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Abstract

The stochastic dual dynamic programming (SDDP) algorithm introduced by Pereira and Pinto in 1991 has
sparked essential research in the context of water resources management, mainly due to its ability to address
large-scale multistage stochastic problems. This paper aims to provide a tutorial-type review of 32 years of
research since the publication of the SDDP algorithm. A systematic academic literature search identified 174
scientific papers on water resource management published in 96 different journals. A bibliometric analysis
is conducted to identify the main methods used to tackle this type of problem and to determine recent
and future research trends. Our analysis reveals that stochastic dynamic programming, which was initially
the most used approach, has now been replaced by multistage stochastic programming. Risk-averse and
robust approaches are also gaining strength in recent years due to uncertainty related to climate change.
Water inflows have been the main source of uncertainty considered in the literature by far, followed by,
e.g., electricity demand, electricity prices, fuel costs, and renewable energy availability. In addition, as
computational capacity continues to increase, aspects of nonlinearities, disaggregated networks, and different
water management strategies are increasingly considered to make modeling more realistic. This work suggests
there is still a need for tractable stochastic optimization models for large-scale power and water systems that
deal with multiple uncertainty sources and nonlinearity approximations.

Keywords: Water resources management, Hydrothermal scheduling, Optimization under uncertainty,
Stochastic dual dynamic programming, Bibliometric approach.

1. Introduction

Managing energy production based on hydroelectric resources in a centralized system is a complex task
carried out by a central dispatcher whose primary goal is to determine an optimal dispatch policy for thermal
and hydroelectric power plants at the lowest possible operational cost (Labadie, 2004). This problem is
typically known as hydrothermal scheduling. It is also named hydrothermal coordination or hydrothermal
planning. The energy production process for a hydroelectric plant consists on releasing water stored in
a reservoir that falls from a certain height, goes through a hydraulic turbine, and makes it rotates, thus
generating electricity. Therefore, this gives rise to a sequential decision process based on when and how much
water to store or release from reservoirs. It is typically approached with optimization models, particularly
in optimization under uncertainty schemes due to the high presence of uncertainties like hydro inflows (de
Queiroz, 2016).
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The hydrothermal scheduling problem generally seeks to meet the electricity demand while minimizing
the expected operational cost. This problem is commonly solved in annual horizons on a monthly or weekly
basis, and it depends directly on reservoirs’ storage capacity and spatial interrelation. The water inflows for
these reservoirs play a fundamental role since they are not known beforehand. Therefore, they are usually
modeled as uncertain variables to consider different possible scenarios. Thus, for this problem’s decisions,
the main challenge is that using water resources inefficiently today can lead to high operational costs in the
future. In an unforeseen future drought, using more water than it should, might result in load shedding and
blackouts, among others. Additionally, storing too much water today could overflow reservoirs in unforeseen
wet futures, resulting in possible water spills.

There is a more general problem called reservoir management. It involves minimizing the risk of floods
for a multi-reservoir system over a horizon planning subject to operational constraints such as water balance,
storage, spills, releases, and other physical and regulatory constraints. Both hydrothermal scheduling and
reservoir management problems are related to water resources management and consist of finding an optimal
resource (water) allocation policy. Their mathematical structures are very similar. In the following, we refer
to these two problems as water resources management.

Since the seminal paper of Pereira & Pinto (1991), significant progress has been made in water resources
management problems. In (Pereira & Pinto, 1991), the authors proposed the stochastic dual dynamic algo-
rithm (SDDP), which emerged as an effective algorithm for successfully tackling multi-dimensional stochastic
reservoir problems. This has allowed obtaining essential insights into the estimation of the value of water
and how to manage it efficiently, which is more necessary in periods where hydrological uncertainty becomes
more relevant as a consequence of climate change (Vicuña et al., 2008).

So far, a few literature reviews have been devoted to water resources management and its variants. In
(Farhat & El-Hawary, 2009), the authors focus on optimization methods used to solve the short-term hy-
drothermal programming problem. The paper discusses Lagrangian relaxation and Benders decomposition-
based methods, mixed-integer programming, dynamic programming, evolutionary computing, artificial in-
telligence techniques, interior-point methods, optimal control, and others. Kong et al. (2014) summarizes
hydrothermal-related research progress and current status in China. The authors highlight the potential of
hydrothermal resources in that country, the necessity of continuing research and technology development, and
political support for sustainable energy sources. In (de Queiroz, 2016), the author presents an overview of
model formulations, solution techniques, and new developments for hydrothermal scheduling and emphasizes
the classical balance between computational effort and the granularity of power and water network represen-
tation. The review performed in (Hossain & Shiblee, 2017) exhibits a brief overview of various techniques
and analytical strategies to solve the hydrothermal scheduling problem without elaborating much on them.
Archibald & Marshall (2018) presents a literature review on optimization models for water resources man-
agement, but limited to the period between 2010 and 2017. Lastly, in (Lorca et al., 2020), the authors discuss
the challenges of the hydrothermal scheduling problem more specifically on the following topics: flexibility in
power systems with deep penetration of renewable energy sources, modeling of hydro inflow and other source
uncertainties, and non-convexity handling.

The present paper attempts to provide a systematic and comprehensive tutorial-type review differing from
previous works in the following aspects:

1. We carry out a bibliometric analysis to examine the research progress since the publication of the
seminal work of Pereira & Pinto (1991) in the context of water resources management problems. We
cover all relevant aspects published in leading journals rather than emphasizing a specific one or a
determined country.

2. Based on the bibliometric analysis and the visualization software VOSviewer, we identify the rela-
tionship between journals, papers, authors, and keywords and which are the most influential on the
topic.

3. A critical review of the previous works and discussions on current literature gaps and future research
lines are provided. This discussion is divided into three main categories: modeling approaches, un-
certainty sources and modeling, and water resources management strategies. In addition, we formally
introduce some of the basics of the main modeling approaches considered in the literature.

The remainder of this paper is organized as follows. Section 2 presents the bibliometric study. Section
3 presents a critical review and discussion based on the literature characterization. Section 4 concludes the
paper and offers some potential directions for further research.
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2. Bibliometric Analysis

This section provides a general bibliometric analysis of water resources management research using quan-
titative methods to classify and summarize bibliometric data. It analyzes, in particular, the performance of
journals, institutes, and authors, as well as the characteristics of research fields or topics. Using visualization
techniques, bibliometric networks, such as the co-citation network, co-authorship network, and keyword co-
occurrence network, can be constructed and presented visually. We use the VOSviewer software1 (van Eck
& Waltman, 2010) for this analysis, and we considered several bibliometric indicators such as the number of
papers, total citations, and citations per paper (and year).

To collect the publication data, we use the well-recognized Scopus database, searching in the title, ab-
stract, and keywords any of the following topics: “water resources management”, “reservoir management”,
“hydrothermal scheduling”, “hydrothermal coordination”, “hydrothermal planning”, “hydro-thermal schedul-
ing”, “hydro-thermal coordination”, “hydro-thermal planning”, “hydropower generation”, or “hydroelectric
generation”. We also check all references citing the seminal work of Pereira & Pinto (1991), entitled “Multi-
stage stochastic optimization applied to energy planning”. After repeated sifting and checking, a total of
174 relevant papers were finally retrieved on the period of 1995–2023. Note that the data collection was
conducted in January 2023.

Figure 1 depicts the evolution of the number of published papers from 1995 to 2023. It can be noted that
little attention was paid to water resources management problems during the first 20 years (1995 to 2006),
with only 23 papers. This may be related to the low computational power back then. However, from 2007
onward, the number of published papers increased significantly. In addition to computational advances, this
increase is related to the growing interest in modeling the impacts of climate change, including possible water
scarcity that directly affect water resource management. During the last 13 years, 135 papers were published,
accounting for about 73% of the total number of papers in the past 29 years. Although the last 4-year period
includes just one month of 2023, the yearly average number of publications does not seem to decrease. This
continued growing trend clearly shows that water resources management issues are still critical, in particular,
due to the increasingly devastating effects of climate change.
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Figure 1: Number of papers per period (4 years)

Table 1 presents the top 24 (over 96) journals regarding the number of published papers. It can be noted
that these journals mainly belong to “operations research”, “engineering”, “energy”, and “environmental
science” areas, based on the journal categories of SCImago Journal Rank (SJR). In particular, the European
Journal of Operational Research (EJOR), a leading journal in the operations research field, tops the ranking
with 12 papers. IEEE Transactions on Power Systems (IEEE-TPS), a leading journal in the energy field,
follows with 8 papers. Additionally, Water Resources Research (WRR), a leading journal in the environmental

1VOSviewer is freely available, and further information can be found at http://www.vosviewer.com/.
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science field, follows the latter with 7 publications. These three journals account for almost 15.5% of the
total published papers.

Rank Journal Number of papers

1 European Journal of Operational Research 12
2 IEEE Transactions on Power Systems 8
3 Water Resources Research 7
4 Electric Power Systems Research 6
5 International Journal of Electrical Power & Energy Systems 6
6 Journal of Water Resources Planning and Management 6
7 Power Systems Computation Conference 6
8 Energy Systems 5
9 IEEE Power & Energy Society General Meeting 5
10 Stochastic Environmental Research and Risk Assessment 5
11 Water Resources Management 5
12 Annals of Operations Research 3
13 Energy Procedia 3
14 International Transactions in Operational Research 3
15 Journal of Environmental Management 3
16 Mathematical Programming 3
17 Optimization and Engineering 3
18 Advances in Water Resources 2
19 Computational Optimization and Applications 2
20 IEEE Grenoble Conference PowerTech 2
21 IEEE Manchester PowerTech 2
22 IET Generation, Transmission & Distribution 2
23 Renewable and Sustainable Energy Reviews 2
24 Journal of Irrigation and Drainage Engineering 2

Table 1: Top journals by the number of published papers (at least two)

Figure 2 shows the co-relation among journals through a bibliographic coupling. Note that to not overload
the figure, we only considered journals with at least one citation among the selected papers. The size of a
circle represents the number of citations of the corresponding journal papers. The width of lines between
circles represents the co-citation between journals. It can be noted that papers published in Mathematical
Programming (MP), where Pereira & Pinto (1991) is published, have a strong citation connection with papers
published in the vast majority of journals, which of course results from the applied papers search methodology.
In addition, the papers published in EJOR have highly been cited by MP, IEEE-TPS, WRR, International
Transactions in Operational Research (ITOR), and Civil Engineering and Environmental Systems (CEES).
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Figure 2: Bibliographic coupling of journals

We now emphasize the most influential papers based on total citations and average citations per year.
Table 2 shows the top 30 most influential papers having at least 40 citations. The top three papers are
Pereira & Pinto (1991), Huang & Loucks (2000) and Maqsood et al. (2005). In particular, the seminal work
of Pereira & Pinto (1991) is the most influential paper with a total of 812 citations and the second most
influential in terms of average citations per year (with 24.6 citations per year). In the top ten, two ranking
positions (3 and 5) are occupied by EJOR papers, the well-recognized operations research journal. There
are 15 papers with at least 70 citations and 7 with at least 7 citations per year. It is worth mentioning that
IEEE-TPS is the journal with the highest number of papers in the ranking (four). Journals such as Advances
in Water Resources (AWR), EJOR, ITOR, MP, Water Resources Management (WRM), and WRR have two
papers in this rank, which demonstrates the multidisciplinary context of water resources management.
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We now investigate co-citation relationship. Figure 3 depicts the bibliographic coupling of authors. Here,
circles and lines represent authors and co-citation degrees, respectively. The circle size is proportional to the
number of links of a researcher, whereas the line width represents the co-citation degree between the papers
of the corresponding two authors. It can be noted that regarding the total number of links, authors such as
de Matos V., Rebennack S., Maceira M., Finardi E., and Favereau M. are the most influential authors.
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Figure 3: Bibliographic coupling of authors

Table 3 focuses on the top 15 most influential authors with respect to the number of published papers (at
least 5) and to yearly average citations. Huang G.H. leads this ranking with a total number of 16 published
papers. Interestingly, the top five authors (with more than 100 citations together) come from China and
Brazil, two countries where hydropower generation is very critical for the generation matrice (IHA, 2022).
Similarly, most of the other authors come from China, Brazil, Norway, and Denmark.

