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Abstract

This paper discusses the design of a tree-shaped water distribution system for small, dispersed
rural communities. It revisits the topic that was discussed in [2] and is nowadays implemented
in the field [1]. It proposes a new approach to pipe selection based on robust optimization
to account for the uncertainty inherent in intermittent demands. It also proposes a fast
projected reduced Newton method of calculating stationary flows to test the performance of
the networks thus designed by Monte-Carlo simulation. Numerical experiments conducted
on real study cases have shown promising results both in terms of quality and performance
of the generated robust solutions and in terms of computation time for simulations.

Keywords Gravity-driven distribution systems, Optimal design, Robust optimization, Simula-
tion.

1 Introduction and outline

This paper discusses the design and analysis of a tree-shaped water distribution system for small,
dispersed rural communities. It revisits the topic that was discussed in [2] and was implemented
in NeatWork, a free access software [1] which has been used in the field for years by the NGO
Agua para la Vida1 operating in Nicaragua. The goal of NeatWork is to build simple and robust
networks that provide stable flows to water outlets. In the context of very poor communities,
each outlet typically consists of a single faucet to serve all inhabitants of a household. This
configuration is unusual in developed areas and not so much studied in the literature.
In this context, a least-cost design of the water distribution system must take into consideration
the users’ behavior at each individual faucet, whereas almost all studies of distribution networks
focus on systems where distribution points gather a fairly large number of users making their
cumulated demand uncertain but smooth and relatively stable. This difference has important
implications. In our case of interest, the demand is essentially intermittent, depending on
whether the user at the end of the line opens or closes the faucet. The difficulties involved
in designing such a low-cost network have been discussed in a previous article. The main
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challenge is, of course, that the system once designed and implemented will have to operate
under extraordinarily varied scenarios of open and closed faucets.
The approach in [2] has two facets : a design module, based on a heuristic, and a simulation
module to predict the expected behavior in the field. In the present paper we propose a new
approach for the design module that better accounts for the inherent uncertainty via Robust
Optimization [4] and Chance-Constraint Programming [7]. In the simulation module, we exploit
the tree structure of the network to implement the projected reduced Newton method [6]. It
considerably speeds up the simulation phase allowing extensive studies by the users.
Let us briefly examine these contributions. The design module seeks a compromise between cost
and friction. The larger is the pipe diameter, the greater the cost but the less friction. And
the less friction there is, the less the pressure varies as the flow rate varies. The analysis in the
least cost design looks at each path from the reservoir to the individual faucets separately. The
laws of physics state that the total friction losses induced by the steady-state flow in pipes and
end devices (faucets, orifices) exactly match the gravity potential. If the flows were known as
deterministic values, it would be easy to find a least-cost design compatible with the physics.
This is not the case when demand is intermittent.
In [2] the authors recognize the uncertain character in the number of open faucets downstream
of a node along a path to a faucet. They chose to replace it with an ad-hoc deterministic
approximation and, at the same time, assumed that the flow rate at each open faucet is exactly
the target flow rate. In doing so, they neglect the law of conservation of mass. This is what
makes their approach heuristic. In this paper, we propose to deal with the uncertain number of
open faucets through Robust Optimization. This approach introduces a safety factor between
the deterministic estimate of friction losses and the gravity potential. This safety term is present
in the literature on water distribution systems in the form of additional demand requirement,
head loss gradient, or overpressure requirement at each outlet point (e.g., [10, 3]). In practice
the amount of overpressure is an experimental value, the same for all outlets and often the same
for all networks to be designed. Robust Optimization allows it to be determined on an analytical
basis. The overpressure is therefore adapted to each faucet and depends on the network, which
is a significant improvement. Finally, we show that Chance-Constraint Programming provides
the same solution as Robust Optimization. We are thus able to assign a probability to the
satisfaction of the constraints.
The second contribution of the present study concerns the simulation module. The approach uses
the formulation of the steady-state flow as the minimization of a convex integral function of the
energy [12, 9] subject to the linear network mass conservation constraints. By taking advantage
of the tree structure of the network it is possible to specialize and simplify the content-based
approach [9] used in [1] for computing steady-state flows. The optimization algorithm, i.e., a
projected reduced Newton method, is very much the same as in [6]. It proves to be very efficient
and provides considerable speedup.
Robust optimization has been used for the least cost design of water distribution systems [13]
but not in the context of tree-shape networks with intermittent demands. The literature on
methods for solving the water distribution equations is extensive. Efficient algorithms based
content-based, or least action principle, and on active sets have been proposed and successfully
implemented [11]. We show that in the case of a tree-shaped network, the content-based approach
leads to great simplifications and efficiency.
The paper is organized as follows. In Section 2, we introduce the robust optimal design model and
derive probabilistic results based on a chance constraint interpretation. In Section 3 we present

2



the projected reduced Newton algorithm used for computing steady-state flows in simulations.
In Section 4, we report numerical results on real study cases in Nicaragua. Finally, Section 5
concludes.

