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Abstract

Operations in critical areas of importance to society, such as healthcare, transportation and logis-

tics, power systems, and emergency response, profoundly affect multiple stakeholders with diverse

perspectives. These operations are often modeled using discrete programming methods to capture

the various decision-making factors through centrally-selected objectives and constraints. Unfortu-

nately, centralized modeling and solution methodologies may overlook the perspectives and needs

of certain stakeholders, potentially leading to the exclusion of certain stakeholders. Additionally,

discrete programming problems suffer from the curse of combinatorial complexity, which can result

in suboptimal solutions and difficulties in achieving a transparent, intuitive, fair, and equitable

outcome. To address these challenges and foster inclusive synergy, we propose an approach to

democratize complex problem-solving through distributed modeling and computation methods to

enable participation as well as to increase fairness, accountability, and transparency. Our ap-

proach employs the latest versions of Lagrangian Relaxation to decompose complex problems into

subproblems, empowering stakeholders to actively and autonomously participate in independent

decision-making by incorporating constraints and preferences in accordance with their values. The

fast coordination of subproblems based on the economic “supply and demand” principle ensures

that the optimization outcomes are economically efficient. In addition, this approach harnesses

“cyber-human” collective intelligence to enable efficient decision-making.
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1. Introduction

Operations in critical sectors of societal importance, such as healthcare, transportation and

logistics, power systems, and emergency response, encompass multiple stakeholders with diverse

constraints and objectives, which complicates and challenges the decision-making process. The

decisions made in these areas have substantial repercussions for individuals and society as a whole.

Stakeholders may vary across sectors, including customers, providers, medical professionals, pa-

tients, emergency responders, transportation operators, power grid operators, generator owners,

and local authorities, among others. Hence, it is essential to ensure fair, transparent, and equitable

decision-making that addresses the needs and concerns of all stakeholders while promoting beneficial

outcomes for society. This can be accomplished by engaging all stakeholders in the decision-making

process and implementing policies that foster fairness, transparency, and equity. Inclusive and col-

laborative approaches, combined with computationally efficient algorithms, can lead to more robust

and sustainable solutions that benefit all parties involved and contribute to the overall well-being

and resilience of society. Utilizing efficient computational methods enables stakeholders to quickly

analyze various scenarios and make informed decisions, ultimately enhancing the effectiveness and

responsiveness of decision-making processes in these critical sectors.

Decision-making in the above application domains often involves inherently discrete decisions,

such as assignment, location, allocation, commitment decisions, etc. Consequently, the associated

optimization problems are frequently modeled as discrete programming problems that capture

the various decision-making aspects. Traditional centralized approaches formulate corresponding

systems of interest from the perspectives of centralized decision-makers that generally gather or

define data, objectives, and constraints. Such formulations, however, are based on assumptions

that could potentially overlook stakeholders’ needs and often do not accurately or fairly capture

all stakeholders’ perspectives, thereby leading to exclusion, inequality, as well as a lack of fairness,

transparency, and participation. Modern systems, such as smart cities, transportation networks,

and power grids, grow ever more complex and interconnected, traditional approaches to problem-

solving, which often rely on centralized methods, are therefore proving increasingly inadequate.

Specifically, as the number of stakeholders increases (e.g., distributed energy owners) and the needs

of stakeholders are recognized to be increasingly valuable (e.g., patients in healthcare systems or

evacuees requiring immediate attention), centralized methods may overlook the perspectives and

the needs of multiple stakeholders, leading to unfairness, exclusion, and inequality. Furthermore,

including stakeholders’ needs may require sharing private information with the centralized decision-
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maker to incorporate into the decision-making process. This may compromise those stakeholders’

privacy and violate privacy rights, potentially leading to biased solutions that can negatively impact

vulnerable populations. On the other hand, excluding such information and stakeholders’ needs

from the decision-making process (through centralized formulation) leads to solutions that could be

unfair, meaningless, and irrelevant to many stakeholders. Scalability is also a significant concern for

discrete programming problems. Unfortunately, most real-life problems have complex combinatorial

nature; thus, it is often difficult to obtain high-quality solutions within a reasonable time.

Giving stakeholders more decision-making power to formulate their (sub)problems according to

their needs and solve them can potentially improve fairness, transparency, and equity. In this paper,

we explore the application of advanced Lagrangian Relaxation (LR) techniques, which efficiently

“reverse” combinatorial complexity through problem decomposition and accelerate coordination,

guided by market principles of “supply and demand.” Our paper discusses how these methods can

enhance participation, transparency, accountability, and fairness in optimization contexts. This is

achieved by empowering stakeholders to make their own decisions, broadly defined as formulating

their own subproblems based on their needs, preferences, and moral principles, as well as solving

the resulting subproblems.

These key features of Lagrangian Relaxation enable decentralized decision-making and collabo-

ration through harnessing collective intelligence and efficient coordination. The key difference from

the traditional idea of LR, which primarily involves decomposing centrally-formulated problems

and the associated subproblem solving and coordination, is the ability to incorporate stakeholders’

objectives and constraints into global decision-making. After decomposing the overall problem into

stakeholder subproblems, each stakeholder has complete, unbiased control to optimize the subprob-

lem they designed, eliminating the need to share private and sensitive information with the central

decision maker. By doing so, our proposed idea empowers local communities to participate in fair

decision-making by allowing them to formulate their own subproblems and solve them to arrive at

more equitable solutions. This approach also leads to computationally effective decision-making

that harnesses collective intelligence and utilizes fast convergence principles, thereby enabling the

democratization of complex-problem solving.

By involving multiple stakeholders in the problem-solving process, our proposed approach en-

sures that all perspectives and needs are fairly considered, leading to more inclusive and equitable

outcomes fostering trust and collaboration, satisfaction, and desire for the participation of stake-

holders. While the decision-making is done at the stakeholder level, the coordination can be done
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either centrally or distributedly. Important to note that central coordination is not tantamount

to centralized decision-making with the difficulties mentioned above. In the case of centralized

coordination, a deeper understanding of the needs and concerns of different stakeholders can be

gained through the sensitivity nature of Lagrangian multipliers. This aspect of the method benefits

stakeholders and society as a whole, as it leads to deeper insights and better decision-making at

policy-making levels.

The paper is structured as follows. In Section 2, we review relevant literature and discuss the

democratization of problem-solving from a multidisciplinary perspective not necessarily limited to

discrete programming problems. In Section 3, we present our proposed democratization approach

in detail and describe our system-optimization framework. In Section 4, we discuss limitation with

future directions delineated. In Section 5, conclusions are provided.

2. Literature Review

In this section, we discuss relevant work. Specifically, in subsection 2.1, we review recent

research on promoting the democratization of decision-making through the promotion of inclusivity,

diversity, transparency, collective intelligence, and equity in various domains. Then, in subsection

2.2, we briefly introduce a specific type of discrete programming problem, separable mixed-integer

linear programming (MILP), from a centralized perspective. In addition, we discuss some of the

related applications of MILP in various domains, such as power systems, healthcare, transportation,

and humanitarian work. Finally, in subsection 2.3, we review Lagrangian Relaxation (LR) methods

for discrete optimization problems, as well as non-smooth optimization arising in LR. Overall, these

subsections emphasize various problem-solving aspects at different levels, including philosophical,

societal, civic, legal, managerial, ethical, fair and equitable, centralized, distributed, technological,

and computational approaches.

