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Abstract

We consider a wide class of closed convex cones K in the space of real n × n
symmetric matrices and establish the existence of a chain of faces of K, the length
of which is maximized at n(n+1)

2 +1. Examples of such cones include, but are not
limited to, the completely positive and the copositive cones. Using this chain,
we prove that the distance to polyhedrality of any closed convex cone K that
is sandwiched between the completely positive cone and the doubly nonnegative
cone of order n ≥ 2, as well as its dual, is at least n(n+1)

2 − 2, which is also the
worst-case scenario.

Key words. Completely positive cone, Doubly nonnegative cone, Copositive cone,
SPN cone, Longest chain of faces, Distance to polyhedrality

1 Introduction

A completely positive cone and its dual, the copositive cone, have been a subject of
considerable attention in the optimization field, as they can be used to represent many
NP-hard problems. The recent survey [2] and references therein provide an overview of
their properties and applications. However, solving optimization problems with these
cones is computationally challenging, and as a result, tractable approximations are
often used in practice. Two such examples are the doubly nonnegative cone and the
cone of sums of a positive semidefinite matrix and a nonnegative matrix, also known
as the SPN cone [18].
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In this paper, we focus on the length ℓK of the longest chain of faces and the
distance ℓpoly(K) to polyhedrality for several matrix cones related to the aforementioned
ones. These lengths are related to various quantities that arise in linear algebra and
optimization. The first example is the Carathéodory number, which can be viewed
as the maximum cp-rank of completely positive matrices for the completely positive
cone. Ito and Lourenço [4] showed that ℓK − 1 is an upper bound for the Carathéodory
number of a closed convex cone K containing no lines. The second example is the
singularity degree. The singularity degree of a linear conic feasibility problem is the
minimum number of facial reduction steps needed to satisfy Slater’s condition. This
quantity is known to be related to error bounds for the feasibility problem [6, 8, 16].
Waki and Muramatsu [17, Corollary 3.1] showed that the singularity degree of a linear
conic feasibility problem over a closed convex cone K is bounded by ℓK (see also [11,
Theorem 28.5.3], [7, Theorem 1], and [9, page 2315]). Lourenço, Muramatsu, and
Tsuchiya [9, Theorem 10] improved this bound and revealed that the singularity degree
is bounded by ℓpoly(K) + 1.

The main results of this paper are disappointing for these quantities because the
results imply that the upper bounds for them shown in the previous paragraph agree
with trivial ones. We prove that for any closed convex cone K sandwiched between the
completely positive cone and the doubly nonnegative cone, the lengths ℓK and ℓpoly(K)
coincide with their trivial upper bounds (Corollary 3.3). Specifically, for such a cone

K in the space of real n × n symmetric matrices, ℓK equals n(n+1)
2

+ 1 and if n ≥ 2,

ℓpoly(K) equals n(n+1)
2

−2, which are the worst cases possible for these lengths. The same
holds for the dual cone (Corollary 4.4). To the best of our knowledge, these lengths,
except for the length of the longest chain of faces of the doubly nonnegative cone [9,
Proposition 21], have not been computed so far (see [4, Table 1]).

The cones K for which the above results hold are not limited to the completely
positive, doubly nonnegative, SPN, and copositive cones: for example, the closure of the
completely positive semidefinite cone [1, 5] and the approximation hierarchies provided
by Parrilo [10] and Peña, Vera, and Zuluaga [12]. Moreover, the result of length ℓK
holds for a wider class of K, specifically for any closed convex cone sandwiched between
the nonnegative diagonally dominant cone and the nonnegative cone (Proposition 3.2),
or between the nonnegative cone and the dual of the nonnegative scaled diagonally
dominant cone (Proposition 4.3).

We construct a chain of faces by specifying the pattern of zeros of the elements of
the matrices belonging to each face to prove our main results. The idea is inspired by
the work of Lourenço, Muramatsu, and Tsuchiya [9], but we use a different order in
which the elements are restricted to zero. To compute the distance to polyhedrality, it
is necessary to construct a chain of faces such that as few polyhedral cones as possible
appear (see Remark 3.4).

The rest of this paper is organized as follows. In Section 2, the notations and some
lemmas used in this paper are introduced. The main results are proven in Sections 3
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and 4. In Section 5, we finish with concluding remarks.