Rank
by TP

Institution/Country Author
Total
papers
(TP)

Total
citations
(TC)

TC/TP
Rank by
TC/TP

1
Beijing Normal
University, China

Huang G.H. 16 1640 102.5 1

2
Electrical Energy Research
Center, Brazil

Diniz A.L. 12 125 10.4 13

3
Universidade Federal de
Santa Catarina, Brazil

Finardi E.C. 11 228 20.7 6

4 Norus, Brazil de Matos V.L. 9 304 33.8 3

5
Research Institute of Highway
Ministry of Transport, China

Li Y.P. 8 615 76.9 2

6
SINTEF Energy Research,
Norway

Mo B. 7 116 16.6 8

7
Technical University of
Denmark, Denmark

Bauer-Gottwein P. 6 104 17.3 7

8 IBM, Brazil Martins L.S.A. 6 46 7.7 14
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Table 3 continued from previous page

Rank
by TP

Institution/Country Author
Total
papers
(TP)

Total
citations
(TC)

TC/TP
Rank by
TC/TP

9 University of Porto, Portugal Santos T.N. 6 43 7.2 15

10
Chinese Academy of
Sciences, China

Liu S. 5 65 13.0 11

11
Rio de Janeiro State
University, Brazil

Maceira M.E.P. 5 105 21.0 4

12
Chinese Academy of
Sciences, China

Mo X. 5 65 13.0 11

13
Delft University of
Technology, Netherlands

Raso L. 5 104 20.8 5

14
State University of
Campinas, Brazil

Soares S. 5 73 14.6 9

15
SINTEF Energy Research,
Norway

Warland G. 5 73 14.6 9

Table 3: Top leading authors with at least five published papers

Figure 4 depicts the bibliographic coupling of keywords where some research hotspots in water resources
management problems can be identified, given that a keyword needs to appear at least seven times to be
included in the network. Here, the larger the circle, the greater the number of occurrences of the keyword,
and vice versa. In addition, the size of a line represents the occurrence degree between the two connected
keywords. Some of the most prominent keywords in Figure 4 are “stochastic systems”, “optimization”, “dy-
namic programming”, “reservoirs”, “stochastic programming”, “stochastic models”, “stochastic dual dynamic
programming”, “scheduling”, “water management”, “water resources”, “reservoirs management”, “stochas-
ticity”, “hydroelectric power”, “uncertainty”, and “decision making”.
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Figure 4: Bibliographic coupling of keywords

Figure 4 allows us to identify three main research areas studied in the literature, which will be discussed
in more detail in Section 3. These three topics are Modeling and solution approaches whose keywords are
highlighted in red on Figure 4, Uncertainty sources and modeling in green, and Water resources management
strategies in blue.

3. Literature Review

This section presents a critical review and discussion of the collected papers around the three research
areas identified in the previous section, e.g., modeling and solution approaches, uncertainty sources in models,
and water resources management strategies.

3.1. Modeling and solution approaches

Water resources management problems typically consider stochastic hydro inflows in their formulation.
Due to the random nature of hydro inflows and the intertemporal dependence of the decisions associated
with the amount of water to store or release from reservoirs, this problem is commonly formulated as a
multistage stochastic optimization problem (MSP) (de Queiroz et al., 2016). Typically, the solvability of
large-scale MSPs is computationally intractable, so the design of efficient algorithms becomes crucial. An
algorithm commonly used for this type of problem is SDDP, first proposed by Pereira & Pinto (1991). It
is based on approximating the expected future cost (cost-to-go) function through the generation of scenario
trees and the iterative use of the Benders decomposition (Benders, 1962). In particular, SDDP was proposed
with an application in hydrothermal scheduling in Brazil at that time and is still used today (Lorca et al.,
2020). Risk-neutral optimization models, such as the classic formulation of hydrothermal scheduling, do not
allow to capture the variability of operational costs since it focuses on minimizing the expected costs, so some
research has been focused on including risk-averse approaches and they become more relevant considering the
increasing uncertainty of future hydro inflows. The following sections will review the most common modeling
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and solution approaches for water resources management employed in the literature. For the convenience of
readers, Appendix A presents a brief technical discussion of the optimization under uncertainty foundations
in the context of water resources management.

3.1.1. Dynamic programming

Since the origins of problems related to water resources management and before the publication of the
SDDP algorithm, the most common approach was dynamic programming (DP) and its uncertain derivation,
stochastic dynamic programming (SDP, or Markov decision processes, MDP) (Lindqvist, 1962; Sniedovich,
1979; Baker & Daellenbach, 1984; White, 1985). Even some years after, MDP was still an essential approach
to stochastic sequential decision problems, especially in the context of hydro-power systems (Lamond &
Boukhtouta, 1996).

In Turgeon & Charbonneau (1998), an optimal policy of a whole system (Hydro-Québec’s 26 large reser-
voirs) was found with SDP, giving not only an optimal operation policy but also the expected marginal value
of hydroelectric energy produced and stored. This was done using the so-called aggregation-disaggregation
approach, which reduces computational efforts by aggregating reservoirs, but losing some essential details in
the water network modeling. Consequently, evaluating the flexibility in complex hydroelectric power systems
using aggregated elements of the water (or power) network becomes increasingly challenging.

In Lamond (2003), an algorithm based on splines was presented to compute the expectation of a piecewise
polynomial approximation of the future value function for a single hydroelectric reservoir, avoiding the
discretization of inflow distribution, thus deriving a continuous DP faster and more accurately than classical
DP approaches. For a water resources planning problem, Zhao et al. (2010) proposed a finite-horizon MDP
with continuous state and decision spaces and a sensitivity-based solution approach. The authors show that
the proposed method improved the system’s performance without affecting computational efficiency.

There is an application of SDP known as the water value method on which important research is based.
This method aims to obtain reservoir operating rules given uncertain inflows. It consists of calculating the
total cost (immediate cost plus expected future cost) for each stage and state and then taking the derivative
with respect to the reservoir level (resulting in the water value, measured in currency over the amount of water
or energy). Pereira-Cardenal et al. (2014) analyzed climate change impacts, based on the water value method,
in operating rules for the Iberian power system based on hydrological uncertainty given by a hydrological
model. Within the aspects that most affect the quality of the solutions, the authors highlight the uncertainty
associated with the impacts of climate change, the spatial aggregation of the hydrological model, and the
temporal representation of the power system (directly affecting power supply and demand). In addition to
water quantity, water quality substantially affects optimal water allocation policies, as Davidsen et al. (2015a)
showed using the water value method in a hydroeconomic optimization approach and Martinsen et al. (2019)
in a hydroeconomic optimization modeling framework for joint water allocation and quality optimization.
Also based on a hydroeconomic optimization approach, Davidsen et al. (2015b) derived a pricing policy to
bring an overexploited groundwater aquifer to a sustainable state in the long term, quantifying potential
savings of joint (surface and groundwater) water management of a river basin in China. A similar result
was found in Davidsen et al. (2015c) using a hydroeconomic approach, showing that the South-North Water
Transfer Project (an infrastructure mega-project) reduces the impacts of water scarcity and enhances optimal
water management in a Northern China basin.

Although the accuracy of SDP is limited by the dimensionality of decision space, state space, or uncertainty
space (the so-called “curse of dimensionality”), some research has been done to improve it and determine
near-optimum decisions cooperating with other approaches. One example is the work of Saadat & Asghari
(2018), where a nonlinear programming model is embodied in an SDP model, increasing the dimensionality
of the uncertainty and state spaces without sacrificing computational times and solutions quality (in terms
of electricity and water reliability).

Table 4 summarizes the different works reviewed around dynamic programming according to the particular
approach, planning horizon, and uncertainty sources. Note that in the following tables, we indicate the horizon
of the models. We define short-, medium-, and long-term planning horizons as 0 to 1, 1 to 5, and 5 and more
years, respectively.
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Modeling approach Planning horizon Uncertainty sources References

DP Long-term All deterministic
Turgeon & Charbonneau (1998)
Lamond (2003)

MDP/SDP Long-term Hydro inflows

Zhao et al. (2010)
Pereira-Cardenal et al. (2014)
Davidsen et al. (2015a,b,c)
Martinsen et al. (2019)
Saadat & Asghari (2018)

Table 4: A summary of modeling approaches of reviewed papers based on dynamic programming

3.1.2. Stochastic optimization

Although dynamic programming was one of the leading modeling approaches for water resources man-
agement problems, stochastic optimization has become the primary modeling approach in recent years (de
Queiroz, 2016; Lorca et al., 2020). The principal decision-making structures in this approach are two-stage
or multistage schemes.

A multistage framework typically approaches water resources management problems. However, there are
exciting works based on two-stage stochastic optimization. In (Huang & Loucks, 2000), an inexact two-stage
stochastic model is proposed for water resources management. It consists of a hybrid of inexact optimiza-
tion and two-stage stochastic optimization, allowing it to work not only with probability distribution-based
uncertainties but also with discrete intervals. Despite the computational advantages that this entails, this
modeling approach has substantial limitations for large-scale systems, in addition to the over-simplification of
uncertain intervals, reducing the system’s reliability. An extension of this work is the one by Maqsood et al.
(2005), where an interval-parameter fuzzy two-stage stochastic optimization model is proposed, introducing
the concept of interval fuzzy membership function, which reflects the complexities of system uncertainties
presented as fuzzy, stochastic, and interval parameters as well as their combinations. This work was extended
by Wang & Huang (2013) and Khosrojerdi et al. (2019) mainly by adding the concept of type-2 fuzzy sets,
which helps capture the uncertainty in membership functions. Additionally, Lu et al. (2008) present an in-
exact two-stage fuzzy stochastic optimization model differing from previous works in incorporating variable
penalty policies (economic measures for authorities and water users) for water resources management systems
based on fuzzy events. The previous works can hardly solve complex problems on the existence of parameters
with dual-layer information, e.g., when the quantity of an unregulated water source is imprecise. Then, the
estimation is made based on the decision maker’s subjective experience and objectively recorded data. Lu
et al. (2009) proposed the incorporation of rough intervals (i.e., upper and lower approximation intervals) to
express such information for agricultural irrigation systems, defined as an inexact rough-interval two-stage
stochastic optimization.

One of the main advantages of two-stage stochastic optimization models is related to the efficiency of
reformulations, algorithms, and decomposition procedures to solve them. Guerra et al. (2019) proposed a
two-stage stochastic optimization model for power system design and planning evaluating climate change
impacts on a hydro-dominated power system, and it was solved through the deterministic equivalent MILP
problem. In (Helseth et al., 2010), a sequence of two-stage stochastic optimization models was solved for a
long-term hydrothermal scheduling problem using the Benders decomposition (Benders, 1962). The proposed
model is actually a simulator of a sequence of the production schedule one week ahead, and it was shown that
it is easier to implement and computationally more tractable than solving a multistage scheme via SDDP.
In the case of (Helseth et al., 2018), the authors present a method for long-term hydrothermal scheduling,
where weekly (dispatch) decisions are obtained by solving a two-stage stochastic optimization problem with
uncertainty in weather and exogenous market prices, embedding such two-stage problems in a rolling horizon
simulator. Hydrothermal scheduling models with long planning horizons (2-7 years) are essential because
they can approximate the future cost function of stored water. With this approximation at hand, a short-
term model with more operational detail can be solved to obtain the schedule of releases based on simpler
optimization models, as done by Alvarez et al. (2018).
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With respect to multistage stochastic optimization, we must first highlight the work done by Pereira &
Pinto (1991), which is essential in this paper. This seminal work presented for the first time the SDDP
algorithm, which is based on an approximation of the expected future cost function through the generation
of scenario trees and the iterative use of the Benders decomposition to solve linear multistage stochastic
optimization problems. We refer the reader to (Shapiro, 2011) for a thorough explanation and analysis of
this algorithm’s statistical properties and convergence, and to Füllner & Rebennack (2019) for a tutorial-type
review on SDDP and its variants. Some other works also analyze computationally efficient heuristics and
SDDP enhancements to solve multistage stochastic optimization models (Guigues, 2014; Street et al., 2020;
Siddig et al., 2021; Beltrán et al., 2021; Dowson et al., 2022; Borges et al., 2022).

Since the publication of the SDDP algorithm, some important research has taken place. Based on mul-
tistage stochastic optimization, Jacobs et al. (1995) described a generation scheduling model developed by
PG&E (Pacific Gas and Electric Company), called SOCRATES (Stochastic Optimal Coordination of River-
basin And Thermal electric power systems), which was designed to schedule hydrothermal generation con-
sidering uncertain hydro inflows. A multistage stochastic optimization model was also developed in (Watkins
et al., 2000) to support the Lower Colorado River Authority’s decision regarding the amount of interruptible
water to contract each year, based on two objectives (maximize recreational benefits and revenues from the
sale of interruptible water). For the New Zealand power system, a hydrothermal scheduling model was also
developed and satisfactorily solved with SDDP in the work of Halliburton (2004), considering all relevant
physical features of the power system for medium- to long-term planning horizons. Although conventional
optimization techniques such as SDDP and Lagrangian relaxation effectively solve large-scale water resources
management problems, they have severe limitations regarding incorporating nonlinearities or stochasticity of
hydro inflows, respectively. Therefore, Modarres et al. (2004) proposed a hybrid genetic algorithm to solve
(almost optimally) the hydrothermal scheduling problem with quadratic costs for thermal power plants.