2 The optimal design module

The problem is to equip with appropriate pipes a network whose three-dimensional coordinates
of the junction and withdrawal points are fixed and whose graph is a tree. If the demand is
intermittent, the problem of sizing a tree network with minimum investment cost is a matter of
stochastic programming. However the formulation in this framework faces enormous difficulties,
if only because of the need to quantify the value of the service provided to the users. Indeed, the
water withdrawal management behavior of a user is likely to influence the flow of other users.
Quantifying users’ dissatisfaction to flow fluctuations at their withdrawal point is difficult, but
necessary to enter the framework of stochastic programming because this methodology weighs
the objective, the cost of the investment and the uncertain constraints, some of which concern
user satisfaction.
The challenge of the design module is to build a network that provides a roughly constant flow at
users’ outlets while those users withdraw water intermittently. This challenge is arduous because
the prevailing context for these rural water distribution systems makes it inappropriate to rely
on external flow control systems, whether human or material. On top of that, the objective is
to achieve a least cost design, where costs pertain to pipes exclusively.
Given the randomness of the demand, the problem seems to belong to the realm of stochastic
programming. However, an intermittent demand that manifests itself by a random opening or
closing of the faucets leads to an exponential multiplicity of configurations whose description
implies random binary variables. A stochastic programming would also require to quantify the
degree of failure when the flow rate at a faucet is too small or too large in certain situation.
We propose two approaches to address the random demand challenge. The first simply replaces
the cumulative effect of downstream demands on an arc with an average of these demands.
This is the approach that was followed in NeatWork [1, 2]. The second one, which is new,
makes further use of the probabilistic properties of the demands through robust optimization
and chance constraint programming. First, it is necessary to specify the probabilistic model of
the demand.

2.1 Model of the probabilistic demand

The model is based on several assumptions.
i) Each housing unit is equipped with a single faucet;
ii) The housing units have the same number of inhabitants (typically 6) and their daily water
requirements are identical;
iii) A user draws water intermittently. The duration of the withdrawal corresponds to the filling
of a standard container. The number of filling sequences during the peak period corresponds to
the total requirements of the housing unit during this period;
iv) Users have the same needs and behave identically. Their demands are statistically indepen-
dent.
When designing a water distribution system, it is often assumed that the total demand during
the peak period is a baseline. Let us further assume that the system is capable of delivering
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(almost) the same flow rate to each faucet. Given the assumptions i)–iv), we can deduce and
quantify the proportion of time each faucet is open during the peak period.
In addition, we ask:
v) The probability that a given faucet is open at any point of time is the same during the period
and is equal to the proportion of time the faucet is known to be open during the peak period.
Probabilistic demand model At any time, the faucet openings are independent and identical
Bernoulli random variables, with parameter p.
This model provides a reasonably sound basis for accounting for the uncertainty of intermittent
demands. A similar probabilistic demand model has been already proposed [2, 8]. The assump-
tion that the flow rate at the faucet is close to a fixed target value is a consistency requirement.
If a simulation study shows that this is not the case, it means that a user with a lower average
flow rate will spend more time filling his containers. The likelihood that his faucet will be opened
will be greater. On the other hand, the model is considered valid if the simulation shows that
the flows are on average close to the target value.
In the following analyses, the model will be used to define scenarios of demand configurations.
A scenario is a set of open faucets (the others remain closed). The number of open faucets
downstream of the node is a sum of Bernoulli variables, i.e., a binomial variable with parameter
p.

2.2 Deterministic approximation for the probability model

To overcome the challenge of intermittent demands, NeatWork in its early release [1] uses a
heuristic for the design issue. The idea is to replace the actual flows with a deterministic
approximation reflecting the average flow in each pipe as a function of the average number of
open faucets downstream of that pipe. This heuristic does not model reality because it does not
reflect the essential condition of mass preservation, but it provides a basis for estimating and
controlling the head losses in the pipes so as to ensure satisfactory flows at the outlets. Because
the design is based on heuristic arguments, it is mandatory to couple the network sizing it
generates with a Monte-Carlo simulation of real flows. This is the subject of a later section.
In this section we start with a description of the heuristic exposed in [2] and we will continue
with an extension based on robust programming for a better handling of the uncertainty. We
first give some notations in Table 1.
In the numerical experiments we used the following values3 for the physical constants in IS units:
β = 8.94×10−4, γ = 0.53×108, λ = 1.781 and µ = 4.781. The Hazen-Williams formula [11, 14],
more widely used in civil engineering, was also tested, with similar results but different physical
constants.
The heuristic for the design is the following linear programming problem. In this formulation,
the problem is to determine for each arc which piece of each pipe available in the database will
be used. The decision variable xkd is the fraction of the length Lk of the arc k that will be filled
by the pipe d of diameter Φd at the unit cost Cd.

2In a tree-based network, such a node is terminal to one incident arc, with a one-to-one relationship between
terminal nodes and arcs.

3These values have been calibrated for ground conditions in Nicaragua.
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Nf : Set of terminal faucet nodes ;
Nb : Set of branching (intermediary or transit) nodes ;
N : Set of nodes downstream the source node; It corresponds to the set of arcs2;

: We have N = Nb ∪ Nf ;
P i

t : Path from node i ∈ Nb to the terminal node t ∈ Nf ;
Pt : Path from source node S to the terminal node t ∈ N ;
P i

t− : Subpath from node i ∈ Pt down to the immediate predecessor of t ∈ Nf ;
D : Set available pipes;
Q̄ : Target flow at each faucet ;
p : Probability that a faucet is open ;
Lk : Length of the arc ending at node k ∈ Nf ∪ Nb ;
Φd : Internal diameter of pipe d ∈ D ;
Cd : Cost per unit of length of pipe d ∈ D ;
Θk : Number of nodes downstream of node k ∈ Nb ;
θk : Estimated number of open faucets downstream of node k ∈ Nb (θk ≤ Θk) ;
β : Scalar parameter for the pressure loss in the pipes ;
γ : Scalar parameter for the pressure loss at the faucet ;
xkd : Fraction of the length of arc k that uses pipe d ;
λ : Exponent of the flow in the formula for the loss of pressure in the pipes ;
µ : Exponent of the diameter in the formula for the loss of pressure in the pipes.
h0 − ht : Static piezometric head, i.e., altitude difference between source node and node t ∈ N .