2 Preliminaries

Matrices are denoted by boldface letters such as A. The (i, j)th element of a matrix A
is expressed as Aij. Let O be a zero matrix with appropriate size. Sn is used to denote

the space of real n× n symmetric matrices, and we define Tn := n(n+1)
2

.
A set K ⊆ Sn is called a cone if αA ∈ K for all α ≥ 0 and A ∈ K. Let K be a

closed convex cone in Sn. The set

K∗ :=

{
A ∈ Sn

∣∣∣∣∣
n∑

i,j=1

AijBij ≥ 0 for all B ∈ K

}

is called the dual of K. Let I be a subset of {(i, j) | i, j = 1, . . . , n}. Then we define
K[I] := {A ∈ K | Aij = 0 for all (i, j) ∈ I} and E[I] ∈ Sn as the matrix with the
(i, j)th and (j, i)th elements 0 for each (i, j) ∈ I and 1 for all other elements.

Let Rn
+ be the set of n-dimensional nonnegative vectors. We define

CPn :=

{
m∑
i=1

aia
⊤
i

∣∣∣∣∣ ai ∈ Rn
+ for all i = 1, . . . ,m

}
,

COPn := {A ∈ Sn | x⊤Ax ≥ 0 for all x ∈ Rn
+}

and call them the completely positive cone and the copositive cone, respectively. We use
Sn
+ to denote the set of n×n symmetric positive semidefinite matrices. The nonnegative

cone N n is defined by the set of n × n symmetric matrices with only nonnegative
elements. The doubly nonnegative cone Sn

+ ∩ N n is denoted by DNN n and the SPN
cone Sn

+ +N n by SPN n. Let

DDn :=

{
A ∈ Sn

∣∣∣∣∣ Aii ≥
∑
j ̸=i

|Aij| for all i = 1, . . . , i

}

denote the set of n × n symmetric diagonally-dominant matrices with nonnegative
diagonal elements and let SDDn be the set of matrices DAD such that A ∈ DDn

and D ∈ Sn is a diagonal matrix with positive diagonal elements. The nonnegative
diagonally dominant cone DDn ∩ N n is denoted by DDn

+, and the nonnegative scaled
diagonally dominant cone SDDn ∩ N n is denoted by SDDn

+. These two cones were
originally introduced by Gouveia, Pong, and Saee [3] to provide inner-approximation
hierarchies for CPn. The set DDn

+ is known to be the conical hull of the matrices
Eij := (ei + ej)(ei + ej)

⊤ for i, j = 1, . . . , n [3, page 390], where ei is the vector with
the ith element 1 and the others 0.
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The nonnegative cone is self-dual, i.e., (N n)∗ = N n. In addition, it is known that
CPn and COPn are mutually dual [15, Theorem 3.28] and that DNN n and SPN n are
also dual [15, Theorem 1.167]. The dual of DDn

+ is

(DDn
+)

∗ = (DDn)∗ + (N n)∗

= {A ∈ Sn | Aii + Ajj ± 2Aij ≥ 0 for all i, j = 1, . . . , n}+N n, (2.1)

where we use Corollaries 16.4.2 and 9.1.3 of [14] to derive the first equation and use
[13, Table 1] to derive the second equation. Similarly, the dual of SDDn

+ is

(SDDn
+)

∗

= (SDDn)∗ + (N n)∗

=

{
A ∈ Sn

∣∣∣∣∣ AiiAjj ≥ A2
ij for all i, j = 1, . . . , n with i ̸= j,

Aii ≥ 0 for all i = 1, . . . , n

}
+N n, (2.2)

where we use [3, Proposition 1.ii] to derive the first equation and use [13, Table 1] to
derive the second equation.

Equation (2.2) leads to the following lemma. Its proof is straightforward and thus
omitted.

Lemma 2.1. Let A ∈ (SDDn
+)

∗. Then the following statements hold:

(i) Aii ≥ 0 for all i = 1, . . . , n.

(ii) If Aii = 0, then Aij ≥ 0 for all j = 1, . . . , n.

The following inclusions hold:

DDn
+ ⊆ SDDn

+

(a)

⊆ CPn
(b)

⊆ DNN n ⊆ N n, (2.3)

where the inclusion (a) follows from [3, Proposition 1.iii] and the others follow from
their definitions. Taking their dual, we also obtain the following inclusions:

N n ⊆ SPN n
(c)

⊆ COPn ⊆ (SDDn
+)

∗ ⊆ (DDn
+)

∗. (2.4)

The inclusions (b) and (c) hold with equality if and only if n ≤ 4; see Sections 2.9 and
2.10 of [15]. We state this fact explicitly because it will be exploited to compute the
distance to polyhedrality.

