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ABSTRACT

Asset-liability management (ALM) is a challenging task faced by pension funds due to the
uncertain nature of future asset returns and interest rates. To address this challenge, this paper
presents a new mathematical model that uses a Worst-case Conditional Value-at-Risk (WCVaR)
constraint to ensure that the funding ratio remains above a regulator-mandated threshold with a
high probability under the worst-case probability distribution that plausibly explains historical
sample data. A tractable reformulation of this WCVaR constraint is developed based on the
definition and a new reformulation/approximation of the Worst-case Lower Partial Moment
(WLPM) for a general loss function. Additionally, a new data-driven moment-based ambiguity
set is developed to capture uncertainty in the moments of random variables in the ALM problem.
The proposed approach is evaluated using real-world data from the Canada Pension Plan (CPP)
and is shown to outperform classical ALM models, based on either CVaR or WCVaR with fixed
moments, on out-of-sample data. The proposed framework for handling correlated uncertainty
using WCVaR with nonlinear loss functions can be used in other application areas.

1. Introduction
Financial institutions like pension funds and insurance companies are mandated to prudently manage large amounts

of assets and liabilities. Decision-makers in these institutions have to maintain a delicate balance between maximizing
return and controlling risk to ensure their long-term financial sustainability. The Asset-liability Management (ALM)
problem aims to achieve this goal by optimally allocating available funds to different assets such that profit is maximized
while current and future liabilities are covered and any regulatory requirements are satisfied (Zenios, 1995). This
problem is of particular concern for pension funds that must guarantee pre-defined payback to retirees (i.e., defined
benefit pension plans) (Bodie, Marcus and Merton, 1988).

Pension funds control a sizable portion of global financial assets, in excess of $60.6 trillion by the end of 2021,
which represents 33% of the global assets 1. At that time, the pension funds in 9 out of the 38Organisation for Economic
Co-operation and Development (OECD) countries had assets exceeding their respective GDPs. Furthermore, pension
assets have grown by 5.7% in the last decade (2010-2020) 2 which exceeds the GDP growth rate of 2.6% over the
same period 3, signifying the increasing importance of retirement savings globally. However, as large segments of
the population have been reaching their retirement ages, outflows from pension funds to pay their benefits are also
accelerating. The ratio of total benefits paid from retirement savings plans to GDP varies across OECD countries,
ranging from 0.5% to 8% 4.

To meet their future obligations, pension funds need to invest collected contributions in diversified portfolios
of assets (i.e., fixed-income, public/private equities, real estate, and infrastructures) to generate sufficient returns.
However, these investments come with inherent risks that can affect the portfolio’s value and the fund’s ability to meet
its commitments. Like other investment portfolios, pension funds are exposed to asset price variations over time due to
market, sector-specific, and company-specific risks. In contrast to classical investment portfolios, pension funds have
defined future obligations and are subject to additional regulatory requirements that stipulate a minimum acceptable
ratio between current assets and the present value of future liabilities (i.e., the funding ratio). Hence, pension funds are

∗Corresponding author
alireza.ghahtarani@dal.ca (A. Ghahtarani); ahmed.saif@dal.ca (A. Saif); alireza.ghasemi@dal.ca (A. Ghasemi)

ORCID(s):
1https://www.thinkingaheadinstitute.org/research-papers/global-pension-assets-study-2022/
2https://www.statista.com/statistics/721151/average-growth-largest-pension-markets-worldwide/
3https://www.macrotrends.net/countries/WLD/world/gdp-growth-rate
4https://www.oecd.org/finance/private-pensions/globalpensionstatistics.htm

Ghahtarani, Saif and Ghasemi: Preprint submitted to Elsevier Page 1 of 25



also exposed to interest rate risks that severely affect the liabilities’ present value, rendering classical portfolio selection
problem (PSP) techniques unsuitable to manage them. Instead, ALM models that jointly consider asset returns and
interest rate risks are used.

Several risk measures have been proposed in the literature to quantify this risk (Chen, Yang and Yin, 2008; Chiu
and Li, 2006; Chiu and Wong, 2012; Leippold, Trojani and Vanini, 2004; Shen, Wei and Zhao, 2020; Ferstl and
Weissensteiner, 2011), among which is the Conditional Value at Risk (CVaR), which was first used in the context of
ALM by Bogentoft, Romeijn and Uryasev (2001). CVaR combines the risk level and the probability of an asset or
portfolio’s return falling below a specified threshold. In order to develop CVaR as a risk measure in the ALM problem,
a loss function that considers the losses resulting from mismatches between asset returns and liabilities is required.
The use of CVaR enables pension funds to control their risk exposure by managing the tail risk of their investments.
Despite its usefulness, the ALM formulation proposed by Bogentoft et al. (2001) uses a sample-average-approximation
(SAA) approach to model the uncertainty about asset returns, thus not capturing the full extent of variability of returns
and interest rates and resulting in intractable formulations.

The solvency of funded pension plans is highly sensitive to the assumptions embedded in the expected returns
and interest/discount rates (parameters of CVaR), as emphasized by Konstantin (2018). The discount rate is crucial in
determining the funding status of pension plans. As bond yields have fallen over the past few decades, the discount
rate should be adjusted downwards, while it remains highly aggressive in US public pension plans, the major holder
of pension plans globally. Additionally, the expected fund performance varies significantly among different entities,
even without necessarily different allocations. This variability in returns makes it challenging for pension managers
to determine the optimal asset allocation to cover future liabilities. Furthermore, D’Addio, Seisdedos and Whitehouse
(2009) highlighted the significant impact of uncertainty in asset returns on pension funds, indicating the need for a
conservative approach to investment based on asset returns uncertainty.

Managing the uncertainty associated with the ALM problem is critical for institutions to make better investment
decisions and manage risk effectively. Therefore, research on ALM problems under uncertainty has focused on
developing models and methods that can quantify and manage the various sources of uncertainty. As highlighted
by Birge and Louveaux (2011), the most common approaches to this problem are stochastic programming (SP) and
robust optimization (RO). SP is a risk-neutral approach that aims to find a solution that optimizes the expected value of
the loss function. Various studies, such as (Klaassen, 1997; Kouwenberg, 2001; Consigli, 2008; Duarte, Valladão and
Veiga, 2017; Kopa, Moriggia and Vitali, 2018; Barro, Consigli and Varun, 2022), have applied SP to ALM problems.
However, SP requires that the distribution function of the random variables be known. On top of that, the method is risk-
neutral, meaning there is no immunity against scenarios that are worse than expected. Additionally, SP solutions may
be infeasible for some scenarios. Despite its limitations, SP remains an intuitive approach with favorable convergence
properties.

Another appealing method proposed for addressing uncertainty in ALM problems is RO. Researchers such as
(Iyengar and Ma, 2016; Platanakis and Sutcliffe, 2017; Gülpinar and Pachamanova, 2013; Gülpınar, Pachamanova
and Çanakoğlu, 2016) have used RO to develop ALM models under uncertainty. Despite the advantages of RO over
SP models, such as being a risk-averse method and not requiring knowledge of the distribution function of uncertain
parameters, the solutions produced by RO are usually overly conservative. This can increase the opportunity cost of
ALM problems by basing the decisions on the worst-case scenario. Interested readers can refer to (Ben-Tal, El Ghaoui
and Nemirovski, 2009; Bertsimas, Brown and Caramanis, 2011; Gabrel, Murat and Thiele, 2014; Ghahtarani, Saif and
Ghasemi, 2022) for more information about RO methods.

While RO and SP have been proposed for the ALM problem, there is currently no research in the literature that
considers the combination of risk measures with the uncertainty of probability distribution in ALM optimization.
This combination has several advantages. First, it allows for a more comprehensive risk modeling in pension fund
management by considering a risk measure. Second, it enables pension fund managers to make more informed
decisions on asset allocation, taking into account the uncertainty of returns and the associated risk. Third, it provides a
more accurate representation of the underlying probability distribution by using a set of possible distribution functions
for random variables called the ambiguity set, which can lead to better risk management and improved long-term
financial stability. Finally, the combination of risk measures with uncertainty in ALM optimization can lead to more
robust and reliable solutions, which are essential for ensuring the long-term financial health of pension funds. This
gap in the literature and the benefits of the combination of a risk measure and the ambiguity of distribution function
motivates us to adopt distributionally robust optimization (DRO) approaches for the ALM problem. DRO considers
the worst-case distribution within a set of candidate distributions that are compatible with available data. By using a
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risk measure (e.g., CVaR) and accounting for ambiguity in the probability distribution through a DRO approach, more
realistic solutions leading to better long-term financial outcomes for pension funds can be achieved. Combining CVaR
with DRO leads to the worst-case CVaR (WCVaR) risk measure.

Although the literature suggests WCVaR as a valuable tool for PSPs, there is a gap in the theoretical framework
that limits its applicability to more complex loss functions like that of the ALM problem. The loss function in the
ALM problem is more intricate than that of the regular PSP due to the uncertainty of both asset returns and the
present value of liabilities. On the other hand, the majority of research on CVaR in portfolio selection problems (PSP)
assumes the availability of full knowledge of the distribution function of portfolio losses. However, the distribution
functions of uncertain asset returns and the present value of liabilities in the ALM problem are not fully known due
to the changing parameters based on market conditions. To address this issue, we have developed a novel theoretical
framework that proposes the use ofWCVaR for linear and nonlinear loss functions of random variables. Our theoretical
development not only addresses the gap in the literature but also offers promising possibilities for extending WCVaR
to other problem domains such as supply chain management and engineering design. With its enhanced versatility and
applicability, WCVaR has the potential to become a go-to tool for a wider range of decision-making scenarios.

The remaining sections of this paper are structured as follows. Section 2 provides a review related to the
optimization formulation of the ALM problem using CVaR. In Section 3, we present an extension for the worst-case
lower partial moment (WLPM) for functions of random variables. This extension is crucial in developing the WCVaR
for more complex loss functions. Furthermore, in Section 3, we propose a formulation for WCVaR that is applicable to
general loss functions. Section 4 delves into how to develop WCVaR for the ALM problem, along with an explanation
of how to extend the data-driven moment-based ambiguity set. To test the proposed formulation on real data of the
Canada Pension Plan (CPP), numerical experiments are conducted, and the results are presented in Section 5. Finally,
Section 6 offers some conclusions and suggests potential areas for future research.