Table 1: Notations

min
x

∑
k∈N

∑
d∈D

LkCdxkd (2.1a)

∑
k∈Pt

∑
d∈D

β(θkQ̄)λLk

Φµ
d

xkd + γQ̄2 ≤ h0 − ht, ∀t ∈ Nf (2.1b)

∑
k∈Pt

∑
d∈D

β(θkQ̄)λ Lk

Φµ
kd

xkd ≤ h0 − ht, ∀t ∈ Nb (2.1c)

∑
d∈D

xkd = 1, ∀k ∈ N (2.1d)

xkd ≥ 0, ∀k, d. (2.1e)

Constraint (2.1b) expresses the condition that the sum of the resisting forces consisting of head
losses upstream of the faucet and within the faucet itself match the driving force of gravity. The
condition mimics reality because the actual flows upstream of the faucet are not known but just
estimated at each node (and pipe incident to it) as a multiple of the target flow. This can be
seen in the double sum on the left of (2.1b) in which the the quantity θkQ̄ is an estimate of the
essentially random flow through arc k. The second term in the left is the impact of the faucet
itself at the desired target flow. The slack between the left- and right-hand sides is the excess
pressure at the faucet. How this excess pressure is managed in practice will be discussed later.
Constraint (2.1c) concerns intermediary nodes. It aims to protect against possible leakage
because in case of leakage the excess of potential gravity over upstream head losses would
induce an outward leak, preventing dirt and pollution entering the system. This constraint is
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not essential. Qualitatively, the optimization goes as follows. The objective promotes a choice of
x for the least cost pipe. The cost of a pipe increases as the inner diameter increases, but smaller
diameters increase the head losses in the first sum of (2.1b) and (2.1c). The formulation by linear
programming allows to find a compromise between the cost and the physical constraints.
In the above formulation the parameter θk is a deterministic approximation of the uncertain
number of open faucets downstream of arc (node) k. We also denote n the total number of
faucets downstream of k, not including the faucet t associated with (2.1b). In order to simplify
the notations, we drop the index k in the discussion to follow. Recall that the constraint (2.1b)
is relevant only when the faucet is open. Hence the number of open faucets (at node k on the
path to faucet t) is Θ = 1+X, where X ∽ Bin(n, p) is a binomial variable. The expected number
of open faucets downstream of k is E(1 +X) = 1 + np, with variance V (1 +X) = V (X) = npq.
Let us explicit the random variable Θ = 1 + X at the node k along the path leading to faucet
t ∈ Nf . We can write it

Θt
k =

∑
j∈P k

t

νj

where the νj ∽ Bin(nj , p) and νj is the number of open faucets downstream of j ∈ P k
t that

connect to the path exactly at j. Note that νt = 1 is the only deterministic component since
(2.1b) is a relevant inequality at t only when faucet t is open. Thus

Θt
k = 1 +

∑
j∈P k

t−

νj .

Clearly,
Θt

k − 1 ∽ Bin(
∑

j∈P k
t−
nj , p) and E(Θt

k) = 1 +
∑

j∈P k
t−
njp, and V (Θt

k) =
∑

j∈P k
t−
njp(1 − p).

We conclude this section with a discussion of how the expected excess pressure at faucet t is
handled in practice. This excess pressure is the slack in constraint (2.1b) of model (2.1). We
denote it st for convenience. In the physical network it must be absorbed by some device.
Remember that the basic assumption on the networks we are interested in is that there is no
human or automatic equipment tuning intervention. Users just open and close their faucets.
Excess pressure must therefore be absorbed by a fixed and passive mechanism. This is done
through orifices. An orifice is a disc of the same diameter as the pipe in which it is placed and
which has a small hole in the center. It is placed just upstream of the faucet. It obstructs
the pipe, but allows water to pass through its central hole, imposing a pressure loss given by
the formula (0.59

ϕ )4Q̄2. It is a very sensitive to variations of the internal diameter and at must
be carefully machined. If st > 0 is the optimal slack for (2.1b), then the orifice has internal
diameter

ϕ = 0.59
√

Q̄√
st

.

It is a common practice in the design of water distribution system to impose an excess pressure
at each water outlet. The reason is intuitive, but hard to establish as a general principle: The
higher the residual excess pressure at the outlet, the lower should be the upstream head losses.
Smaller head losses are obtained through larger pipe diameters. Finally, the head loss in a larger
pipe is less sensitive to the relative variation of flow, a feature that favorizes flow stability. In
this paper, we use robust optimization to quantify for each faucet the excess pressure by means
of a safety term in (2.1b).
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2.3 Robust Optimization

The deterministic approach to the design problem has proven reasonably effective, but simula-
tions sometimes reveal excessive flow variability and even failure for some episodes. Although
there is little hope of expressing the problem (2.1) in a tractable stochastic programming for-
mulation, it is worth exploring the alternatives of chance-constraint programming and robust
optimization. The idea is ensure that the design will permit constraint (2.1b) to be satisfied
with a large enough probability.
In this analysis we face two major difficulties. The first one stems from the uncertain nature
of flow that results from the stochastic behavior of the users. The flow is a deterministic
function for each scenario of open or closed faucets. This dependence can be made explicit by
a computational scheme (see the next section on simulation) but it is not sufficient to work out
the chance-constraint formulation. To get around this difficulty we posit that the design will
be efficient enough to entail little variability around the target flow Q̄. Simulation will justify
or invalidate this working assumption on each problem instance. The second major difficulty is
that the uncertain factor appears in the nonlinear power function with the exponent λ > 1. We
propose to substitute to the power function a linear function that majorizes the power function
in the domain of interest of the uncertain variables ν. Linearization is used in [13] to overcome
the appearance of uncertain parameters in nonlinear expressions, but in a different context.