Lemma 2.2. The equations CPn = DNN n and SPN n = COPn hold if and only if
n ≤ 4.
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Let K be a closed convex cone in Sn. A nonempty convex subcone F of K is called
a face of K if for any A,B ∈ K, if A+B ∈ F , then A,B ∈ F . A chain of faces of K
with length l is a sequence

Fl ⊊ · · · ⊊ F1 (2.5)

such that every Fi is a face of K. We use ℓK to denote the length of the longest chain
of faces of K. In addition, we define the distance ℓpoly(K) to polyhedrality of K as the
length minus one of the longest chain (2.5) of faces of K such that Fl is polyhedral and
every Fi with i < l is not polyhedral.

The distance to polyhedrality was originally introduced in [9] to bound the number
of reduction steps in the facial reduction algorithm described therein. The value ℓpoly(K)
is 0 if K is a polyhedral cone such as N n and DDn

+. It is greater than 0 if K is not
polyhedral. For instance, we have ℓpoly(Sn

+) = n− 1 [9, Example 1]. See [8, Remark 39]
and [9, Example 1] for further results on the distance to polyhedrality.

The following two lemmas provide the upper bounds for ℓK and ℓpoly(K), respectively.

Lemma 2.3 (see [9, Proposition 21]). If K is a closed convex cone in Sn, then ℓK ≤
Tn + 1.

Lemma 2.4. Let K be a closed convex cone in Sn.

(i) If n = 1, then ℓpoly(K) = 0.

(ii) If n ≥ 2, then ℓpoly(K) ≤ Tn − 2.

Proof. First, note that every closed convex cone with dimension at most two is poly-
hedral (see, for example, [15, Exercise 1.65]). If n = 1, then the dimension of K is
at most one, and thus item (i) holds. In what follows, we prove item (ii). To obtain
a contradiction, we assume that l := ℓpoly(K) ≥ Tn − 1. It follows from n ≥ 2 that
l ≥ Tn − 1 ≥ 2. Then there exists a chain Fl+1 ⊊ · · · ⊊ F1 of faces of K such that
Fl is not polyhedral. As dim(Fl) < · · · < dim(F1) and each value must be an integer
between 0 and Tn, we have dim(Fl) ≤ Tn − l + 1 ≤ 2. Then Fl is polyhedral, which is
a contradiction.

3 The completely positive side

For i = 1, . . . , n and j = i, . . . , n, let

Ii,j :=
i−1⋃
k=1

n⋃
l=k

{(k, l)} ∪
n⋃
l=j

{(i, l)}.

Here, Iij and Ii,j are used interchangeably. For convenience, we let I00 := ∅ and
Ii,n+1 := Ii−1,i−1 for i = 1, . . . , n. Under this notation, for i = 1, . . . , n and j = i, . . . , n,
we have

Iij = Ii,j+1 ∪ {(i, j)}. (3.1)
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→ → →

→ → →

K[I00] K[I13] K[I12] K[I11]

K[I23] K[I22] K[I33]

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ 0

∗ ∗ ∗

0 ∗ ∗

∗ 0 0

0 ∗ ∗

0 ∗ ∗

0 0 0

0 ∗ ∗

0 ∗ ∗

0 0 0

0 ∗ 0

0 0 ∗

0 0 0

0 0 0

0 0 ∗

0 0 0

0 0 0

0 0 0

Fig. 1: The chain (3.2) of faces of K. For each matrix belonging to each face K[Iij],
the elements corresponding to the symbol 0 must be zero, and those corresponding to
the symbol ∗ can be nonzero.

Lemma 3.1. Let K ⊆ Sn be a closed convex cone with K ⊆ N n. For i = 1, . . . , n and
j = i, . . . , n, the set K[Iij] is a face of K.

Proof. It can be observed thatK[Iij] is a convex subcone inK. LetA,B ∈ K. Note that
all the elements of A and B are nonnegative because K ⊆ N n. Now, we assume that
A+B ∈ K[Iij]. Then for each (k, l) ∈ Iij, we have Akl+Bkl = 0. By the nonnegativity
of A and B, Akl and Bkl must be zero. Therefore, we obtain A,B ∈ K[Iij].