2.1. Advancing Inclusive and Ethical Decision-Making through Democratization and Collective In-

telligence

There has been growing interest in democratizing knowledge creation and collaboration in recent

years. This trend reflects a broader societal shift towards promoting democratization, inclusivity,

diversity, transparency, and equity in various domains, including science, politics, and culture.

Scholars from various fields, including philosophy, law, management, social media, computer sci-

ence, mathematics, anthropology, ethnography, and sociology, have looked at the democratization
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aspects from different angles and have explored different strategies for achieving these goals. In

this section, we will review some of the key approaches and insights that have emerged from this

body of literature, focusing on their implications for knowledge production and collaboration.

Epistemic Injustice and Inclusive Knowledge Production: The Philosophers’ Perspec-

tive. Nuccetelli’s works (Nuccetelli and Seay, 2007; Nuccetelli, 2021) focus primarily on epistemic

(i.e., related to knowledge acquisition and understanding) virtues and values in the context of

ethics and philosophy. One can adopt some of the principles in Nuccetelli’s work to democratize

complex-problem solving. For example, intellectual humility and open-mindedness, as advocated

by Nuccetelli, can encourage stakeholders to recognize the limits of their knowledge and be more

receptive to alternative perspectives and solutions, fostering collaboration and participation. Fur-

thermore, the philosophical idea that problem-solving should not be confined to a particular group

or class of experts can be inspired by G.E. Moore’s work (Moore, 1903). Moore’s emphasis on the

open-ended nature of ethical questions, as suggested by his assertion that “all things which are

good are also something else,” implies that independent evaluation and multiple perspectives might

be essential for effective (democratic) decision-making. The exploration of ethical considerations

at the intersection of technology has been a crucial subject of debate, attracting the attention of

numerous researchers as discussed next.

Ethical Considerations and Democratization in Emerging Technologies and Algorith-

mic Decision-Making. The works of Brey (Brey, 2012), Coeckelbergh (Coeckelbergh, 2012),

Mittelstadt et al. (Mittelstadt et al., 2016), and Pak-Hang Wong (Wong, 2020) collectively address

ethical, social, and political challenges, such as unpredictability (Brey, 2012) of emerging technolo-

gies and algorithmic decision-making. As “technology displays arrogance and lack of humility”

(Coeckelbergh, 2012) frequently taking on the role of the sole decision maker (Mittelstadt et al.,

2016), the emphasis on the importance of public engagement, algorithmic mediation, transparency,

accountability, democratization/democracy, and fairness in the development and deployment of

emerging technologies is crucial. Wong (2020), in particular, argues for a framework that democra-

tizes algorithmic fairness, underlining the significance of considering various stakeholders’ concerns

and interests when designing and implementing algorithms. This approach ensures greater fairness

and inclusivity, while the other works contribute to the broader conversation on ethical implications

and the need for anticipatory ethics, data ethics, and moral responsibility in technology.

Democracy as Problem-Solving: Civic Capacity in Communities Across the Globe.

Xavier de Souza Briggs (Briggs, 2008) explores the notion of democracy as a way to solve societal

5



problems, emphasizing the importance of citizen participation and collaboration in developing a

collective capacity in decision-making processes. The author argues that democracy is not only

about voting and representation but also about involving stakeholders in finding solutions to com-

plex problems such as urban planning, environmental sustainability, and public health. Through

case studies from around the world, the book showcases various examples of how communities have

come together to address these challenges, highlighting the importance of building civic capacity

and creating spaces for meaningful dialogue and deliberation. Overall, Briggs’ work provides a com-

pelling argument for the value of participatory democracy, which is reflected in the democratization

of complex-problem solving proposed in this paper.

Potential of Decentralized Systems for Democratizing Problem-Solving: Legal Scholar’s

Approach. Yochai Benkler’s work (Benkler, 2000, 2002, 2004, 2006, 2011) emphasizes the poten-

tial of decentralized systems and distributed forms of collaboration in creating more participatory

and equitable problem-solving. He highlights the role of open-source software, peer production, and

commons-based approaches (i.e., approaches promoting cooperation, horizontal and decentralized

decision-making as well as networks) in transforming economic and social relations. Benkler’s work

demonstrates that decentralized networks challenge traditional hierarchies and centralized power

structures, promoting greater participation and diverse viewpoints in decision-making processes.

Collective Intelligence and Online Collaboration: The Management Perspective. Mal-

one et al. (2009) identified diversity, independence, decentralization, and aggregation as key factors

for collective intelligence and crowdsourcing (obtaining information by using a large number of peo-

ple). Thomas Malone’s book (Malone, 2018) explores the idea of combining the cognitive abilities

of humans with the computational power of machines to create what he calls the “Supermind.”

This concept refers to a “powerful combination of many individual minds” working together, where

humans and machines collaborate in a “cyber-human” fashion to solve complex problems and make

better decisions. Malone emphasizes the potential for technology to enhance collective intelligence

and improve democratic decision-making through this collaboration. Malone and Bernstein (2022)

provide a comprehensive overview of the field with contributions from multiple experts.

Technology and Society: Issues of Privacy, Surveillance, Transparency, and Account-

ability. Danah Boyd’s work emphasizes the need for greater attention to technology’s social and

ethical implications, specifically related to privacy, surveillance, transparency, and accountability

(Boyd, 2014; Boyd and Crawford, 2012; Boyd, 2019). Specifically, Boyd provides insights into

the importance of considering various user groups’ diverse needs and perspectives when designing
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technology solutions (Boyd, 2014). In addition, her focus on transparency and ethical oversight

can mitigate potential negative consequences of technology and promote the equitable distribution

of its benefits (Boyd and Crawford, 2012). Moreover, Boyd’s work addresses issues of power and

control in the technology industry, promoting a more equitable distribution of power and ensuring

technology benefits society as a whole (Boyd and Crawford, 2012).

Protecting Privacy and Promoting Transparency in Distributed Systems: Computer

Science and Mathematics Approach. Cynthia Dwork’s research on privacy and security in

distributed systems emphasizes individual rights and data processing transparency (Dwork, 2008;

Dwork et al., 2012, 2014). Her work on differential privacy provides a framework for protecting

individuals’ privacy in statistical databases and quantifies privacy risks in the data release. Dwork

also proposes algorithms for achieving fairness in machine learning, including the “fairness through

awareness” framework that combines differential privacy with statistical discrimination measures

(Dwork et al., 2012). Her work is important for promoting ethical and fair problem-solving, protect-

ing privacy rights, and addressing issues of bias and discrimination. Overall, Cynthia Dwork’s work

highlights the importance of protecting individual rights and promoting transparency in developing

and deploying technological systems, particularly in the context of privacy and fairness.

Understanding Technology in Social and Cultural Contexts: Ethical Considerations.