Let us focus on the uncertain components of (2.1b). Define yi =
∑

d∈D
βLiQ̄

λ

Φµ
d
xid. The constraint

is now written (recall that faucet t in (2.1b) is open so νt = 1)∑
i∈Pt−

(1 +
∑

j∈P i
t−

νj)λyi + yt + γQ̄2 − (h0 − ht) ≤ 0 ∀t ∈ Nf . (2.2)

Our goal is to propose an alternative formulation of (2.2) that would guarantee that the original
(2.1b) is satisfied for all values of interest of the uncertain variables ν. Robust optimization
[5, 4] is the tool of choice to achieve the goal. The solution is elegant. It adds a deterministic
term to the left-hand side of (2.2) that enforces the original inequality in the worst case under
consideration. Since the uncertainty stems from independent random variables with known
binomial distribution, it will be shown later on that it is possible to assess a probabilistic
statement to the constraint satisfaction, in the spirit of Chance-Constraint Programming [7].

2.3.1 Linearization scheme

Our solution starts with a linearization of the power term fi(ν) = (1 +
∑

j∈P i
t−
νj)λ around a

nominal value νnom. We propose the following linear substitute

fL
i (ν; d) = fnom

i +
∑

j∈P i
t−

(νj − νnom
j )di

j , (2.3)

with fnom
i = (1 +

∑
j∈P i

t−
νnom

j )λ. The goal is to give the d-vectors a value that ensures an
upper bound on fi(ν; d) for the ν-variables within the relevant interval [νnom, νmax]. We suggest
νnom

j = E(νj) = njp and νmax
j = E(νj) + κ

√
V (νj), where V (νj) = njp(1 − p) is the variance

of νj . The larger is the parameter κ, the larger the probability that νj ≤ νmax
j . However the

parameter must satisfy κ ≤
√
nj

1−p
p to ensure νmax

j ≤ nj . A value κ = 1 already yields a
probability around 0.8 for the cases of interest.
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We suggest to use the gradient at ν = νnom. By convexity of fi (λ ≥ 1)

di
j = d

dνj
(1 +

∑
j∈P i

t−

νj)λ
∣∣∣
ν=νnom

= λ(1 +
∑

j∈P i
t−

νnom
j )λ−1 (2.4)

provides a lower bound
fL

i (ν; di) ≤ (1 +
∑

j∈P i
t−

νj)λ.

Using the linearization scheme and (2.4) we have∑
i∈Pt−

fL
i (ν; di)yi =

∑
i∈Pt−

fnom
i yi +

∑
i∈Pt−

yi

∑
j∈P i

t−

(νj − νnom
j )di

j

=
∑

i∈Pt−

fnom
i yi −

∑
i∈Pt−

∑
j∈P i

t−

νnom
j di

jyi +
∑

i∈Pt−

yi

∑
j∈P i

t−

νjd
i
j

=
∑

i∈Pt−

fnom
i yi −

∑
i∈Pt−

yi

∑
j∈P i

t−

νnom
j di

j +
∑

j∈Pt−

νj

∑
i∈Pj

yid
i
j .

For the sake of more compact notation, we shall write the uncertain inequality (2.2) as

a0 +
∑

j∈Pt−

ajνj ≤ 0, (2.5)

with

a0 =
∑

i∈Pt−

fnom
i yi −

∑
i∈Pt−

yi

∑
j∈P i

t−

νnom
j di

j + yt − (h0 − ht) + γQ̄2

=
∑

i∈Pt−

yi(fnom
i −

∑
j∈P i

t−

njpd
i
j) + yt − (h0 − ht) + γQ̄2

and
aj =

∑
i∈Pj

yid
i
j .

Note that di
j > 0 and yi ≥ 0. So a0 < 0 is a necessary condition for (2.2) to hold true.

2.3.2 Certainty equivalent for robust optimization

Robust optimization is based on the concept of uncertainty set. In the present context, this set
encapsulates all values of the uncertain parameters ν for which it is desired that constraint (2.2)
remains satisfied. The set is denoted Ut.
The robust counterpart of (2.2) is

a0 + max
νj∈Ut

∑
j∈Pt−

ajνj ≤ 0, (2.6)

in which the uncertain parameters are now variables in the maximization problem. The range
of interest for the variables is 0 ≤ ν ≤ νmax. We propose the budget uncertainty set

Ut = {ν | 0 ≤ νj ≤ νmax
j , j ∈ Pt− , and

∑
j∈Pt−

σ−1
j νj ≤ K}
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where σj =
√
njp(1 − p) is the standard deviation of νj whose distribution is known to be

binomial. K is a “safety parameter” chosen by the user. The larger K, the less the chances for
constraint (2.2) to be violated.
The worst case analysis for the uncertain constraint is given by the linear program

max
ν

{ ∑
j∈Pt−

ajνj | 0 ≤ νj ≤ νmax
j , j ∈ Pt− , and

∑
j∈Pt−

σ−1
j νj ≤ K

}
. (2.7)

Its dual is
min

u≥0,w≥0

{ ∑
j∈Pt−

ujν
max
j +Kw | σjuj + w ≥ σjaj , ∀j ∈ Pt−

}
. (2.8)

Therefore, the robust counterpart of (2.2) can be replaced in the original minimization problem
by the set of inequalities

a0 +Kw +
∑

j∈Pt−

ujν
max
j ≤ 0

σjuj + w ≥ σjaj , ∀j ∈ Pt−

u ≥ 0, w ≥ 0.