Proposition 3.2. For any closed convex cone K ⊆ Sn with DDn
+ ⊆ K ⊆ N n, the

following inclusions hold:

K[Inn]︸ ︷︷ ︸
1 face

⊊ K[In−1,n−1] ⊊ K[In−1,n]︸ ︷︷ ︸
2 faces

⊊ K[In−2,n−2] ⊊ · · ·

⊊ K[I2n] ⊊ K[I11] ⊊ · · · ⊊ K[I1,n−1] ⊊ K[I1n]︸ ︷︷ ︸
n faces

⊊ K[I00] = K. (3.2)

In particular, we have ℓK = Tn + 1.

Fig. 1 illustrates the chain (3.2) with n = 3.

Proof. For each i = 1, . . . , n and j = i, . . . , n, (3.1) implies that K[Iij] ⊆ K[Ii,j+1]. In
what follows, we prove Eij ∈ K[Ii,j+1] \ K[Iij] to show the strictness of this inclusion.
Refer to Fig. 2 for a better understanding of the following proof. We have Eij ∈
DDn

+ ⊆ K and only the (i, i)th, (j, j)th, (i, j)th, and (j, i)th elements ofEij are nonzero.
Therefore, for I ∈ {Ii,j+1, Iij}, the matrix Eij belongs to K[I] if and only if all of the
tuples (i, i), (j, j), and (i, j) do not belong to I. On the one hand, by definition,
Eij ∈ K[Ii,j+1]. On the other hand, as (i, j) ∈ Iij, we have Eij ̸∈ K[Iij].
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K[Ii,j+1] K[Iij]

1 i j j + 1

1

i

j

j + 1

1 i j j + 1

1

i

j

j + 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ∗ ∗ 0 0

0 0 ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

Fig. 2: Illustration of Eij ∈ K[Ii,j+1] \ K[Iij] in the proof of Proposition 3.2. For each
matrix belonging to a face K[Ii,j+1] or K[Iij], the elements corresponding to the symbol
0 must be zero, and those corresponding to the symbol ∗ can be nonzero. In addition,
the grids where nonzero elements of the matrix Eij exist are presented in gray. On the
one hand, because all the “0” grids in K[Ii,j+1] are not gray, we have Eij ∈ K[Ii,j+1].
On the other hand, as some of the “0” grids in K[Iij] are gray, we have Eij ̸∈ K[Iij].

By K ⊆ N n and Lemma 3.1, each set in the sequence (3.2) is a face of K. Because
this chain comprises (Tn + 1) faces of K, we have ℓK ≥ Tn + 1. Combining this with
Lemma 2.3 yields ℓK = Tn + 1.

Corollary 3.3. For any closed convex cone K ⊆ Sn with CPn ⊆ K ⊆ DNN n, we have
ℓK = Tn + 1 and

ℓpoly(K) =

{
0 (n = 1),

Tn − 2 (n ≥ 2).
(3.3)

Proof. It follows from (2.3) and Proposition 3.2 that ℓK = Tn + 1 with the longest
chain (3.2). In what follows, we prove (3.3). Because the case of n = 1 follows from (i)
of Lemma 2.4, we only consider the case where n ≥ 2. The inclusion CPn ⊆ K ⊆ DNN n

implies that
CPn[In−2,n−2] ⊆ K[In−2,n−2] ⊆ DNN n[In−2,n−2]. (3.4)

From Lemma 2.2, both of the first and third sets of (3.4) are equal to{(
O O
O A

)
∈ Sn

∣∣∣∣ A ∈ CP2

}
. (3.5)

Therefore, the face K[In−2,n−2] agrees with (3.5), which is not polyhedral since CP2

has infinitely many extreme rays [15, Remark 3.26]. Given the fact that each face of a
polyhedral cone is also polyhedral [14, page 172], all the (Tn − 2) faces K[In−2,n−2] ⊊
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· · · ⊊ K in the chain (3.2) are not polyhedral. Thus, we have ℓpoly(K) ≥ Tn − 2.
Combining this with (ii) of Lemma 2.4 yields the desired result.

Remark 3.4. Lourenço, Muramatsu, and Tsuchiya [9] have provided a chain of faces

of DNN n with length Tn + 1. The chain is constructed by restricting first the n(n−1)
2

nondiagonal elements and then the n diagonal elements to zero. However, because of the
existence of a polyhedral face of dimension n, the chain does not lead to ℓpoly(DNN n) =
Tn − 2 when n ≥ 3.

4 The copositive side

For i = 1, . . . , n and j = i, . . . , n, let

Ji,j :=
i−1⋃
k=1

n⋃
l=k

{(k, l)} ∪
j⋃

l=i

{(i, l)}.