Annette Markham’s ethnographically-grounded research explores the social and cultural contexts

shaping technology’s development and use, emphasizing its role in forming social relationships

and cultural practices (Markham, 1998). Her work, Markham (1998) reveals the intersection of

technology with social and cultural contexts, addressing authenticity and self-presentation in online

environments. In collaboration with Nancy K. Baym (Markham and Baym, 2008), Markham

provides an exploration of methodologies for conducting research in online environments, discussing

challenges, opportunities, and ethical considerations in studying internet-based phenomena. Her

work is crucial for understanding democratization, decision-making access, and the online/offline

interplay in modern society, which informs effective collaboration in problem-solving. Overall,

Markham’s research underscores the need to consider these factors when developing inclusive,

equitable problem-solving methods.

AI and Data-Driven Decision-Making: Ethical and Social Implications. Kate Crawford

emphasized the need for transparency, accountability, diversity, and inclusivity in the development

and deployment of AI systems (Crawford, 2013; Whittaker et al., 2018; Crawford and Paglen, 2021).

Her works, including (Crawford, 2013; Whittaker et al., 2018; Crawford and Paglen, 2021), discuss
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potential biases and errors in AI and the importance of understanding the social and cultural

context of training data. Crawford’s work provides valuable insights into the ethical and social

implications of AI and data-driven decision-making. It can help ensure that AI is used in ways that

are fair, transparent, and accountable.

FAT and Privacy-Aware AI Modeling Approaches: Advancing Business Decision Mak-

ing. Dmitry Zhdanov et al. (2022) explore the potential of incorporating fairness, accountability,

and transparency (FAT) and privacy-aware artificial intelligence (AI) modeling approaches into

business decision-making frameworks. By considering AI’s ethical and social implications, this ap-

proach can mitigate the risks of bias and discrimination, enhance transparency and accountability,

and foster trust and acceptance among stakeholders. The paper provides a review of relevant lit-

erature and proposes a framework for integrating FAT and privacy-aware AI modeling approaches

into existing business decision-making processes, highlighting the potential benefits of improving

decision-making quality, reducing risk, and promoting social responsibility.

Addressing Energy Justice and Electricity Tariff Design: Equitable Power Grid Mod-

ernization. Energy justice is a priority in power systems. Grid modernization, for example, aims

to achieve social and economic equity while addressing the disproportionate harms (social, eco-

nomic, and health burdens) caused by the energy system on historically affected communities (U.S.

Department of Energy, 2022). Incorporating energy justice objectives in grid planning can benefit

disadvantaged communities by reducing pollution, mitigating infrastructure impacts, and enhanc-

ing resiliency and energy security while supporting decarbonization. By considering energy justice

in electricity tariff design, system planners can minimize energy burdens on vulnerable households

while maintaining system cost recovery and fairness (Khan et al., 2023).

Addressing Equity and Justice in Zero-Emission Freight and Drayage Truck Deploy-

ment. Polluting drayage trucks powered by older diesel engines emit high levels of harmful

pollutants, particularly in disadvantaged communities, posing significant threats to public health

(Ramirez-Ibarra and Saphores, 2023). Policymakers aim to deploy zero-emission freight and drayage

trucks to mitigate negative impacts and ensure equitable access to zero-emission transportation by

2045 (Brown et al., 2021). However, addressing equity and justice concerns in the transition is crit-

ical for an equitable distribution of benefits and burdens (Enriquez, 2019). Targeted investments in

disadvantaged communities and stakeholder engagement are essential for identifying and addressing

unique challenges and opportunities (Enriquez, 2019). Promoting equity and justice in deploying

of zero-emission freight and drayage trucks is essential to realizing a sustainable transition that
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benefits all communities (Enriquez, 2019).

Fairness and Decision-Making. Various studies across multiple disciplines, including economics,

decision theory, and operations research explored the issue of fairness and equity in decision-making

models and algorithms in diverse contexts. We refer to (Karsu and Morton, 2015; Shehadeh and

Snyder, 2022; McGregor et al., 2019; Young, 1995) for comprehensive surveys, discussions, and

applications.

2.2. Centralized Perspective for Separable Mixed-Integer Programming Problems

In this section, we will first briefly introduce separable mixed-integer linear programming

(MILP) problems, taking a centralized perspective. We will then discuss the limitations of central-

ized decision-making.

Centralized Mixed-Integer Linear Programming. Mixed-Integer Linear Programming (MILP)

has been a powerful paradigm across various scientific disciplines, including mathematics, opera-

tions research, engineering, and computer science. For example, MILP has found application in

various areas of societal importance, such as healthcare (Kopanos et al., 2010; Stefansson et al.,

2011; Kim and Mehrotra, 2015; VonAchen et al., 2016; Zhu and Ursavas, 2018; Khlif Hachicha

and Zeghal Mansour, 2018; Shehadeh et al., 2020; Dastgoshade et al., 2020; Ge and Yuan, 2021;

Kayvanfar et al., 2021; Prabhu et al., 2021; Tsang and Shehadeh, 2023; Wickett et al., 2023),

transportation and logistics (Freund et al., 2017; Jiang et al., 2020; Karolemeas et al., 2021; Dong

and Leng, 2021; Archetti et al., 2021; Kamyabniya et al., 2021; Balakrishnan et al., 2021; Reddy

et al., 2022; Gupta et al., 2022; Shao et al., 2022; Shehadeh and Tucker, 2022; Yan et al., 2022),

humanitarian applications (Smalley et al., 2015; Aghaei et al., 2019; Hamdan and Diabat, 2020;

Ahani et al., 2021; Kamyabniya et al., 2021), and power and energy systems (Afshar et al., 2008;

Pozo et al., 2012; Morales-España et al., 2013; Bischi et al., 2014; Wierzbowski et al., 2016; Theo

et al., 2016; Schill et al., 2017; Nikoobakht et al., 2018; Damchi et al., 2018; Rafinia et al., 2020; Sun

et al., 2018; Chen et al., 2020; Li et al., 2020; Wu et al., 2021; Shen et al., 2021; Wu et al., 2023). A

centralized decision maker frequently formulates these MILP problems by using cost components

related to each stakeholder (or a “subsystem”), with the corresponding objective functions being

additive. Mathematically, the objective takes the following form:

min
(xc,yc):={xc

i ,y
c
i}

I

i=1

{
Ic∑
i=1

(
(cc,xi )T · xci + (cc,yi )T · yci

)}
. (1)
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Furthermore, coupling constraints are additive in terms of Ic subsystems:

s.t.

Ic∑
i=1

Ac,x
i · xci +

Ic∑
i=1

Ac,y
i · yci − bc = 0, {xci , yci } ∈ Fc

i , i = 1, . . . , Ic. (2)

The primal problem (1)-(2) is assumed to be feasible and the feasible region Fc =
∏Ic

i=1Fc
i with

Fc
i ⊂ Znc,x

i × Rnc,y
i is assumed to be bounded and finite. The information about bc is assumed to

be public or known to the decision maker with certainty; in the case of stochastic modeling, the

decision maker is assumed to know the underlying probabilistic descriptions affecting bc.

Limitations of Centralized Decision Making. While formulating the problem, the central

decision maker (hence the superscript “c”) decides on the number of stakeholders to be included Ic,

and the constraints (2) that couple stakeholders’ subsystems. However, the centralized approaches

may include the following issues:

1. Expert Limitations. Relying solely on experts (i.e., the traditional centralized decision-

makers) can be problematic and inconsistent with the ideas of Nuccetelli and Moore reviewed

in subsection 2.1, because even experts may still have a narrow perspective and may not

consider all stakeholders’ diverse needs and interests.

