
Sampling-based Decomposition Algorithms for Multistage
Stochastic Programming

Harsha Gangammanavar∗1

1Department of Operations Research and Engineering Management, Southern
Methodist University, Dallas TX

Abstract

Sampling-based algorithms provide a practical approach to solving large-scale mul-
tistage stochastic programs. This chapter presents two alternative approaches to
incorporating sampling within multistage stochastic linear programming algorithms.
In the first approach, sampling is used to construct a sample average approxima-
tion (SAA) of the true multistage program. Subsequently, an optimization step is
undertaken using deterministic decomposition methods that utilize randomization.
A comparison of various algorithms that adopt this approach, including stochastic
dual dynamic programming, is provided. In the second stochastic decomposition
approach, sampling and optimization are carried out concurrently. In stochastic dy-
namic linear programming, an example of the second approach, the representation of
uncertainty is refined in every iteration of the algorithm. The differences in how the
approximations of the cost-to-go functions are constructed under these alternative
approaches are illustrated.

1 Introduction

Multistage stochastic programming (MSP) provides a practical framework for modeling and
solving problems on sequential decision-making under uncertainty. This framework allows us
to avoid myopic plans by considering a decision’s effect on long-term costs and future choices.
It also allows us to account for uncertainty in future costs and resource constraints. These
desirable properties have made MSP an effective decision-making tool in several application
domains, including financial planning, supply chain management, power systems operations,
and production planning. However, the MSP problems are among the computationally most
challenging class of problems to solve. This chapter presents randomization-based solution
methods for large-scale MSP problems.

A finite set of decision epochs, referred to as stages, characterizes the MSP problems. New
uncertain information is revealed at each stage, upon which one can take a recourse decision in
response to earlier decisions and the latest information. Note that this stage decision is made
before the realization of future uncertainty. In this regard, the first-stage decision is based only
on deterministic data and is, therefore, known as the here-and-now decision. At each stage,

∗harsha@smu.edu

1



Gangammanavar Sampling-based MSLP

the decision is associated with a cost function, and the overall objective is to identify optimal
decisions with respect to a deterministic cost of the first stage and an expected cost of future
stages.

Consider an MSLP problem defined with a finite lookahead T < ∞. Denote by T :=
{0, 1, . . . , T} the set of decision epochs or stages. The underlying exogenous uncertainty is
modeled as a stochastic process {ξ̃}Tt=1 defined on a filtered probability space (Ω,F , P ). A
realization of this stochastic process over the entire horizon, i.e. (ξ1, ξ2, . . . , ξT ), is referred to as
the sample path. Let xt denote the decision vector for stage t. This decision vector is confined
to a feasible set, denoted by Xt(xt−1, ξ̃t) := {xt | Dtxt = rt − Ctxt−1, xt ≥ 0}, that depends
on the decision of the previous stage and the uncertainty. Using these notations, the problem is
stated in the nested form as

min
D0x0=r0
x0≥0

〈d0, x0〉+ E
[

min
D1x1=r1−C1x0

x1≥0

〈d1, x1〉+ E
[
. . .+ E

[
min

DT xT=rT−CT xT−1
xT≥0

〈dT , xT 〉
]]]

. (1)

In general, any components of the stagewise cost coefficient ct, the right-hand side rt, the recourse
matrix Dt, and transfer matrix Ct for t > 0 can be affected by the exogenous uncertainty. For
t = 0, the parameters (c1, r1, D1) are deterministic. The following assumption is made regarding
the stochastic process:

(A1) The stochastic process satisfies stagewise independence and affects only the elements of
right-hand side of stage constraints (i.e., rt and Ct).

While some of the algorithms presented in this article accommodate more general stochastic pro-
cesses, including those with dependence across time, the above assumption is made to illustrate
the critical differences in algorithm design under a consistent setting.

For the purposes here, it is worthwhile to view the above MSLP problem in its equivalent
recursive form given by

ht(xt−1, ξt) = min {〈dt, xt〉+Ht+1(xt) | xt ∈ Xt(xt−1, ξt)}, (2)

where Ht(xt) := E[ht+1(xt, ξ̃t+1)] for all t ∈ T and HT+1(xT ) = 0. It is assumed that the MSLP
problem satisfies the relatively complete recourse property resulting in finite-valued cost-to-go
function Ht(xt−1) = 0 for all xt−1. Note that the feasible region depends on the decision vector
xt−1 of the previous stage and a realization ξt of the random vector ξ̃t.