In the final formulation, we make the inequality stronger by replacing a0 by

α0 = a0 +
∑

j∈Pt−

njpaj

=
∑

i∈Pt−

fnom
i yi + yt + γQ̄2 − (h0 − ht) −

∑
i∈Pt−

∑
j∈P i

t−

njpd
i
jyi +

∑
j∈Pt−

njpaj .

We have ∑
i∈Pt−

∑
j∈P i

t−

njpd
i
jyi =

∑
j∈Pt−

njp
∑
i∈Pj

yid
i
j =

∑
j∈Pt−

njpaj

Hence
α0 =

∑
i∈Pt−

yif
nom
i + yt + γQ̄2 − (h0 − ht) > a0.

Finally, the robust deterministic equivalent of (2.1b) is∑
i∈Pt−

yif
nom
i + yt + γQ̄2 − (h0 − ht) +Kw +

∑
j∈Pt−

ujν
max
j ≤ 0 (2.9a)

σjuj + w ≥ σjaj , uj ≥ 0, v ≥ 0, ∀j ∈ Pt− . (2.9b)

At the optimal solution of the global problem, constraint (2.9a) may appear to be saturated
while the left-hand side of the robust counterpart (2.6) is strictly negative. Recall that the
variable u and w are associated with the dual (2.7) of the inner maximization problem in (2.6).
If (2.9b) is satisfied, the component Kw+

∑
j∈Pt− ujν

max
j in (2.9a) provides an upper bound to

the inner maximization problem in (2.6), but u and w are not necessarily the optimal values for
the dual (2.8).
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2.4 Chance constraint interpretation

In the Chance-Constraint Programming approach, we focus on the random variable Z = a0 +∑
j∈Pt− ajνj and look for a condition under which the probability of constraint violation is small

enough probability
Prob(Z > 0) ≤ ϵ.

Theorem 2.1. Under the assumption that the νj are independent random variables following
binomial distributions with parameters (nj , p), the constraint

∑
i∈Pt−

yi(1 +
∑

j∈P i
t−

njp)λ + yt + γQ̄2 − (h0 − ht) +
√

card(Pt−)
2pq ln ϵ−1 max

j∈Pt−
σjaj ≤ 0 (2.10)

ensures that the original uncertain inequality (2.2) is satisfied with a probability at least equal to
1 − ϵ. In this formulation σj = √

njpq is the standard deviation of νj.

Proof. The derivation of the result is based on the observation that Z > 0 is equivalent to
sZ > 0 for all s > 0. Let I(.) be the indicator function of a, i.e., I(a) = 0 if a ≤ 0 and I(a) = 1
if a > 0. Then Prob(sZ > 0) = E[I(sZ)]. Since I(sZ) ≤ esZ , we conclude

Prob(sZ > 0) ≤ inf
s>0

E[esZ ].

Let Ψ(s) = E[esZ ] be the moment generating function of Z. In view of the stochastic indepen-
dence of the νj

Ψ(s) = E[esa0
∏

j∈Pt−

esajνj ] = esa0
∏

j∈Pt−

E[esajνj ].

The variable νj are binomial variables, taking the integer values k = 0, 1, . . . , nj . So

Ψj(s) = E[esajνj ] =
nj∑

k=0
πke

sajk

=
nj∑

k=0

(
nj

k

)
(esajp)k(1 − p)nj−k

= (pesaj + q)nj

where q = 1 − p. It is convenient to work with ψj(τ) = nj ln(peτ + q), with τ = saj . Consider
its exact Taylor expansion up to order 2

ψj(τ) = ψj(0) + ψ′
j(0)τ + 1

2ψ
′′
j (τ̄)τ2,

for some 0 ≤ τ̄ ≤ τ . Here, τ = saj , ψj(0) = 0, ψ′
j(τ) = njp

eτ

peτ +q (so ψ′
j(0) = njp) and

ψ′′
j (τ) = njpq

eτ

(peτ +q)2 ≥ 0 (and ψ′′
j (0) = njpq). We claim that ψ′′

j (τ) achieves an optimum at
τ0 = ln(q/p). Indeed, the third derivative

ψ′′′
j (τ) = njpq

eτ (peτ + q)2 − 2pe2τ (peτ + q)
(peτ + q)3 = njpq

eτ (q − peτ )
(peτ + q)2

is zero at τ0 with ψ′′′
j (0) = njpq(q − p). If p ≥ q, τ0 ≤ 0, and ψ′′′

j (τ) < 0 for all τ ≥ 0;
consequently, ψ′′

j (τ) ≤ ψ′′
j (0) = njpq = σ2

j ≤ nj/4. If q > p (i.e., p < 1/2, the more relevant
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case for our problems of interest), it is easy to see that ψ′′′
j (τ) > 0 for τ < ln(q/p) and negative

otherwise. Consequently ψ′′
j (τ) achieves a maximum value at τ0 = ln(q/p), and for all τ ≥ 0:

ψ′′
j (τ) ≤ ψ′′

j (ln(p/q)) = nj
q2

4q2 = 1
4nj .

Recall that τ = saj so we have

ψj(saj) ≤ njpsaj + 1
8njs

2a2
j .

So

P (Z > 0) ≤ Ψ(s) ≤ e
(a0+

∑
j∈P

t−
njpaj)s+ 1

8

(∑
j∈P

t−
nja2

j

)
s2

. (2.11)

Let us use the notation introduced in the previous subsection

α0 =
∑

i∈P−t

yif
nom
i + yt + γQ̄2 − (h0 − ht) = a0 +

∑
j∈Pt−

njpaj .

We posit4 α0 < 0.
Since the inequality (2.11) holds for all s > 0,

Ψ(s) ≤ inf
s>0

eα0s+ 1
2

(∑
j∈P

t−

nj
4 a2

j

)
s2
 .

