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Moment-based distributionally robust optimization (DRO) provides an optimization framework to integrate
statistical information with traditional optimization approaches. Under this framework, one assumes that
the underlying joint distribution of random parameters runs in a distributional ambiguity set constructed by
moment information and makes decisions against the worst-case distribution within the set. Although most
moment-based DRO problems can be reformulated as semidefinite programming (SDP) problems that can be
solved in polynomial time, solving high-dimensional SDPs is still time-consuming. Unlike existing approxima-
tion approaches that first reduce the dimensionality of random parameters and then solve the approximated
SDPs, we propose an optimized dimensionality reduction (ODR) approach. We first show that the ranks of the
matrices in the SDP reformulations are small, by which we are then motivated to integrate the dimensionality
reduction of random parameters with the subsequent optimization problems. Such integration enables two
outer and one inner approximations of the original problem, all of which are low-dimensional SDPs that can
be solved efficiently, providing two lower bounds and one upper bound correspondingly. More importantly,
these approximations can theoretically achieve the optimal value of the original high-dimensional SDPs. As
these approximations are nonconvex SDPs, we develop modified Alternating Direction Method of Multipli-
ers (ADMM) algorithms to solve them efficiently. We demonstrate the effectiveness of our proposed ODR
approach and algorithm in solving multiproduct newsvendor and conditional value at risk (CVaR) problems.
Numerical results show significant advantages of our approach on the computational time and solution qual-
ity over the three best possible benchmark approaches. Our approach can obtain an optimal or near-optimal

(mostly within 0.1%) solution and reduce the computational time by up to three orders of magnitude.
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1. Introduction

Distributionally robust optimization (DRO) is a modeling framework that integrates statistical
information with traditional optimization methods (Scarf 1958, Delage and Ye 2010). Under this
framework, one assumes that the underlying joint distribution of random parameters runs in
a distributional ambiguity set inferred from given data or prior belief and then optimizes their

decisions against the worst-case distribution within the set.
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To solve different applications, researchers study the DRO under various distributional ambi-
guity sets. The ambiguity set plays a crucial role in connecting statistical information and opti-
mization modeling, providing a flexible framework for modeling uncertainties and incorporating
partial information of random parameters into the model, such as information from historical
data and prior belief. Moreover, the performance of DRO depends significantly on the distribu-
tional ambiguity set (Mohajerin Esfahani and Kuhn 2018). This paper focuses on moment-based
ambiguity sets, which include all distributions satisfying certain moment constraints. Examples
of such constraints include restricting all distributions to have the exact mean and covariance
matrix (Scarf 1958), bounding the first and second moments (Delage and Ye 2010), or placing
the first and second moments in a convex set (Ghaoui et al. 2003). Moment-based DRO has been
extensively studied because it may be more tractable than other ambiguity sets and has a wide
range of applications in industry, including but not limited to newsvendor problems (Gallego and
Moon 1993, Yue et al. 2006, Natarajan et al. 2018), portfolio optimization problems (Ghaoui et al.
2003, Goldfarb and Iyengar 2003, Zymler et al. 2013, Rujeerapaiboon et al. 2016, Li 2018, Lotfi
and Zenios 2018), knapsack problems (Cheng et al. 2014), transportation problems (Zhang et al.
2017, Ghosal and Wiesemann 2020), reward-risk ratio optimization (Liu et al. 2017), scheduling
problems (Shehadeh et al. 2020), and machine learning (Lanckriet et al. 2002, Farnia and Tse 2016).

Moment-based DRO model can be reformulated as a semi-infinite program (Xu et al. 2018),
which is generally intractable. Three approaches are mainly used to solve such a reformulation:
(i) the cutting plane/surface method (Gotoh and Konno 2002, Mehrotra and Papp 2014), by which
a solution is first obtained by considering a subset of the distributional ambiguity set and cuts
are then added iteratively until converging to an optimal solution; (ii) the dual method (Delage
and Ye 2010, Bertsimas et al. 2019), by which the inner optimization problem (e.g., a minimization
problem) is dualized and integrated with the outer optimization problem (e.g., a maximization
problem); (iii) the analytical method (Scarf 1958, Popescu 2007), by which the worst-case distri-
bution is obtained and its properties are analyzed. Among these methods, the dual method is the
most popular. Most literature focuses on convex reformulations of different moment-based DRO
problems, mainly including second-order cone programming (SOCP) (Ghaoui et al. 2003, Lotfi
and Zenios 2018, Goldfarb and Iyengar 2003) and semidefinite programming (SDP) (Ghaoui et al.
2003, Delage and Ye 2010, Cheng et al. 2014).