The fundamental difficulty with solving the MSLP problem in (1) stems from the multidi-
mensional integral (when Ω is a continuous set) for computing the expected cost-to-go function
Ht(). In such cases, a sample-based approximation of the actual problem provides a viable
path to tackle these problems. The sample paths used to build the approximations are usually
generated using computer simulations. Alternatively, historical data can also be used for this
purpose. This chapter presents two alternative sampling-based approaches that differ in how
the sampling and optimization steps interact.

2 Randomized Deterministic Decomposition Methods

In the first approach, a sampling step is undertaken wherein the true distribution of ξ̃t is replaced
with an empirical distribution based on a random sample of pre-determined fixed size in each

2



Gangammanavar Sampling-based MSLP

stage t ∈ T . If Nt is the size of the sample employed in stage t, an approximation of the expected
cost-to-go function, denoted by Ĥt, is given by

Ĥt(xt−1) =
1

Nt

Nt∑
i=1

ĥ(xt, ξ
i
t) (3)

where, ĥ(xt, ξ
i) = min {〈dt, xt〉+ Ĥt+1(xt) | xt ∈ Xt(xt, ξit)}. The resulting problem is a sample

average approximation of the true problem (1). Notice that the total number of sample paths in
the SAA problem isN =

∏T
t=1Nt. While the cost-to-go functionHt(·) of the original problem is a

convex function, its SAA Ĥ(·) is a piecewise linear convex function. The stagewise independence
of the original stochastic process is preserved in the SAA problem. Both these properties are
exploited in the design of the solution algorithms. Furthermore, SAA theory suggests that for a
reasonable choice of Nt, the optimal solution to the SAA problem is a reasonable approximation
of the solution to the true problem. The reader is referred to Chapter 5 in Shapiro et al. (2014)
for a detailed exposition of these results.

For a given sample, the SAA problem is a deterministic approximation of the true stochas-
tic program. As such, it can be tackled using deterministic decomposition approaches. Such
methods for MSLP problems date back to the nested Benders decomposition (NBD) algorithm
(Birge (1985)), a multistage extension of the L-shaped method (Van Slyke and Wets (1969)). As
in the case of the L-shaped method, the NBD builds an outer approximation of the cost-to-go
function using a collection of cuts (affine lower bounding functions). NBD applies to a any
multistage program where the support of the underlying stochastic process is finite, even those
with temporal dependence1. The stagewise independence assumption allows us to share the cuts
across all the observations in a stage (Infanger and Morton (1996)). Therefore, it is sufficient to
maintain a single approximation at each stage which takes the following form for stage t:

hkt (xt−1, ξt) = min
xt∈Xt(xt−1,ξt)

〈dt, xt〉+ ηt (4)

subject to 〈−βt,j , xt〉+ ηt ≥ αt,j ∀j ∈ J k−1t

where, J kt := (αt,j , βt,j)∀j denotes the collection of cuts added until iteration k − 1. Subse-
quently, in the backward pass, the stage approximation is updated by computing new cuts with
coefficients (αk,it , βk,it ) along all unique sample paths i = 1, . . . ,

∏t
τ=1Nτ , for t ∈ T \{T}2. With

this, an updated collection J kt is obtained by including the new cuts into J k−1t .

The scenario decomposition method (Mulvey and Ruszczyński (1995)) and the progressive
hedging algorithm (Rockafellar and Wets (1991)) provide attractive alternatives to NBD. In
every iteration of all these algorithms, computations are carried out along every plausible sample
path. The total number of nodes in the scenario tree and the total number of sample paths grow
exponentially in the number of stages. Therefore, the deterministic decomposition methods
become computationally unwieldy even for small stagewise sample sizes.

2.1 Stochastic Dual Dynamic Programming

To address the computational challenge of the multistage SAA problem, Pereira and Pinto
developed an approach that incorporates randomization within the NBD framework (Pereira

1The SAA problem is a specific form of such multistage programs where its support is restricted to the
observations in the random sample. The focus here is on the SAA problem with interstage independence to
present the contrast in sampling approaches of different methods.

2Once the recently computed cuts are added to the collection, all the cuts are treated the same. Therefore,
the iteration and sample path indices (k and i, respectively, in the superscript) are dropped and a subscript j is
used to index elements of J k

t .