2. The ALM problem with CVaR constraints
In pension funds, premiums are collected from sponsors or currently active employees, and pensions are paid to

retired employees. Moreover, available funds are invested in assets, which should be managed so that at each time
period, the total value of all assets exceeds the fund’s liabilities. The goal is to minimize the contribution rate by the
sponsor and active employees of the fund (see Bogentoft et al. (2001)). Hence, theALMproblem for a pension fund tries
to find the optimal contribution rate and allocation of funds in assets during an investment horizon of length T , which
is divided into a set of decision moments t = 0,… , T . At each time t, decisions are made on the value of contributions
to the fund and portfolio allocation. Let yt be the contribution rate at period t, which is a fraction of the sponsor and/or
active employee’s wage wt at time t. Besides, xn,t are decision variables of money invested in asset n in the ttℎ period.
The value of assets held by the fund at time t is denoted by At. Payments made by the fund to retirees at time t are
liabilities and denoted by lt. The present value of liabilities at period t is calculated by Lt =

∑T
t

lt
(1+
)t , ∀t = 0,… , T ,

where 
 is the discount rate. We consider a case in which benefit payments, i.e., liabilities, are fixed and predefined.
These kinds of pension funds are called defined-benefit plans. The present value of liabilities, Lt, is a random variable
since the discount rate used to calculate it is, itself, a random variable. The funding ratio is defined as the ratio of the
value of assets in period t to the present value of liabilities in period t. Finally,  is the minimum threshold of the
funding ratio and is normally imposed by regulations. Model (1) shows the mathematical formulation of the ALM
problem introduced by Bogentoft et al. (2001):

min
yt,xn,t

ℎ(y1,… , yT ), (1a)

s.t.
N
∑

n=0
xn,t = At +wtyt − lt, t = 0,… , T − 1, (1b)

At ≥  Lt, t = 0,… , T , (1c)

At =
N
∑

n=0
xn,t−1(1 + �n,t), t = 0,… , T , (1d)

xn,t ∈  , yt ∈  , t = 0,… , T , n = 0,… , N. (1e)
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In their paper, Bogentoft et al. (2001) introduced a function denoted by ℎ(y0,… , yT ), which serves as the objective
function for the ALM problem expressed in (1). The function is defined in terms of the contribution rate and plays
a crucial role in determining the optimal ALM strategy. The objective function (1a) can be the average contribution
rate or the present value of all contributions. In this formulation, we consider the present value of contributions as the
objective function, expressed as ℎ(y0,… , yT ) =

∑T
t=0

wtyt
(1+
)t . Constraint (1b), called the balance constraint, ensures

that the sum of all investments at period t is equal to the assets held by the fund plus the contributions gathered at
period t minus liabilities in this period. Constraint (1c), called the funding ratio, guarantees that the ratio of assets
owned by the fund to the present value of liabilities at period t is greater than a minimum threshold  . Constraint (1d)
calculates the value of assets owned by the fund at time t. In this formulation, the asset returns �n,t and the discount rate

 are uncertain parameters. Uncertainty of the discount rate 
 leads to uncertainty in the present values of liabilities
and future contributions. Finally,  and  in (1e) are sets of regulatory constraints for the investment allocation and
the contribution rate.

To make the formulation easier, we defineWt =
wt

(1+
)t , representing the present value of the sponsor and/or active
employee’s wages, which is also uncertain because it depends on the uncertain discount rate 
 . The objective function
of model (1) can be transformed into W⊺y, where W = {W0,… ,WT } ∈ ℝT+1 and y = {y0,… , yT } ∈ ℝT+1 are
the vectors of the present value of the active employee’s wages and decision variables related to the contribution rates,
respectively.We also define the vector rt = e+ξt, t = 0,… , T , where e is an all-ones vector of sizeN+1. Additionally,
the investment decision variable is defined as a vector in each period, xt = {x0,t,… , xn,t}. Using these notations, the
ALM problem (1) can be transformed into a vector representation as follows:

min
y,xt

W⊺y, (2a)

s.t. e⊺xt = r
⊺
t xt−1 +wtyt − lt, t = 0,… , T − 1, (2b)

r⊺t xt−1 ≥  Lt, t = 0,… , T , (2c)
xt ∈  , y ∈  t = 0,… , T . (2d)

In order to quantify the risk associated with an investment portfolio using the CVaR measure, it is essential to
establish a loss function that captures the potential losses. Based on (Bogentoft et al., 2001), the loss function for
problem (2) for each period, t, is defined as f (xt; rt, Lt) =  Lt − r

⊺
t xt−1 as per constraint (2c). Note that the loss

function and the CVaR are defined for each period t. However, to simplify the formulations, we suppress the t subscript.
The probability that f (x; r, L) is not exceeding a threshold � is calculated as Ψ(x, �) = ∫f (x;r,L)≤� p(r, L)d(r, L),
where p(r, L) is the joint distribution function of the present value of liabilities and asset returns as random variables.
It is worth noting that p(r) is the marginal distribution function of asset returns and p(L) is the marginal distribution
of the present value of liabilities.

Value-at-Risk (VaR) is a measure of financial losses over a given time horizon under normal market condi-
tions and a specified level of confidence. It provides an estimate of the maximum loss that an investor could
expect to suffer over a given time horizon assuming that the portfolio is held to maturity and that market con-
ditions remain stable. For a confidence level � and a fixed x, the VaR is formally represented as V aR�(x) =
min {� ∈ ℝ ∶ Ψ(x, �) ≥ �}. CVaR is then defined as the expected loss that exceeds VaR, and is calculated as
CV aR�(x) =

1
1−� ∫f (x;r,L)≥V aR� (x) f (x; r, L)p(r, L)d(r, L). Borrowing the approach proposed by Rockafellar, Urya-

sev et al. (2000), we introduce an auxiliary function G�(x, �) = � +
1
1−� ∫r∈ℝn+1,L∈ℝ[f (x; r, L) − �]

+p(r, L)d(r, L),
where [.]+ = max{., 0}, and then CV aR�(x) = min�∈ℝG�(x, �).

To calculateG�(x, �), it is necessary to have full knowledge about the joint distribution function of asset returns and
the present value of liabilities, p(r, L). However, in reality, full knowledge about this joint distribution function may not
be available. Therefore, we apply a DRO approach that considers the ambiguity about the distribution function of these
random variables. DRO offers a powerful framework for dealing with uncertainty in ALM by avoiding the assumption
of a single distribution for randomly distributed variables. In this context, we have two key random variables: the
present value of wages of active employees, W, and random variables in the loss function fΨ(x; r, L) of the ALM
problem. These variables have distinct distribution functions, namely q, the distribution function of the present value
of the active employee’s wages, and p(r, L), the joint distribution function of asset returns and the present value of
liabilities, respectively.
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To account for the investor’s ambiguity regarding the true distribution of the loss function and the present value
of pension active employee wages, we introduce ambiguity sets of distributions. More specifically, we define Q as the
ambiguity set of the distribution function of the present value of active employees’ wages and P (r, L) as the ambiguity
set of the joint distribution function of asset returns and the present value of liabilities. Finally, P (r) and P (L) are
the ambiguity sets of marginal distribution functions of asset returns and the present value of liabilities, respectively.
Using these ambiguity sets, we can formulate the DRO version of the ALM problem (2) as follows:

min
y,xt

sup
q∈Q

Eq[W]⊺y, (3a)

s.t. e⊺xt = inf
p(r)∈P (r)

Ep(r)[rt]⊺xt−1 +wtyt − lt, t = 0,… , T − 1, (3b)

sup
p(r,L)∈P (r,L)

min
�∈ℝ

G�(xt, �) ≤ 0, t = 0,… , T , (3c)

xt ∈  , y ∈  t = 0,… , T . (3d)

The goal is to minimize the worst-case expected present value of future contributions to the fund, represented by the
objective function (3a), subject to the balance constraint (3b), theWCVaR constraint (3c), and the regulatory constraint
(3d). In the objective function (3a), the minimization is over the contribution rate y and the investment allocation in
each period xt, while the maximization is over all probability distributions in the ambiguity set Q. The expected value
is taken with respect to the probability distribution q ∈ Q. In the balance constraint (3b), the worst-case expected value
is over the marginal distribution function of asset returns. The maximization of WCVaR is over the joint distribution
function of asset returns and the present value of liabilities, and the minimization is over �, which is VaR here. By
doing so, we obtain more robust results that are less sensitive to specific assumptions about the underlying probability
distributions, making it particularly well-suited for managing financial risks in uncertain environments.

The subsequent task is to introduce WCVaR for ALM. However, the loss function for the ALM problem is more
intricate than that of PSPs since the loss function of ALM has two random variables, asset returns and the present value
of liabilities, while the loss function of PSP has just one random variable, asset returns. Therefore, an extension of the
theoretical framework for the Worst-case Lower Partial Moment (WLPM) and WCVaR is necessary to apply them to
more extensive loss functions.

3. WLPM and WCVaR for linear loss functions
Chen, He and Zhang (2011) proposed WLPM as a risk measure that has a close connection with WCVaR. Let �

be a univariate random variable, with � and � being the first and second moments of �, and � is a fixed target. Chen

et al. (2011) proved that sup�∼(�,�2) E
[

(� − �)+
]

= �−�+
√

�2+(�−�)2

2 and showed that WCVaR can be defined based on
WLPM. In particular, for a regular PSP with the loss function −r⊺x, where r ∈ ℝn is the asset returns vector, x ∈ ℝn

is the vector of decision variables which is the proportion of investment in each asset, and P (r) is an ambiguity set of
the distribution function of asset returns, the WCVaR is defined as:

WCV aR� (x) = sup
p(r)∈P (r)

min
�∈ℝ

� + 1
1 − �

E
[

(

−r⊺x − �
)+
]

, (4)

where supp(r)∈P (r) E
[

(−r⊺x − �)+
]

is the WLPM. Here, the vector of asset returns, r ∈ ℝn, is a random variable with
mean µ̂ and covariance Σ̂ ≻ 0 that belongs to a family of distributions

P (r) =
{

p ∈M+|P (r ∈ Ω) = 1,Ep (r) = µ̂, Covp (r) = Σ̂
}

,

where M+ is the set of all probability measures on the measurable space (ℝn, B) with the �-algebra B on ℝn and
Ω ⊆ ℝn is a closed convex set known to contain the support of the random vector r. By using this ambiguity set, as
proven by Chen et al. (2011), the WCVaR evaluates to:

max
p(r)∈P (r)

CV aR� (x, p) = −µ̂⊺x +

√

�
1 − �

√

x⊺Σ̂x. (5)
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The WCVaR formulation (5) is based on the assumption that the first two moments of the uncertain distribution
function are known. However, there might be uncertainty about the moments when they are estimated using limited
data samples. Kang, Li, Li and Zhu (2019) proposed the WCVaR with uncertain moments based on a data-driven
moment-based ambiguity set defined as follows:

DP (r)
(


1, 
2
)

=
{

p ∈M+|P (r ∈ Ω) = 1,
(

Ep (r) − µ̂
)⊺ Σ̂−1

(

Ep (r) − µ̂
)

≤ 
1, ||Covp (r) − Σ̂||F ≤ 
2, Covp (r) ≻ 0
}

,

which is originally introduced by Delage and Ye (2010). In this ambiguity set, µ̂ and Σ̂ are estimates of the mean vector
and the covariance matrix of the random variable r, respectively. Kang et al. (2019) proved that WCVaR under moment
uncertainty (as defined in DP (r)

(


1, 
2
)

) is as follows:

max
p(r)∈DP (r)(
1,
2)

CV aR� (x, p) = −µ̂⊺x +
√


1
√

x⊺Σ̂x + k
√

x⊺
(

Σ̂ + 
2In
)

x, (6)

where In is the identity matrix of size n, and k =
√

�
1−� .