Since α0 < 0, the infimum is a minimum that occurs at s = −4α0/
∑

j∈Pt− nja
2
j .

Consequently: Ψ(s) ≤ exp(−1
2α

2
0/(
∑

j∈Pt−
nj

4 a
2
j )). The equivalence below ensures that Ψ(s) ≤ ϵ

e
−2α2

0/(
∑

j∈P
t−

nja2
j )

≤ ϵ ⇐⇒ α2
0 ≥ 1

2 ln 1
ϵ

∑
j∈Pt−

nja
2
j .

Therefore the following condition holds

α0 +
√

1
2 ln ϵ−1||z||2 ≤ 0

with z = {zj}j∈Pt− = {aj
√
nj}i∈P −

t
implies Prob(a0 +

∑
j∈Pt− νjaj > 0) ≤ ϵ. The dimen-

sion of z is card(Pt−) ≤ N − 1, that is at most the total number of faucets minus one. In
view of it, ||z||2 ≤

√
card(Pt−)||z||∞. Since zj = aj

√
nj = ajσj/

√
pq ≥ 0, then ||z||2 ≤√

card(Pt−) maxj∈Pt− ajσj/
√
pq. Hence the condition

∑
i∈Pt−

yi(
∑

j∈P i
t−

njp+ 1)λ + yt + γQ̄2 − (h0 − ht) +
√

card(Pt−)
2pq ln ϵ−1 max

j∈Pt−
ajσj ≤ 0

ensures that the original uncertain inequality is satisfied with a probability at least equal to
1 − ϵ.

4Recall that α0 ≤ 0 is the deterministic substitute of the uncertain constraint (2.1b) in the heuristic approach
described in the second section. We could add it as an extra constraint in the chance constraint formulation so
as to validate the argument.
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The certainty equivalent (2.10) of the original uncertain inequality can be written:

∑
i∈Pt−

yi(
∑

j∈P i
t−

njp+ 1)λ + yt + γQ̄2 − (h0 − ht) +
√

card(Pt−)
2pq ln ϵ−1 w ≤ 0

ajσj ≤ w,∀j ∈ Pt− .

If we define the uncertainty set as

Ut = {νj , j ∈ Pt− |
∑

j∈Pt−

νjσ
−1
j ≤ K}

with K =
√

card(Pt− )
2pq ln ϵ−1, we can use the robust counterpart formulation

∑
i∈Pt−

yi(
∑

j∈P i
t−

njp+ 1)λ + yt + γQ̄2 − (h0 − ht) + max
ν∈Ut

∑
j∈Pt−

ajνj ≤ 0.

The uncertainty set can be reduced by adding the following condition: νj ≤ νmax
j . The relaxed

uncertainty equivalent (2.10) of the original uncertain inequality becomes∑
i∈Pt−

yi(
∑

j∈P i
t−

njp+ 1)λ + yt + γQ̄2 − (h0 − ht) +Kw +
∑

j∈Pt−

νmax
j uj ≤ 0 (2.12)

uj ≥ 0, σj uj + w ≥ σj aj ,∀j ∈ Pt− .

How to choose νmax
j ? Considering that the variable is binomial B(nj , p), the choice

νmax
j = inf

x
{Prob(νj ≤ x) ≥ 1 − η}

with η small enough, is very sensible. A simple scheme is to take νmax
j = njp

max and choose
pmax to enforce

njp
max = njp+ κ

√
njpq.

We want the smallest κ that keeps Prob(νj > njp
max) small enough.

3 Algorithm for the computation of steady-state flows

Steady-state flow rates in the system depend on how users adjust their valves. We assume that
each user adjusts the pressure drop across the valve to achieve the desired flow rate. If the
excess pressure is not sufficient to achieve the desired flow rate, i.e., the valve is wide open but
the actual flow rate is less than the desired flow rate, the user must accommodate this deficient
situation. This is modelled as a nonlinear optimization problem in the flows at the outlets with
simple upper bounds on each flow. The solution of that problem may involve flows strictly less
than their target values. If the default is small, e.g., less than 10% of the target, the solution
might be accepted by the user. Otherwise, the design may be declared inappropriate.

12



3.1 The content-base formulation of the stationary flows in a tree network

We recall here the formulation of the steady-state flows in a tree network as the solution of a
convex optimization problem with simple bound constraints. To this end, we change notation
to fit the more conventional notation of optimization problem.
The basic variable is the flow x ∈ Rnf , with nf = card(Nf ). The flow in the intermediary
branches is denoted y ∈ Rnb , with nb = card(Nb). If S the nb × nf matrix, whose columns are
made of 0 and 1 and which determines which branching node is visited by the path from the
source to the faucet associated with this column, then y = Sx. It is convenient to use uλ to
denote the vector {uλ

i } and U = diag(u) to denote the square matrix with main diagonal u.
Finally, we denote 1b and 1f the vectors of all ones with dimension nb and nf respectively.
The objective function in the content-base formulation is the integral of the energy. The function
involves the following parameters. The first one β ∈ Rnb+nf is associated with the friction, a
quantity that is computed in the design phase. The friction loss in the segment i is βiy

λ
i ,

i ∈ Nb and βix
λ
i , i ∈ Nf . Their integrals are βi

λ+1y
λ+1
i and βi

λ+1x
λ+1
i , respectively. The objective

function may include an additional term associated with a passive pressure reduction valve with
parameter γ ∈ Rnf and pressure drop γix

2
i at the terminal node i. The integral is γi

3 x
3. For the

sake of condensed matrix notation we denote G = diag(γ) and B = diag(β).
The content-base formulation [9] (see also [14]) is the following optimization problem.