2. Stakeholder Exclusion. The assumption is that Ic represents an upper limit on the number

of stakeholders the central decision-maker is willing to include, which may be lower than the

actual number of stakeholders.

3. Compromised Stakeholder Autonomy. Even the [centrally] optimal decision to (1)-(2)

may have a binding effect on individual stakeholders forcing them to make moves that are

inconsistent with their moral values and free will. Stakeholder willingness to participate may

be compromised. Each stakeholder’s careful evaluation of their principles is needed as related

to fairness, justice, and the common good.

4. Privacy Violation. Even in the above scenario, a stakeholder would need to share private

information with the centralized decision-maker regarding the values of cc,xi , cc,yi , Ac,x
i , and

Ac,y
i , thereby violating privacy.

5. Inaccurate Approximations. Alternatively, the central decision maker may resort to ap-

proximations or assumptions to address the lack of information. However, such approxima-

tions may lead to an inaccurate characterization of the stakeholders’ needs and preferences.
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6. Violation of Fairness. Bias. In the former case, the privacy of some stakeholders may be

compromised, whereas, in the latter, the problem may suffer from a lack of accuracy leading

to the issues of the violation of fairness and individual moral values as well as the potential for

biases in centralized decision-making processes, as the central decision-maker may have their

own personal or professional biases, which could inadvertently affect the decision outcome.

These biases may lead to less equitable or less efficient solutions that do not fully account for

the needs and values of all stakeholders.

7. Perpetuation of Power Structures and Inequalities. Furthermore, centralized decision-

making may inadvertently perpetuate existing power structures and inequalities. Centralized

decision-makers may, consciously or unconsciously, prioritize the interests of more powerful or

influential stakeholders, while marginalized or underrepresented groups may have their needs

overlooked.

The presence of the decision variables xc generally makes the problem NP-hard, perhaps, with a

few exceptional cases, suffering from the curse of combinatorial complexity, thereby bringing other

layers of difficulty. As more stakeholders’ information is included, the problem size increases, and

the number of feasible solutions grows super-linearly, typically in an exponential fashion, which

leads to difficulties in achieving optimality or even near-optimal solutions in practical applica-

tions in a computationally efficient manner. Once again, suboptimal solutions may be unfair, and

stakeholders may view such solutions as non-transparent and limiting their rights and freedoms.

Furthermore, for operational optimization problems that need to be solved sufficiently fast to react

to rapidly changing circumstances and new information, centralized approaches may not be flexi-

ble enough due to the abovementioned computational and information-exchange-related issues. In

rapidly evolving situations, centralized decision-makers may struggle to keep up with the changes in

stakeholders’ preferences and needs. This can be detrimental to such applications as ambulance re-

location (Lee et al., 2022), efficient failure detection in large-scale distributed systems (Er-Rahmadi

and Ma, 2022), home healthcare routing (Dastgoshade et al., 2020), location and inventory prepo-

sitioning of disaster relief supplies (Shehadeh and Tucker, 2022), oral cholera vaccine distribution

(Smalley et al., 2015), pharmaceutical distribution (Zhu and Ursavas, 2018), plant factory crop

scheduling (Huang et al., 2020), post-disaster blood supply (Hamdan and Diabat, 2020; Kamyab-

niya et al., 2021), reducing vulnerability to human trafficking (Kaya et al., 2022), urgent surgery

scheduling (Kayvanfar et al., 2021), and many others.
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In light of the above challenges, there is a growing need for a new paradigm of problem-solving

that emphasizes participation, transparency, and accountability to harness the full potential of

collective intelligence and enable more effective and equitable decision-making.

2.3. Toward Fast Coordination (Linear Convergence) and Superlinear Reduction of Complexity

through Lagrangian Relaxation.

Combinatorial difficulties have been resolved by exploiting the separability through the dual

“price-based” decomposition and coordination Lagrangian Relaxation technique with super-linear

reduction of complexity upon decomposition. After relaxing coupling constraints (2), the optimal

coordination of subproblems amounts to the maximization of a concave continuous non-smooth

dual function:

max
λ

{q(λ) : λ ∈ Ω ⊂ Rm}, (3)

where

q(λ) = min
(x,y):={xi,yi}Ii=1

L(x, y, λ), {xi, yi} ∈ Fi, i = 1, . . . , I. (4)

Here L(x, y, λ) ≡
∑I

i=1(c
x
i )

T · xi +
∑I

i=1(c
y
i )

T · yi + (λ)T ·
(∑I

i=1A
x
i · xi +

∑I
i=1A

y
i · yi − b

)
is the

Lagrangian function. The Lagrangian multipliers λ (“dual” variables) are the decision variables

with respect to the dual problem (3). The minimization within (4) with respect to {x, y} is referred

to as the “relaxed problem.” Through the rest of this subsection, the superscript “c” is dropped

since most of the formulas presented are generic for centralized as well as distributed methods in

terms of dual function definitions, multipliers updates, etc.

Lagrangian Relaxation significantly reduces the complexity of solving a discrete optimization

problem by decomposing it into smaller subproblems to be solved at a time:

min
xi,yi

{
(cxi )

T · xi + (cyi )
T · yi + (λ)T · (Ax

i · xi +Ay
i · yi) , {xi, yi} ∈ Fi

}
. (5)

The decomposition feature of Lagrangian Relaxation is powerful for solving a broad range of opti-

mization problems that would otherwise be impractical to solve due to combinatorial complexity.

Moreover, the scalability of decomposition enables the extension of problem-solving efforts to sup-

port larger populations, thereby supporting the promotion of democratization, as discussed in more

detail in Section 3.

To contextualize the development of Lagrangian Relaxation, we will first provide historical

perspectives, which will pave the way for more sophisticated approaches that will be unveiled
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during the discussion. The coordination of subproblems has been traditionally accomplished by

iteratively updating the Lagrangian multipliers λ using a series of steps sk along subgradients

g(xk, yk). Specifically, the update is performed according to the following equation:

λk+1 = λk + sk · g(xk, yk). (6)

Here, {xk, yk} is a compact notation for an optimal solution {x∗(λk), y∗(λk)} to the relaxed problem

(4), which can be obtained by optimally solving all subproblems (5) with multipliers equal to λk.

Within Lagrangian Relaxation, subgradients are defined as levels of constraint violations g(xk, yk) ≡(∑I
i=1A

x
i ·xki +

∑I
i=1A

y
i ·yki −b

)
. If inequality constraints

∑I
i=1A

x
i ·xi+

∑I
i=1A

y
i ·yi ≤ b are present,

they are generally converted into equality constraints by introducing non-negative real-valued slack

variables z such that
∑I

i=1A
x
i ·xi+

∑I
i=1A

y
i · yi+ z = b. Multipliers are then updated per (5) with

subsequent projection onto the positive orthant - a set delineated by constraints λ ≥ 0.

Throughout the rest of the paper, the general formula (6) for multiplier update will be kept while

detailing specific methodologies to improve coordination either through better choices of stepsizes,

multiplier-updating directions, or both.