The WCVaR reformulations (5) and (6) use the facts that the PSP loss function is a linear function of x and that r is
the only random variable. However, the loss function can be more complex. As shown in Section 2, the loss function
of the ALM problem includes a linear function of asset returns and the present value of future liabilities as random
variables. To propose a tractable reformulation of the WCVaR constraint in the ALM problem, we are extending the
WLPM and WCVaR formulations for the linear loss function of multiple random variables. For more clarity, we start
with a linear loss function of a univariate random variable, then extend it to a linear function of multivariate random
variables.

Lemma 1. Let � be a univariate random variable, where E [�] = �, V ar (�) = �2, and f (.) is a linear function of the
random variable � that f ∶ ℝ → ℝ. Then, WLPM is as follows:

sup
�∼(�,�2)

E
[

(� − f (�))+
]

=
� − f (�) +

√

f ′ (�)2 �2 + (� − f (�))2

2
.

PROOF. The exact second-order Taylor expansion of f (�) around � = E [�] for a linear function is as follows:

E[f (�)] = E
[

f (�) + f ′ (�) (� − �) + 1
2
f ′′ (�) (� − �)2

]

.

It is known that E(a + b) = E(a) + E(b). Then:

E [f (�)] = E [f (�)] + f ′ (�)E [� − �)] + 1
2
f ′′ (�)E [� − �]2 ,

where E [f (�)] = f (�), and E [� − �] = E [�] − � = � − � = 0. Then:

E [f (�)] = f (�) + 1
2
f ′′ (�)E [� − �]2 .

Since E [� − �]2 = V ar (�) = �2, then:

E [f (�)] = f (�) + 1
2
f ′′ (�) �2

Because f (.) is a linear function then f ′′ (.) = 0, consequently E [f (�)] = f (�).
Next, we need to find V ar (f (�)). The first order Taylor expansion of f (�) around � = E [�] is f (�) +

f ′ (�) (� − �). Then, V ar (f (�)) is as follows:

V ar [f (�)] = V ar
[

f (�) + f ′ (�) (� − �)
]

= V ar
[

f (�) + f ′ (�) � − f ′ (�)�
]

.
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The first term, f (�), is constant; then V ar (f (�)) = 0. The third term, V ar
(

f ′ (�)�
)

, is also a constant with a variance
equal to zero. Consequently, the variance of f (.) is as follows:

V ar [f (�)] = V ar
[

f ′ (�) �
]

=
(

f ′ (�)
)2 V ar [�] = f ′ (�)2 �2.

By substituting E [f (�)] and V ar (f (�)) into �−E[f (�)]+
√

V ar(f (�))+(�−E[f (�)])2

2 , the WLPM is as follows:

E�∼(�,�2)
[

(� − f (�))+
]

=
� − f (�) +

√

f ′ (�)2 �2 + (� − f (�))2

2
.

□

Theorem 2. Let � be a univariate random variable with mean � and variance �2, and define the ambiguty set
P = {p ∈ M+|P (� ∈ Ω) = 1, � ∼

(

�, �2
)

}. Moreover, f (�) is a linear loss function, where f ∶ ℝ → ℝ. Then
WCVaR can be calculated as follows :

WCV aR� = sup
p(.)∈P

min
�∈ℝ

� + 1
1 − �

E
[

(f (�) − �)+
]

= f (�) +

√

�
1 − �

√

f ′ (�)2 �2.

PROOF. Based on its definition, WCV aR� = supp(.)∈P min�∈ℝ � +
1
1−�E

[

(f (�) − �)+
]

. To reformulate the WC-
VaR, we need to calculate the WLPM term in the WCVaR definition. In Lemma 1, the LPM is in the form
supp(.)∈P E

[

(� − f (�))+
]

. Hence, rearrange the WLPM term in CVaR as follows:

sup
p(.)∈P

E
[

(f (�) − �)+
]

= sup
p(.)∈P

E
[

(−� − (−f (�)))+
]

.

By substituting the WLPM from Lemma 1 into WCVaR, we have:

WCV aR� = min�∈ℝ
� + 1

1 − �

−� + f (�) +
√

f ′ (�)2 �2 + (−� + f (�))2

2
.

The optimal value of � (�∗) can be calculated using the first-order optimality condition )W CV aR�
)� = 0. With that, we

have:

�∗ = f (�) +
2� − 1

2
√

� (� − 1)

√

f ′ (�)2 �2.

By substituting �∗ back, the WCVaR reduces to:

WCV aR� = f (�) +

√

�
1 − �

√

f ′ (�)2 �2.

□

Now let us consider the case when the loss function is a linear function of multivariate random variables, which is
applicable in the context of the ALM problem.

Lemma 3. Let ξ = {�1,… , �n} be a multivariate random variable, where E[�i] = �i, V ar(�i) = �2i ,Cov(�i, �j) = �ij ,
and f (.) is a linear function of the random variable ξ that f ∶ ℝn → ℝ. Then, WLPM is as follows:

sup
ξ∼(µ,Σξ)

E
[

(� − f (ξ))+
]

=
� − f (µ) +

√

∑

i d
2
i �

2
i + 2

∑

i
∑

j>i didj�ij + (� − f (µ))2

2
,

where µ = {�1,… , �n} is the mean vector, and di =
)f (ξ)
)�i

|ξ=µ, in which |ξ=µ means to evaluate the expression with
�i replacing �i.
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PROOF. Based on the second-order Taylor series expansion of f (.) around µ = {�1,… , �n}, the expected value of
f (ξ) is as follows:

E [f (ξ)] = E [f (µ)] + E [∇f (µ) (ξ − µ)] + E
[1
2
(ξ − µ)⊺Hf (µ) (ξ − µ)

]

,

where Hf =
)2f (ξ)
)�i)�j

is the Hessian matrix of f , and ∇f is the gradient of f . Since f (.) is a linear function, then its
second derivation is zero. Moreover, the second term of Taylor approximation is zero since E [ξ − µ] = E [ξ] − µ =
µ − µ = 0. Hence, E [f (ξ)] = f (µ). Moreover, the variance of f (.) has to be calculated. Based on the first-order
Taylor expression, the variance of (f (ξ)) is as follows:

V ar (f (ξ)) = V ar
(

f (µ) + ∇f (µ)⊺ (ξ − µ)
)

= V ar (f (µ) + ∇f (µ)′ ξ − ∇f (µ)′ µ).

Since f (µ), and ∇f (µ)µ are constants, their variances are zero. Hence, V ar (f (ξ)) = V ar
(

∇f (µ)′ ξ
)

which is
equivalent to ∇f ′ (µ)2 Σξ, where Σξ is the covariance matrix. This formulation can be expanded as follows:

V ar (f ( ξ )) =
∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij ,

where di =
)f (ξ)
)�i

|ξ=µ.

By substituting E [f (ξ)] and V ar (f (ξ)) into �−E[f (ξ)]+
√

V ar(f (ξ))+(�−E[f (ξ)])2

2 , then supξ∼(µ,Σξ) E
[

(� − f (ξ))+
]

is calculated as follows:

� − f (µ) +
√

∑

i d
2
i �

2
i + 2

∑

i
∑

j>i didj�ij + (� − f (µ))
2

2
.

□

Theorem 4. Let ξ ∈ ℝn be a multivariate random variable with mean vector µ and covariance matrix Σξ, where
the ambiguity set is P = {p ∈ M+|P (ξ ∈ Ω) = 1, ξ ∼

(

µ,Σξ
)

}. Moreover, f (ξ) is a linear loss function, where
f ∶ ℝn → ℝ. Then WCVaR is defined asWCV aR� = supp(.)∈P min�∈ℝ � +

1
1−�E

[

(f (ξ) − �)+
]

which is calculated
by:

WCV aR� = sup
p(.)∈P

� + 1
1 − �

E
[

(f (ξ) − �)+
]

= f (µ) +

√

�
1 − �

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij .

PROOF. WCVaR is defined as WCV aR� = supp(.)∈P min�∈ℝ � +
1
1−�E

[

(f (ξ) − �)+
]

. In Lemma 3, we showed
how to calculate the WLPM of a linear function of multivariate random variables as: supp(.)∈P E

[

(f (ξ) − �)+
]

=
supp(.)∈P E

[

(−� − (−f (ξ)))+
]

, which is calculated by:

−� + f (µ) +
√

∑

i d
2
i �

2
i + 2

∑

i
∑

j>i didj�ij + (−� + f (µ))
2

2
, (7)

to be substituted inWCVaR formulation. Then, the optimal value of � (�∗) is calculated using the first-order optimality
condition )W CV aR�

)� = 0. With that, we have:

f (µ) +
2� − 1

2
√

� (� − 1)

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij .

By substituting �∗ back in (7), we get:

WCV aR� = f (µ) +

√

�
1 − �

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij .

□
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The theorems presented in this paper, namely Theorems 2 and 4, offer a means of computingWCVaR for linear loss
functions. However, WCVaR is not only applicable to financial problems but also to a variety of other fields where it is
used as a risk measure for more general nonlinear loss functions. This paper also extends the theorems to accommodate
nonlinear loss functions and provides lemmas and proofs in the Appendix.

The extendedWCVaR presented in this paper has a wide range of potential applications, such as in supply chain and
engineering problems, safety analysis, and healthcare. For readers interested in further exploring these applications, we
recommend the following references: (Tao, Liu, Xie and Javed, 2021; Chaudhuri, Kramer, Norton, Royset andWillcox,
2022; Zhu, Wen, Ji and Qiu, 2020; Chaudhuri, Norton and Kramer, 2020; Chapman, Bonalli, Smith, Yang, Pavone and
Tomlin, 2021; von Schantz, Ehtamo and Hostikka, 2020; Dehlendorff, Kulahci, Merser and Andersen, 2010).