While SOCPs can be solved efficiently, SDPs still require significant computational time to
obtain an optimal solution when they have high dimensions (Burer and Monteiro 2003, Cheng
et al. 2018). Thus, it is of great interest to study efficient algorithms for solving SDPs in the con-
text of moment-based DRO. Besides generic methods (e.g., the interior point methods) that solve

the SDPs, two types of algorithms can speed up solving SDP reformulations of moment-based



DRO: low-rank SDP algorithms and dimensionality reduction methods. First, as the interior-
point method is intolerably time-consuming when solving high-dimensional SDPs, some studies
develop efficient low-rank algorithms by exploiting the low-rank properties of SDP constraints
(Burer and Monteiro 2003). These algorithms rarely have theoretical guarantees but are practically
efficient. Second, dimensionality reduction techniques stem from the field of statistics to represent
the data with the important information while omitting the trivial one. In the context of moment-
based DRO, such techniques can be extended to reduce the dimension of random parameters and
approximate the high-dimensional SDP reformulations using low-dimensional SDPs (Cheng et al.
2018, Cheramin et al. 2022), thereby reducing the computational time significantly.

However, both the general SDP algorithms and existing dimensionality reduction methods may
not perform well in the context of moment-based DRO. The general SDP algorithm aims to solve
more general SDPs and may fail to consider the specific structure of the moment-based DRO
models. The existing dimensionality reduction methods fail to consider the subsequent optimiza-
tion problems when reducing the dimensionality space. For example, Cheng et al. (2018) and
Cheramin et al. (2022) first use the PCA to choose the random parameters corresponding to the
largest eigenvalues and then solve the low-dimensional SDP problem with the chosen random
parameters. Such a sequential process may not provide an optimal solution of the original prob-
lem because the aim of leveraging data is to reduce the dimensionality space by focusing on only
the statistical information, rather than optimizing the subsequent SDP problems. Therefore, in this
paper, we integrate the dimensionality reduction with subsequent SDP problems, which leads to
an optimized dimensionality reduction (ODR) approach for moment-based DRO. This idea echoes the
recently emerging framework that integrates machine learning with decision-making (Bertsimas
and Kallus 2020, Elmachtoub and Grigas 2022). We summarize our contributions as follows:

1. We prove the low-rank property of SDP reformulations of moment-based DRO problems.
Specifically, we show that the ranks of matrices in SDP reformulations are less than the num-
ber of SDP constraints plus one.

2. Different from the PCA approximation approaches (Cheng et al. 2018, Cheramin et al. 2022)
that first reduce the dimensionality and then solve approximation problems, we integrate
the dimensionality reduction with the subsequent optimization problems and provide an
optimized dimensionality reduction approach.

3. With the ODR approach, we develop two outer and one inner approximations for the orig-
inal problem, leading to three low-dimensional SDP problems that can be solved efficiently.
More importantly, these low-dimensional approximations can achieve the optimal value of

the original high-dimensional SDP.



4. The low-dimensional SDP problems are nonconvex with bilinear terms and we develop mod-
ified Alternating Direction Method of Multipliers (ADMM) algorithms to solve them effi-
ciently. We apply the ODR approach and ADMM algorithms to solve multiproduct newsven-
dor and conditional value at risk (CVaR) problems. We compare our ODR approach with
three benchmark approaches: the Mosek solver, low-rank algorithm (Burer and Monteiro
2003), and PCA approximations (Cheramin et al. 2022). The results demonstrate that our
ODR approach significantly outperforms them in terms of computational time and solution
quality. Our approach can obtain an optimal or near-optimal (mostly within 0.1%) solution
and reduce the computational time by up to three orders of magnitude. More importantly,
our approach is not sensitive to the dimension m of random parameters, while the bench-
mark approaches perform much worse when m is larger.