Although inexact optimization has been effectively combined with two-stage stochastic optimization, as
mentioned earlier, it has also been combined with multistage schemes. This permits revised decisions in
each stage based on the uncertainty revealed up to that stage. In (Li & Huang, 2007), an inexact multi-
stage stochastic quadratic programming model for water resources management was proposed, which can
directly tackle uncertainties presented as discrete intervals and probability distributions. In addition, it can
accommodate real-time dynamics of system uncertainties based on a complete set of scenarios and deal with
nonlinearities in the objective function (such as the effects of marginal utility on system benefits and costs).
In a similar work, Li et al. (2008a) proposed an inexact multistage stochastic integer programming incorpo-
rating economies-of-scale effects in diversion costs based on fixed-charge cost functions. Factorial analysis, a
multivariate inference method, was introduced into inexact multistage stochastic optimization in (Zhou et al.,
2013a) to analyze the potential interrelationships between several uncertain parameters to support the water
resources management problem. These previous works still cannot approach the problem of partially-known
information, which has, as a practical consequence, the challenge of assuming some probability distributions.
As an extension of the previous works, Chen & Wang (2021) established an inexact multi-stage interval-
parameter partial information programming model for urban water resources management, considering the
linear partial information theory to represent hydro inflows probabilities.

Generally, an essential issue in stochastic optimization is modeling uncertain parameters, especially when
data is not available enough or is of poor quality. In (Li et al., 2006), an interval-parameter multistage
stochastic optimization model for water resources management was proposed. This multistage version ad-
mits to incorporating more dynamic and uncertain information within the model compared to a two-stage
version. However, it could not account for the risk of violating system constraints under several uncertainties
as the multistage scenario-based interval-stochastic optimization model of Li et al. (2009a) did. The work
of Li et al. (2006) was extended by Li et al. (2008b), where uncertainties were presented in terms of fuzzy
sets that deal with the practical questionability of the solutions obtained. By coupling fuzzy mathematical
programming with multistage stochastic optimization, a fuzzy-stochastic-based violation analysis was pro-
posed by Li & Huang (2009), where violation variables for the objective and constraints were introduced into
the modeling formulation, helping to generate a range of decision alternatives balancing (i) environmental
and economic objectives, and (ii) system optimality and reliability. By incorporating an interactive fuzzy
resolution method within an inexact multistage stochastic programming, Wang & Huang (2012) proposed a
model capable of reflecting the uncertainty dynamics and the corresponding decision processes based on the
use of representative scenarios, allowing to identify a desired compromise between the degree of satisfaction
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of goals and constraints feasibility. Other modeling approaches related to fuzzy-stochastic programming were
proposed and analyzed, where interval-stochastic fractile optimization (Zhou et al., 2013b) and multistage
stochastic fuzzy optimization (Li et al., 2018) stand out.

Interval-parameter multistage stochastic chance-constrained mixed-integer optimization, another exten-
sion of the work of Li et al. (2006) that incorporates chance-constrained techniques and mixed-integer vari-
ables, was proposed by Han et al. (2008). This extension allows the authors to address more complex needs
such as sewage plant construction, water-saving technologies, municipality water requirements, and regional
food supply security. By considering a chance-constrained scheme for minimum and maximum stored water
level constraints, the work of van Ackooij et al. (2014) presents a joint chance-constrained optimization model
for a hydro reservoir management problem, obtaining an interesting trade-off between costs and robustness
and can be tractable for complex, realistic models. A similar balance between costs and solutions’ robustness
was obtained in (El Karfi et al., 2022) with a chance-constrained optimization model of an optimal invest-
ment into agricultural infrastructure. Other works incorporating chance constraints with inexact multistage
stochastic optimization (Li et al., 2009b) and factorial multistage stochastic optimization (Liu et al., 2016)
are also proposed.

Although medium-term water resources management problems are the most common in literature, long-
term analyses are critical for water and power networks planning. See, for example, the tutorial on stochastic
programming of Finardi et al. (2013) based on the long-term hydrothermal scheduling problem, De Matos
et al. (2011), which also describes the long-term hydrothermal scheduling problem and some strategies to
improve the performance of SDDP to solve it, the description of some modeling issues by de Matos & Finardi
(2012), and de Matos et al. (2017) that asses the quality of an operational policy based on SDDP. An essential
challenge for water resources planning is the determination of optimal bidding decisions for price-maker energy
producers. In (Flach et al., 2010), a long-term multistage stochastic optimization model was proposed with
that purpose, considering uncertain hydro inflows and solved with an SDDP-based approach. Solving long-
term multistage problems can be challenging, so different techniques have been applied. Typically, bidding
on flexible reservoir hydropower in the day-ahead market is part of a short-term problem. However, Fleten
et al. (2011) presented a long-term multistage stochastic mixed-integer optimization model with fine time
granularity and uncertain electricity prices and inflows, which is satisfactorily detailed for short-term bidding
still solvable for long-term planning horizons. Another fundamental challenge for water resources planning is
the incorporation of (i) other sources of uncertainty in addition to hydro inflows and (ii) a detailed formulation
of nonlinear or nonconvex functions. Tong et al. (2013) propose a multistage (3-stage) stochastic mixed-integer
programming model for long-term hydrothermal scheduling considering uncertain weather conditions (hydro
inflows and water demand) and net load (grid load demand and wind power generation), in addition to a
piecewise linearization of nonlinear and nonconvex thermal generation costs, hydropower production, water
recession, reservoir evaporation.

Table 5 summarizes the different works reviewed around stochastic optimization according to the partic-
ular approach, planning horizon, and uncertainty sources.

Modeling approach Planning horizon Uncertainty sources References

Two-stage stochastic
optimization

Short-term Hydro inflows

Huang & Loucks (2000)
Maqsood et al. (2005)
Lu et al. (2008)
Wang & Huang (2013)
Khosrojerdi et al. (2019)

Long-term

Hydro inflows
Lu et al. (2009)
Helseth et al. (2010)

Hydro inflows, power
prices

Helseth et al. (2018)

Hydro inflows, power
demand

Alvarez et al. (2018)

Hydro generation, gas
prices, climate policy

Guerra et al. (2019)
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Table 5 continued from previous page
Modeling approach Planning horizon Uncertainty sources References

Multistage stochastic
optimization

Medium-term Hydro inflows

Pereira & Pinto (1991)
Beltrán et al. (2021)
Dowson et al. (2022)
Jacobs et al. (1995)
Watkins et al. (2000)
Halliburton (2004)
van Ackooij et al. (2014)

Hydro inflows, power
prices

Borges et al. (2022)

Demand of cereals, yield
coefficient of soil

El Karfi et al. (2022)

Long-term Hydro inflows

Guigues (2014)
Street et al. (2020)
Siddig et al. (2021)
Modarres et al. (2004)
Finardi et al. (2013)
De Matos et al. (2011)
de Matos & Finardi (2012)
de Matos et al. (2017)
Flach et al. (2010)

Hydro inflows, electricity
prices

Fleten et al. (2011)

Hydro inflows, water
demand, load demand,
wind generation

Tong et al. (2013)

Water-allocation targets,
cost, benefit, water
deficit

Li et al. (2006)
Li & Huang (2007)
Han et al. (2008)
Li et al. (2008a,b)
Li & Huang (2009)
Li et al. (2009a,b)
Liu et al. (2016)
Wang & Huang (2012)
Zhou et al. (2013a,b)
Li et al. (2018)
Chen & Wang (2021)

Table 5: A summary of modeling approaches of reviewed papers based on stochastic programming

3.1.3. Risk-averse approaches and robust optimization

Risk-neutral optimization models, such as the classic formulation of water resources management prob-
lems, do not allow to capture the variability of operational costs since it typically focuses on minimizing the
expected costs, so some research has been focused on how to include risk-averse (and robust) approaches.
They are more relevant considering the increasing uncertainty of future hydro inflows due to the consequences
of climate change.

A risk-averse approach can be straightforwardly incorporated into multistage stochastic optimization
models, and given an adequate level of risk aversion, it can be possible to reduce the probability of poor
outcomes only by slightly affecting the overall cost. A classical (and coherent) risk functional used for this
purpose is the conditional value at risk (CVaR), and a convex combination between it and expectation
remains a coherent risk measure. It was shown in (Philpott & De Matos, 2012) how to incorporate this
convex combination into SDDP and implement it in an extensive numerical study. A modified version
of the risk-averse SDDP algorithm is proposed for the medium-term hydrothermal scheduling problem by

16



Soares et al. (2014), and it aims to reduce the variability of marginal costs and decisions induced by the use
of autoregressive models. Also, Maceira et al. (2015) applied a risk-averse approach based on the convex
combination of expectation and CVaR in the expansion and operation planning and for setting the spot price
in the Brazilian hydrothermal system, obtaining more conservative solutions but without sacrificing total
costs. In addition to CVaR, other risk-measure strategies have been proposed for multistage optimization
models. For instance, in (Larroyd et al., 2017), a risk-averse long-term hydrothermal scheduling problem was
approached by (i) a convex combination between CVaR and the expected operating costs and (ii) a reservoir
risk curve. The latter consists of checking periodically if reservoir levels are lower than the risk curve in each
stage, and if some violation occurs, hydro generation is reduced. Although this method seems interesting,
in the work of Larroyd et al. (2017), the CVaR-based approach behaves better than the reservoir-risk curve-
based, providing more coherent operation policies. A more general class of convex risk measures embodied
into SDDP can be seen in (Dowson et al., 2022) where it was analyzed the entropic risk measure which does not
have the shortcoming of leading to inconsistencies that other risk measures do. Even though risk-averse SDDP
approaches have been demonstrated to perform efficiently, the rolling horizon policy compares favorably with
SDDP policies, involving shorter computational times. Guigues & Sagastizábal (2012) analyzed this in a
rolling horizon model that iteratively solves and implements the solution to a chance-constrained single-stage
problem.

Robust optimization is an emerging modeling technique of recent years, and exciting works have been
proposed in the context of water resources management. One of the main differences between robust opti-
mization and other stochastic approaches is that a sampling process is avoided, and all that it means, e.g.,
balancing the computational effort and statistical representativeness of stochastic processes. Mejia-Giraldo
et al. (2014) presented an adjustable robust long-term hydrothermal scheduling model where the hydrological
uncertainty was represented by ellipsoidal sets based on sample means and covariance of a Colombian hydro
subsystem (four hydro plants). The chance-constrained optimization model of van Ackooij et al. (2014) for
a hydro reservoir management problem is compared to a robust model with an ellipsoidal uncertainty set
for hydro inflows, and the better performance of the chance-constrained model can be mainly due to the
conservativeness of the uncertainty set.

Typically, multistage robust optimization models are computationally challenging to solve, mainly because
the decision space is in an infinite-dimensional function space. Therefore, to handle this problem, an alter-
native is to restrict the decision variables to affine functions of the sequential realizations of the uncertainty,
known as linear (or affine) decision rules. In the work of Gauvin et al. (2017), several numerical experiments
in a robust optimization model for a reservoir management problem confirm the value of affine decision rules,
providing efficient implementable solutions but maintaining the tractability of the model. In (Egging et al.,
2017), linear decision rules were also applied for a model that takes the perspective of a hydropower producer
aiming to maximize the expected market value of power production, considering symmetric polyhedral uncer-
tainty sets for electricity prices and hydro inflows. Methodologically, Gauvin et al. (2018) extends the previous
works by considering linear decision rules and time series for uncertainty representation, but for a reservoir
management problem, providing reasonable quality solutions and illustrating the importance of considering
the persistence of hydro inflows. In (Favereau et al., 2023), a multistage adaptive robust optimization model
was proposed for the medium-term hydrothermal scheduling problem. In this case, a direct reformulation
was obtained when considering using linear decision rules and symmetric polyhedral uncertainty sets (based
on vector autoregressive models). This allows to solve the problem for a large-scale instance with hundreds
of hydro nodes and connections, hundreds of buses, and almost a thousand generators.

Table 6 summarizes the different works reviewed around risk-aver stochastic and robust optimization
according to the particular approach, planning horizon, and uncertainty sources.