In the next section, we develop theWCVaR formulation for the ALM problem, in which a linear function of random
variables is used as a loss function. We are using the theoretical results derived in this section to tractably reformulate
the ALM problem with a WCVaR constraint.

4. WCVaR for ALM problem
In this section, we use Theorem 4 to derive a tractable reformulation of the ALM problem with the WCVaR

constraint (3c). This constraint ensures that the asset-liability mismatch is controlled in each period, in the sense that
the funding ratio remains above  with high probability, while accounting for the ambiguity surrounding the joint
probability distribution of the asset returns and the present values of liabilities. Since the loss function f (x; r, L) =
 Lt−r

⊺
t xt−1 in this set of constraints is linear in the random variables r andL, Theorem 4 applies and the reformulation

is exact. Recall that the random variables are defined asL ∼
(

L̄, Σ̄L
)

, r ∼
(

r̂, Σ̄r
)

, andCov (L, r) = �̄L,r , where L̄ ∈ ℝ,
Σ̄L ∈ ℝ, r̄ ∈ ℝn+1, Σ̄r ∈ ℝn+1×n+1, and �̄L,r ∈ ℝn+1. With that, we prove the following proposition.

Proposition 1. For a given t ∈ {0,… , T }, and using the ambiguity set P (r, L) = {p (r, L) ∈ M+|P (r, L ∈ Ω) =
1, r ∼

(

r̄, Σ̄r
)

, L ∼
(

L̄, Σ̄L
)

, Cov (L, r) = �̄L,r}, the left hand side (LHS) of the WCVaR constraint (3c) can be
tractably reformulated as follows:

sup
p(r,L)∈P (r,L)

min
�∈ℝ

� + 1
1 − �

E
[

(

−� −
(

x⊺r −  L
))+

]

= −r̄⊺x +  L̄ +

√

�
1 − �

√

 2Σ̄L + x⊺Σ̄rx − 2x⊺�̄(L,r)

PROOF. Using the basic properties of mean and variance, it is easy to show that r⊺x −  L ∼ (r̄⊺x −  L̄,  2Σ̄L +
x⊺Σ̄rx − 2x⊺�̄L,r). Then WCVaR is defined as:

WCV aR� = sup
p(r,L)∈P (r,L)

min
�∈ℝ

� + 1
1 − �

E
[

(

−� −
(

x⊺r −  L
))+

]

(8)

Based on Lemma 3, the WLPM is calculated as follows:

sup
p(r,L)∈P (r,L)

E
[

(

−� −
(

r⊺x −  L
))+

]

=

[

1
2

√

 2Σ̄L + x⊺Σ̄rx − 2x⊺�̄L,r +
(

r̄⊺x −  L̄ − �
)2 +

−� −
(

r̄⊺x −  L̄
)

2

]

.

(9)

By substituting (9) into the WCVaR formula (8), we obtain:

WCV aR� (x) = � +
1

1 − �

[

1
2

√

 2Σ̄L + x⊺Σ̄rx − 2x⊺�̄L,r +
(

r̄⊺x −  L̄ − �
)2 +

−� −
(

r̄⊺x −  L̄
)

2

]

.

In Theorem 4, we showed that �∗x =
2�−1

2
√

�(1−�)

√

 2Σ̄L + x⊺Σ̄rx − 2x⊺�̄L,r − r̄⊺x +  L̄. By substituting it back, the
LHS of the WCVaR constraint (3c) can be written as follows:

WCV aR� (x) = −r̄⊺x +  L̄ +

√

�
1 − �

√

 2Σ̄L + x⊺Σ̄rx − 2x⊺�̄(L,r). (10)

□
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It should be noted that the WCVaR reformulation (10) is based on the assumption that the moments of random
variables, asset returns, and the present value of future liabilities, are fixed and known. With W̄ = Ep[W] and
r̄t = Ep(r)[rt], model (3) is transformed into model (11) by substituting the WCVaR formula (10) in constraint (3c)
to obtain:

min
y,xt

W̄⊺y, (11a)

s.t. e⊺xt = r̄
⊺
t xt−1 +wtyt − lt, t = 0,… , T − 1, (11b)

r̄⊺t xt−1 +  L̄t +

√

�
1 − �

√

 2Σ̄Lt + x
⊺
t−1Σ̄rtxt−1 − 2x

⊺
t−1�̄(Lt,rt) ≤ 0, t = 0,… , T , (11c)

xt ∈  , y ∈  t = 0,… , T , (11d)

which is a nonlinear program.
Even though we assumed that the moments of the uncertain distribution functions are known, the moments

themselves might be uncertain.Moments of asset returns are uncertain because they depend on a variety of factors, such
as market conditions, economic trends, and company performance. Moreover, moments of liabilities are also uncertain
because they are affected by a variety of factors, such as interest rates, inflation, and changes in demographics. To
address this case, we extend the moment-based ambiguity set of Delage and Ye (2010) as follows:

Dt
P (r,L)

(


 t1, 

t
2, 


t
3, 


t
4,γ

t
5
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Urt =
(

rt − r̂t
)⊺ Σ̂−1rt

(

rt − r̂t
)

≤ 
 t1,
UΣrt = ||CovP

(

rt
)

− Σ̂rt ||F ≤ 
 t2, CovP
(

rt
)

⪰ 0
p ∈M+|P

(

rt,Lt ∈ Ω
)

= 1, ULt = (Lt − L̂t)
⊺Σ̂−1Lt (Lt − L̂t) ≤ 
 t3,

UΣLt = ||CovP
(

Lt
)

− Σ̂Lt ||F ≤ 
4, CovP (Lt) ⪰ 0
U�(Lt,rt) = ||�̄(Lt,xt)||∞ ≤ γt5,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

where 
 t1, 

t
2, 


t
3, 


t
4 ∈ ℝ, and γt5 ∈ ℝn+1. Moreover, r̂t and L̂t are estimates of the mean of asset returns and the present

value of future liabilities in period t, respectively. Similarly, Σ̂rt and Σ̂Lt are estimates of the variance-covariance matrix
of asset returns, and the present value of liabilities, respectively.

The proposed ambiguity set is designed to capture the uncertainty of moments in a data-driven manner. It consists
of two ellipsoidal uncertainty sets for each time period t: Urt and ULt . The former represents the uncertainty set of the
mean of asset returns, while the latter characterizes the uncertainty set of the mean of present values of future liabilities.
To quantify the size of these sets, we use the parameters 
 t1 and 


t
3. To capture the uncertainty of the second moments,

the Frobenius norm is used to define two uncertainty sets:UΣrt andUΣLt . These sets represent possible variations in the
real variance-covariance matrices of asset returns and the present value of future liabilities, respectively. Intuitively,
the Frobenius norm measures the "size" of the matrices, and the uncertainty sets ensure that the real matrices are close
to their estimates, up to a certain radius. The sizes of the uncertainty sets are determined by 
 t2 and 


t
4, which represent

the second and fourth moments of the estimation errors, respectively. Additionally,U�(L,rt) denotes the box uncertainty
set for the covariance of asset returns and the present value of future liabilities in each period t. 
 t5 is the size of this
uncertainty set. Finally, CovP (rt) and CovP (Lt) represent the actual variance-covariance matrices of asset returns and
the present value of future liabilities that should be positive semi-definite.

The present value of active employee wages is also a random variable. Consequently, the data-drivenmoment-based
ambiguity set for the present value of active employee wages is defined as follows:

Q(
6, 
7) = {p ∈M+|P (W ∈ Ω) = 1, UW =
(

W− Ŵ
)⊺ Σ̂−1W (W − Ŵ) ≤ 
6, UΣW = ||CovP (W) − Σ̂W||F ≤ 
7},

where an ellipsoidal uncertainty set UW is used to represent the possible variations in the mean of the present value of
active employee wages. Similarly, the uncertainty set UΣW captures the variations in the variance-covariance matrix
of the present value of active employee wages. To specify the sizes of these uncertainty sets, we use the parameters 
6
and 
7, where these parameters determine the radius of the uncertainty sets. Finally, W̄ and ̂ΣW denote estimates of the
mean and the variance-covariance matrices of the present value of active employee wages, respectively.

A tractable reformulation of the LHS of the WCVaR constraint (3c) with the proposed data-driven ambiguity set
Dt
P (r,L)

(


 t1, 

t
2, 


t
3, 


t
4,γ

t
5
)

is developed in proposition 2.
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Proposition 2. Considering that p (r, L) ∈ Dt
P (r,L)

(


 t1, 

t
2, 


t
3, 


t
4,γ

t
5
)

, the LHS of the WCVaR constraint (3c) with
uncertain moments can be reformulated as follows:

sup
p(r,L)∈DtP (r,L)

(


 t1,

t
2,


t
3,


t
4,γ

t
5

)

CV aR�
(

xt−1
)

= −
[

r̂⊺t xt−1 −
√


 t1

√

x⊺t−1Σ̂rtxt−1

]

+  
[

L̂t +
√


 t3

√

 2Σ̂Lt

]

+

k
√

x⊺t−1
(

Σ̂rt + 

t
2In+1

)

xt−1 +  2
(

Σ̂Lt + 

t
4

)

+ 2x⊺t−1γ
t
5,

where k =
√

�
1−� .

PROOF. In proposition (1), by fixing xt, it was shown that:

sup
p(r,L)∈P (r,L)

CV aR� (x) = −r̄t⊺xt−1 +  L̄t +

√

�
1 − �

√

 2Σ̄Lt + x
⊺
t−1Σ̄rxt−1 − 2x

⊺
t−1�̄(Lt,rt).

Now, let us consider the case p (r, L) ∈ Dt
P (r,L), then the WCVaR supp(r,L)∈DtP (r,L) CV aR�

(

xt
)

evaluates to:

max
r̄t∈Urt

−r̄⊺t xt−1 + max
L̄t∈ULt

 L̄t + k max
Σ̄rt∈UΣrt ,Σ̄Lt∈UΣLt

,�̄(Lt,rt)∈U�(Lt,rt)

√

 2Σ̄Lt + x
⊺
t−1Σ̄rtxt−1 − 2x

⊺
t−1�̄(rt,Lt).