Minimization of Non-smooth Functions. Efficient optimization of general non-smooth convex

functions stems from the seminal work of Polyak (Polyak, 1969, p. 15). Intending to achieve geo-

metric (also referred to as linear) rate of convergence so that ∥λk−λ∗∥ is monotonically decreasing,

Polyak developed the stepsizing formula, which, for the problem under consideration, is presented

in the following way:

0 < sk < γ · q(λ
∗)− q(λk)∥∥g(xk, yk)∥∥2 , γ < 2. (7)

Convergence by using Polyak’s stepsizing is of significant, yet theoretical importance for the con-

vergence in the context of Lagrangian Relaxation, since neither the dual function q(λ) nor the

optimal dual value q(λ∗) is known beforehand. When solving complex optimization problems using

Lagrangian Relaxation, obtaining a closed-form expression for the dual function is unrealistic due

to the function’s complex facial structure, where each facet corresponds to a particular solution

to the relaxed problem. Optimizing the relaxed problem can be computationally demanding, es-

pecially when dealing with a large number of subsystems. The computational effort involved in

obtaining subgradients g(xk, yk) may accordingly be significant. Moreover, the optimal dual value

q(λ∗) must be obtained through optimization, making it unknown before optimization.

The Subgradient-Level Method. The Subgradient-Level Method (Goffin and Kiwiel, 1999)

addressed the issue of the lack of knowledge about q(λ∗) required to compute Polyak’s step-size
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(7). This method adaptively adjusts “level” estimates of q(λ∗) by detecting sufficient ascent of dual

values and oscillations of the dual solutions (multipliers). However, the threshold for such detection

is set heuristically, and the method assumes that the dual function is available.

The Surrogate Subgradient Method. The Surrogate Sub-gradient Method (Zhao et al., 1999),

on the other hand, addressed the computational challenge by updating the multipliers after solving

one subproblem (5) at a time rather than solving all the subproblems as in subgradient methods.

This significantly reduces computational effort, especially for problems with a large number of

subsystems. After solving one subproblem, the multipliers are updated as

λk+1 = λk + sk · g(x̃k, ỹk), (8)

by using the following version of the Polyak formula

0 < sk < γ · q(λ
∗)− L(x̃k, ỹk, λk)

∥g(x̃k, ỹk)∥2
, γ < 1. (9)

Here and thereafter “tilde” indicates that the relaxed problem is optimized with respect to one sub-

problem. Within this method, as well as within methods subsequently discussed in this subsection,

to further reduce computational complexity, the “surrogate optimality condition” is used:

L(x̃k, ỹk, λk) < L(x̃k−1, ỹk−1, λk). (10)

Instead of finding the optimal solution for a subproblem (5)—a process that necessitates exploring

multiple potential subproblem solutions—the condition (10) is leveraged. This condition speeds up

the overall solution process, requiring the identification of only one solution {x̃k, ỹk} that meets

(10). Verifying this single solution’s satisfaction of (10) is a much less complex operation than

the need for finding the exact optimal solution to a subproblem. According to Zhao et al. (1999),

the Surrogate Subgradient Method guarantees convergence to λ∗. In addition to the reduction of

computational effort, a concomitant reduction of multiplier zigzagging has been observed. Unlike

the Subgradient-Level Method, the Surrogate Subgradient Method needs the optimal dual value to

compute stepsizes, but it does not require the dual values (only “surrogate” dual values L(x̃k, ỹk, λk)

are required) to achieve convergence.

Exploiting Distributed Computing with Distributed and Asynchronous Surrogate La-

grangian Relaxation. The rise of technologies supporting distributed computational capabilities

and the communication enabled by the Internet of Things and Industry 4.0 has opened new avenues

for solving complex problems more efficiently.
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Assuming a single coordinator, the Distributed and Asynchronous Surrogate Lagrangian Re-

laxation (DA-SLR) methodology (Bragin et al., 2020) has been developed to efficiently coordinate

distributed subsystems in an asynchronous manner, eliminating the overhead associated with syn-

chronization. Within the method, the same multiplier updating formula (8) is used every time a

coordinator receives a subproblem solution without waiting for other subproblems. The step sizing

formula obtained through the “contraction mapping” concept is computed as:

sk=αk· s
k−1·∥g(x̃k−1, ỹk−1)∥

∥g(x̃k, ỹk)∥
, αk=1− 1

M · k1−1/kr
,M > 1, 0 < r < 1. (11)

This approach is well-suited for the democratization of complex problem solving since after

decomposition into smaller subproblems, each subproblem can be formulated and solved very ef-

ficiently by distributed computational resources, with a coordinator responsible for updating the

Lagrange multipliers and managing communication between the subsystems without sharing private

information - only subproblem solutions {x̃k, ỹk} are required by the coordinator.

Compared to its sequential version (Bragin et al., 2015), DA-SLR exhibits faster convergence

based on empirical evidence. For example, in one instance of the generalized assignment problem,

DA-SLR achieved a 12 times speed-up to reach a gap of 0.03%.

Leveraging distributed computing resources with DA-SLR has the following potential benefits:

(1) Enhanced computational efficiency and scalability with a potential for harnessing collective

intelligence to solve complex problems whereby each subproblem solver can independently and

asynchronously perform decision-making; and (2) Leveraging distributed computing resources, each

fully controlled by a corresponding stakeholder, instead of relying on a single (central) computer,

the method has the potential to democratize decision-making. A more detailed discussion on

democratization is delegated to Section 3.

We refer to (Bragin, 2023) for a more comprehensive review of other coordination methods. The

latest development aims to reduce the computational effort required to obtain multiplier-updating

directions, alleviate multiplier zigzagging, and achieve linear convergence without requiring dual

values as explained next.

Surrogate Level-Based Lagrangian Relaxation. To exploit the linear convergence poten-

tial inherent to Polyak’s steps sizing formula, the Surrogate “Level-Based” Lagrangian Relaxation

(SLBLR) method has been recently developed (Bragin and Tucker, 2022). The high-level idea is to

reset “level-values” (estimates of the optimal dual value) by detecting the divergence of multipli-

ers rather than by detecting “significant oscillations” of multipliers or “significant ascent” of dual

15



value as in Subgradient-Level methods (Goffin and Kiwiel, 1999). In comparison, the multiplier-

divergence detection procedure (Bragin and Tucker, 2022) is beneficial in several aspects:

1. Multiplier oscillation is a natural, yet undesirable, phenomenon when optimizing non-smooth

functions. Within Subgradient-Level methods, the oscillation detection is operationalized

after multipliers have traveled a heuristically predetermined distance. Hence, multipliers

divergence may either go undetected for a significant number of iterations, or level values

may be reset prematurely. In contrast, the multiplier divergence (Bragin and Tucker, 2022)

is detected whenever it occurs;

2. Because of the decision-making procedure involved in the detection of multiplier divergence,

the number of hyperparameters to be adjusted is drastically reduced;

3. Sufficient ascent of dual functions (Goffin and Kiwiel, 1999) cannot be generally operational-

ized in an efficient way since the computations of dual functions are computationally costly

in the first place as argued above.

Specific details of operationalization of multipliers detection and resetting of level values can be

found in (Bragin and Tucker, 2022).