Modeling approach Planning horizon Uncertainty sources References
Risk-averse stochastic
optimization

Short-term Hydro inflows van Ackooij et al. (2014)

Medium-term Hydro inflows
Soares et al. (2014)
Dowson et al. (2022)
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Table 6 continued from previous page
Modeling approach Planning horizon Uncertainty sources References

Long-term Hydro inflows

Philpott & De Matos (2012)
Maceira et al. (2015)
Larroyd et al. (2017)
Gauvin et al. (2017)

Hydro inflows, power
demand

Guigues & Sagastizábal (2012)

Robust optimization Medium-term Hydro inflows Favereau et al. (2023)
Hydro inflows, power
prices

Egging et al. (2017)

Long-term Hydro inflows
Mejia-Giraldo et al. (2014)
Gauvin et al. (2018)

Table 6: A summary of modeling approaches of reviewed papers based on risk-averse stochastic and robust optimization

3.1.4. Other formulation approaches

For long-term hydrothermal scheduling, Zambelli et al. (2009b) proposed a model predictive control
(MPC) approach that outperforms an SDP model. Here, the nonlinear aspects of inflow correlation, hy-
dropower generation, and thermal fuel costs are represented based on a neural fuzzy network forecasting
model and a nonlinear optimization model to determine the discharge decisions. This is a similar result
compared to Zambelli et al. (2009a), where an MPC approach outperforms an SDP model for long-term hy-
drothermal scheduling, mainly due to the benefits of implementing a fuzzy inference system for monthly and
annual inflow forecasts. Although MPC has shown significant benefits in addressing long-term water resources
management problems, it has also been effective for short-term problems. Raso & Malaterre (2017) proposed
an infinite horizon MPC (short-term model with integrated long-term effects) based on basis functions to
couple short- and long-term objectives.

Not only has the performance of an MPC model been analyzed against SDP, but also stochastic optimiza-
tion models. In (Zambelli et al., 2011), it was shown that an MPC model (with a deterministic nonlinear
optimization model for operational decisions) gives an 8.23% smaller expected operating cost in contrast to
a stochastic optimization approach, based on a simulation over 75 inflow scenarios. Another case study with
favorable results for MPC is the one of Zambelli et al. (2013) where a decrease of 3.5% of the operating costs
was obtained versus a stochastic optimization model, highlighting that a more detailed system modeling
should prevail over sophisticated uncertain inflow representation.

Due to the “curse of dimensionality” in dynamic programming, some research focuses on developing
heuristics-based algorithms to solve water resources management problems. In (Cau & Kaye, 2002), an
evolutionary method was proposed for minimizing the total operational cost of hydrothermal scheduling,
combining dynamic programming and evolutionary programming, and evolving the piecewise linear cost-to-
go functions (water values) instead of decision variables. Also based on evolutionary algorithm techniques,
Hinojosa & Leyton (2012) applied a mixed-binary evolutionary particle swarm optimization to short-term
hydrothermal scheduling (considering binary thermal states as decision variables), obtaining an enhancement
in solutions quality and significantly improving the convergence (by working only with feasible solutions).

Although the hydrological component of water resources management problems is inherently stochastic,
some deterministic approaches have been carried out to study different approximations and the impact of
certain phenomena. Santos & Diniz (2009) explored two strategies to handle infeasible subproblems during
the multistage Benders decomposition for a deterministic large-scale short-term hydrothermal scheduling
problem, i.e., strategy 1 uses slack variables in each constraint. In contrast, strategy 2 considers feasibility
cuts to try to vanish infeasibilities, being strategy 1 computationally slower but consistently delivering a
solution. By comparing two models, namely EMPS (a deterministic heuristic-based approach) and SOVN (a
stochastic optimization model), Warland & Mo (2016) indicate that replacing aggregate hydro description
and heuristics with a more formal optimization may give a model better suited for power systems analysis.

The physics of hydroelectricity generation is commonly simplified in the literature to account for its fun-
damentally nonlinear nature, and its consideration and some approximations have been studied. A nonconvex
mixed-integer nonlinear optimization model for the hydrothermal scheduling problem was proposed in (Lima
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et al., 2013), considering a detailed representation of the net head water and a nonlinear hydropower gener-
ation function. A simplified model was also formulated based on a relaxation framework, exhibiting better
computational performance than commercial solvers. Vieira et al. (2015) analyzed the mathematical and
physical properties of the hydrothermal scheduling problem. In particular, it studied the hydropower genera-
tion nonlinear function and established sufficient mathematical properties to guarantee optimality conditions.
Paredes & Martins (2018) show how semidefinite programming relaxation is only exact for a quadratically
constrained quadratic hydrothermal scheduling problem if a very strict condition regarding turbine efficiency
is observed (concavity of the hydropower generation function).

Additional analyses have been carried out concerning estimating future cost functions or integrating
other uncertainty sources. Alvarez et al. (2017) proposed a model for short-term hydrothermal scheduling
linked to long-term conditions through a piecewise-linear future cost function to maximize the value of the
electricity production from hydropower. With the integration of renewable sources like solar and wind, there
is a growing need to approach hydrothermal scheduling problems considering this. For a long-term hydro-
thermal-solar scheduling problem, Singh & Banerjee (2017) proposes a two-stage algorithm based on dynamic
programming and linear programming techniques. This allows for assessing the impact of large-scale rooftop
solar photovoltaic integration in hydrothermal systems.

From the perspective of market equilibrium models, some interesting research has been carried out.
Barqúın et al. (2005) proposed a model to represent a medium-term operation of the electrical market that
introduces hydrological uncertainty formulation naturally and practically, where utilities are explicitly con-
sidered to be maximizing their expected profits. Market equilibrium conditions are presented through the
optimality conditions of the problem, which has a structure that strongly resembles the hydrothermal schedul-
ing problem. Cruz et al. (2016) proposed an equilibrium model to determine price and quantity strategic
bids for generation companies in a day-ahead market. Each company aims to maximize its profit by solving
a bilevel optimization problem, where the upper-level corresponds to the producer revenue maximization. At
the same time, the lower one represents the minimization of system operation faced by the independent system
operator. Solutions to short-term water resources management problems usually consider boundary condi-
tions provided by long-term models. In this case, the centralized dispatch is performed by solving single-level
optimization problems. Nevertheless, Bernardinelli & Martins (2017) also presented a (deterministic) bilevel
formulation with equilibrium constraints, in which the upper-level problem considers long-term objectives
and constraints, and the lower-level problem represents short-term operational conditions. It is important
to note that risk criteria in market participants’ decisions have not been strongly considered. Consequently,
Jovanovic et al. (2018) presented a multistage market equilibrium model of risk-averse agents in the context
of fuel price volatility and renewable energy source penetration to analyze the impacts of risk-averse decisions
of market participants.

Simulation is another approach that has been considered for water resources management problems. Perea
et al. (2010) presented a mixed approach for the long-term hydrothermal scheduling problem based on a
simulation model and a stochastic optimization model, enabling the assessment of different design options for
new assets or considering the repowering of old ones. Huang et al. (2013) presented a multistage simulation-
based optimization model for supporting water resources management, coupling a lumped rainfall-runoff
model with an inexact multistage stochastic optimization model. Unlike other stochastic optimization works,
this can obtain random hydro inflows through the statistical analysis of hydrological simulation outcomes
and incorporate more dynamic and uncertain information within its modeling framework.

Table 7 summarizes the different works reviewed around other modeling approaches according to the
considered planning horizon, particular modeling approach, and uncertainty sources.

Planning horizon Modeling approach Uncertainty sources References

Short-term

Dynamic programming
(heuristic-based)

All deterministic
Cau & Kaye (2002)
Hinojosa & Leyton (2012)

Linear programming All deterministic Santos & Diniz (2009)

Nonlinear programming All deterministic
Lima et al. (2013)
Vieira et al. (2015)
citeParedes2018

Model predictive
control

Hydro inflows Raso & Malaterre (2017)
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Table 7 continued from previous page
Planning horizon Modeling approach Uncertainty sources References

Stochastic optimization Hydro inflows Alvarez et al. (2017)

Medium-term
Market equilibrium
model

All deterministic
Cruz et al. (2016)
Bernardinelli & Martins (2017)

Hydro inflows Barqúın et al. (2005)
Hydro inflows, power demand,
renewables availability, fuel
costs

Jovanovic et al. (2018)

Long-term

Dynamic programming All deterministic Singh & Banerjee (2017)

Model predictive
control

Hydro inflows
Zambelli et al. (2009a,b)
Zambelli et al. (2011)
Zambelli et al. (2013)

Stochastic optimization Hydro inflows Warland & Mo (2016)

Simulation Hydro inflows
Perea et al. (2010)
Huang et al. (2013)

Table 7: A summary of modeling approaches of reviewed papers based on other approaches

3.2. Uncertainty sources and modeling

As mentioned in previous sections, and as expected, the main uncertain component in the reviewed papers
corresponds to hydrological uncertainty. However, other uncertain parameters have been considered in the
literature. This section presents the models representing the different uncertain parameters in water resources
management problems.

In general, extensive literature addresses hydrological uncertainty in water resources management prob-
lems (as will be discussed later). Still, it may often be challenging to consider additional uncertain parameters
(and together with hydro inflows). Besides, the quality of information may be poor to be presented as a
probability distribution (in the stochastic case), and their reflection in large-scale models could be extremely
hard to solve. Typically, works based on inexact and fuzzy optimization have been able to consider more
than one source of uncertainty, such as hydro inflows, water allocation targets, economic data, or irrigation
schedules. Instead of working with probability distributions, these works consider discrete intervals in which
the uncertain parameters are supported, providing an effective way to consider different uncertainty sources
but without affecting computational efficiency in their resolution (Huang & Loucks, 2000; Maqsood et al.,
2005; Li et al., 2006; Li & Huang, 2007; Han et al., 2008; Li et al., 2009a,b; Wang & Huang, 2013; Zhou et al.,
2013b,a; Guo et al., 2014; Liu et al., 2016; Li et al., 2018; Chen & Wang, 2021).

Fuzzy sets have also been considered in uncertainty modeling to represent different phenomena. In
particular, a fuzzy set is a pair (Ω,m), where Ω is a (typically non-empty) set known as a universe of
discourse, and m : Ω → [0, 1] a membership function where for each z ∈ Ω, m(z) represents the grade of
membership of z in (Ω,m). One of the limitations of interval-based models is their over-simplification of the
fuzzy membership information into intervals. Based on fuzzy sets theory, works such as Lu et al. (2008);
Li et al. (2008b); Zambelli & Soares (2009); Zambelli et al. (2009b); Wang & Huang (2012); Khosrojerdi
et al. (2019) have been able to consider uncertain inflows, water allocation targets, costs, and benefits more
realistically.

Multistage stochastic optimization models typically approximate a stochastic process ξ = {ξt}Tt=1 by a
process having finitely many scenarios exhibiting a tree structure and starting with a fixed element ξ1 ∈ Rd.
This structure allows the outcome of uncertainty to be gradually revealed, and the decisions are made dy-
namically without anticipating future uncertainty outcomes. In (Barqúın et al., 2004), a scenario tree was
considered to represent the hydrological uncertainty in a medium-term generation planning model, but only
considering three scenarios (wet, medium, and dry). Tong et al. (2013) considered four sources of uncertainty
(hydro inflows, water demand, grid load demand, and wind power generation) based on weather conditions
and net load, and it was developed based on a scenario tree structure. Similarly, in (Jovanovic et al.,
2018), a scenario tree was considered for modeling uncertain hydro inflows, power demand, and fuel costs
for a medium-term market equilibrium hydroelectric operation model. Additionally, Borges et al. (2022) ad-
dressed the optimal management of cascade hydropower generation, considering uncertain hydro inflows and
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electricity prices, although it does not explicitly state which distributions were used. A significant challenge
associated with scenario trees is the balance between the statistical representativeness (how many scenarios
are considered) and the computational efficiency of solving the corresponding optimization model. There-
fore, for large-scale problems, a reduction technique could benefit statistical representativeness. However,
this should be done carefully to avoid modifying probability distribution moments, such as the expectation
of the stochastic processes. With this purpose, Fan et al. (2016) presented a novel scenario tree generation
(or reduction) using probabilistic ensemble hydro inflows forecasts for a short-term reservoir optimization
problem. A similar alternative is using ensemble forecasts, a set of representative trajectories of the possible
future outputs. Raso et al. (2014) used ensemble forecasts for a short-term water system operation model,
proving to be effective compared to other real-time optimal control methods.