Here, Jij and Ji,j are used interchangeably. For convenience, we let J0n := ∅ and
Ji,i−1 := Ji−1,n for i = 1, . . . , n. Under this notation, for i = 1, . . . , n and j = i, . . . , n,
we have

Jij = Ji,j−1 ∪ {(i, j)}. (4.1)

Lemma 4.1. Let K ⊆ Sn be a closed convex cone with K ⊆ (SDDn
+)

∗. For i = 1, . . . , n
and j = i, . . . , n, the set K[Jij] is a face of K.

Proof. It can be observed that K[Jij] is a convex subcone in K. Let A,B ∈ K. Note
that A and B also belong to (SDDn

+)
∗. Now, we assume that A +B ∈ K[Jij]. Then

for each k = 1, . . . , i, as (k, k) ∈ Jij, we observe that Akk + Bkk = 0. Because Akk

and Bkk are nonnegative (see (i) of Lemma 2.1), they must be zero. This implies that
for each (k, l) ∈ Jij, Akl and Bkl are nonnegative (see (ii) of Lemma 2.1). Combining
this with Akl + Bkl = 0, we observe that Akl and Bkl are also zero. Thus, we obtain
A,B ∈ K[Jij].

Remark 4.2. Lemma 4.1 does not hold for K = (DDn
+)

∗. For example, let

A :=

(
0 1
1 2

)
, B :=

(
0 −1
−1 2

)
.

Then it can be observed from (2.1) that A,B ∈ (DD2
+)

∗. On the one hand, as

A+B =

(
0 0
0 4

)
∈ (DD2

+)
∗

and A11 + B11 = A12 + B12 = 0, it follows that A +B ∈ (DD2
+)

∗[J12]. On the other
hand, A,B ̸∈ (DD2

+)
∗[J12] since A12, B12 ̸= 0. Thus, (DD2

+)
∗[J12] is not a face of

(DD2
+)

∗.
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→ → →

→ → →

K[J03] K[J11] K[J12] K[J13]

K[J22] K[J23] K[J33]

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

0 0 ∗

0 ∗ ∗

∗ ∗ ∗

0 0 0

0 ∗ ∗

0 ∗ ∗

0 0 0

0 0 ∗

0 ∗ ∗

0 0 0

0 0 0

0 0 ∗

0 0 0

0 0 0

0 0 0

Fig. 3: The chain (4.2) of faces of K. For each matrix belonging to each face K[Jij],
the elements corresponding to the symbol 0 must be zero, and those corresponding to
the symbol ∗ can be nonzero.

Proposition 4.3. For any closed convex cone K ⊆ Sn with N n ⊆ K ⊆ (SDDn
+)

∗, the
following inclusions hold:

K[Jnn]︸ ︷︷ ︸
1 face

⊊ K[Jn−1,n] ⊊ K[Jn−1,n−1]︸ ︷︷ ︸
2 faces

⊊ K[Jn−2,n] ⊊ · · ·

⊊ K[J22] ⊊ K[J1n] ⊊ · · · ⊊ K[J12] ⊊ K[J11]︸ ︷︷ ︸
n faces

⊊ K[J0n] = K. (4.2)

In particular, we have ℓK = Tn + 1.

Fig. 3 illustrates the chain (4.2) with n = 3.

Proof. For each i = 1, . . . , n and j = i, . . . , n, (4.1) implies that K[Jij] ⊆ K[Ji,j−1].
In what follows, we prove E[Ji,j−1] ∈ K[Ji,j−1] \ K[Jij] to show the strictness of this
inclusion. Refer to Fig. 4 for a better understanding of the following proof. Because
E[Ji,j−1] ∈ N n ⊆ K, it suffices to check whether or not the (k, l)th element of the matrix
E[Ji,j−1] is zero for each (k, l) belonging to J ∈ {Ji,j−1,Jij}. On the one hand, as the
(k, l)th element of E[Ji,j−1] is zero for all (k, l) ∈ Ji,j−1, we have E[Ji,j−1] ∈ K[Ji,j−1].
On the other hand, as (i, j) ∈ Jij and the (i, j)th element of E[Ji,j−1] is one, we have
E[Ji,j−1] ̸∈ K[Jij].

By K ⊆ (SDDn
+)

∗ and Lemma 4.1, each set in the sequence (4.2) is a face of K.
Because this chain is composed of (Tn + 1) faces of K, we have ℓK = Tn + 1.

