0 for all

i = 1, . . . , k.

3. Every element V =
∑m

i=1A
iyi ∈ V is written uniquely as

V =
k∑
i=1

Bizi +
m∑

i=k+1

Bizi

=

( ∑k
i=1B

i
11zi 0

0 0

)
+

( ∑m
i=k+1B

i
11zi

∑m
i=k+1B

i
12zi∑m

i=k+1(Bi
12)T zi

∑m
i=k+1B

i
22zi

)
.

4. There exists a nonsingular m×m matrix D such that Bi =
∑m

j=1 dijA
j (i = 1, . . . ,m)

holds. If y, z ∈ Rm are such that
∑m

i=1A
iyi =

∑m
j=1B

jzj, then yT = zTD.

Proof. To obtain the basis B1, . . . , Bm satisfying items 1 and 2, we first construct a

basis of W and then expand it by adding independent elements from V until the chosen

elements forms a basis of V. Item 3 is a direct consequence of items 1 and 2, and item 4

follows from a standard argument in linear algebra since {A1, . . . Am} and {B1, . . . , Bm}
are two bases of the same linear space V.

Lemma A.2 With the Bi as in Proposition A.1, define τ : Rm−k → L, τ12 : Rm−k →
Rr×(n−r) and τ22 : Rm−k → Sn−r such that

τ(zk+1, . . . , zm)

:=

(
0 τ12(zk+1, . . . , zm)

τ12(zk+1, . . . , zm)T τ22(zk+1, . . . , zm)

)
:=

(
0

∑m
i=k+1B

i
12zi∑m

i=k+1B
i
12zi

∑m
i=k+1B

i
22zi

)
= π

(
m∑

i=k+1

Bizi

)
.

Then, τ is a bijective linear map.
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Proof. We first observe that τ is surjective. Recall that {B1, . . . , Bm} is a basis of V
and L = π(V). Pick any element X in L. Since L = π(V), there exists z ∈ Rm such that

X = π(
∑m

i=1B
izi). Then it follows that

X = π

(
m∑
i=1

Bizi

)
= π

(
m∑

i=k+1

Bizi

)
=

m∑
k+1

π(Bi)zi = τ(zk+1, . . . , zm),

and this proves that τ is a surjection.

Next, we check that τ is injective by showing that its kernel is trivial. Suppose that

τ(zk+1, . . . , zm) = 0. That is,(
0

∑m
i=k+1B

i
12zi∑m

i=k+1B
i
12zi

∑m
i=k+1B

i
22zi

)
=

(
0 0
0 0

)
holds. Therefore,

∑m
i=k+1B

izi ∈ W. Since B1, . . . , Bk form a basis for W, there are

(z1, . . . , zk) such that
k∑
i=1

Bizi =
m∑

i=k+1

Bizi.

By the linear independence of the Bi, all the zi must be 0, so τ is injective as claimed.

Thus, τ is surjective and injective, and hence τ is bijective, and the proof is complete.

Now, we are ready to prove item 2, i.e., the optimal value function w(S) of the following

problem:

RD(S) min
y
bT y subject to L11(y) + s11I11 � 0, L12(y) = S12, L22(y) + s11I22 = S22,

where S ∈ T ⊕L, is continuous at S = 0. We note that s11I11 = S11 holds for any S ∈ T ⊕L.

To this end, we rewrite this problem in terms of Bi, i = 1, . . . ,m and z, to obtain that

minz b
TDT z s.t. C11 + s11I11 −

∑m
j=1B

j
11zj � 0,

C12 −
∑m

i=k+1B
i
12zi = S12,

C22 + s11I22 −
∑m

i=k+1B
i
22zi = S22.

(A.3)

Now, observe that the two equality constraints in (A.3) can be written as

τ12(zk+1, . . . , zm) = C12 − S12, τ22(zk+1, . . . , zm) = C22 − (S22 − s11I22). (A.4)

Since τ is a bijective mapping from Rm−k to L as was shown in Lemma A.2, its inverse

mapping is well-defined. Let us denote by τ inv the inverse mapping of τ . Slightly abusing

the notation, we write τ inv(L̃12, L̃22) as a function of L̃12 and L̃22 implicitly assuming that(
0 L̃12

L̃T12 L̃22

)
∈ L. Then, recalling that

(
0 C12

CT12 C22

)
∈ L and

(
0 S12

ST12 S22 − s11I

)
∈ L

(see (A.1), (A.2)), we see that (A.4) implies that

(zk+1, . . . , zm) = (τ inv
k+1(C12−S12, C22−(S22−s11I22)), . . . , τ inv

m (C12−S12, C22−(S22−s11I22))
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must hold, that is, (zk+1, . . . , zm) is determined uniquely by the perturbation S in (A.3).

Therefore, (A.3) is equivalent to the following semidefinite programs with respect to (z1, . . . , zk):

min
(z1,...,zk)

k∑
i=1

(Db)izi +
m∑

i=k+1

(Db)iτ
inv
i (C12 − S12, C22 − (S22 − s11I22))

s.t. (C11 + s11I11 −
m∑

j=k+1

Bj
11τ

inv
j (C12 − S12, C22 − (S22 − s11I22))) (A.5)

−
k∑
j=1

Bj
11zj � 0.

The optimal value function of (A.5) is is equal to w(S).

Since τ inv is a linear mapping and (A.1) and (A.2) holds, we have, for each j = k +

1, . . . ,m,

τ inv
j (C12 − S12, C22 − (S22 − s11I22)) = τ inv

j (C12, C22)− τ inv
j (S12, S22 − s11I22).

Therefore, we may further rewrite (A.5) as

min
(z1,...,zk)

k∑
i=1

(Db)izi +
m∑

i=k+1

(Db)iτ
inv
i (C12, C22)−

m∑
i=k+1

(Db)iτ
inv
i (S12, S22 − s11I22)

s.t. (C11 +
m∑

j=k+1

Bj
11τ

inv
j (C12, C22)) + s11I11 (A.6)

−
m∑

j=k+1

Bj
11τ

inv
j (S12, S22 − s11I22)−

k∑
j=1

Bj
11zj � 0.

Overall, (A.6) is equivalent to RD(S) and the optimal value of (A.6) as a function of

perturbation S ∈ T ⊕ L coincides with w(S).

Since the second and third term of the objective function is a constant and a linear

function of S, respectively, in order to establish continuity of w(S) at S = 0, it is enough

to show continuity of the optimal value function of the semidefinite program

min
(z1,...,zk)

k∑
i=1

(Db)izi

s.t. (C11 +
m∑

j=k+1

Bj
11τ

inv
j (C12, C22)) + s11I11 (A.7)

−
m∑

j=k+1

Bj
11τ

inv
j (S12, S22 − s11I22)−

k∑
j=1

Bj
11zj � 0.

obtained by dropping the second and the third terms of the objective function in (A.6).

The feasible region of (A.7) is the same as (A.6) and hence (A.7) is strongly feasible at

25



S = 0. The perturbation term

s11I11 −
m∑

j=k+1

Bj
11τ

inv
j (S12, S22 − s11I22)

exists only at “the constant part of the constraint” in (A.7) and this term vanishes at

S = 0. Therefore, we can directly apply Theorem 4.1.9 of [20] to show that the optimal

value function of (A.7) is continuous at S = 0 and so is the optimal value function of (A.6).

This completes the proof.
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