3



Gangammanavar Sampling-based MSLP

and Pinto (1991)). They called their solution approach stochastic dual dynamic programming
(SDDP). The algorithm is first described as introduced originally in Pereira and Pinto (1991)
and some modifications proposed in subsequent works are presented later.

As in NBD, an iteration of the SDDP algorithm begins by solving a root node. A key
distinguishing feature of SDDP, relative to NBD, is how the forward pass computations are
carried out. While in NBD, forward pass computations are carried out along all N sample
paths, they are carried out only along N̂ � N randomly generated sample paths in SDDP.
Denote by Ωk the set of random sample paths. Let (xk0, x

k,i
1 , . . . , xk,iT ) denote the decisions

simulated by solving approximate problems of the form in (4) for i = 1, . . . , N̂ . The realized
objective function value along each sample path is used to compute a statistical estimate of an
upper bound on the optimal objective function value as

ẑk =
1

N̂

N̂∑
i=1

(
〈d0, xk0〉+

T∑
t=1

〈dit, x
k,i
t 〉
)
.

Further, to account for the randomness in the above estimate, the sample variance σ̂kẑ is com-
puted. Let tn−1,a denotes the (1− a)-level quantile of a student’s t random variable with n− 1
degrees of freedom. Using the sample variance and quantile, a confidence interval (CI) on ẑk is
constructed as

[ẑk − εk, ẑk + εk] (5)

where, εk = t
N̂−1,a

σ̂k
ẑ√
N̂
.

Since SDDP design is based on the principle of outer linearization, the optimal objective
function value of the first-stage approximation ((4) with t = 0) serves as a lower bound for the
optimal value of the SAA problem. Therefore, if the value 〈d0, xk0〉 + ηk0 lies within the upper
bound CI given in (5), then the SDDP algorithm can be terminated with the current root-stage
solution xk0 declared as the optimal solution. Otherwise, a backward pass starting from stage
T − 1 to stage 0 is carried out.

In stage t of the backward pass, using the current solution xk,it−1, a subproblem is solved for
all possible observations ξi′t , i′ = 1, . . . , Nt. Let πk,i

′

t and (θk,i
′

t,j )j∈J k denote the optimal dual
solution of hkt (x

k,i
t−1, ξ

i′
t ) for the stage constraints and the cuts that appear in (4). From these

dual solution vectors, new cuts are constructed as

Ĥt(xt−1) ≥
1

Nt

Nt∑
i′=1

(
〈πk,i

′

t , ri
′
t 〉+

∑
j∈J k

θk,i
′

t,j αt+1,j + 〈〈πk,i
′

t ,−Ci′t 〉, xt−1〉
)

(6)

= αk,it + 〈βk,it , xt−1〉 ∀i = 1, . . . , N̂t−1,

where

αk,it =
1

Nt

Nt∑
i′=1

(
〈πk,i

′

t , ri
′
t 〉+

∑
j∈J k

θk,i
′

t,j αt+1,j

)
; βk,it =

1

Nt

Nt∑
i′=1

〈πk,i
′

t ,−Ci′t 〉.

These backward pass calculations are similar to NBD, albeit for a smaller set of sample paths
N̂ , as opposed to N . Once the set of cuts is updated at the root stage, an iteration of SDDP is
complete.

4



Gangammanavar Sampling-based MSLP

2.2 Cutting-plane and Partial-sampling

The cutting-plane and partial-sampling algorithm was proposed in Chen and Powell (1999). This
algorithm is an NBD-type algorithm, in the sense that an outer linearizations of the expected
cost-to-go function is built. The algorithm also shares a few critical algorithm designs with the
SD method.

An iteration of CUPPS begins by solving an approximate problem of the form in (4)
at the root stage. Following that a single sample path is randomly generated, denoted by
(ξk1 , ξ

k
2 , . . . , ξ

k
T ). Approximate problems (4) with xkt−1 (optimal solution of the previous stage ap-

proximate problem) and ξkt as input are solved for all t = 1, . . . , T . These steps of the algorithm
can be viewed as forward pass of the SDDP algorithm carried out with N̂ = 1.