Corollary 4.4. For any closed convex cone K ⊆ Sn with SPN n ⊆ K ⊆ COPn, we
have ℓK = Tn + 1 and

ℓpoly(K) =

{
0 (n = 1),

Tn − 2 (n ≥ 2).
(4.3)
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K[Ji,j−1] K[Jij]

1 i j − 1 j

1

i

j − 1

j

1 i j − 1 j

1

i

j − 1

j

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ∗

0 0 0 ∗ ∗ ∗

0 0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗

Fig. 4: Illustration of E[Ji,j−1] ∈ K[Ji,j−1] \ K[Jij] in the proof of Proposition 4.3. For
each matrix belonging to a face K[Ji,j−1] or K[Jij], the elements corresponding to the
symbol 0 must be zero, and those corresponding to the symbol ∗ can be nonzero. In
addition, the grids where nonzero elements of the matrix E[Ji,j−1] exist are presented
in gray. On the one hand, as all the “0” grids in K[Ji,j−1] are not in gray, we have
E[Ji,j−1] ∈ K[Ji,j−1]. On the other hand, as some of the “0” grids in K[Jij] are gray,
we have E[Ji,j−1] ̸∈ K[Jij].

Proof. It follows from (2.4) and Proposition 4.3 that ℓK = Tn + 1 with the longest
chain (4.2). In what follows, we prove (4.3). Since the case n = 1 follows from (i) of
Lemma 2.4, we only consider the case of n ≥ 2. The inclusion SPN n ⊆ K ⊆ COPn

implies that
SPN n[Jn−2,n] ⊆ K[Jn−2,n] ⊆ COPn[Jn−2,n]. (4.4)

From Lemma 2.2, both the first and third sets of (4.4) are equal to{(
O O
O A

)
∈ Sn

∣∣∣∣ A ∈ COP2

}
. (4.5)

Therefore, the face K[Jn−2,n] agrees with (4.5), which is not polyhedral as COP2 has
infinitely many extreme rays [15, Theorem 2.29]. Therefore, we obtain ℓpoly(K) =
Tn − 2.

Remark 4.5. The order in which the elements of a matrix are restricted to zero is
essential for obtaining the longest chain of faces. Let us consider what would happen if
we used Iij, defined in Section 3, instead of Jij in the discussion of this section. Then
for a closed convex cone K with SPN n ⊆ K ⊆ COPn, the set K[Iij] is not necessarily
a face of K. For example, consider the set K[I1n]. Let

A :=

 1 −1
O

−1 1

 , B :=

1 1
O

1 1

 ∈ Sn
+ ⊆ K.
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On the one hand, since

A+B =

2 0
O

0 2

 ∈ K

and A1n +B1n = 0, it follows that A+B ∈ K[I1n]. On the other hand, A,B ̸∈ K[I1n]
since A1n, B1n ̸= 0. Thus, K[I1n] is not a face of K.

Conversely, for a closed convex cone K with CPn ⊆ K ⊆ DNN n and the set Jij,
K[Jij] is indeed a face of K. However, for each i = 1, . . . , n, all the inclusions in
K[Jin] ⊆ · · · ⊆ K[Jii] hold with equality. This is because for any A ∈ DNN n, Aii = 0
implies that Aij = 0 for all j = 1, . . . , n. Therefore, if we use Jij instead of Iij in the
discussion of Section 3, we cannot obtain a chain of faces of K with length Tn + 1.

5 Conclusion

In this paper, we demonstrated the construction of a chain of faces of length ℓK = Tn+1
for any closed convex cone K satisfying either DDn

+ ⊆ K ⊆ N n or N n ⊆ K ⊆ (SDDn
+)

∗,

where Tn is defined as n(n+1)
2

. Furthermore, for any closed convex cone K satisfying
CPn ⊆ K ⊆ DNN n or SPN n ⊆ K ⊆ COPn with n ≥ 2, we established that ℓpoly(K) =
Tn − 2 as well as ℓK = Tn + 1, which are the maximum possible for any closed convex
cone in Sn. Notably, such cones K include not only the completely positive, doubly
nonnegative, SPN, and copositive cones but also the closure of the completely positive
semidefinite cone and some approximation hierarchies.

As mentioned in Section 1, the value ℓpoly(K)+1 is an upper bound for the singularity
degree of a linear conic feasibility problem over K. However, this bound is not tight in
general. For example, the singularity degree of a linear conic feasibility problem over
DNN n is bounded by n [9, Corollary 20], which is smaller than ℓpoly(DNN n) + 1 =
Tn − 1 when n ≥ 3. It is an open problem to determine whether the upper bound for
the singularity degree is tight or not for other cones.
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