min{f(x) = Fb(y(x)) + Ff (x) +G(x) + E(x) | 0 ≤ x ≤ x̂}, (3.1)

where
Fb(y(x)) =

∑
i∈Nb

bi

λ+ 1yi(x)λ+1 =
∑

i∈Nb

bi

λ+ 1(Sx)λ+1
i = 1

λ+ 1β
T
Nb

(Sx)λ+1,

Ff (x) =
∑

i∈Nf

βi

λ+ 1x
λ+1
i = 1

λ+ 1β
T
Nf

(x)λ+1,

G(x) =
∑

i∈Nf

(γi

3 x
3
i ) = 1

3γ
T (x)3

and
E(x) =

∑
i∈Nf

(hi − h0)xi = ∆hTx.

with ∆h < 0. The first and second order of the objective are

f ′(x) = d

dx
f(x) = STBbYλ1b + Bfx

λ + Gx2 + ∆h

and
f ′′(x) = d2

dx2 f(x) = λST
[
BbYλ−1

]
S + λBfXλ−1 + 2GX.

The Hessian matrix is positive semi-definite because the diagonal matrices BbYλ−1, BfXλ−1 and
GX are positive.
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3.2 Projected Reduced Newton algorithm

Using the compact formulation min{f(x) | 0 ≤ x ≤ x̂},we provide a handy sketch of the
projected and reduced Newton method of [6]. This approach is based on active sets. To this
end, for a feasible x, we define the partition (I, J) of Nf and I = (I+, I−) according to

I+(x) = {i ∈ Nf | xi = x̂i and d

dxi
f(x) ≤ 0},

I−(x) = {i ∈ Nf | xi = 0 and d

dxi
f(x) ≥ 0},

and J = Nf \(I+∪I−). I(x) is the set of active (constraint) indices at x satisfying complementary
slackness conditions. I− is characterised by the fact that the flows are zero and the local steepest
descent given by the opposite of the gradient points to negative values of x and is therefore
infeasible. Similarly, the descent direction for i ∈ I+ is infeasible because xi is at its upper
bound x̂i. Denote H = f ′′(x) be the Hessian matrix of f . Suppose that the rows and columns of
H have been reordered so that the first set of columns (and rows) is associated with the active
set J . We define the Hessian restricted to the inactive constraints as

Hr
ij =


Hij if i and j ∈ J
0 if i ̸= j and i or j ̸∈ J
1 if i = j ∈ I− ∪ I+.

After reordering, the matrix looks like

Hr =

Hr
J 0 0

0 I 0
0 0 I


where 0 is the zero matrix and I is the identity matrix, both with appropriate dimensions. The
reduced Newton direction in the active set solves the equation

Hrdx = − d

dx
f(x).

Clearly, dxJ = −(Hr
J)−1 d

dxJ
f(x) and dxI− = − d

dxI−
f(x) ≤ 0 and dxI+ = − d

dxI+
f(x) ≥ 0. The

projected Newton step is
xnew = min{x̂,max{0, x+ dx}}.

Therefore the two active sets I−(xnew), I+(xnew) and the inactive set J are updated,

xnew
I− = 0 and xnew

I+ = x̂I+ .

Necessary and sufficient optimality condition. As the problem is convex the first order
optimality condition d

dxJ
f(x) = 0 is necessary and sufficient.

In order to avoid jamming or zizagging, Newton’s step is only accepted if it leads to a significant
improvement of the objective function f . Otherwise, a backtracking search is performed along
the projected Newton direction according to a variant of the Armijo criterion. Since in each
iteration we compute the gradient and the hessian, we have a quadratic approximation of f
which is likely to be of better quality than the linear approximation. Indeed, the strongly
convex function f is quasi-cubic. The implemented variant consists in decreasing the step a in
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x+ = min{max(0, x+ adx), x̂} by a fraction, such as 0.9 until we obtain an improvement of the
objective function f(x) − f(x+) > τ(fQ(x) − fQ(x+)) where fQ is the quadratic approximation
in x and τ < 1 a parameter to be chosen. (In the implementations we chose τ = 0.7.) In
practice, the full step 1 is accepted in the immense majority of cases, but the line-search rules
out exceptional failures of convergence.
The inactive status for a variable is not necessarily permanent. Akin, in order to avoid jamming
or zigzagging, it is desirable to enlarge the set I− and I+ to

I− = {i ∈ Nf | 0 ≤ xi ≤ ϵ and d

dxi
f(x) ≥ 0},

I+ = {i ∈ Nf | x̂i − ϵ ≤ xi ≤ x̂i and d

dxi
f(x) ≤ 0},

for some small enough ϵ > 0.
For convex problems, Bertsekas [6] proved global and superlinear convergence under the condi-
tion that the Hessian is bounded.

4 Numerical results

The design and validation process of a water distribution network is done by interaction between
the design module and the simulation module. If the statistics of the simulation results show
insufficient performances, a new design is sought with more demanding robustness parameters.
It is therefore essential that reliable simulations, i.e. with a large sample size, can be performed
quickly. A first set of results concerns the behavior of the projected-reduced Newton method.
The second set of results displays statistics on a number of selected criteria and discusses the
price of robustness to obtain a satisfactory design. The choice of evaluation criteria contains a
degree of arbitrariness that requires discussion before implementation and interpretation.
The two sets of experiments were performed on 4 networks that were built in Nicaragua to serve
61 housing units for the smaller network and 269 for the larger one (see Table 2). To begin
with, we tested the simulation procedure, which includes scenario generation and calculation of
steady-state flows, on each of the dimensioned networks without concern for robustness. The
four networks were designed to meet a target flow of 0.12 l/s and a probability of having an
open faucet probability p = 0.2. The code is written in Matlab R2021b/15 and the computation
are performed on an iMac (3.3 GHz Intel core i5-6600K).