The remainder of this paper is organized as follows. In Section 2, we review related literature.
In Section 3, we present the SDP reformulation of moment-based DRO problems. In Section 4, we
prove the low-rank property of the SDP reformulation and propose the first outer approximation
under the ODR approach, leading to the lower bound for the original problem. In Sections 5 and 6,
we provide the upper bound and the second lower bound for the original problem, respectively. In
Section 8, we perform extensive numerical experiments on multiproduct newsvendor and CVaR

problems. Section 9 concludes the paper. All proofs are presented in the Appendix.

Notation

We use non-bold symbols to denote scalar values, e.g., s and 73, and bold symbols to denote vec-
tors, e.g., x=(x1,..., x,l)T and q. Similarly, matrices are represented by bold capital symbols, e.g.,
A and Z, and the size of a matrix is indicated by r x ¢, where r and ¢ indicate the numbers of
rows and columns, respectively. Italic subscripts indicate indices, e.g., S, while non-italic ones
represent simplified specifications, e.g., Q,. We use Ep [-] to represent expectation over distribu-
where A and B

are two conformal matrices. For any matrix M, we use M > 0 (resp. M > 0) to indicate that it is

tion IP and use ” @ ” to denote the inner product defined by A e B = Y AijBij,
positive semi-definite (PSD) (resp. positive definite). Symbols ||-||, and ||-||, denote L1-Norm and
L2-Norm, respectively. For any integer number n > 1, we use [n] to denote the set {1,2,...,n}.
The identity matrix of size m is denoted by I,,. Symbols 0,, and 0, represent a zero vector of size
m and a zero matrix of size r X c, respectively. Symbols 1,, and 1,,. represent a one vector of size

m and a one matrix of size r x c, respectively.

2. Literature Review

We review related literature from four streams: moment-based DRO, dimensionality reduction,

low-rank SDP algorithms, and the integration of machine learning with decision-making.



2.1. Moment-based DRO

Extensive studies provide the theories and applications of moment-based DRO (see Rahimian
and Mehrotra 2019 and Lin et al. 2022 for detailed review). Scarf (1958) and Gallego and Moon
(1993) are among the first to introduce the moment-based DRO framework, under which they
consider fixed mean and variance of random parameters and analytically obtain the worst-case
distribution in the ambiguity set, thereby obtaining the analytical optimal solution. Ghaoui et al.
(2003) study distributionally robust portfolio optimization problem, where the value at risk (VaR)
is minimized against the worst-case distribution in the ambiguity set. The problem is reformu-
lated into an SOCP if the mean and covariance matrix are given and into an SDP if they belong
to bounded convex ambiguity sets. There are a series of follow-up studies (Delage and Ye 2010,
Li 2018, Lotti and Zenios 2018, Zymler et al. 2013). Among them, Delage and Ye (2010) consider
a general moment-based DRO framework with an ambiguity set considering the information of
support, mean, and covariance matrix, leading to an SDP reformulation. We consider the same

framework in this paper.

2.2. Dimensionality Reduction

To efficiently represent high-dimensional data, dimensionality reduction techniques are proposed
in the literature to maintain the important information from the data and omit the trivial infor-
mation. Principal component analysis (PCA) provides a high-quality representation of the data
with as much information as possible by maintaining the random variables with the largest eigen-
values (Abdi and Williams 2010). Several variants of PCA are further studied in the literature:
kernel PCA (Scholkopf et al. 1997), robust PCA (Candes et al. 2011), and scaled PCA (Huang et al.
2022). They are largely applied in the field of machine learning: independent component analysis
(Comon 1994), latent semantic analysis (Landauer et al. 1998), and locality preserving projections
(He and Niyogi 2003). As the PCA may still lose useful information, sufficient dimensionality
reduction is proposed to represent the information from the data using a linear combination of the
original random variables. A series of specific methods are studied in machine learning, such as
the sliced inverse regression (Li 1991), sliced average variance estimation (Li and Zhu 2007), prin-
cipal Hessian direction (Li 1992), and minimum average variance estimation (Yin and Li 2011).
These dimensionality reduction techniques are rarely used to support decision-making in math-
ematical optimization. Cheng et al. (2018) and Cheramin et al. (2022) are among the first to reduce
the dimensionality space of random variables that are modeled in a moment-based DRO frame-
work. They adopt the PCA to maintain the important random variables in the ambiguity set and
reduce the size of the subsequent SDP reformulation. However, they consider only the statistical
information and fail to consider the structure information of the subsequent SDP reformulation