As a more general case, some optimization under uncertainty models considers traditional probability
distributions to represent uncertain parameters (via scenario trees or simply a Monte Carlo analysis). This
approach could be more limited since it does not allow the consideration of temporal or spatial correlations
as other kinds of models like autoregressive (this will be discussed later). However, occasionally, it is enough
to consider probability distributions to represent uncertain phenomena without correlations, in the absence
of complex statistical structures, or simply as proof of concept. For instance, Andrieu et al. (2010) considered
a bivariate normal distribution with independent components to represent two uncertain hydro inflows for a
water reservoir management problem, discretizing the decision variables but keeping the probability distri-
bution continuous. Although the distribution considered is not explicit, Fleten et al. (2011) generated a tree
of 1000 scenarios for uncertain electricity prices in an integrated short- and long-term hydrothermal schedul-
ing problem. For an agricultural investment problem, El Karfi et al. (2022) proposed a chance-constrained
optimization model with (multivariate) Gaussian cereal demand and yield coefficient of soil. Even though
distribution fitting is essential, the sampling strategy applied is just as important. Homem-De-Mello et al.
(2011) studied applying two alternative sampling strategies (of variance reduction) for generating scenario
trees in very large problems, namely, Latin hypercube and randomized quasi-Monte Carlo. Results showed
that both strategies were more consistent, producing an operation policy with a much smaller variance than
classical Monte Carlo. A similar result was obtained in de Matos et al. (2017), where Latin hypercube and
randomized quasi-Monte Carlo sampling strategies provided better policies than Monte Carlo, yielding better
confidence intervals on the optimality gap. Cassagnole et al. (2021) studied the impact of short-term (7 days)
hydro inflow forecasts with different qualities on reservoir management and revenue based on a conceptual
method that introduces different biases to log-normal hydro inflows. The results show that the quality of
forecasts can lead to certain economic losses and unnecessary management problems.

A classical alternative to modeling uncertain parameters in optimization under uncertainty models is
linear regression due to its linearity and properties of noise processes (typically independent and identi-
cally distributed, iid). With the purpose of including emissions quota schemes for medium- and long-term
hydrothermal scheduling models, Belsnes et al. (2003) considered quota markets with uncertain prices via
linear regression. An extension of linear regression is the autoregressive (AR) model, in which a stochastic
process is defined by a linear combination of its past observations plus an iid noise process. In particular, the
uncertain components {bt}t∈T can be modeled with an autoregressive process of order p, or AR(p), given by

bt = µt +

p∑
l=1

ϕlbt−l + ξt, (1)

where µt is a deterministic component (trend) in the stage t, ϕl corresponds to the autoregressive coefficient
of lag l (temporal correlation), and ξt is a white noise process centered at the origin with finite and known
variance.

AR models have been commonly used to model uncertain hydro inflows since their ability to capture tem-
poral correlations (Yang & Read, 1999; van Ackooij et al., 2014; Soares et al., 2014; Pritchard, 2015; Yildiran,
2019). Despite the application of AR models being straightforward and can capture interesting statistical
features, some extensions have been considered. In (Gjerden et al., 2015), the dimensionality reduction tech-
nique of principal component analysis was applied to the (hydro inflows) noise process, capturing some spatial
correlation and allowing better computational performance in the model’s resolution without sacrificing the
statistical representativeness of the inflows. Guan et al. (2018) obtained a similar result when using SDDP
to develop water-value functions for a multi-reservoir system. In Gauvin et al. (2018), hydro inflows were
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represented by ARMA (autoregressive moving average) and GARCH (generalized autoregressive conditional
heteroscedasticity) models to consider heteroscedasticity (nonconstant variability), providing better forecasts
than traditional methods and without sacrificing computational efficiency.

Periodic autoregressive (PAR) models are seasonally varying autoregressive models considering dynamic
autoregressive parameters. In particular, PAR models extend the AR models of (1), and they are given by

bt =

S∑
s=1

δst(µts +

p∑
l=1

ϕlsbt−l) + ξt, (2)

where δst is a dummy variable which is equal to 1 if the stage t corresponds to the season s and 0 otherwise,
µts is a deterministic component for the time t in the season s, ϕls is the autoregressive coefficient of lag l in
the season s, and ξt is again the white noise process.

PAR models have been extensively evaluated for modeling hydro inflows Zambelli et al. (2009a); de Matos
& Finardi (2012); Guigues & Sagastizábal (2012); De Matos et al. (2014). A classical challenge with AR
models (and their extensions) is that they can yield negative values, which has no practical sense (at least in
terms of hydro inflows). To avoid that problem, De Castro et al. (2015) considered the bootstrap technique
to generate viable synthetic scenarios from a PAR model, an alternative to model the innovation process as
log-normal. Similarly, Raso et al. (2017) proposed an innovative hydro inflow process model to be used in
SDDP, including a log-normal multiplicative stochastic component and a nonuniform time step, which makes
the process approximately homoscedastic. Some extensions for PAR models have been studied. Treistman
et al. (2020) presented an extended memory approach for the PAR model to overcome the drawback of
returning to the historical average roughly in some months, even when the current regime is very wet or
dry. To account for spatial correlation, Lohmann et al. (2016) proposed a spatial-PAR and Espanmanesh &
Tilmant (2022) a multisite PAR. The former takes spatial information, such as the distance between hydro
plants, whereas the latter includes a climate variable governed by a hidden Markov model.

The multivariate version of AR models, known as the vector autoregressive (VAR) model, also allows for
capturing spatial information. In particular, a vector autoregressive process of order p, or VAR(P ), is given
by

bt = µt +

p∑
l=1

Φlbt−l + ξt, (3)

which represents the d-dimensional version of an AR model. Here, it is important to note that Φ ∈ Rd×p

accounts not only for temporal correlation but also for spatial correlation.
Some interesting works have considered VAR processes. In Dashti et al. (2016), the performance of a

two-stage robust optimization model is analyzed based on a classical polyhedral uncertainty set compared to
a VAR-based uncertainty set for hydro inflows, where the latter performs better due to a more appropriate
uncertainty modeling. In Favereau et al. (2022), a multivariate Student’s t-mixture was proposed for modeling
the error process of a VAR model for hydro inflows, outperforming a classical VAR with Gaussian white noise.
Also considering a VAR model, Favereau et al. (2023) presented a multistage adaptive robust optimization
model for medium-term hydrothermal scheduling. The uncertainty set for hydro inflows was built based on
a VAR model, applying the dimensionality reduction technique of principal component analysis to obtain a
tractable robust counterpart. Additionally, it is worth mentioning that some classical uncertainty sets could
be ellipsoidal Mejia-Giraldo et al. (2014) and polyhedral Gronvik et al. (2014).

Although all the previously mentioned models are based on statistics, physics-based models are a powerful
tool for modeling uncertain hydro inflows. de Queiroz et al. (2016) considered scenarios from a global climate
model (GCM), the HadCM3, for a hydrothermal scheduling problem, allowing the identification of future
behavior of different climate patterns. Guerra et al. (2019) considered the four representative concentration
pathways (RCP) of greenhouse emissions, i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5 as climate change
scenarios in combination with 18 GCMs to forecast climatic variables for a medium-term hydrothermal
scheduling problem. In addition to an RCP8.5 model, Zakeri et al. (2020) included an AR model for producing
synthetic hydro inflows, yielding exciting results thanks to the ability to capture seasonal patterns. Lastly,
Tucci et al. (2019) considered a rainfall-runoff model instead of classical stochastic models for short-term
hydrothermal scheduling, proving that a benefit from ensemble forecasts is the ability to issue intermediate
probabilities of occurrence.
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Table 8 characterizes the different uncertainty modeling approaches. Note that some works proposed
extensions of some classical models (as in the autoregressive or its derivations), but Table 8 characterized
them according to their fundamental approach.

Uncertain parameter Modeling approach References

Hydro inflows

Scenario-tree

Barqúın et al. (2004)
Homem-De-Mello et al. (2011)
Tong et al. (2013)
Raso et al. (2014)
Fan et al. (2016)
de Matos et al. (2017)
Jovanovic et al. (2018)
Borges et al. (2022)

Probability distributions
Andrieu et al. (2010)
Cassagnole et al. (2021)

Autoregressive models

Yang & Read (1999)
van Ackooij et al. (2014)
Soares et al. (2014)
Pritchard (2015)
Gjerden et al. (2015)
Guan et al. (2018)
Yildiran (2019)
Gauvin et al. (2018)

Periodic autoregressive
models

Zambelli et al. (2009a)
de Matos & Finardi (2012)
Guigues & Sagastizábal (2012)
De Matos et al. (2014)
De Castro et al. (2015)
Lohmann et al. (2016)
Raso et al. (2017)
Treistman et al. (2020)
Espanmanesh & Tilmant (2022)

Vector autoregressive
models

Dashti et al. (2016)
Favereau et al. (2022)
Favereau et al. (2023)

Classical uncertainty
sets

Mejia-Giraldo et al. (2014)
Gronvik et al. (2014)

Physics-based models

de Queiroz et al. (2016)
Guerra et al. (2019)
Zakeri et al. (2020)
Tucci et al. (2019)

Power demand Scenario-tree
Tong et al. (2013)
Jovanovic et al. (2018)

Renewables availability Scenario-tree Tong et al. (2013)

Water demand Scenario-tree Tong et al. (2013)

Fuel costs Scenario-tree Jovanovic et al. (2018)

Electricity prices Scenario-tree
Fleten et al. (2011)
Borges et al. (2022)
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Table 8 continued from previous page

Uncertain parameter Modeling approach References

Cereal demand and yield
coefficient of soil

Probability distributions El Karfi et al. (2022)

Emission quotas Linear regression Belsnes et al. (2003)

Table 8: A summary of uncertainty modeling approaches of reviewed papers

3.3. Water resources management strategies and considerations

This section presents a practical analysis of the selected papers regarding the topography of the considered
power and/or water networks, the approximation of nonlinear functions, and the operation strategies and
considerations evaluated.

3.3.1. Network representation

As discussed, water resources management is a challenging problem often approached by large-scale
optimization under uncertainty models. Typically, there are two representations of such a problem: dis-
aggregated and aggregated networks (de Queiroz, 2016). The first is modeling the resolution of individual
elements (reservoirs, hydro, and thermal units, among others) and stochastic hydro inflows. The second uses
an energy-based equivalent reservoir representation with stochastic inflows of energy. As the representation
clearly impacts the computational efficiency of the solution methods, it is relevant to analyze the different
network representations considered in the literature. Many works have been done on electricity or water
networks, and we focus here on the most significant ones.

According to IHA (2022), Brazil is the second world leader with respect to total hydropower installed
capacity with over 109 GW, with hydro generation representing about 60% of its generation matrix for 2021
(considering that in 2021, Brazil suffered the worst drought in 91 years). Therefore, many research works are
expected to be associated with this country and its electrical system. Costa et al. (2008) compare different
representations of the electrical network: (i) single bus approach, (ii) multi-area approach, (iii) transportation
model, (iv) DC model without losses, (v) DC model with line losses, (vi) AC model OPF. The study cases
comprise real 24-hour scheduling for the complete Brazilian electrical system, with over 110 hydro plants,
40 thermal units, 3400 buses, and 4800 branches. The most significant differences were observed when
including power transmission losses, concluding that these losses are as important (or even more critical)
than representing each branch in the electrical network (instead of only interchange among areas). Diniz
et al. (2011) proposed a mid- (2 months) and long-term (56 months) stochastic optimization model for
hydrothermal scheduling that seeks to assess the penetration of liquified natural gas thermal plants in the
whole Brazilian system, composed of more than 120 hydro plants and 40 thermal plants. To evaluate the
impact of nonlinearities (given by an energy equivalent reservoir modeling and a PAR model) for a six months
hydrothermal scheduling problem, de Matos & Finardi (2012) considered the whole Brazilian interconnected
system (139 hydro and 146 thermal plants). A case study with the application of model predictive control
to the Brazilian power system was performed by Zambelli et al. (2013), simulating the monthly operation
schedule for 56 months for the whole Brazilian power system, comprising 149 hydro plants and 133 thermal
plants. In (Martins et al., 2014), a nonlinear medium-term hydrothermal scheduling problem considered the
entire Brazilian power system, including 127 hydro and 132 thermal plants.

Although previous works considered the whole Brazilian power system, others focused on more aggregated
or specific subsystems. For instance, for a long-term hydrothermal scheduling problem, Zambelli & Soares
(2009), considered a multi-reservoir system composed of 19 cascaded plants with ten reservoirs along a river
basin (representing 38% of the Brazilian Southeast subsystem). De Matos et al. (2015) performed a compu-
tational study of the tuning strategies for SDDP based on a long-term hydrothermal scheduling problem. It
is considered an aggregated representation of the Brazilian power system comprising 158 hydropower plants
and 151 thermal power plants summarized in four energy equivalent reservoirs. To test a novel hydro inflow
forecast method, Lohmann et al. (2016) focused the analysis on 3 of 15 basins described by the power system
operator that does not contain any artificially constructed series: Southeast Atlantic (17 hydro plants), Sao
Francisco (5 hydro plants), and Tocantins (7 hydro plants).
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In addition to Brazil, other countries have been studied in the literature. For instance, for a medium-term
(two years) stochastic hydrothermal scheduling, with nonlinear water head effects, Ramos et al. (2011) consid-
ered the Spanish electric power system with 118 thermal units, five main basins with 49 hydro reservoirs, 56
hydro plants, and two pumped storage hydro plants. In the case of Greece, Ourani et al. (2012) considered six
river basins and four major blocks of multiple reservoirs in cascade with 13 hydropower units for a stochastic
medium-term hydrothermal scheduling problem. In addition, the Chilean case has also been considered. In
(Maluenda et al., 2018), existing generators and transmission lines were reduced to 68 aggregated generators
and 23 lines connecting 20 buses. The generation plants were divided into 25 hydro, 11 wind, nine solar, 16
gas, and seven coal units. In (Favereau et al., 2023), a large-scale representation of the Chilean power system
was considered for a multistage robust optimization hydrothermal scheduling problem, comprising up to 227
buses, 334 lines, 933 generators, ten reservoirs, 353 hydro connections, and 178 hydro nodes.