Network number of nodes iterations total time

faucets transit min average max seconds

Las Pinares 61 74 2 3.09 5 2.8
Red Mesa 138 172 2 2.92 7 4.7
Ceiba 222 174 2 3.22 7 6.5
Wany 269 289 3 2.98 6 7.1

Table 2: Performance over 10,000 Monte-Carlo simulations. Probability p = 0.2.

Table 2 reveals that the projected Newton algorithm is well suited to the problem that it solves in
about three iterations for each of the instances. It also shows that Matlab is very efficient, since
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the solution times per scenario are measured in fractions of a thousandth of a second. Indeed,
it was possible to formulate the various operations of the algorithm in the form of vectorized
commands, such as vector term-by-term products and the use of efficient Matlab libraries such
as Cholesky factorization. It is also possible to verify that these operations take about 70%
of the computation time and that the time progression for each of them is linear (product of
vectors) or quadratic (product of matrices). The verification was done on the fourth problem
by doubling the probability of open faucets. Thus with p = 0.2 the problem dimension for a
scenario is on average 0.2 ∗ 269 ≈ 54 and with p = 0.4 it is about 108.
The quality of service is evaluated on each faucet. The criteria used are the mean of the
distribution and two measures on the tails of the distribution: the conditional averages of the
5% smallest flows, thereafter named cVar5% and of the 5% largest flows, thereafter named
cVar95%. The situation is all the more favorable as these three quantities are close to the target
flow 0.12 l/s. More precisely, the service at the faucet will be considered satisfactory if the
conditional average of the 5% smallest flows is higher than half of the target flow, i.e., 0.06 l/s.
We also display two additional measures: the ratio between the mean and the standard deviation
and the excess pressure at faucets.
The base case corresponds to the deterministic solution without robustness. The goal assigned
to the robust solution is to eliminate all cases of cVar5% value lower than the tolerance 0.06 l/s,
and of course to do it at the lowest investment cost. Table 3 displays the statistics for the base
case and the best robust solution. The increased cost to achieve the assigned goal is the price
of robustness.
The average values hide a fairly large disparity between faucets. For example, we can see that
the average of the cVar5% on all the faucets is satisfactory for the basic solution, whereas a
sometimes quite important number of faucets do not meet the satisfiability criterion. For this
reason, we present the results for this category of defective faucets only. Table 3 displays this
information.
Numerical results show the contribution of robust optimization on the stabilization of the faucet
flows. The failures have disappeared with a reduced variability both globally and on the critical
faucets, i.e., the coefficients of variability are divided by a factor 2 globally and by a factor 3
for the critical faucets. As a result, cVar5% are increasing and cVar95% decreasing. The price
of robustness varies from 4% to 20% depending on the specific network topology of each case
study.

5 Conclusion

The problem addressed in this paper concerns the minimum cost design and simulation of a
loopless pressurized drinking water distribution network. The application that motivates this
study is service to very poor rural communities where quality drinking water was previously
unavailable. This framework requires that attention be paid to installation costs and meeting
the demand for housing units. To take into account in the design of the network that individual
demands are essentially intermittent, we have developed a robust optimization approach and
derived probability results based on a chance constraint interpretation. The quality of the ro-
bust solutions is estimated through a Monte-Carlo simulation process that consists in solving
non-linear steady-state flow optimization problems for different scenarios. To solve the simula-
tion problem efficiently, we have developed a fast projected reduced Newton method. Numerical
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average values

Network cost failures cVar5% mean cVar95% coeffvar pressure cost+

Las Pinares

Determinist 2257 16 0.074 0.124 0.195 0.234 34.00
(Critical faucets) 16 0.031 0.127 0.262 0.442 7.80
Robust 2353 0 0.091 0.121 0.151 0.125 65.47 4.2%
(Critical faucets) 0 0.079 0.121 0.165 0.177 45.04

Red Mesa

Determinist 3547 18 0.083 0.120 0.165 0.166 12.41
(Critical faucets) 18 0.027 0.122 0.230 0.413 1.98
Robust 4014 0 0.098 0.120 0.140 0.087 24.57 13.1%
(Critical faucets) 0 0.083 0.120 0.153 0.145 15.11

Ceiba

Determinist 4624 40 0.079 0.121 0.180 0.203 14.39
(Critical faucets) 40 0.033 0.136 0.295 0.470 3.10
Robust 4836 0 0.092 0.121 0.151 0.121 26.72 4.6%
(Critical faucets) 0 0.081 0.121 0.161 0.165 18.94

Wany

Determinist 24678 23 0.091 0.121 0.158 0.136 4.19
(Critical faucets) 23 0.030 0.124 0.232 0.419 3.42
Robust 29713 0 0.103 0.120 0.134 0.064 52.57 20.4%
(Critical faucets) 0 0.085 0.120 0.148 0.132 24.08

Table 3: Price of robustness. Statistics based on the full set of faucets and on the subset of
critical faucets. Sample size 10,000. Critical faucets are faucets whose cVar5% is less than 0.06
in the deterministic base case.
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experiments conducted on real study cases have shown promising results both in terms of qual-
ity and performance of the generated robust solutions and in terms of computation time for
simulations.
The tools that have been developed for the niche problem of water distribution for very poor
rural and small communities turn out to be relevant to address problems of a more industrial
nature such as loopless pressurized irrigation systems where demand, and perhaps other factors,
are uncertain. This is the subject of current work in progress.
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