The first term can be written as follows:

max
r̄t∈Urt

−r̄⊺t xt−1 = − min
r̄t∈Urt

r̄⊺t xt−1,

which is a classical robust optimization problem when an ellipsoidal uncertainty set is used for the uncertain parameter
r̄t. Consequently, its tractable reformulation is:

min
r̄t∈Urt

r̄⊺t xt−1 = r̂t
⊺xt−1 −

√


 t1

√

x⊺t Σ̂rtxt−1. (12)

Likewise, the second term, related to the present value of future liabilities, can be tractably reformulated as follows:

max
L̄t]∈ULt

 L̄t =  
[

L̂t +
√


 t3

√

 2Σ̂Lt

]

. (13)

Since the square root is a monotonically increasing function, then maxz∈
√

f (z) =
√

maxz∈ f (z). Hence:

max
Σ̄rt∈UΣrt ,Σ̄Lt∈UΣLt

,�̄(Lt,rt)∈U�(Lt,rt)

√

 2Σ̄Lt + x
⊺
t−1Σ̄rtxt−1 − 2x

⊺
t−1�̄(rt,Lt) =

√

max
Σ̄rt∈UΣrt ,Σ̄Lt∈UΣLt

,Σ̄Lt∈UΣLt
,�̄(Lt,rt)∈U�(Lt,rt)

 2Σ̄Lt + x
⊺
t−1Σ̄rtxt−1 − 2x

⊺
t−1�̄(rt,Lt). (14)

Also, because the terms under the square root depend on different uncertainty sets, they are separable. Then, the
expression (14) is equivalent to:

√

max
Σ̄Lt∈UΣLt

 2Σ̄Lt + max
Σ̄rt∈UΣrt

x⊺t−1Σ̄rtxt−1 − min
�̄(Lt,rt)∈U�(Lt,rt)

2x⊺t−1�̄(rt,Lt).
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Kang et al. (2019) showed that maxΣ̄rt∈UΣrt
x⊺t−1Σ̄rtxt−1 = x⊺t−1

(

Σ̂rt + 

t
2In+1

)

xt−1, i.e., the worst-case is
obtained by perturbing the nominal variance-covariance matrix by the radius of the ambiguity set. By using the
same proof developed in (Kang et al., 2019, Proposition 2.2), maxΣ̄Lt∈UΣLt

 2Σ̄Lt =  2
(

Σ̂Lt + 

t
4

)

. Finally,

min�̄(Lt,rt)∈U�(Lt,rt)
2x⊺t−1�̄(rt,Lt) is a robust optimization problem with a box uncertainty set, which evaluates to

−2x′t−1γ
t
5. With that, the third term can be tractably reformulated as follows:

√

max
Σ̄Lt∈UΣLt

 2Σ̄Lt + max
Σ̄rt∈UΣrt

x⊺t−1Σ̄rtxt−1 − min
�̄(Lt,rt)∈U�(Lt,rt)

2x⊺t−1�̄(rt,Lt) =

√

x⊺t−1
(

Σ̂rt + 

t
2In+1

)

xt−1 +  2
(

Σ̂Lt + 

t
4

)

+ 2x⊺t−1γ
t
5 (15)

Now, by combining (12), (13), and (15), the LHS of constraint (3c) is equivalent to:

sup
p(r,L)∈DtP (r,L)

(


 t1,

t
2,


t
3,


t
4,γ

t
5

)

CV aR�
(

xt−1
)

= −
[

r̂⊺t xt−1 −
√


 t1

√

x⊺t−1Σ̂rtxt−1

]

+  
[

L̂t +
√


 t3

√

 2Σ̂Lt

]

+

k
√

x⊺t−1
(

Σ̂rt + 

t
2In+1

)

xt−1 +  2
(

Σ̂Lt + 

t
4

)

+ 2x⊺t−1γ
t
5,

where k =
√

�
1−� . □

Since p(r, L) ∈ Dt
P (r,L)

(


 t1, 

t
2, 


t
3, 


t
4,γ

t
5
)

, q ∈ Q
(


6, 
7
)

, and based on proposition 2, the robust counterpart of
model (3) is as follows:

miny∈ ,xt∈ Ŵ⊺y +
√


6
√

y⊺Σ̂Wy, (16a)

s.t. e⊺xt = r̂
⊺
t xt−1 −

√


 t1

√

x⊺t−1Σ̂rtxt−1 +wtyt − lt, t = 0,… , T − 1, (16b)

− r̂⊺t xt−1 +
√


 t1

√

x⊺t−1Σ̂rtxt−1 +  L̂t +  
2
√


 t3

√

Σ̂Lt+

k
√

x⊺t−1(Σ̂rt + 

t
2In+1)xt−1 +  

2(Σ̂Lt + 

t
4) + 2x

⊺
t−1γ

t
5 ≤ 0 ≤ 0, t = 0,… , T . (16c)

Model (16) represents a DRO version of the ALMmodel that accounts for moment uncertainty. This model is more
complex than the original ALM problem, which was a linear programming model. The nonlinear nature of the model
and the incorporation of moment-based ambiguity sets allow for a more accurate representation of the uncertainty
inherent in the ALM problem. In the next section, we will evaluate the proposed model using real-world data, through
which we can assess its effectiveness in providing robust solutions that improve the long-term financial outcomes of
pension funds.

5. Numerical results
In this research, we use data from the Canada pension plan (CPP) to conduct numerical experiments/tests.

Contributions to CPP are compulsory for all working Canadians aged 18-70. Based on CPP information 5. Also, around
5.8 million individuals are receiving retirement benefits from CPP each month. On average $737.88 are paid in July

5https://open.canada.ca/data/en/dataset/1fab2afd-4f3c-4922-a07e-58d7bed9dcfc
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2022 to retired Canadians 6. Moreover, 14, 371, 853 individuals are contributing to CPP based on CPP investments
report 7.

CPP is investing in 5 asset classes 8: fixed income, private equity, public equity, infrastructure, and real estate.
Moreover, CPP investments are geographically diversified in North America, Europe, and Asia. In our analysis, we
use data from 10 major indexes from 2012 to 2022: S&P500 index is used for public equities, Private Equity Index
(PRIVEXD) is used for private equities, SP/TSX Capped Real Estate Index (GSPRTRE) is used for the real estate
sector, Treasury Yield 10 Years (TNX) is used for fixed-income assets, and finally, S&P Global Infrastructure TR
(SPGTINTR) is used for infrastructure investment. S&P TSX Composite is the index of the Canadian market. For
public equities in Europe, FTSEurofirst 300 is used. STOXX Europe 20 is used for the private equity index in Europe.
Shanghai Stock Exchange (SSE) and Nikkei-225 indexes are used as representatives of investment in Asia. The value of
the total asset in CPP is $539 B in 2022. Based on the most recent report of CPP, the projected earnings of contributors
for 2022 have been $585, 498M, where about %9.9 of that, $57, 964M, is the contribution to CPP 9.

In order to apply model (16), individual WCVaR constraints are required for each period. As a result, it is necessary
to determine the moments of the uncertain distribution function of random variables for each period. However, it is
possible for asset returns to follow the same distribution in each period and for the mean/variance differences among
periods to lack statistical significance. Consequently, the uncertain parameters in each period may exhibit the same
moments. Statistical analysis is conducted to find the distribution function and the first two moments of asset returns
in each period. The Individual Distribution Identification (IDI) feature in Minitab was used to conduct goodness-of-fit
tests to identify the distribution function of returns with the maximum likelihood among a standard set of distribution
functions. Table 1 shows the results of the goodness of fit for testing the distribution function of asset returns in each
period. Based on the results illustrated in Table 1, we can conclude that the return of assets in most periods follows a
normal distribution since the p-values of the goodness-of-fit tests are greater than the significant level, � = 0.05, in
most periods.

We next test whether there are significant differences between the mean/variance values among different periods
(months). Consequently, we test the equality of the mean/variance of asset returns in each period for all assets by
using a one-way ANOVA test. Table 2 shows the results of this test. The null hypothesis for equality of variance is "All
variances of an asset class in each period are equal", while its alternative is "At least one variance is different". Similarly,
the null hypothesis for equality of the mean is "All means of an asset class in each period are equal" and the alternative
one is "At least one mean is different". The Significance level for this test is 0.05. Based on the p-values illustrated
in Table 2, we fail to reject the null hypotheses. Hence, we do not have any evidence to support the assumption of
different means/variances across periods for the return of assets.

For solving the ALM problem, we consider a set of regulatory constraints. The contribution rate in each period is
required to be between 5% to 10%. The investment in the US market cannot be greater than 60% of the whole fund.
Investment in Canada must be at least 20% of the fund. At least 10% of the fund must be invested in fixed-income
assets. Investment in Asia cannot be greater than 15% of the fund. Finally, the funding ratio should be at least 1.05. We
provide in-sample and out-of-sample performance analyses to compare the results of the proposed DRO formulation in
two cases, uncertain moments WCVaR (UMWCVaR) (16) and fixed moments WCVaR (FMWCVaR) (11), in addition
to the stochastic programming (SP) reformulation of the ALM problem with CvaR constraints (SPCVaR). In-sample
performance analysis refers to evaluating the performance of a model on the same data that it was trained on. We are
using historical data of CPP for in-sample analysis. On the other hand, out-of-sample performance analysis refers to
evaluating the performance of a model on data that it has not seen during the training phase.We are using the simulation
to generate data for out-of-sample analysis. Both in-sample and out-of-sample comparisons are based on the funding
ratio and the fund return in each period.

Table 3 displays the in-sample performance of the funding ratio and fund return of the ALM problem under two
different proposed approaches: UMWCVaR and the FMWCVaR, as well as the risk-neutral approach of SPCVaR. It
consists of 11 periods (columns 3-14), each representing a specific time point. For the UMWCVaR model, the highest
funding ratio is 1.13 in the final period, while the lowest funding ratio is 1.09 in the first period. The corresponding fund
return ranges from 0.002 to 0.02. The overall return in this investment horizon is 5.1%. For the FMWCVaR model, the
funding ratio ranges from 1.09 to 1.14, and the fund return ranges from 0.007 to 0.019 with an overall return of 9.9%.