In the method, the following version of the Polyak stepsize formula is used

sk = ζ · γ ·
qj − L(x̃k, ỹk, λk)

∥g(x̃k, ỹk)∥2
, ζ < 1. (12)

The stepsize (12) is reduced through ζ every time a divergence of multipliers is detected, which also

leads to the reduction of level values qj approaching q(λ∗) from above. The significant advantage of

SLBLR is its efficient and operationalizable decision-based procedure for determining level values

without the need for estimation or heuristic adjustments of optimal dual value estimates. In a sense,

SLBLR is user-friendly and significantly reduces the need for the domain knowledge to determine

hyperparameters qj ; robustness with respect to other hyperparameters has also been demonstrated

(Bragin and Tucker, 2022).

Table 1 briefly summarizes key requirements for each of the methods reviewed above. Numerical

results from (Bragin and Tucker, 2022) indicate that the SLBLR method has solved generalized

assignment problems to optimality, achieved over two orders of magnitude computational improve-

ments compared to branch-and-cut for job-shop and pharmaceutical scheduling, and demonstrated

scalability. This method has successfully overcome major issues of previous methods, making it
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Table 1: Comparison of key methods for non-smooth optimization

Method Dual Optimal Comput. Potential

Values Dual Value Effort Privacy Violation

Polyak (1969) Needed Needed High† Limited††

Goffin and Kiwiel (1999) Needed Not Needed High† Limited††

Zhao et al. (1999) Not Needed Needed Low Limited††

Bragin et al. (2020) Not Needed Not Needed Low No††

Bragin and Tucker (2022) Not Needed Not Needed Low Limited††

† Polyak (1969) as well as Goffin and Kiwiel (1999) deal with non-smooth optimization irrespective

of Lagrangian Relaxation, and the high computational effort is hypothesized since the effort to

obtain subgradient directions requires solving all the subproblems unlike that within (Zhao et al.,

1999), (Bragin et al., 2020) and (Bragin and Tucker, 2022).

†† Privacy revelation is not discussed in any of the above papers and the privacy requirements

are inferred assuming decentralized subproblem solving. For example, within (Polyak, 1969; Goffin

and Kiwiel, 1999; Zhao et al., 1999; Bragin and Tucker, 2022) stepsize computations require either

dual functions or “surrogate dual functions,” which, in turn, are affine combinations of subproblem

costs. In contrast, (Bragin et al., 2020) only requires subproblem solutions to update multipliers

and stepsizes.

suitable for coordinating multiple subsystems and providing a solid platform to support the de-

mocratization of complex problem decision-making, as explained in the next section.

We conclude this section by noting that specific requirements and restrictions within a system

influence the choice of the method for a particular system. For example, within (Bragin and

Tucker, 2022), while the coordinator does not require exact stakeholder information, it does need

subproblem solutions and costs to update the Lagrange multipliers; the advantage of this method is

its faster convergence compared to other techniques. On the other hand, the method proposed by

Bragin et al. (2020) offers lower privacy revelation requirements. Still, its convergence is governed

by the “non-summable” stepsize given in (11), resulting in a slower convergence rate. The decision

to use one method over the other depends on the specific needs and priorities of the system being

addressed. Faster convergence might be desirable in situations where time is of the essence while

preserving privacy might be more important in scenarios where sensitive information is involved.
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3. Democratization of Combinatorial Problem-Solving

This section discusses using the Lagrangian Relaxation-based methods as a potential step toward

democratizing problem-solving. Specifically, it allows optimization to occur at a local level by

involving stakeholders with diverse perspectives to formulate their subproblems (considering unique

demographics or socioeconomic status). This can help ensure that decisions (e.g., allocation of

resources) are more equitable.

Consider a high-level example of allocating resources, whereby bc can represent the “demand” or

the “supply” depending on the application. As argued, the satisfaction of the following constraints

s.t.

Ic∑
i=1

Ac,x
i · xci +

Ic∑
i=1

Ac,y
i · yci = bc, {xci , yci } ∈ Fc

i , i = 1, . . . , Ic, (13)

in a centralized fashion may lead to exclusion, lack of privacy, and to unfairness. To avoid these

difficulties, the goal is to allow Id > Ic (“d” stands for “decentralized”) communities/stakeholders

to participate in the decision-making in a broad sense–to formulate their own objectives

min
xd
i ,y

d
i

{
(cd,xi )T · xdi + (cd,yi )T · ydi

}
(14)

and local constraints
{
xdi , y

d
i

}
∈ Fd

i as well as to solve their subproblems–to collectively satisfy the

following coupling constraint:

s.t.
Id∑
i=1

Ad,x
i · xdi +

Id∑
i=1

Ad,y
i · ydi = bc,

{
xdi , y

d
i

}
∈ Fd

i , i = 1, . . . , Id. (15)

The intent is to include the needs of stakeholders from various socioeconomic backgrounds or

marginalized communities to have more access to resources and participate in decision-making.

Note that the objective of the overall system is:

min
(xd,yd):={xd

i ,y
d
i }

Id

i=1

{
Id∑
i=1

(
(cd,xi )T · xdi + (cd,yi )T · ydi

)}
, (16)

which is structured in the same way as (1), yet having a different significance as being more inclusive

and privacy-preserving, since the perspective of the centralized decision maker is superseded by

those of Id stakeholders, who do not have to reveal specific values for cd,xi and cd,yi .

The current form is not entirely set up yet for participatory decision-making. Because of the

“hard” constraint (15), stakeholder i’s objective (14) cannot be optimized independently from other

stakeholders’ objectives. Participatory decision-making is operationalized by using Lagrangian
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Relaxation methods. Specifically, after relaxing constraints (15), each stakeholder has full control

over the decision-making of its own subproblem, which is formulated as follows:

min
xd
i ,y

d
i

{
(cd,xi )T·xdi + (cy,di )T·ydi + λT·

(
Ad,x

i ·xdi +Ay,d
i ·ydi

)
,
{
xdi , y

d
i

}
∈Fd

i

}
. (17)

Decentralized decision-making, as proposed in (17), aligns with the concepts of decentralized

systems and stakeholder empowerment proposed by Briggs and Benkler (Briggs, 2008; Benkler,

2006). Our method further emphasizes and highlights privacy preservation, transparency, account-

ability, and the capacity of information and communication technologies to create a more inclusive

and equitable approach to problem-solving. Specifically, in this framework, private information

(cd,xi , cy,di , Ad,x
i , and Ay,d

i ) needs to be known only to the stakeholder/community i, and decision

variables (xdi and ydi ) are fully controlled by the stakeholder. Feasible regions (Fd
i ) are delineated

by local constraints, which are also under the stakeholder’s purview.