The algorithm does not carry out an explicit backward pass, but the optimal dual solutions
obtained during the forward pass are used in cut generation. Let πk,kt denote the optimal dual
solution to the subproblem corresponding to the observation along the current sample path, i.e.,
ωkt . This dual vector is added to a collection of dual vectors encountered by the algorithm thus
far, this collection is denoted by Vkt . Notice that the dual of the stage approximate problem,
given by{(

πt, (θt,j)j∈J k−1
t

) ∣∣∣∣ Dtπt −
∑

j∈J k−1
t

θt,jβt,j = dt,
∑

j∈J k−1
t

θt,j = 1, θt,j ≥ 0, ∀j ∈ J k−1t

}
,

does not depend on ξ̃t. Therefore, all elements of the set Vkt are feasible for every observation
of ξ̃t. Using this fact, for observations Ωt \ {ωkt }, a dual vector is identified using the following
“argmax” procedure:

(πk,it , θk,it ) ∈ arg max {〈πt, rit − Citxkt 〉+
∑

j∈J k−1
t

θt,jαt,j} (7)

The above dual vector provides the best possible lower bounding approximation of the cost-to-
go-function. The dual solutions identified above are used to compute a cut as shown on the
right-hand side of (6). While N̂t cuts are generated in SDDP, only one cut is generated in every
iteration of the CUPPS algorithm. The feature of carrying out calculation only along a single
sample path and using the argmax operation to inexactly compute the cuts is common with the
SD method.

2.3 Abridged Nested Benders Decomposition

The abridged nested decomposition (AND) algorithm was proposed by Donohue and Birge
(2006). In AND, a first-stage approximate problem is solved at the beginning of each iteration,
a feature common to all the NBD-type algorithms. Like SDDP, AND involves multiple (N̂) ran-
domly generated sample paths in the forward pass. However, the forward pass does not proceed
along all the generated sample paths; herein lies the distinguishing feature. This algorithm is
motivated by the fact that multiple sample paths may yield similar solutions. Similar solutions
result in cuts that are not significantly different and do not contribute much to improving the
approximation. The cut-generation procedure of AND is described next.

After solving the first-stage approximate problem, a random subset of size N̂1 of the second-
stage observations is generated. With the first-stage solution xk0 and ξi1 as input, approximate
second-stage problems is solved to build a pool of second-stage solutions {xk1}. Using this

5



Gangammanavar Sampling-based MSLP

solution pool, a further subset, say of size M̂1 ≤ N̂1, is identified to proceed to the next stage.
The solutions selected to proceed forward are known as the branching values. A branching
value can either be a solution from the collection {xk1} or some combination of these solutions.
This approach is justified by the fact that the subsequent stage problem remains feasible, under
relatively complete recourse assumption, for any combination of the current solutions. That is,
for any selection of parameter vector (wit)∀i that satisfy

∑Nt
i=1w

i
t = 1 and 0 ≤ wit ≤ 1 ∀i =

1, . . . , Nt, the solution x̄t =
∑Nt

i=1w
i
tx
i
t ∈ Xt results in non-empty feasible region for all ωt+1.

Therefore, relatively complete recourse ensures that Ht+1(x̄t) < ∞. The same procedure is
adopted at all non-terminal stages of the problem to complete the forward pass.

Similar to SDDP, the cut coefficient calculations at stage t involve solving subproblems
corresponding to all possible realizations in stage t + 1 (as in (6)). However, the calculations
on the backward pass are carried out only along the branching values. Since cuts are calculated
using only the branching values, M̂t cuts are added in stage t in every iteration. Therefore, the
computational effort in both the forward and backward passes of AND is lower than the SDDP
algorithm.

Motivated by the above algorithms, there have been significant research efforts on
randomization-based algorithms for MSLP. The use of randomization in the backward pass,
a feature from the SD and CUPPS algorithms, was incorporated within SDDP by Linowsky
and Philpott (2005). Later, Philpott and Guan (2008) provides the almost sure convergence of
randomization-based NBD-type algorithms. They establish that SDDP can identify the optimal
solution to the MSLP with finite support (including solutions to an SAA of MSLP problem) in
a finite number of iterations. Further, when randomization is performed in the backward pass,
it must be performed independently of the forward pass randomization. It must be done such
that all observations in a stage are sampled infinitely often, with probability one. Shapiro (2011)
discuss the statistical properties and analyze the SDDP solution of the SAA problem and its
relation to the optimal solution of the true MSLP problem.