6https://www.canada.ca/en/services/benefits/publicpensions/cpp/cpp-benefit/amount.html
7https://www.cppinvestments.com/the-fund/our-performance/financial-results/f2022-annual-results
8https://ca.investing.com/
9https://www.osfi-bsif.gc.ca/Eng/oca-bac/ar-ra/cpp-rpc/Pages/cpp30.aspx
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Table 1
p-value of the goodness of fit for testing the distribution function of asset returns in each period

Index Distribution Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PRIVEXD

Normal 0.688 0.343 <0.005 0.117 0.868 0.367 0.835 0.206 0.504 0.771 <0.005 0.127
2-Parameter Exponential 0.053 0.035 <0.010 <0.010 0.035 <0.010 0.024 <0.010 0.011 0.05 0.146 <0.010
3-Parameter Weibull >0.500 0.298 0.072 >0.500 >0.500 >0.500 >0.500 0.182 >0.500 >0.500 0.093 0.466

Smallest Extreme Value >0.250 >0.250 0.124 >0.250 >0.250 >0.250 >0.250 0.089 >0.250 >0.250 <0.010 >0.250
Largest Extreme Value >0.250 0.208 <0.010 <0.010 >0.250 0.048 >0.250 0.094 0.231 >0.250 0.086 0.024

Logistic >0.250 >0.250 0.032 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 0.012 0.202

S&P500

Normal 0.69 0.341 <0.005 0.118 0.869 0.367 0.835 0.206 0.504 0.77 <0.005 0.185
2-Parameter Exponential 0.053 0.035 <0.010 <0.010 0.035 <0.010 0.024 <0.010 0.011 0.05 0.124 <0.010
3-Parameter Weibull >0.500 0.295 0.072 >0.500 >0.500 >0.500 >0.500 0.181 >0.500 >0.500 0.071 >0.500

Smallest Extreme Value >0.250 >0.250 0.124 >0.250 >0.250 >0.250 >0.250 0.088 >0.250 >0.250 <0.010 >0.250
Largest Extreme Value >0.250 0.208 <0.010 <0.010 >0.250 0.048 >0.250 0.094 0.231 >0.250 0.062 0.033

Logistic >0.250 >0.250 0.032 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 0.008 >0.250

GSPRTRE

Normal 0.11 0.137 <0.005 0.552 0.513 0.105 0.378 0.119 0.464 0.727 <0.005 0.124
2-Parameter Exponential 0.041 <0.010 <0.010 0.03 0.023 <0.010 0.048 0.025 0.12 >0.250 0.159 >0.250
3-Parameter Weibull 0.206 0.124 0.01 >0.500 >0.500 >0.500 >0.500 0.308 0.332 >0.500 0.115 0.389

Smallest Extreme Value 0.05 0.2 0.024 >0.250 >0.250 >0.250 0.053 >0.250 >0.250 >0.250 <0.010 0.092
Largest Extreme Value 0.208 0.078 <0.010 0.229 0.244 <0.010 >0.250 0.042 >0.250 >0.250 0.143 0.107

Logistic 0.085 0.139 <0.005 >0.250 >0.250 >0.250 >0.250 0.12 >0.250 >0.250 0.022 0.098

S&P/TSX Composite

Normal 0.008 0.197 <0.005 0.088 0.698 0.168 0.207 0.269 0.337 0.791 0.078 0.253
2-Parameter Exponential >0.250 <0.010 <0.010 <0.010 0.033 <0.010 >0.250 <0.010 >0.250 0.021 >0.250 <0.010
3-Parameter Weibull >0.500 0.244 0.072 0.093 >0.500 0.4 0.38 >0.500 0.367 >0.500 >0.500 >0.500

Smallest Extreme Value <0.010 >0.250 0.123 0.017 >0.250 >0.250 0.106 >0.250 >0.250 >0.250 <0.010 >0.250
Largest Extreme Value >0.250 0.054 <0.010 0.08 >0.250 0.04 >0.250 0.049 >0.250 >0.250 >0.250 0.081

Logistic 0.083 0.238 0.021 0.149 >0.250 0.235 0.169 >0.250 >0.250 >0.250 0.211 >0.250

TNX

Normal 0.29 0.366 0.073 0.169 0.011 0.725 0.131 0.835 0.858 0.077 0.022 0.237
2-Parameter Exponential 0.148 0.021 <0.010 >0.250 0.017 <0.010 0.023 0.017 0.13 0.097 >0.250 <0.010
3-Parameter Weibull 0.226 0.479 0.054 >0.500 0.062 >0.500 0.181 >0.500 >0.500 0.408 >0.500 0.295

Smallest Extreme Value 0.212 0.087 0.059 0.018 <0.010 >0.250 >0.250 >0.250 >0.250 <0.010 <0.010 >0.250
Largest Extreme Value 0.244 >0.250 0.016 >0.250 0.108 0.173 0.063 >0.250 >0.250 >0.250 >0.250 0.035

Logistic 0.23 >0.250 0.098 >0.250 0.056 >0.250 0.118 >0.250 >0.250 0.21 0.13 >0.250

SPGTINTR

Normal 0.005 0.026 <0.005 0.163 0.638 0.907 0.179 0.262 0.253 0.495 0.163 0.794
2-Parameter Exponential 0.202 <0.010 <0.010 <0.010 0.024 0.017 0.018 0.012 <0.010 0.034 >0.250 >0.250
3-Parameter Weibull 0.201 0.18 0.04 0.136 >0.500 >0.500 0.44 0.111 0.306 >0.500 >0.500 >0.500

Smallest Extreme Value <0.010 >0.250 0.075 0.04 >0.250 >0.250 >0.250 0.187 >0.250 >0.250 0.034 >0.250
Largest Extreme Value >0.250 <0.010 <0.010 0.077 >0.250 >0.250 0.043 0.201 0.037 0.228 >0.250 >0.250

Logistic 0.052 0.042 0.009 >0.250 >0.250 >0.250 0.223 0.213 >0.250 >0.250 0.247 >0.250

FTSEurofirst 300

Normal 0.407 0.662 0.006 0.422 0.038 0.794 0.752 0.337 0.734 0.922 0.113 0.623
2-Parameter Exponential 0.033 0.015 <0.010 0.101 <0.010 0.099 >0.250 <0.010 0.045 0.144 >0.250 0.063
3-Parameter Weibull >0.500 >0.500 0.099 0.485 0.299 >0.500 >0.500 >0.500 >0.500 >0.500 >0.500 >0.500

Smallest Extreme Value 0.095 >0.250 0.174 0.159 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 0.013 >0.250
Largest Extreme Value >0.250 >0.250 <0.010 >0.250 <0.010 >0.250 >0.250 0.064 >0.250 >0.250 >0.250 >0.250

Logistic >0.250 >0.250 0.046 >0.250 0.101 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250

STOXX Europe 20

Normal 0.262 0.511 <0.005 0.731 0.892 0.393 0.79 0.467 0.05 0.901 <0.005 0.613
2-Parameter Exponential 0.114 0.012 <0.010 0.021 0.057 <0.010 0.058 0.015 <0.010 0.031 0.246 0.046
3-Parameter Weibull >0.500 >0.500 0.038 >0.500 >0.500 >0.500 >0.500 0.439 0.203 >0.500 0.188 >0.500

Smallest Extreme Value 0.046 0.138 0.071 >0.250 >0.250 >0.250 >0.250 0.227 >0.250 >0.250 <0.010 >0.250
Largest Extreme Value >0.250 >0.250 <0.010 >0.250 >0.250 0.061 >0.250 0.23 0.014 >0.250 0.178 >0.250

Logistic >0.250 >0.250 0.017 >0.250 >0.250 >0.250 >0.250 >0.250 0.07 >0.250 0.023 >0.250

SSE

Normal 0.045 0.146 0.048 <0.005 0.33 0.213 0.607 0.115 0.554 0.373 0.706 0.029
2-Parameter Exponential <0.010 0.043 >0.250 0.07 <0.010 <0.010 <0.010 <0.010 >0.250 0.016 >0.250 >0.250
3-Parameter Weibull >0.500 0.403 >0.500 0.049 0.174 >0.500 >0.500 0.476 0.482 0.413 >0.500 0.417

Smallest Extreme Value >0.250 0.011 0.016 <0.010 0.246 >0.250 >0.250 >0.250 >0.250 0.062 >0.250 <0.010
Largest Extreme Value <0.010 >0.250 0.205 0.082 0.167 0.069 0.169 0.019 >0.250 >0.250 >0.250 >0.250

Logistic 0.226 >0.250 0.049 0.015 >0.250 0.221 >0.250 0.232 >0.250 >0.250 >0.250 0.136

Nikkei 225

Normal 0.487 0.57 0.435 0.676 0.544 0.152 0.892 0.78 0.055 0.451 0.35 0.102
2-Parameter Exponential 0.09 0.057 <0.010 >0.250 <0.010 <0.010 0.018 <0.010 0.018 <0.010 0.023 <0.010
3-Parameter Weibull 0.37 >0.500 >0.500 >0.500 >0.500 >0.500 >0.500 >0.500 0.083 >0.500 0.495 0.278

Smallest Extreme Value >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 0.145 >0.250 0.067 >0.250
Largest Extreme Value 0.194 0.224 0.054 >0.250 0.097 0.014 >0.250 0.249 0.022 0.17 >0.250 0.015

Logistic >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 >0.250 0.046 >0.250 >0.250 0.226

The funding ratios are slightly different in WCVaR models, which suggests that the uncertainty of moments affects the
funding ratio and fund return.

For the SPCVaR model, the funding ratio ranges from 1.09 in the first period to 1.43 in the 11th period, and the
fund return ranges from 0.017 to 0.032 overall return of 33%. The funding ratio and fund return of the SPCVaR model
are higher than the UMWCVaR and FMWCVaR models, which indicates that the risk-neutral approach of SP is more
optimistic than the WCVaR of ALM with fixed and uncertain moments.

Figure 1 shows the in-sample performance of the funding ratio of the SPCVaR, UMWCVaR, and FMWCVaR
models. It illustrates that the SPCVaR has better performance than the FMWCVaR and UMWCVaR models based on
funding ratio, which is predictable since the FMWCVaR and UMWCVaRmodels are more conservative than SPCVaR.
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Table 2
Hypothesis test for equality of the mean/variance of asset returns in each period

Test Equality of variances Equality of means
PRIVEXD 0.971 0.407
S&P 500 0.974 0.422
GSPRTRE 0.831 0.965

S&P/TSX Composite 0.813 0.496
TNX 0.275 0.868

SPGTINTR 0.797 0.733
FTSEurofirst 300 0.644 0.401
STOXX Europe 20 0.755 0.632

SSE 0.978 0.861
Nikkei 225 0.925 0.407

Table 3
In-sample performance of the ALM models

UMWCVaR FMWCVaR SPCVaR
Periods Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

1 1.09 0.020 1.09 0.019 1.09 0.02
2 1.10 0.004 1.11 0.006 1.13 0.032
3 1.10 0.004 1.12 0.006 1.16 0.032
4 1.10 0.003 1.11 0.007 1.19 0.019
5 1.11 0.003 1.12 0.008 1.22 0.031
6 1.11 0.003 1.12 0.008 1.26 0.031
7 1.12 0.003 1.13 0.008 1.29 0.018
8 1.12 0.003 1.13 0.008 1.32 0.029
9 1.12 0.003 1.14 0.008 1.36 0.030
10 1.12 0.003 1.12 0.008 1.40 0.030
11 1.13 0.002 1.13 0.008 1.43 0.017

Figure 2 demonstrates the fund return in each period. Although the SPCVaR has a higher return in each period than
the two other models, it also has higher volatility. The UMWCVaR and FMWCVaR models show slightly different
trends in the funding ratio and fund returns, which indicates that the uncertainty of moments has an impact on the
performance of the ALM problem. Meanwhile, the SPCVaR model provides an optimistic scenario for the system’s
future performance with higher volatility of fund return in each period.