By empowering communities and promoting democratic participation, decentralized decision-

making can potentially enhance the effectiveness and impartiality of resource allocation, which is

governed not only by “local” decision-making but also by the market “supply and demand” princi-

ple behind the update of Lagrangian multipliers. Moreover, from an ethical and moral standpoint,

Moore’s and Nuccetelli’s ideas (Nuccetelli and Seay, 2007; Nuccetelli, 2021; Moore, 1903) can be

interpreted to suggest that one might be open to the idea of involving multiple perspectives and

recognizing the intrinsic value of diverse viewpoints, which can be in line with the decentralized

decision-making essential for ensuring that diverse perspectives and interests are taken into ac-

count and that decisions are made in an inclusive and fair manner. Building on the works of Brey,

Coeckelbergh, Mittelstadt, and Pak-Hang Wong, which collectively address the ethical, social, and

political challenges of emerging technologies and algorithmic decision-making (Brey, 2012; Coeckel-

bergh, 2012; Mittelstadt et al., 2016; Wong, 2020), our approach strives to create inclusive, ethical,

and equitable technology development and decision-making processes. Considering Crawford’s re-

search (Crawford, 2013; Crawford and Paglen, 2021; Whittaker et al., 2018), we address fairness

and equity concerns by fostering inclusivity and reducing bias in the decision-making process. The

decentralized decision-making is operationalized in this paper through the use of Lagrangian Relax-

ation, which leverages the strengths of both humans and computers, in accordance with Malone’s

ideas (Malone, 2018). Inspired by Dwork’s dedication to protecting individual rights and promoting

fairness in technological systems (Dwork, 2008; Dwork et al., 2012, 2014), we consider social and

cultural contexts to develop a more inclusive optimization process that respects diverse perspec-
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tives. Humans collectively define private information and local constraints suitable for their locality

while computers solve subproblems and provide updated multipliers (“price-signals”) updated by

using formulas (8) and (11) or (12). Ultimately, this integrated approach has the potential to

contribute to effective and democratic decision-making by leveraging the strengths of both humans

and computers in a decentralized decision-making framework.

Key Features and Takeaways. The proposed method empowers local stakeholders by actively

involving them in the decision-making process (participation and accountability), fostering

more community-centered and tailored solutions that align with each locality’s unique needs and

circumstances. This approach also enables stakeholders to contribute to the overall solution by for-

mulating and solving their own subproblems in an open and accessible manner (transparency).

Moreover, transparency gives stakeholders access to the information they need to make informed

decisions. By allowing stakeholders to formulate and solve their subproblems, Lagrangian Re-

laxation methods promote fairness, accountability, and transparency, addressing potential power

imbalances in centralized decision-making (fairness).

Transparency, explainability, and interpretability are crucial yet distinct concepts for a success-

ful method. While transparency focuses on the accessibility and understanding of the decision-

making process, explainability involves stakeholders’ ability to articulate how pricing signals

(multipliers) influence decisions and the final solution. This allows stakeholders to explain their

decisions to local communities, fostering trust and credibility in the decision-making process. In-

terpretability entails understanding the relationships between pricing signals (multipliers) and

resource supply and demand, helping stakeholders make informed decisions.

Coordinating and integrating local solutions into a global solution ensures feasible and near-

optimal global solution. The Lagrangian Relaxation approach, grounded in economic theory,

employs Lagrangian multipliers as “shadow prices” to discourage less economically viable decisions,

ensuring fairness, equity, and economic viability and efficiency.

The sensitivity nature of Lagrangian multipliers, defined as “rates of change of the optimal

cost as the levels of constraint changes,” (Bertsekas, 1999) can help reveal how, for example, re-

source allocation adapts to changes in demand or supply, providing valuable insights for both local

stakeholders and governments. This information assists stakeholders in understanding the effects

of global constraints on local resource allocation as well as the associated costs and supports coor-

dinated decision-making in dynamic circumstances. Below, we discuss examples of how sensitivity

analysis can be leveraged to assist stakeholders in understanding the effects of global constraints
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on resource allocation and associated costs.

1. When Lagrangian multipliers λ converge to a high value, it signals a higher demand for

resources (with a fixed supply, say, bc) and a need for adjustments in resource allocation. Local

stakeholders can use this information to anticipate potential shortages and make informed

decisions. Simultaneously, the increased multipliers indicate the necessity for government

intervention to provide additional resources/supply (bc+∆bc) to achieve the optimally global

solution of (x∗ +∆x, y∗ +∆y) thereby mitigating resource scarcity as well as bringing the

costs down by− (λ∗)T ·∆bc (derivation is similar to that provided in (Bertsekas, 1999, p. 308)).

Such intervention can help ensure that a sufficient amount of goods is supplied to stakeholders,

thereby maintaining a balanced and equitable distribution of resources in response to the

increased demand.

2. When multipliers decrease, it signifies a lower demand for resources or an increased supply,

easing the pressure on resource allocation. For example, in the case where multipliers become

zero, which can happen when constraints are not binding (e.g., fewer suppliers are needed

than available), this can signal that the supplies can be taken out from the problem without

increasing the overall cost since the corresponding part − (λ∗)T · ∆bc will be zero. This

way, the supplies can be repurposed, enabling more efficient resource allocation and better

utilization of available resources in other areas of need.

The sensitivity of Lagrangian multipliers supports democratization by empowering local stake-

holders with information on global constraint impacts on local solutions. This enables them to

participate knowledgeably in decision-making processes, fostering a more collaborative approach to

resource allocation. Understanding the sensitivity of Lagrangian multipliers can lead to significant

improvements in resource allocation, including:

1. Efficiency: Optimal utilization of available resources, leading to better resource allocation

strategies and reduced waste.

2. Equitability: Ensuring a balanced and equitable distribution of resources in response to

changes in demand.

3. Adaptability: Allowing stakeholders to quickly respond to changes in demand or supply,

anticipating potential shortages, and repurposing supplies as needed.
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For example, to address efficiency, equitability, and adaptability in the above resource allocation

scenario with a fixed supply, stakeholders can take the following possible actions:

1. Analyze the Lagrangian multipliers to identify the most critical constraints or disparities in

resource allocation, as well as the constraints most sensitive to changes in demand.

2. Collaborate with other stakeholders, such as local government agencies, businesses, non-

profit organizations, or community representatives, to address the identified constraints or

disparities collectively and share information about anticipated or ongoing changes in demand.

3. Develop strategies that address the identified constraints or disparities and adapt to changes

in demand. These strategies could include adjusting policies or regulations, investing in

additional resources or infrastructure, implementing innovative technologies, promoting co-

operation and information-sharing, reallocating resources, or securing additional supplies.

By understanding the sensitivity of Lagrangian multipliers and following these steps, stake-

holders can address current resource allocation challenges and build a robust foundation for future

decision-making. This collaborative and data-driven approach fosters a resilient resource alloca-

tion system that can better respond to changing circumstances and emerging needs, ultimately

promoting sustainable and equitable growth for all stakeholders involved.

The Lagrangian Relaxation methods are marked by flexibility by allowing communities to par-

ticipate or withdraw as needed while still delivering results. The method’s adaptability lies in the

continuous adjustment of Lagrangian multipliers in response to changing demands or resource sup-

ply. In addition, decentralized approaches can distribute communication and coordination burdens

more evenly among stakeholders, leading to more efficient information sharing and decision-making.

4. Future Directions

This paper introduces a new application of the Lagrangian Relaxation (LR) method for partic-

ipatory decision-making in complex systems. While it presents a general framework and potential

benefits, further research is required to evaluate its effectiveness and limitations. Future studies

could employ real-world examples and case studies to investigate practical applications and identify

areas for improvement. Several directions for future research include:
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1. Game-Theoretical Stakeholder Analysis. Investigating stakeholder behavior under the

centralized and the decentralized frameworks using game-theoretical analyses, highlighting

the potential for fair and inclusive decision-making.