3.3.2. Nonlinearities and functions approximation

Another interesting and challenging problem in water resources management consists in capturing relevant
nonlinearities and approximating nonlinear or nonconvex functions (Lorca et al., 2020). For instance, the
relationship between hydropower generation and water discharge is typically nonconvex. Reservoir seepage,
thermal generation costs, water-use regulatory constraints, or transmission losses are also generally nonlinear.
Thus, some simplifications are commonly considered to preserve the convexity in optimization models to be
handled by classic algorithms such as SDDP.

Hydropower production is one of the most approached nonlinear functions for water resources manage-
ment problems, particularly hydrothermal scheduling. The physics of hydroelectric generation leads it to be
typically a nonlinear function of its storage and turbined outflow. This function has been generally approx-
imated with an efficiency constant to preserve linearity, although nonlinear formulations have been studied.
Diniz et al. (2006); Tong et al. (2013); Martins et al. (2014); Diniz et al. (2016) approximated hydropower
production using a piecewise linear function of discharge, storage, and spillage to consider water head effects
accurately. Zambelli et al. (2009a,b); Diaz (2009); Dı́az et al. (2011); Ramos et al. (2011); Zambelli et al.
(2011); De Souza et al. (2013); Lima et al. (2013) represented hydropower generation by considering water
head as a nonlinear function of storage, discharge, and spillage, typically giving rise to nonconvexities due to
the bilinear terms (water head multiplied by discharged flow). Although linear approximations guarantee a
global optimum (if it exists), they must balance accuracy with solution efficiency. Nonlinear representations
are more accurate in modeling, which makes it difficult to obtain a global optimum. However, Vieira et al.
(2015) established some mathematical properties that could ensure the global optimality of a solution to
nonlinear hydrothermal scheduling by keeping the problem concave. In addition, Paredes & Martins (2018)
showed how semidefinite programming relaxation is exact if a rigorous condition about turbine efficiency is
observed, particularly if hydroelectric power generation is a concave function. An inaccurate representation
of the nonlinear hydroelectric generation function could lead to a poor estimation of the marginal cost of a
hydro plant, thus affecting market signals.

Another approximation in the literature corresponds to the value function in stochastic dynamic pro-
gramming models. Drouin et al. (1996) considered replacing the value function with a piecewise linear
approximation (two segments) to obtain near-optimal policies and easily computed bounds on the optimal
value function based on a value iteration method. Lamond (2003) extends the previous work by considering
(i) a piecewise polynomial function of higher degree and (ii) continuous distributions. A similar approach
was proposed by Flach et al. (2010) with a piecewise linear approximation of the expected value function for
a hydrothermal scheduling problem solved with SDDP, preserving the concavity of the problem as needed by
SDDP.

Different cost functions have also been approximated. An example is the approximation of marginal costs
of electricity production for a medium-term hydrothermal scheduling model done by Jacobs (1995), based on
estimation methods such as crude Monte Carlo, control variate, method of moments, and indirect approxima-
tion. Nonlinear thermal generation costs have also been approached. A piecewise linear approximation was
proposed in (Tong et al., 2013) to avoid nonlinearities, and a linearization was proposed in (Ennes & Diniz,
2014) based on the combination of two procedures: an exact piecewise quadratic equivalent function and a
dynamic piecewise linear model. Although dynamic piecewise linear models are advantageous as compared to
piecewise linear models, the fact that it is not possible to build a model for all nodes in SDDP challenges its
applicability. Therefore, Cabral & Diniz (2016) proposed a state-dependent dynamic piecewise linear model
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for thermal generation costs, where a dynamic piecewise linear model is built for each system state.
The hydrothermal scheduling model is usually solved for different time scales. In particular, system

constraints are more detailed in short-term models, where transmission losses are a classic example. Trans-
mission constraints are typically built based on direct current (DC) equations, where DC model losses are
naturally nonlinear. For a short-term hydrothermal scheduling problem, Diniz et al. (2006) consider quadratic
transmission losses for each line, represented by a piecewise linear function, presenting very small deviations
between real and considered losses. Olivares et al. (2015) represented transmission losses quadratically, but
approximating it with n piecewise linear segments. Because a poor representation of transmission losses can
lead to an insecure system dispatch, Costa et al. (2008) compared different electrical network representations:
(i) single bus approach, (ii) multi-area approach, (iii) transportation model, (iv) DC model without losses,
(v) DC model with line losses (expressed as a quadratic convex function of the phase angle difference), and
(vi) alternating current model optimal power flow. The authors concluded that representing transmission
losses is as important as representing each branch in the electrical network. In addition, a DC model with
losses accurately represents the active flows (when the system load is low).

Other water-related functions, such as crop water production, water quality, and irrigation constraints,
have been approximated or considered nonlinear. In (Guo et al., 2014), it was considered a nonlinear crop
water production function that reflects the relationship between crop production and required water, that
not only tackle water requirements during the entire crop growth period but also during planting stages
when is hard to compensate with more irrigation during other planting stages. In (Davidsen et al., 2015a),
nonlinearity arises from the water quality constraints, and it is handled with an effective hybrid method
that combines genetic algorithms and linear programming. Because water stored in reservoirs can support
several economic activities, such as agriculture and hydroelectricity generation, they must be appropriately
coordinated. In that sense, Pereira-Bonvallet et al. (2016) considered nonconvex irrigation constraints in an
SDDP-based approach, yielding near-optimal solution through an alternative mixed integer formulation that
can capture these nonconvexities.

Table 9 summarizes the literature review according to the different approximation techniques used for
nonlinear or nonconvex original functions or parameters.

Original function Type of approximation General approach References

Hydropower generation

Piecewise linear
function of
discharge, storage,
and spillage

Multistage stochastic
Optimization

Diniz et al. (2006)

Multistage stochastic
mixed integer linear
optimization

Tong et al. (2013)

Nonlinear optimization Martins et al. (2014)

Linear programming Diniz et al. (2016)

Water head (for
hydropower
generation)

Nonlinear function of
storage, discharge,
and spillage

Nonlinear optimization

Zambelli et al. (2009a,b)
Diaz (2009)
De Souza et al. (2013)
Lima et al. (2013)

Mixed integer nonlinear
optimization

Dı́az et al. (2011)

Stochastic nonlinear
optimization

Ramos et al. (2011)

Stochastic optimization Zambelli et al. (2011)

Revenue (cost-to-go
function)

Piecewise linear
approximation

Stochastic dynamic
programming

Drouin et al. (1996)

Piecewise linear
approximation

Multistage stochastic
Optimization

Flach et al. (2010)
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Table 9 continued from previous page

Original function Type of approximation General approach References

Piecewise polynomial
approximation

Stochastic dynamic
programming

Lamond (2003)

Thermal generation
costs

Piecewise linear
approximation

Multistage stochastic
mixed integer linear
optimization

Tong et al. (2013)

Piecewise quadratic
approximation

Multistage stochastic
optimization

Ennes & Diniz (2014)

Dynamic piecewise
linear approximation

Multistage stochastic
optimization

Ennes & Diniz (2014)
Cabral & Diniz (2016)

Transmission losses
Piecewise linear
approximation

Dynamic programming Diniz et al. (2006)

Multistage stochastic
optimization

Olivares et al. (2015)

Quadratic convex
approximation

Nonlinear optimization Costa et al. (2008)

Crop water production Nonlinear approximation
Inexact nonlinear
optimization

Guo et al. (2014)

Water quality (pollutant
concentration)

Nonlinear function of
volume of surface water,
reservoir release, and
non-treated pollution
release

Multistage stochastic
optimization

Davidsen et al. (2015a)

Irrigation constraints
Nonconvex
representation

Multistage stochastic
optimization

Pereira-Bonvallet et al. (2016)

Table 9: A summary of functions approximation of reviewed papers

3.3.3. Climate change and operation strategies

Finally, another critical challenge in water resources management is related to climate change’s current
and expected impacts. To deal with this issue, power, and water systems must be prepared to minimize its
consequences, and concepts like operation policies, emission quotas, and flexibility must be reanalyzed.

Reservoirs are commonly operated to reduce the natural variability of hydro inflows and comply with
the water requirements of different activities such as hydroelectric generation, agriculture, and tourism,
among others; therefore, efficient operation policies are essential (Macian-Sorribes & Pulido-Velazquez, 2020;
Giuliani et al., 2021). Current phenomena like deep penetration of renewable energy sources, normative
changes, water scarcity, and others imply a reanalysis of actual operation policies. For instance, and in the
context of the growing installation of natural gas-fired power plants, Ojeda-Esteybar et al. (2017) presented
an optimization approach to the operational planning of electric power and natural gas systems, taking into
account different energy storage facilities and showing the benefits of integrated operational planning of both
systems. Another important concept is reservoir reliability, comprehended as not running out of water nor
suffering flooding, for which Ware (2018) proposed a pair of strategies (safety-first and revenue-maximizing)
evaluated with a stochastic dynamic programming model that helped to quantify the costs of maintaining
a certain level of reliability. Similarly, Raso et al. (2019) presented a novel SDDP-based approach that
combines reservoir and hydraulic models for flood and drought protection, increasing flood protection and
reducing the duration and intensity of droughts. Clearly, water resources management is typically limited to
water quantity, neglecting water quality analysis. Martinsen et al. (2019) addressed joint water allocation
and water quality management, showing that the latter strongly impact shadow prices on water availability.

Other analysis regarding operation policies have been considered. For example, Street et al. (2020)
proposed a Decision-Hazard approach for long-term hydrothermal scheduling, unlike the traditional Hazard-
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Decision approach where dispatch decisions are determined assuming perfect information about the current
inflows. Here, the authors showed that Hazard-Decision inconsistency generates an optimistic assessment of
the opportunity cost of water, leading to sub-optimal use of energy resources. Gonzalez et al. (2020) proposed
co-optimizing water for irrigation and hydropower. The authors proposed a water allocation scheme that
integrates monthly marginal benefits of water for irrigation and hydropower at the basin level, alleviating the
conflicts between water uses. Although mathematically optimum policies are generally obtained, in practice,
their implementation is sometimes tricky for political reasons. Cid et al. (2023) proposed a collaborative
modeling approach to define hedging rules as an alternative to politically viable operation policy, considering
stakeholders’ consensus within the methodology.

In the context of climate change and adaptation strategies for the energy sector, there is a need for
systematic tools that help support decision-making processes. New developments in the energy sector, i.e.,
transformation and expansion of power systems to low-carbon and more resilient designs, will be required
in an effort to mitigate and adapt to the effects of climate change. Scianni et al. (2013) determined a
hydrothermal scheduling optimal policy, calculating the power system assured energy–or the amount of
energy available to supply the power demand at a deficit risk of 5%. The work considered the effects of
climate change on the annual variation of precipitation and its seasonality, and it allowed to determine which
new (run-of-river) hydro plants will enter the Brazilian power system. Pereira-Cardenal et al. (2014) coupled
a hydrological model with a power market model to study the impacts of climate change on the Iberian
power system, founding that changes in precipitation will reduce runoff, decrease hydropower production
(consequently, increasing thermal generation) and increase irrigation water use, while higher temperatures
will shift power demand from winter to summer months. In the work of Guerra et al. (2019), it was found that
climate change will reduce the hydropower capacity factor by 5.5-17.1% between 2015 and 2029, based on
an integrated analysis that considered general circulation models, global sensitivity analysis, and stochastic
optimization.