Despite the popularity of these randomization-based methods, notably the SDDP algorithm,
they are known to exhibit slow convergence. The reader is referred to Lan (2020) for a study on
the complexity analysis of the SDDP algorithm. Furthermore, the approximate stage problem
size increases linearly with the number of iterations (due to the inclusion of cuts). Quadratic
regularization has proved to be an effective technique to address this issue. Motivated by their
success in the two-stage setting, Asamov and Powell (2018) presents a regularized variant of the
SDDP algorithm. The capabilities of the SDDP algorithm were further extended by the inclu-
sion of the risk measures in the objective (Philpott and de Matos (2012)) and the ability to solve
MSLP problems with binary state variables (Zou et al. (2019)). The NBD algorithm’s random-
ized variants remain a fruitful area of active research with many open questions. Nevertheless,
it is important to recognize that the SDDP, CUPPS, and AND algorithms use randomization
to solve a deterministic optimization problem.

3 Stochastic Decomposition Methods

Unlike the deterministic decomposition methods described above that work with a finite rep-
resentation of the uncertainty, stochastic decomposition (SD) methods rely upon sequential or
internal sampling. These methods dynamically update uncertainty representation by incorpo-
rating new observations of the underlying stochastic process. Therefore, the successive approx-
imations generated in SD methods are based on SAA functions that use an ever-increasing set
of sample paths.

6



Gangammanavar Sampling-based MSLP

The SD method was first introduced for two-stage SP problems in Higle and Sen (1991). It
was later extended to include quadratic regularization in Higle and Sen (1994), which enabled
its application in several large-scale problems. The reader is referred to related chapters in the
encyclopedia for details regarding the two-stage SD algorithm. The SD methods offer several
salient features that are identified below.

• The SD methods do not require prior discretization and can support problems with con-
tinuous support.

• These methods do not require knowledge of the probability distribution associated with
the underlying stochastic process but only need a mechanism to simulate sample paths.
In this regard, one can use external simulators as a source of sample paths.

• Furthermore, incorporating new sample paths on the fly can support online optimization
with streaming data.

The successes in two-stage settings motivated the development of the multistage SD algorithm
(Sen and Zhou (2014)). This method accommodates general stochastic processes that exhibit
correlation across stages using a nodal formulation of MSLP. This chapter presents stochastic
dynamic linear programming, a counterpart of multistage SD designed for MSLP problems with
stagewise independence.

3.1 Stochastic Dynamic Linear Programming

The stochastic dynamic linear programming (SDLP) algorithm was proposed in Gangammanavar
and Sen (2021). As in many multistage algorithms, an iteration of the SDLP algorithm includes
forward and backward recursion steps. However, unlike the other MSLP methods, the SDLP
forward and backward recursion computations for a given iteration are carried out along a single
new sample path. This sample path is generated independently from the previously encountered
sample paths. This sample path is denoted by {ξkt }Tt=1

The forward recursion involves stage decision simulation at each stage along the observed
sample path. The forward recursion is carried out in two passes. In a prediction pass, a solution
mapping is used to identify an incumbent solution (prox-center) for each nonterminal stage. This
incumbent solution trajectory is denoted by {x̂kt }T−1t=0 . Using a incumbent solution, a regularized
stage approximate problem is solved for all t ∈ T \ {T} given by

min
xt∈Xt(xt−1,ξkt )

〈dt, xt〉+ ηt +
σ

2
‖xt − x̂kt ‖2 (8)

subject to 〈−βt,j , xt〉+ ηt ≥ αt,j ∀j ∈ J k−1t ,

where σ ≥ 1 is a given proximal parameter. This step results in a trajectory of candidate
solutions {xkt }T−10 . The solution mapping used to identify the incumbent solution is not discussed
here and the focus is only on the approximation generating procedure of SDLP.

While the role of the backward recursion remains the same, namely to update the piecewise
affine convex outer linearization-based approximations, these approximations are built for a
sample mean function using only the sample paths encountered until the current iteration of
the algorithm. Furthermore, the ability to share the approximation across all observations in
a given stage remains valid even when sequential sampling in employed. However, additional

7



Gangammanavar Sampling-based MSLP

steps need to be incorporated to handle the dynamically evolving nature of the sample mean
functions. In iteration k, the stage t sample mean takes the following form:

Ĥk
t (xt−1) =

1

Nk
t

Nk
t∑

i=1

min
xt∈Xt(xt−1,ξit)

{〈dt, xt〉+ ηt | 〈−βt,j , xt〉+ ηt ≥ αt,j , ∀j ∈ J kt } (9)

where, Nk
t denotes the current number of observations in stage t. Contrast the above sample

mean to the SAA function in (3).