Asset allocation is a crucial decision in the ALM problem. It involves deciding how to distribute investments across
different asset classes to achieve the desired level of return while minimizing risk. Figure 3 compares the optimal asset
allocation of three models over the investment horizon, which is represented on the horizontal axis. The vertical axis
in Figure 3 shows the proportion of investment in each asset class. In each period, there are three bars representing the
asset allocation of the different models. The first bar corresponds to the UMWCVaR model, the second bar represents
the optimal asset allocation of the FMWCVaRmodel, and the last bar shows the optimal asset allocation of the SPCVaR
model. As shown in Figure 3, the WCVaR models provide more diversified portfolios than the SPCVaR model, which
leads to a less risky portfolio. The WCVaR models consider the probability distribution of returns and estimate the
risk of the portfolio based on the worst-case scenario. As a result, the WCVaR models provide more robust and stable
asset allocation over time. In contrast, the SPCVaR model does not account for the uncertainty of the distribution
function and can lead to more volatile asset allocation over the investment horizon. The comparison of the optimal
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Figure 1: In-sample performance of funding ratio

Table 4
Optimal contribution rates of three models based on funding ratio

Models FR=1.02 FR=1.05 FR=1.07 FR=1.1 FR=1.15
UMWCVaR 3.7% 5.7% 6.6% 7.7% 10.2%
FMWCVaR 0.9% 2.4% 3.3% 4.8% 7.1%
SPCVaR 0.1% 2.3% 3.2% 4.6% 7.1%

asset allocation of the different models in Figure 3 highlights the advantages of using the WCVaR models, which
provide more diversified and less risky portfolios compared to the SPCVaR model.

Another point of comparison is the contribution rate, which changes based on the funding ratio (FR) threshold.
Table 4, shows the comparison of the optimal contribution rates of three models (UMWCVaR, FMWCVaR, and
SPCVaR). As shown in Table 4, the optimal contribution rates of the threemodels differ depending on the FR parameter.
For instance, when FR=1.02, the optimal contribution rates for the UMWCVaR, FMWCVaR, and SPCVaR models
are 3.7%, 0.9%, and 0.1%, respectively. However, as FR is increased, the optimal contribution rates of all three models
also increase. Furthermore, the UMWCVaR model has the highest optimal contribution rates among the three models
for all FR values. This suggests that this model may be the most conservative in managing risk under different FR
scenarios. In contrast, the SPCVaR model has the lowest optimal contribution rates for FR values up to 1.1. However,
when FR=1.15, the optimal contribution rates of the SPCVaR model become equal to that of the FMWCVaR model.

Besides in-sample analysis, we are comparing the out-of-sample performance of the above-mentionedmodels using
simulation. 1000 scenarios of asset returns are generated based on distribution functions of asset returns in Table 1.
Then, the optimal investment strategies of the UMWCVaR, FMWCVaR, and SPCVaR models are used to compare the
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Figure 2: In-sample performance of fund return

funding ratio and value of assets in each period. Table 5 presents the out-of-sample performance of three ALMmodels.
In the first two columns, we have the results of the UMWCVaRmodel, showing that the funding ratio ranges from 0.96
to 1.13 and the fund return ranges from 0.004 to 0.038 with an overall return of 9% in the investment horizon. The
next two columns present the results of the FMWCVaR model, where the funding ratio ranges from 0.93 to 0.97 and
the fund return ranges from -0.013 to 0.026 with an overall return of −5%. Finally, the last two columns present the
results of the SPCVaR model, where the funding ratio ranges from 0.8 to 1.02 and the fund return ranges from -0.157
to 0.134 with an overall return of −2% with very high volatility.

Figure 4 compares the out-of-sample performance of the UMWCVaR, FMWCVaR, and SPCVaR models based on
the fund return in each period. When comparing the fund return, we can observe that the FMWCVaR and SPCVaR
models have 5 periods with a negative return rate. Moreover, the funding return of the SPCVaR model shows high
volatility in comparison to other two models. The overall return of these two models, SPCVaR and FMWCVaR, are
negative: −2% and −5%, respectively. On the other hand, the UMWCVaR model has a positive return in all periods
with an overall average return of 9% which is very similar to the actual fund return of CPP last year which was 10%
10. This indicates that the UMWCVaR model is more effective in generating return compared to the FMWCVaR and
the SPCVaR models.

Figure 5 demonstrates the out-of-sample performance of models based on the funding ratio. Comparing the three
models based on the funding ratio, we can see that the UMWCVaR model has higher funding ratios compared to the
FMWCVaR and SPCVaR models. Moreover, the FMWCVaR model has better performance than the SPCVaR model
except in the 6th period. This suggests that the UMWCVaR model is more stable and has a better ability to meet its

10https://www.cppinvestments.com/the-fund/our-performance/financial-results/f2022-annual-results
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Figure 3: Comparision of optimal asset allocation

obligations than the two other models. On the other hand, the SPCVaR model has a lower funding ratio, indicating a
higher risk of not being able to meet its obligations.

In conclusion, based on the results presented in Table 5, it appears that the UMWCVaR model outperforms
the FMWCVaR and SPCVaR models in terms of funding ratio and fund return, implying better stability and asset
management performance.

6. Conclusions
In this paper, we proposed a theoretical foundation for developing the WCVaR formulation for the ALM problem.

The proposed theoretical development can be used in any problem with general loss functions. Based on the proposed
theoretical foundation of WCVaR, we introduced the DRO reformulation of the ALM problem where the loss function
is a linear function of asset returns and the present value of liabilities. The DRO reformulation of the ALM problem
is proposed in two cases. First, the moments of the uncertain distribution function are fully known and fixed. Second,
the moments of the distribution function of random variables are uncertain and belong to the uncertainty set.

Real data of CPP are used to test and analyze the performance of optimal investment strategies obtained by solving
the DRO reformulations. The analysis was based on the in-sample and out-of-sample performance of the models. The
results showed that the SP reformulation of the ALM has better in-sample performance than the DRO reformulation of
the ALMmodels with respect to the fund return and funding ratio in each period. However, out-of-sample performance
analysis revealed that the investment strategy of the DRO formulation of the ALM problem with uncertain moments
has a better funding ratio and higher overall average fund return than the DRO with fixed moments and SP models.
Consequently, we can conclude that the investment strategy achieved from the DRO reformulation of the ALMproblem
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Table 5
Out-of-sample performance of the ALM models

UMWCVaR FMWCVaR SPCVaR
Periods Funding ratio Fund return Funding ratio Fund return Funding ratio Fund return

1 0.96 0.017 0.95 0.007 0.80 -0.157
2 0.97 0.006 0.94 -0.01 0.90 0.134
3 0.98 0.013 0.94 -0.004 0.93 0.028
4 1.02 0.038 0.94 0.004 0.85 -0.079
5 1.02 0.006 0.95 0.004 0.94 0.098
6 1.03 0.011 0.93 -0.013 0.94 0.00
7 1.04 0.011 0.96 0.026 0.92 -0.02
8 1.05 0.008 0.95 -0.01 0.91 -0.015
9 1.09 0.038 0.94 -0.003 0.85 -0.063
10 1.10 0.004 0.95 0.009 0.94 0.103
11 1.13 0.031 0.97 0.012 1.02 0.094
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Figure 4: Out-of-sample performance of fund return

with uncertain moments can handle the asset and liability balance of pension funds better than the investment strategies
of the DRO with fixed moments and SP models.
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Figure 5: Out-of-sample performance of funding ratio

There are several avenues for future research that can build upon the contributions of this work. Firstly, while we
have demonstrated the efficacy of the DRO reformulation of the ALM problem with moment-based ambiguity sets, it
is important to investigate the performance of investment strategies obtained from the DRO formulation of ALM with
statistical-distance-based ambiguity sets. This can provide insights into the impact of different types of ambiguity sets
on the performance of the model. Secondly, the current study has focused on the application of DRO reformulation
of ALM under uncertainty with respect to the moments of the distribution function of random variables. However,
there is a need to investigate the impact of more general types of uncertainty, such as scenario-based uncertainty. Such
investigations can shed light on how to develop investment strategies that can perform well under a range of uncertain
scenarios. Thirdly, the current study has analyzed the performance of the proposedmodels using real-world data of CPP.
However, further testing on a broader range of pension funds can provide a better understanding of the generalizability
of the proposed models. Finally, the proposed models can be extended to incorporate other important considerations in
pension fund management, such as taxes, transaction costs, and regulatory constraints. Such extensions can provide a
more comprehensive framework for pension fund management that can handle a wider range of real-world constraints.
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Appendix A
Lemma 5. Let � be a univariate random variable, where E [�] = �, V ar (�) = �2, and f (.) is a nonlinear function of
random variabnle � that f ∶ ℝ → ℝ. Then:

sup
�∼(�,�2)

E
[

(� − f (�))+
]

≊
� −

(

f (�) + 1
2f

′′ (�) �2
)

+
√

f ′ (�)2 �2 +
(

� −
(

f (�) + 1
2f

′′ (�) �2
))2

2
,

where f ′ (.) and f ′′ (.) are first and second derivation of f (.), respectively.

PROOF. First, we need to find the expected value of f (�). The second-order Taylor approximation of f (�) around �
is:

E [f (�)] ≊ E
[

f (�) + f ′ (�) (� − �) + 1
2
f ′′ (�) (� − �)2

]

.

It is known that E (a + b) = E (a) + E (b). Then we can expand the proposed second-order Taylor approximation
as:

E [f (�)] ≊ E [f (�)] + f ′ (�)E [� − �] + 1
2
f ′′ (�)E [� − �]2 ,

where E [f (�)] = f (�), and E [� − �] = � − � = 0. Then:

E[f (�)] ≊ f (�) + 1
2
f ′′(�)E[� − �]2.

Since E [� − �]2 = V ar (�) = �2, then:

E [f (�)] ≊ f (�) + 1
2
f ′′ (�) �2.

Now, we need to approximate V ar (f (�)). The first order Taylor approximation of f (�) around � is:

f (�) + f ′ (�) (� − �) .

Then V ar (f (�)) can be approximated as:

V ar [f (�)] ≊ V ar
[

f (�) + f ′ (�) (� − �)
]

= V ar
[

f (�) + f ′ (�) � − f ′ (�)�
]

.