Some previous efforts, such as emissions quota modeling to mitigate the effects of climate change, have
been developed. Belsnes et al. (2003) proposed methods for medium- and long-term hydrothermal scheduling
with two different emissions quota schemes: fixed and uncertain quotas. Also, Avellà Fluvià et al. (2005)
analyzed the impact of CO2 emissions, where the whole thermal units emissions were modeled as a unique
annual reservoir, namely, the allowances stock. In a similar approach, Rebennack et al. (2012) presented a
modeling approach for considering CO2 emissions into an SDDP-based hydrothermal scheduling problem,
proposing a reservoir model for CO2 emissions, yielding valuable insights for policy-makers to determine
socially acceptable CO2 emissions quotas. Rebennack (2014) developed an optimal investment tool to set
quota levels and quantify emissions savings and cost changes associated with the imposed quota levels. For
the Panama case study, the authors showed that wind resources are economically attractive at moderate
emission quota levels.

In some electrical power systems, such as the Brazilian, due to the randomness of hydro inflows, the
hydroelectric plants receive an assured energy certificate, also known as physical guarantees. These assured
energy certificates correspond to the energy each generation unit can produce at a certain percentage, typically
95%. In addition, the certificates also represent the maximum energy each hydro plant can contract. Lorey
et al. (2015) proposed an SDDP-based approach to optimize the seasonalization of assured energy considering
bilateral contracts previously assigned and the projection of spot prices, obtaining a substantial revenue
increase of a generator utility from the Brazilian system. Lorey et al. (2017) extends the previous work by
implementing a different heuristic technique, decreasing the computational times compared to the work of
Lorey et al. (2015) based on genetic algorithms.

Ancillary services play a fundamental role in helping grid operators maintain a reliable electricity system.
Street et al. (2017) proposed a multistage stochastic optimization model for planning hydrothermal coor-
dination, co-optimizing the nominal energy dispatch and individual up and down reserve allocations. The
main goal of this paper is to address a general n −K security criterion, such that, for each inflow scenario,
the system can withstand the loss of up to K components (transmission or generation assets). Concerning
financial storage rights, Martins & Hochstetler (2019) discussed the applicability of financial storage rights
for hydroelectric power plants as a mechanism to decouple ownership and operation of reservoirs, being able
to be centrally dispatched by the system operator, making itself available to the energy and ancillary services
markets to maximize its economic value to the system.

Lastly, it is important to consider that the water allocation from multipurpose reservoirs is typically
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strongly affected by the consequences of climate change. Thus, direct, detailed modeling of different uses of
water becomes necessary. For instance, in González et al. (2016) assessed the economically optimal operation
of a multipurpose reservoir in Chile for irrigated agriculture and hydropower, examining a dynamic water
allocation scheme in which monthly marginal benefits of water in agriculture and hydropower are considered.
In addition, Pereira-Bonvallet et al. (2016) proposed an SDDP-based sub-optimal hydrothermal scheduling
approach incorporating nonconvex irrigation constraints for the Chilean power system. The authors showed
that this approach determines feasible and near-optimal solutions with costs reasonably close to those op-
timally determined through alternative mixed-integer linear programming formulation (which can capture
nonconvexities).

4. Conclusions and Future Research Directions

The main goal of this paper is to develop a tutorial-type review of water resources management problems
over the last decades since the publication of the seminal work of Pereira & Pinto (1991). Two additional
components were also included in this work. First, it provides a formal introduction to some of the basics
of the modeling approaches considered in the literature. Second, a bibliometric analysis was carried out, in
which 174 relevant papers were extracted from Scopus, the well-known journal database. This allowed to
identify the distribution of published papers across time, by journal, and the leading topics, authors, and
papers. It also allowed identifying where the literature has evolved. In particular, the literature was divided
into three main groups: modeling and solution approaches, uncertainty sources and modeling, and water
resources management considerations. According to the systematic review, future research directions have
been identified, providing potential, exciting research opportunities and ideas for further studies. They are
presented as follows.

4.1. Incorporation of operational effects in medium- and long-term models

With the deep penetration of renewable energy sources, hydroelectricity took a fundamental role in
the flexibility capability of electric power systems. Therefore, it becomes essential to consider short-term
operational effects in medium- and long-term hydrothermal scheduling problems.

In the case of hydroelectric operations planning, this can be related to incorporating operational con-
straints such as short-term storage, ramp requirements, reserve requirements, and operating costs (like turn-
on and shut-down of generators). This typically assumes the incorporation of integer decision variables,
which can harden the model solution’s efficiency. Otherwise, to avoid incorporating this type of decision
variables, some approximations could be studied to at least contemplate some effects of these operational
constraints. Regarding more general water resources management problems, some operational or short-term
effects could also be considered. For instance, reservoir seepage, evapotranspiration, maintenance, or irri-
gation constraints induce some impact that, when incorporated into the modeling, could eventually lead to
more efficient operating policies.

4.2. Incorporation of uncertainty sources additional to hydro inflows

As presented in Section 3.2, there are several uncertain parameters considered in the reviewed literature.
For example, power demand, renewables availability, water demand, fuel costs, electricity prices, emission
quotas, and others. However, in general, the modeling approach considered for all of these uncertain param-
eters has been simple, without capturing essential statistical features. On the other hand, uncertain hydro
inflows have been approached with sophisticated models to consider statistical characteristics such as trend,
seasonality, and spatial and temporal correlations, among others. Thus, an exciting research area, still open
in the literature, corresponds to incorporating other uncertainty sources in addition to hydro inflows but
applying modeling tools as sophisticated as those used for the latter. As expected, this creates additional
challenges concerning the balance between the distributional or statistical representation of these uncertainty
sources and the efficiency of solving the corresponding optimization problems.

Here, an essential research direction is related to the impacts of climate change. As discussed in Section
3.3.3, some interesting approaches have been considered, providing important results and policy recommen-
dations. Nevertheless, climate change not only impacts the availability and uncertainty of water but also
exacerbates some risks, such as more elevated temperatures, loss of animal species, food scarcity, or health is-
sues. Each affects water resources management and related activities to a greater or lesser extent. Therefore,
future research should be aware of these risks and consider them in the corresponding analyses.

29



4.3. Design of efficient solution techniques to address more complex networks

As discussed in Section 4.1, modeling of operational effects usually leads to large-scale instances with
detailed power and water networks. This implies an increase in the computational effort to solve the corre-
sponding models.

As commented in Section 3.3.1, although some works considered large-scale power systems (such as
the Brazilian one), the majority focused on aggregated or specific subsystems mainly for computational
purposes. However, the aggregated value of considering more complex networks (and greater uncertainty
spaces) is limited by the ability of algorithms such as SDDP to solve these instances. Therefore, this creates
an exciting challenge in designing efficient solution techniques to solve large-scale instances, allowing a better
assessment of flexibility requirements.

4.4. Approximation of nonlinearities

Another important characteristic related to flexibility issues concerns the incorporation (and approxima-
tion) of nonlinearities. Some examples are those reviewed in Section 3.3.2, such as thermal generation costs,
transmission losses, crop water production, water quality, and irrigation, among others. However, the most
approached nonlinearity corresponds to hydropower generation (and water head). This has been typically
considered in nonlinear optimization models, showing the benefits of obtaining solutions that can be ade-
quately implemented in practice. Some piecewise linear approximations have also been considered, delivering
more effective results than a linear (constant) approximation.

The approximation of nonlinearities also has important consequences in computational efficiency due
to the possible incorporation of integer variables that harden model resolution. In the case of stochastic
optimization, some algorithms, such as SDDiP (Zou et al., 2019), allow solving multistage stochastic integer
problems. However, its scalability is still not enough to solve for large-scale instances. Thus, again an
interesting research direction is related to designing efficient solution techniques (for integer problems in this
case) to be able to represent nonlinear functions such as irrigation constraints, hydropower generation, and
generation costs, among others.
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Alvarez, M., Rönnberg, S., Bermúdez, J., Zhong, J., & Bollen, M. (2018). Reservoir-type hydropower
equivalent model based on a future cost piecewise approximation. Electric Power Systems Research,
155 , 184–195. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032274995&doi=10.
1016/2fj.epsr.2017.09.028&partnerID=40&md5=5045155aeb935566405b9e91652fa71e. doi:10.1016/
j.epsr.2017.09.028. Cited By 4.

Andrieu, L., Henrion, R., & Römisch, W. (2010). A model for dynamic chance con-
straints in hydro power reservoir management. European Journal of Operational Research,
207 , 579–589. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955549485&doi=10.
1016/2fj.ejor.2010.05.013&partnerID=40&md5=fdc26645c2e4d986a747e287fe18ea7a. doi:10.1016/
j.ejor.2010.05.013. Cited By 41.

Archibald, T. W., & Marshall, S. E. (2018). Review of mathematical programming applications in water
resource management under uncertainty. Environmental Modeling & Assessment , 23 , 753–777.
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A Optimization Under Uncertainty Foundations

Stochastic dynamic programming. The stochastic dynamic programming (SDP) technique, also known

as Markovian decision processes (MDP), was proposed by Bellman (1957) and extensively developed and

standardized by Puterman (1994). SDP has also had important contributions, such as those of Ross (1983)

and Bertsekas (2017). An MDP problem is essentially composed of the following elements:

1. Decision stages: a finite set of stages t ∈ T := {1, . . . , T}.

2. State space: for each stage, a set of possible states St, generally assumed as discrete.

3. Decision space: a compact (closed and bounded) space of possible actions (decisions) that can be taken

and that depend on the state of the system at each stage. That is, Xt(st) with st ∈ St for t ∈ T .

4. Stochastic transition function: as a function of the current state, st, the decision taken, xt, and the

random exogenous information, ξt ∼ Ft, the next state will be given by

st+1 = ft(st,xt, ξt). (1)

This is equivalent to defining a transition probability that maps from the current state and decision space

to the future state space, pt : St ×Xt → St+1. That is,

pt(st+1|xt, st) = P(St+1 = st+1|St = st,xt). (2)

5. Immediate value: there exists an immediate benefit (value) in each stage t, rt : St × Xt → R. Thus, the

objective will be

max
x∈X

E
[∑
t∈T

rt(St,xt|s1)
]
, (3)

where the state s1 is assumed as known and |rt(st,xt)| < ∞. As the uncertain parameters of the problem

perturbate the future states, then (3) is given by

u∗t (st) = sup
xt∈Xt(st)

{
rt(st,xt) +

∑
ξ∈St+1

pt(ξ|st,xt)u
∗
t+1(ξ)

}
, (4)
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known as Bellman’s equation. Then, if ∃x∗
t ∈ Xt(st) such that

u∗t (st) = sup
xt∈Xt(st)

{
rt(st,xt) + ESt+1 [u

∗
t+1(St+1)|st,xt]

}
, (5)

then, by Bellman’s principle of recursion (Bellman, 1957), the decision policy x∗ = (x∗
1,x

∗
2, . . . ,x

∗
T ) will

be optimal.

SDP has been a widely used technique within the reservoir operation area because the structure of this problem

allows it to be intuitively modeled as an MDP. The first work to use SDP to find the optimal operation rule of

a water resources system with stochastic hydro inflows was Little (1955), where a simplified example based on

the Columbia River were analyzed. Product of the simplicity of the previous example, in Butcher (1971), the

use of SDP is extended by applying it to a more realistic case (Watasheamu dam, United States), considering

returns from hydroelectricity, irrigation, and recreation.

During the following decades, several research works were carried out with the objective of extending the use

of SDP for different water resource management applications such as reservoir operation, irrigation control,

infrastructure development, and water quality, among others. A review of the evolution of these models can

be found in Yakowitz (1982). On the other hand, Yeh (1985) presents a review of the state of the art of

linear programming, dynamic programming, non-linear programming, and simulation models used in reservoir

operation problems.

Until then (the mid-1980s), most research considered stationary policies using hydro inflows from strictly

preceding periods, mainly based on Markov chains (or order 1 autoregressive models). This made it easier to

solve the problems, but it also had certain disadvantages since considering greater hydro inflow lags allowed

more precise forecasts (Bras et al., 1983; Alarcon and Marks, 1979). However, this caused the dynamic

programming models to be non-stationary, and their resolution using SDP got complicated. Due to this, in

(Stedinger et al., 1984), an alternative formulation of SDP was proposed based on the work of Curry and Bras

(1980), which not only considers the immediately preceding hydro inflows for the forecasts of each period but

also the best prediction of them, integrating control theory techniques and obtaining better reservoir operation

policies.