To generate the lower bounding affine function for the above sample mean, the minimization
problem corresponding to ξkt on the right-hand side of (9) with xkt as input is solved. The
optimal dual solutions are denoted by πkt and (θkt,j)j∈J k , the latter correspond to the current
collection of affine lower bounding functions. For all other ξi (where i 6= k), a slight modification
(detailed later in this section) of the argmax operation in (7) is used to identify the dual vertex
that provides the best lower bound. These dual vertices are denoted by πit and (θitt, j)j∈J k .
Using the collection of the dual vertices, the coefficients are computed as

αkt =
1

Nk
t

Nk
t∑

i=1

〈πit, rit〉; βkt =
1

Nk
t

Nk
t∑

i=1

(
〈πit,−Cit〉+

∑
j∈J k

t+1

θit,jαt+1,j

)
.

The resulting affine function lower bounds the sample mean in (9), that is, it satisfies `kt =
αkt + 〈βkt , xt−1〉 ≤ Ĥk

t (xt−1) for all xt−1. It is worthwhile to note that the above coefficients are
stochastic in nature. Therefore, the affine functions are viewed as minorants of the sample mean
rather than cuts (a term more appropriate for deterministic decomposition). Similar calculations
using the incumbent solution x̂kt results in an incumbent minorant ˆ̀k

t (xt) = α̂kt + 〈β̂kt , xt−1〉.

Since new sample paths are introduced in every iteration of SDLP, additional steps need to
be taken to ensure that the minorants computed in any iteration remain valid in later iterations.
The minorants are termed as valid if they continue to provide a lower bound on the sample mean
available in that iteration. To ensure validity in stage t, the minorant generated in an earlier
iteration (say j < k) are scaled down by a factor (j/k)T−t. Notice that the scaling operation
can be perfomed recursively. The resulting stage approximation takes the following form:

hkt (xt−1) = max

{{(
k − 1

k

)T−t
`jt (xt−1)

}
j∈J k−1

t−1

, `kt (xt−1),
ˆ̀k
t (xt−1)

}
.

In other words, the updated collection of minorants J kt−1 used to approximate the value function
ht include the scaled minorants in J k−1t−1 , a candidate minorant computed using xkt , and an
incumbent minorant computed using x̂kt . Theorems 2 and 3 in Gangammanavar and Sen (2021)
capture the behavior of these approximations across stages and iterations, respectively. These
results establish the validity of approximations to the sample mean with increasing sample
size and show uniform asymptotic convergence of these approximations. While any update
scheme that consistently maintains the validity of the approximation htk to the current sample
mean is admissible, the particular choice presented above is recommended with an eye on its
implementational ease.

4 Discussion

This chapter illustrated two classes of multistage SP algorithms that rely upon randomization.
The first class of algorithms is applicable to solve deterministic optimization problems, including

8



Gangammanavar Sampling-based MSLP

the SAA of MSLP problems. The randomization-based deterministic algorithms explicitly use
the probability distribution (or empirical distribution) information in constructing their approx-
imate cost-to-go functions (see (6)). In contrast, the second class of algorithms is inherently
random because they work with a dynamic representation of the underlying uncertainty. They
do not require explicit knowledge of probability distribution but need the ability to generate
new sample paths on the fly. In this regard, stochastic decomposition is an online optimization
approach that can work with streaming data.

The convergence results and the analysis techniques employed to achieve them differ in these
two classes of algorithms. These differences are due to the discrepancies in the role of sampling.
As in the case of NBD, the randomization-based decomposition methods can ensure convergence
to the optimal solution of the deterministic problem in a finite number of iterations. This result
is achieved under mild conditions on the sampling techniques used in the forward and backward
passes. The reader is referred to Philpott and Guan (2008) for a detailed discussion on these
sampling conditions.

On the other hand, the SDLP algorithm provides a sequence of decisions and corresponding
value function estimates that asymptotically converge with probability one. The SDLP solutions
and optimal value are for the original expectation-valued MSLP problem. Quadratic regulariza-
tion involving proximal centers identified using the basic feasible policy plays a critical role in
convergence analysis. The reader is referred to Gangammanavar and Sen (2021) for a thorough
exposition of the basic feasible policy and the convergence results of SDLP.