The first term, f (�), is constant then V ar (f (�)) = 0. The third term V ar
(

f ′ (�)�
)

is also constant with a
variance of zero. Consequently:

V ar [f (�)] ≊ V ar
[

f ′ (�) �
]

=
(

f ′ (�)
)2 V ar [�] = f ′ (�)2 �2.

By substituting E [f (�)] and V ar (f (�)) into the WLPM reformulation by Chen et al. (2011),

sup
�∼(�,�2)

E
[

(� − f (�))+
]

=
� − E [f (�)] +

√

V ar (f (�)) + (� − E [f (�)])2

2
,

we obtained the desired result. □

Theorem 6. Let � be a univariate random variable with mean � and variance �2, and define the ambiguty set
P = {p ∈M+|P (� ∈ Ω) = 1, � ∼

(

�, �2
)

}. Moreover, f (�) is a loss function, where f ∶ ℝ → ℝ. Then WCVaR can
be approximated as follows:

WCV aR� ≊ f (�) +
1
2
f ′′ (�) �2 +

√

�
1 − �

√

f ′ (�)2 �2
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PROOF. Based on the definition, WCV aR� = supp(.)∈P min�∈ℝ � +
1
1−�E

[

(f (�) − �)+
]

. To reformulate the WC-
VaR, we need to calculate the WLPM term in the WCVaR definition. In Lemma 5, the LPM is in the form
supp(.)∈P E

[

(� − f (�))+
]

. Hence we need to rearrange the LPM in CVaR as:

sup
p(.)∈P

E
[

(f (�) − �)+
]

= sup
p(.)∈P

E
[

(−� − (−f (�)))+
]

.

based on Lemma 5:

sup
p(.)∈P

E
[

(−� − (−f (�)))+
]

≊
−� +

(

f (�) + 1
2f

′′ (�) �2
)

+
√

f ′ (�)2 �2 +
(

−� +
(

f (�) + 1
2f

′′ (�) �2
))2

2
.

Now, we can substitute this WLPM into the WCVaR formulation. Consequently:

WCV aR� ≊ min�∈ℝ
� + 1

1 − �

−� +
(

f (�) + 1
2f

′′ (�) �2
)

+
√

f ′ (�)2 �2 +
(

−� +
(

f (�) + 1
2f

′′ (�) �2
))2

2
.

To evaluate the minimization over � in the WCVaR definition we use the first-order optimality condition
)W CV aR�

)� = 0, resulting in:

�∗ = f (�) + 1
2
f ′′ (�) �2 +

2� − 1

2
√

� (� − 1)

√

f ′ (�)2 �2.

By substituting �∗ back in the definition of WCAR, we obtain the desired result. □

Lemma 5 and Theorem 6 are based on a function of a univariate random variable, while in many cases, loss
functions are functions ofmultivariate random variables such as engineering design problems. Consequently, we extend
this lemma/theorem to multivariate random variables.

Lemma 7. Let ξ = {�1,… , �n} be a multivariate random variable, where E
[

�i
]

= �i, V ar
(

�i
)

= �2i , Cov
(

�i, �j
)

=
�ij , and f (.) is a nonlinear function of random variable ξ that f ∶ ℝn → ℝ. Then supξ∼(µ,Σξ) E

[

(� − f (ξ))+
]

can
be approximated by:

1
2

⎛

⎜

⎜

⎜

⎝

� −

(

f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij

)

+

√

√

√

√

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij +

(

� −

(

f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij

))2⎞
⎟

⎟

⎟

⎠

,

where µ = {�1,… , �n} is the mean vector, ei =
)2f (ξ)
)2�i

|ξ=µ, eij =
)2f (ξ)
)�i)�j

|ξ=µ, di =
)f (ξ)
)�i

|ξ=µ and |ξ=µ means to evaluate the
expression with �i replacing �i.

PROOF. Based on the second-order Taylor series expansion of f (.) around µ = {�1,… , �n}, the expected value of
f (.) is approximated by:

E [f (ξ)] ≊ E [f (µ)] + E [∇f (µ) (ξ − µ)] + E
[1
2
(ξ − µ)⊺Hf (µ) (ξ − µ)

]

,

where Hf is the Hessian matrix of f . The second term is zero since E [ξ − µ] = E [ξ] − µ = µ − µ = 0. In the last
term, E

[

(ξ − µ)2
]

= Σξ is the variance-covariance matrix of ξ, then E [f (ξ)] ≊ f (µ) + 1
2Hf (µ) Σξ. Expansion of

this formulation is:

E [f (ξ)] ≊ f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij .
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Moreover, based on the first-order Taylor approximation, the variance of f (.) is:

V ar (f (ξ)) ≊ V ar
(

f (µ) + ∇f (µ)⊺ (ξ − µ)
)

= V ar
(

f (µ) + ∇f (µ)⊺ ξ − ∇f (µ)⊺ µ
)

.

Since f (µ), and ∇f (µ)µ are constants, their variances are zero. Hence, V ar (f (ξ)) ≊ V ar
(

∇f (µ)⊺ ξ
)

which
is equivalent to ∇f (µ)2 Σξ. This formulation can be expanded as V ar (f (ξ)) ≊

∑

i d
2
i �

2
i + 2

∑

i
∑

j>i didj�ij . By

substituting E [f (ξ)] and V ar (f (ξ)) into �−E[f (ξ)]+
√

V ar(f (ξ))+(�−E[f (ξ)])2

2 , we obtain the desired result. □

Theorem 8. Let ξ ∈ ℝn be a multivariate random variable with mean vector µ and covariance matrix Σξ, where the
ambiguity set is P = {p ∈M+|P (ξ ∈ Ω) = 1, ξ ∼

(

µ,Σξ
)

}. Moreover, f (ξ) is a loss function, where f ∶ ℝn → ℝ.
Then WCVaR is defined asWCV aR� = supp(.)∈P min�∈ℝ � +

1
1−�E

[

(f (ξ) − �)+
]

which is approximated by:

f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij +

√

�
1 − �

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij .

PROOF. WCVaR is defined as WCV aR� = supp(.)∈P min�∈ℝ � +
1
1−�E

[

(f (ξ) − �)+
]

. In Lemma 7, we showed
how to approximate the WLPM of a function of multivariate random variables as supp(.)∈P E

[

(f (ξ) − �)+
]

=
supp(.)∈P E

[

(−� − (−f (ξ)))+
]

which is approximated by:

1
2

⎛

⎜

⎜

⎜

⎝

−� +

(

f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij

)

+

√

√

√

√

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij +

(

−� +

(

f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij

))2⎞
⎟

⎟

⎟

⎠

,

which can be substituted in WCVaR formulation instead of WLPM.
Minimization of WCVaR is over �. Then its optimal value �∗ is needed. Optimal �∗ can be calculated by using the first-order

optimality condition )W CV aR�
)�

= 0. The �∗ is as follows:

�∗ = f (µ) +
∑

i
ei
�2i
2
+
∑

i

∑

j>i
eij�ij +

2� − 1

2
√

� (� − 1)

√

∑

i
d2i �

2
i + 2

∑

i

∑

j>i
didj�ij .

Finally, �∗ can be used in the formulation of WCVaR instead of � which leads to the desired result. □

A quadratic function is a special case of a nonlinear function. A loss function can be defined based on a quadratic
function of a random variable. For example, tracking errors in index-tracking PSPs is an example of a quadratic function
that can be used as a loss function. In Lemma 5 and theorem 6, both the mean and variance of the loss function are
approximated by the Taylor approximation method. However, by using a quadratic function of a random variable as a
loss function, the variance of the loss function should be approximated while the expected value of the loss function
can be calculated based on exact formulation. Remark 1 shows how to calculate the WLPM for a quadratic function of
a random variable.

Remark 1. Let � be an univariate random variable, where E[�] = �, and V ar(�) = �2. Then, WLPM is approximated
as follows:

sup
�∼(�,�2)

E
[

(

� − �2
)+] ≊

� −
(

�2 − �2
)

+
√

4�2�2 +
(

� −
[

�2 − �2
])2

2
.

PROOF. Based on definition of the first two moments of �, V ar (�) = E
[

�2
]

− E [�]2 = �2. Then, E
[

�2
]

= �2 − �2.
The first-order Taylor approximation of �2, around E [�], is E [�]2 + 2E [�] (� − E [�]). Consequently, variance of �2 is
approximated as follows:

V ar
(

�2
)

≊ V ar
(

E [�]2 + 2E [�] (� − E [�])
)
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= V ar
(

E [�]2 + 2E [�] � − 2E [�]E [�]
)

= V ar
(

�2 + 2�� − 2�2
)

.

The first and third terms are constants, then their variances are zero. Hence,

V ar
(

�2
)

≊ V ar (2��) = 4�2V ar (�) .

By using E
[

�2
]

and V ar
(

�2
)

, WLPM is as follows:

sup
�∼(�,�2)

E
[

(

� − �2
)+] ≊

� −
(

�2 − �2
)

+
√

4�2�2 +
(

� −
[

�2 − �2
])2

2
.

□
The WCVaR for quadratic loss function is defined based on remark 2.

Remark 2. Let � be a univariate random variable with mean � and variance �2, where the ambiguity set is P = {p ∈
M+|P (� ∈ Ω) = 1, � ∼

(

�, �2
)

}. Moreover, �2 is a loss function. Then WCVaR is defined as:

WCV aR� ≊ �2 − �2 + 2��

√

�
1 − �

PROOF. Based on definition, WCV aR� = supp(.)∈P min�∈ℝ � +
1
1−�E

[

(

�2 − �
)+
]

. The WLPM of �2 is defined
based on remark 1. Hence:

sup
p(.)∈P

E
[

(

�2 − �
)+] = sup

p(.)∈P
E
[

(−� − (−�2))+
]

≊
−� +

(

�2 − �2
)

+
√

4�2�2 +
(

−� +
[

�2 − �2
])2

2
.

By using the approximation ofWLPM inWCVaR formulation, WCVaR of the quadratic loss function is as follows:

WCV aR� ≊ min�∈ℝ
� + 1

1 − �

−� +
(

�2 − �2
)

+
√

4�2�2 +
(

−� +
[

�2 − �2
])2

2
.

Minimization of WCVaR is over �, hence its optimal value is needed which can be calculated by solving the
first-order optimality condition, )W CV aR�

)� = 0. The optimal �∗ is as follows:

�∗ = �2 − �2 +
2� − 1

2
√

�(� − 1)

√

4�2V ar(�).

By using �∗ inWCV aR instead of �, WCVaR is approximated as desired result.

□
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