In its classical formulation, SDP assumes that stochastic processes are stationary. Due to the effects of cli-

mate change, this assumption may not adequately represent the hydro inflows of water networks, so some

methodological derivations of SDP were proposed. One of them is sampling stochastic dynamic programming

(SSDP), initially proposed by Kelman et al. (1990). SSDP, unlike SDP, does not rely on the use of probability

distributions, so it can incorporate non-stationary processes. In SSDP, the uncertainty vectors are represented

by fixed scenarios, which makes it possible to ignore the stationarity assumption of SDP. As shown in equations

(2) and (4), Bellman’s equations assume a discrete intertemporal representation of the uncertain parameters,

while in SSDP, the recursion equation corresponds to

ut(st, δt) = sup
xt∈Xt(st)

{
rt(st,xt) + Eθt+1|δt [ut+1(st+1,θt+1)|st,xt]

}
(6)
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= sup
xt∈Xt(st)

{
rt(st,xt) +

∑
θt+1∈Θt+1

pt(θt+1|δt)ut+1(st+1,θt+1)

}
, (7)

where pt(θt+1|δt) represents the probability of going from the scenario δt in stage t to the scenario θt+1 in stage

t+ 1. Based on this definition, in Vicuña et al. (2010), an SSDP-based optimization algorithm was proposed,

and it was capable of incorporating the nonstationarity of uncertain hydro inflow forecasts due to the effects

of climate change.

Despite the benefits and potential of dynamic programming in general, in most real applications solving Bell-

man’s equations becomes very challenging. The main reason for this is the so-called “curse of dimensionality”.

This concept refers to the following:

1. The size of the state space, S, can be very large. Suppose a resource management problem with several

(over 10, for instance) reservoirs. The possible number of states (level of each reservoir) is so large that

it can be very difficult to find an optimal operating rule in a relatively short time.

2. Solving the model over the decision space X (s) can be very complex.

3. The number of possible future realizations of the uncertainty can be very large. In this way, computing

the value function can be computationally intractable.

Due to the above, approximate dynamic programming (ADP) plays a fundamental role in solving dynamic

problems, where Powell (2011) presents interesting and widely used techniques today. ADP consists of differ-

ent heuristic methods to solve dynamic stochastic models by finding approximate policies sufficiently “close”

to optimal ones. Among the most used are myopic decisions, lookahead, roll-out, and rolling-horizon. In

general, these techniques seek to exploit the properties and benefits of future state simulation. In Guigues and

Sagastizábal (2012), for the hydrothermal scheduling problem, the benefits delivered by rolling horizon policies

are shown in comparison to those obtained with stochastic and robust optimization models. In particular, the

challenge of the latter lies in the definition of uncertainty, which can often be very conservative (as will be

discussed later).

Multistage stochastic programming. An alternative to SDP is multistage stochastic programming (MSP).

Based on Section 3.1 of Shapiro et al. (2009), consider the nested (or dynamic programming) formulation of

an MSP of the form

min
x1∈X1

f1(x1) + E
[

inf
x2∈X2(x1,ξ2)

f2(x2, ξ2) + E
[
· · ·+ E

[
inf

xT∈XT (xT−1,ξT )
fT (xT , ξT )

]]]
, (8)

driven by the random data process ξ1, ξ2, . . . , ξT , where ft : Rnt × Rdt → R and Xt ⊂ Rnt . A possible way to

rewrite the MSP problem of (8) is with the corresponding dynamic programming equations (value functions)

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1(xt, ξ[t])

}
, (9)

where

Qt+1(xt, ξ[t]) := E
[
Qt+1(xt, ξ[t+1])|ξ[t]

]
, (10)
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for t = 2, . . . , T , and QT+1 ≡ 0. Qt(·) is called expected value function or (expected) cost-to-go function. In

addition, in the first stage, the problem to solve corresponds to

min
x1∈X1

f1(x1) + E
[
Q2(x1, ξ2)

]
. (11)

It is important to note that two-stage stochastic programming corresponds to the case where T = 2.

For large-scale optimization problems, solving an MSP optimally can be very challenging, even more so if the

number of possible future realizations is very large. Therefore, it becomes necessary to use methods that reduce

said effort. One commonly used is stochastic dual dynamic programming (SDDP), proposed by Pereira and

Pinto (1991). Assuming stage-wise independency of the random process ξt and that ft(·, ξt) is convex for ξt

c.p.1, SDDP in its general form, seeks to approximate the functions Qt(·) and Qt(·) of (9) and (10) through

the generation of scenario trees and the iterative use of the Benders decomposition (Benders, 1962). That

is, it is constructed a sample average approximation (SAA) of the “true” problem (8) by replacing the true

distribution of {ξt}Tt=2 (recall that ξ1 is deterministic), Pt, by the empirical distribution PΩt based on a random

sample {ξ̃ωt}Ωt
ω=1 from Pt of size Ωt. The probability distribution of the SAA problem can be represented by

a tree where at each stage t − 1 every node has the same branches corresponding to {ξ̃ωt}Ωt
ω=1, preserving

the stagewise independence of the true problem. The value function equations for the SAA problem can be

expressed as

Q̃ωt(xt−1) = inf
xt∈Xt(xt−1,ξ̃ωt)

{
ft(xt, ξ̃ωt) + Q̃t+1(xt)

}
, ∀ω = 1, . . . ,Ωt

with

Q̃t+1(xt) =
1

Ωt

Ωt+1∑
ω=1

Q̃ω,t+1(xt)

for t = 2, . . . , T and Q̃T+1(·) ≡ 0. Since Qt(·) and Q̃t(·) are convex functions and Ωt < ∞ for each t, then the

functions Q̃t(·) are piecewise linear. A backward step applied to the SAA problem is described as follows. Let

x̃t ∈ Rnt at stage t = 1, . . . , T − 1 be a trial decision and Qt(·) an approximation of Q̃t(·) at stage t = 2, . . . , T .

At the final stage t = T , for ξ̃ωt = (c̃ωt, Ãωt, B̃ωt, b̃ωt) for ω = 1, . . . ,Ωt, it is solved the problem

min
xT∈RnT

c̃⊤ωTxT (12a)

s.t. B̃ωTxT−1 + ÃωTxT = b̃ωT (12b)

xT ≥ 0 (12c)

for xT−1 = x̃T−1 and ω = 1, . . . ,Ωt. It is important to note that Q̃ωT (xT−1) corresponds to the optimal

value of problem (12). Let x̃ωT be an optimal solution of problem (12) and π̃ωT the optimal dual solution for

xT−1 = x̃T−1. Then, ℓT (xT−1) := Q̃T (x̃T−1) + g̃⊤T (xT−1 − x̃T−1), with

Q̃T (x̃T−1) =
1

ΩT

ΩT∑
ω=1

c̃⊤ωT x̃ωT

4



and

g̃T = − 1

ΩT

ΩT∑
ω=1

B̃
⊤
ωT π̃ωT ,

is a supporting plane for Q̃T (·) at x̃T−1. Then, QT (·) is replaced by max{QT (·), ℓT (·)}. With this updated

approximation QT (·), for t = T − 1 we solve the problem

min
xT−1∈RnT−1

c̃⊤ω,T−1xT−1 +QT (xT−1) (13a)

s.t. B̃ω,T−1xT−2 + Ãω,T−1xT−1 = b̃ω,T−1 (13b)

xT−1 ≥ 0 (13c)

which should be solved for xT−2 = x̃T−2 and ω = 1, . . . ,ΩT−1. Let Q̃
⋆
ω,T−1(xT−2) be the optimal value of the

problem (13), and consider

Q̃⋆
T−1(xT−2) :=

1

ΩT−1

ΩT−1∑
ω=1

Q̃⋆
ω,T−1(xT−2).

Note that Q̃⋆
ω,T−1(·) ≤ Q̃ω,T−1(·) for each ω = 1, . . . ,ΩT−1 and, thus Q̃⋆

ω,T−1(·) ≤ Q̃ω,T−1(·). Solving the prob-

lem (13) and the dual for each ω = 1, . . . ,ΩT−1, Q̃
⋆
T−1(x̃T−2) and a subgradient g̃T−1 of Q̃⋆

T−1(xT−2) can be

computed at xT−2 = x̃T−2, constructing the supporting plane ℓT−1(xT−2) := Q̃⋆
T−1(x̃T−2)+g̃⊤T−1(xT−2−x̃T−2)

for Q̃⋆
T−1(xT−2) at xT−2 = x̃T−2. As before, the approximationQT−1(·) is replaced with max{QT−1(·), ℓT−1(·)},

and this process continues until the first stage, where the following problem is solved

min
x1∈Rn1

c⊤1 x1 +Q2(x1) (14a)

s.t. A1x1 = b1 (14b)

x1 ≥ 0. (14c)

SDDP was mainly proposed to be applied in solving the problem of reservoir management in hydrothermal

scheduling in Brazil at the beginning of the 1990s and is still used today (De Queiroz, 2016; Lorca et al., 2020).

Risk-neutral MSPs, such as the classical formulation of the hydrothermal scheduling problem, do not allow

capturing the variability of decisions, so some works that include risk-averse functionals as an objective have

been proposed (Shapiro et al., 2013; de Mello and Pagnoncelli, 2016). Generally, this risk aversion is captured

through the use of functionals such as conditional value-at-risk (CVaR), and they become even more relevant

if the current and future scenarios of hydrological uncertainty are considered.

Although SDDP continues to be one of the most widely used techniques to solve reservoir operation problems,

it becomes difficult to manage non-convexities such as hydropower generation, reservoir seepage, or certain

regulatory constraints on the use of water (Lorca et al., 2020). An alternative technique to address these

difficulties is stochastic dual dynamic integer programming (SDDiP), proposed by Zou et al. (2019), which

seeks to solve multistage stochastic integer problems by approximating the state variables by means of binary

variables. SDDiP extends the effort of SDDP by adding a reformulation of the subproblems of each stage and
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an approximation of the value function based on Lagrangian cuts. In particular, in Hjelmeland et al. (2019),

this technique was applied to solve the hydrothermal scheduling problem considering non-convex functions in

electricity generation and flow discharges. Through SDDiP, the authors showed the importance of considering

these non-convexities in the operation of reservoirs since a linear approximation of these functions translates

into an overestimation of the reserve capacity.

Robust optimization. Another interesting approach to addressing water management problems is robust

optimization (RO). The essence of RO is that a probability distribution for the random parameter ξt is not

known or considered, but only that ξ belongs to a support U . In RO, U is known as the uncertainty set. Then,

for a general problem of the form

f(ξ) := min
x∈X

{
F (x, ξ) : x ∈ X (ξ)

}
, (15)

x ∈ X is sought such that x ∈ X (ξ) for each ξ ∈ U and minimizes the worst-case total cost. That is,

min
x∈X

max
ξ∈U

{
F (x, ξ) : x ∈ X (ξ)

}
(16)

One of the main challenges of RO is to adequately represent random processes by the uncertainty set U . For

this, there are several classic definitions, such as the pioneering work of Soyster (1973) or those of Ben-Tal

and Nemirovski (1999) and Bertsimas and Sim (2004). Some of the different classes of uncertainty sets are the

following:

• Box: U = {ξ ∈ Rd : ||ξ||∞ ≤ ρ}, with ||ξ||∞ := maxi∈[d]|ξi| and ρ ∈ R.

• Ellipsoidal: U = {ξ ∈ Rd : ||ξ||2 ≤ ρ}, with ||ξ||2 :=
√
ξ21 + . . . ξ2d and ρ ∈ R.

• Polyhedral: U = {ξ ∈ Rd : Hξ + d ≥ 0}, with H ∈ Rm×d and d ∈ Rm.

For a detailed survey on robust optimization, we refer the reader to the works of Ben-Tal et al. (2015);

Yanıkoğlu et al. (2019). In summary, under RO, there is a willingness to accept suboptimal solutions as long

as the solution continues to be feasible and “close” to optimal, even when the random parameters change. An

interesting application of RO for the hydrothermal planning problem is the work of Dashti et al. (2016), where

the uncertainty set associated with the hydro inflows was built from a vector autoregressive process. In this

way, the authors demonstrated a clear advantage over the classic budget uncertainty set of Bertsimas and Sim

(2004) because the hydro inflows forecast had a lower variance and was not as conservative.

Finally, another technique that has gained attention in recent years is distributionally robust optimization

(DRO) (Ben-Tal et al., 2013). From stochastic optimization, it has been considered that the uncertain param-

eters follow a certain known distribution, while in robust optimization, only their support has been assumed

to be known. DRO is positioned right in between both approaches: it provides probabilistic models as in the

former, together with the incorporation of uncertainty sets as in the latter. However, here we do not assume

a single probability distribution for random processes but rather a set of possible distributions constructed
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from historical observations, known as the ambiguity set. In this way, being M a set of possible probability

distributions that explain the behavior of ξ, a DRO problem has the following form:

min
x∈X

max
Q∈M

{EQ[F (x, ξ)]}. (17)

In this way, DRO seeks to optimize the expected value of the worst-case distribution of the ambiguity set. The

work of Huang et al. (2017) shows the effectiveness of applying this technique to a risk-averse hydroelectric

resource management problem solved through SDDP, compared to the classic SO modeling.
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