2. Stakeholder Engagement in Different Sectors. Studying the impact of engaging stake-

holders by applying the proposed and other methods in various sectors, such as transportation,

power systems, and healthcare, to promote stakeholder participation, transparency, account-

ability, and fairness.

3. Revenue vs. Customer Satisfaction Trade-offs. Assessing trade-offs between revenue

maximization and customer satisfaction, applying the Myerson-Satterthwaite theorem, and

evaluating the impact of customer-centric objectives on pricing decisions.

4. Developing Fully Distributed and Decentralized Decision-Making Methods. In-

vestigating technical, computational, and algorithmic challenges and potential benefits of

developing fully distributed and decentralized decision-making methods without the need for

a coordinator to even coordinate stakeholders. In this paradigm, stakeholders coordinate

with one another by sharing updated multipliers and solutions without broadcasting private

technical information.

5. Moral Responsibilities in Decentralized Decision-Making. Investigating the oper-

ationalization of moral responsibilities in fully decentralized decision-making and exploring

the potential of blockchain and distributed computing technologies for maintaining trust and

accountability.

6. Regulatory Implications. Examining the regulatory implications of decentralized decision-

making, including challenges posed by collusion, where two or more stakeholders cooperate

to gain an unfair advantage over others, often through secret agreements or other forms of

coordination that violate ethical or legal norms. Developing regulations that discourage such

behavior and ensure equitable outcomes is a key goal of this research direction.

7. Democratization Examples in Various Domains. Providing examples of the democra-

tization of problem-solving in various domains, such as logistics and transportation (Freund

et al., 2017; Jiang et al., 2020; Karolemeas et al., 2021; Dong and Leng, 2021; Archetti et al.,

2021; Kamyabniya et al., 2021; Balakrishnan et al., 2021; Reddy et al., 2022; Gupta et al.,

2022; Shao et al., 2022; Yan et al., 2022), including decarbonization efforts through logistics
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network design (Jiang et al., 2020), power systems (Afshar et al., 2008; Pozo et al., 2012;

Morales-España et al., 2013; Bischi et al., 2014; Wierzbowski et al., 2016; Theo et al., 2016;

Schill et al., 2017; Nikoobakht et al., 2018; Damchi et al., 2018; Rafinia et al., 2020; Sun et al.,

2018; Chen et al., 2020; Li et al., 2020; Wu et al., 2021; Shen et al., 2021; Wu et al., 2023)

including generation and transmission expansion planning (Pozo et al., 2012) as well as com-

bines cooling, heat and power (Bischi et al., 2014) and hybrid power systems planning (Theo

et al., 2016), healthcare (Kopanos et al., 2010; Stefansson et al., 2011; Kim and Mehrotra,

2015; VonAchen et al., 2016; Zhu and Ursavas, 2018; Khlif Hachicha and Zeghal Mansour,

2018; Shehadeh et al., 2020; Dastgoshade et al., 2020; Ge and Yuan, 2021; Kayvanfar et al.,

2021; Prabhu et al., 2021; Tsang and Shehadeh, 2023; Wickett et al., 2023) including operat-

ing room scheduling, nurse management (Kim and Mehrotra, 2015), and patient appointment

scheduling (Khlif Hachicha and Zeghal Mansour, 2018; Shehadeh et al., 2020), and humanitar-

ian applications (Smalley et al., 2015; Aghaei et al., 2019; Hamdan and Diabat, 2020; Ahani

et al., 2021; Kamyabniya et al., 2021) such as disaster relief operations (Kamyabniya et al.,

2021) and refugee settlement (Ahani et al., 2021). These applications encompass both op-

erational and planning optimization problems, influencing short-term and long-term societal

well-being.

8. Extensions to Stochastic Settings. Optimization problems involving uncertain parame-

ters occur in almost all areas of science and engineering. Thus, future efforts should consider

extending the LR framework to stochastic formulations, where both the master and subprob-

lem involve uncertain parameters. In addition, one should ensure that the resulting stochastic

formulation maintains feasibility, efficiency, and fairness.

9. Societal Acceptance of Decentralized Decision-Making. Investigating the factors af-

fecting societal acceptance of decentralized decision-making processes in various contexts is

crucial. This research could explore the role of communication, trust, and perceived fairness

in promoting acceptance and assess barriers and challenges to implementing such approaches.

Identifying strategies to increase public awareness and preparation for future challenges could

foster greater engagement and support for democratic problem-solving in complex systems.

Overall, the democratization of solution methodologies offers a promising avenue for address-

ing complex problems across various domains. As research in this area evolves, advancements in

participatory decision-making frameworks are expected to emerge, empowering stakeholders and
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promoting transparency and fairness in decision-making processes. Such advancements can foster

collaboration, equitable decision-making, and more effective, sustainable solutions for complex so-

cietal challenges. The decentralized approach using Lagrangian Relaxation encourages stakeholder

participation, transparency, accountability, and fairness, ultimately improving decision-making in

diverse systems and sectors. More inclusive and comprehensive solutions can be created by consid-

ering multiple perspectives and allowing stakeholders to define objectives and metrics that reflect

diverse needs and values. The incorporation of equity concerns into decision-making processes con-

tributes to a more just and equitable world, where the needs and perspectives of all individuals and

communities are considered and valued.

5. Conclusion

In this paper, we propose an approach to democratizing decision-making in complex-problem

solving using Lagrangian Relaxation. Our approach emphasizes the importance of inclusivity,

diversity, transparency, collective intelligence, and equity in the decision-making process. By

decentralizing the problem-solving process, we enable stakeholders to actively contribute their

constraints, preferences, and knowledge, leading to more effective and equitable outcomes. The

proposed method facilitates stakeholder collaboration by decomposing complex problems into sub-

problems that can be solved separately while still coordinating efforts to achieve a near-optimal

global solution. This decentralization aligns with the vision of Benkler, Briggs, and others, pro-

moting stakeholder participation, transparency, accountability, and fairness in the decision-making

process. Moreover, our approach addresses fairness and equity concerns by incorporating FAT

principles and privacy-aware techniques in the optimization process. Through this, we create an

equitable and socially responsible problem-solving environment that is sensitive to the ethical, le-

gal, and social implications of the decisions being made. We reviewed relevant literature in various

domains that inspired this paper.

As future directions, we envision exploring game-theoretical stakeholder analysis, examining

the impact of strategic behavior on the proposed framework, engaging stakeholders in various

sectors, assessing trade-offs between revenue maximization and customer satisfaction, investigating

moral responsibilities in decentralized decision-making, considering regulatory implications, provid-

ing examples of democratization in various domains, and transitioning to stochastic formulations in

subproblem formulations. These studies can help evaluate the effectiveness and limitations of the

Lagrangian Relaxation method for participatory decision-making in complex systems and facilitate
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the integration of our approach in real-world applications. In conclusion, the proposed method

offers a promising path toward a more inclusive, transparent, and equitable approach to complex

problem-solving. By harnessing the collective intelligence of diverse stakeholders and leveraging the

power of decentralized collaboration, pressing societal challenges can be addressed, and advance-

ments toward a more just and sustainable future can be achieved.
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