Whether randomization-based deterministic or stochastic decomposition is adopted to solve,
it is essential to recognize that one deals with random approximations of the actual MSLP
problem. These algorithms’ solutions and values are random estimates of their true counterparts.
Therefore, a solution from a single run of these algorithms may mislead the decision-maker. To
address this, variance reduction techniques such as using multiple replications Mak et al. (1999)
and compromise policies Sen and Liu (2016) are viable approaches. Along with these, developing
statistical validation of optimality and stopping rules for multistage algorithms remains a fruitful
research direction.

References

Asamov, T. and Powell, W. (2018). Regularized decomposition of high-dimensional multistage
stochastic programs with markov uncertainty. SIAM Journal on Optimization, 28(1):575–595.

Birge, J. R. (1985). Decomposition and partitioning methods for multistage stochastic linear
programs. Operations Research, 33(5):989–1007.

Chen, Z. and Powell, W. (1999). Convergent cutting-plane and partial-sampling algorithm for
multistage stochastic linear programs with recourse. Journal of Optimization Theory and
Applications, 102(3):497–524.

Donohue, C. and Birge, J. (2006). The abridged nested decomposition method for multistage
stochastic linear programs with relatively complete recourse. Algorithmic Operations Research,
1(1).

Gangammanavar, H. and Sen, S. (2021). Stochastic dynamic linear programming: A sequential
sampling algorithm for multistage stochastic linear programming. SIAM Journal on Opti-
mization, 31(3):2111–2140.

9



Gangammanavar Sampling-based MSLP

Higle, J. L. and Sen, S. (1991). Stochastic decomposition: An algorithm for two-stage linear
programs with recourse. Mathematics of Operations Research, 16(3):650–669.

Higle, J. L. and Sen, S. (1994). Finite master programs in regularized stochastic decomposition.
Mathematical Programming, 67(1-3):143–168.

Infanger, G. and Morton, D. P. (1996). Cut sharing for multistage stochastic linear programs
with interstage dependency. Mathematical Programming, 75(2):241–256.

Lan, G. (2020). Complexity of stochastic dual dynamic programming. Mathematical Program-
ming, pages 1–38.

Linowsky, K. and Philpott, A. (2005). On the convergence of sampling-based decomposition
algorithms for multistage stochastic programs. Journal of Optimization Theory and Applica-
tions, 125(2):349–366.

Mak, W., Morton, D. P., and Wood, K. (1999). Monte carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters, 24(1):47 – 56.

Mulvey, J. M. and Ruszczyński, A. (1995). A new scenario decomposition method for large-scale
stochastic optimization. Operations Research, 43(3):477–490.

Pereira, M. and Pinto, L. (1991). Multi-stage stochastic optimization applied to energy planning.
Mathematical Programming, 52(1-3):359–375.

Philpott, A. B. and de Matos, V. L. (2012). Dynamic sampling algorithms for multi-stage
stochastic programs with risk aversion. European Journal of Operational Research, 218(2):470
– 483.

Philpott, A. B. and Guan, Z. (2008). On the convergence of stochastic dual dynamic program-
ming and related methods. Operations Research Letters, 36(4):450 – 455.

Rockafellar, R. T. and Wets, R. J. B. (1991). Scenarios and policy aggregation in optimization
under uncertainty. Math. Oper. Res., 16(1):119–147.

Sen, S. and Liu, Y. (2016). Mitigating uncertainty via compromise decisions in two-stage stochas-
tic linear programming: Variance reduction. Operations Research, 64(6):1422–1437.

Sen, S. and Zhou, Z. (2014). Multistage Stochastic Decomposition: A bridge between Stochastic
Programming and Approximate Dynamic Programming. SIAM Journal on Optimization,
24(1):127–153.

Shapiro, A. (2011). Analysis of stochastic dual dynamic programming method. European Journal
of Operational Research, 209(1):63 – 72.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2014). Lectures on Stochastic Program-
ming: Modeling and Theory, Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

Van Slyke, R. M. and Wets, R. J. B. (1969). L-shaped linear programs with applications
to optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663.

Zou, J., Ahmed, S., and Sun, X. A. (2019). Stochastic dual dynamic integer programming.
Mathematical Programming, 175(1):461–502.

10


	Introduction
	Randomized Deterministic Decomposition Methods
	Stochastic Dual Dynamic Programming
	Cutting-plane and Partial-sampling
	Abridged Nested Benders Decomposition

	Stochastic Decomposition Methods
	Stochastic Dynamic Linear Programming

	Discussion