when performing dimensionality reduction. We resolve this issue in this paper.



2.3. Low-rank SDP Algorithms

As the moment-based DRO model is reformulated as an SDP (Vandenberghe and Boyd 1996) in
this paper, SDP algorithms are important to solve it. Commercial optimization solvers (e.g., Mosek
and Gurobi) use the interior point method to solve SDPs. Although this method can converge
very fast (Helmberg 2002), its computation is very expensive. More importantly, as a general algo-
rithm, it does not exploit useful structural properties of the SDP constraints. To solve this issue,
Burer and Monteiro (2003) are among the first to propose low-rank algorithms (Lemon et al. 2016)
to solve general SDPs. Specifically, they analyze the low-rank property of the SDP constraints and
transform the convex SDP into a nonconvex optimization problem with a smaller size, which is
further solved by augmented Lagrangian methods. In addition, Yurtsever et al. (2021) consider
trace-constrained SDPs and show that the SDP constraints are weakly constrained, by which a
low-rank approximation is proposed and efficiently solved. Our paper solves an integrated opti-
mization problem that incorporates both the dimensionality reduction of random parameters and
SDP formulation, under which we also exploit the low-rank property of our formulation. Numer-
ical results show that our proposed ODR approach performs better than the low-rank algorithm

in Burer and Monteiro (2003).

2.4. Integration of Machine Learning with Decision-making

Bertsimas and Kallus (2020) summarize that many optimization problems have three primitives:
(i) data on uncertain parameters, (ii) auxiliary data on associated covariates, and (iii) a structured
optimization concerning decisions, constraints, and objective functions. Traditional approaches
first build machine learning models to perform parameter estimation and then solve the opti-
mization problem with the estimated parameters, while a good prediction may not lead to a
good decision. Thus, Bertsimas and Kallus (2020) and Elmachtoub and Grigas (2022) integrate the
parameter estimation with optimization problems. Similar ideas are reflected in early attempts
in Liyanage and Shanthikumar (2005) and See and Sim (2010) that solve inventory management
problems. More relevant applications are recently studied. For instance, Ban and Rudin (2019)
and Zhang et al. (2023) integrate feature data within the newsvendor problem; Liu et al. (2021)
integrate travel-time predictors with order-assignment optimization to provide last-mile deliv-
ery services; Kallus and Mao (2023) propose a new random forest algorithm that considers the
downstream optimization problem; Zhu et al. (2022) develop a joint estimation and robustness
optimization framework; Qi et al. (2023) and Ho-Nguyen and Kilin¢-Karzan (2022) provide an

end-to-end framework to integrate prediction and optimization.



3. SDP Reformulation

Given the distribution IP of a random vector ¢ € IR”, the following stochastic programming (SP)
formulation seeks an x € X C R” to minimize the expectation of an objective function f(x, {):

min Ep [f (x,8)]. 1

xeX
As the distribution IP is often unknown, we assume that IP belongs to a distributional ambiguity
set Dy constructed by statistical information estimated from historical data, and then minimize
f(x,&) against the worst-case distribution instead. It leads to the following DRO formulation:

min max Ep[f(x,§)]. (2)

xeX ]PEDMO

We consider moment-based statistical information (Delage and Ye 2010) is included in the set Dy

as follows:
P(leS)=1

Do (S,1,%,71,7) = 4P| (En (8]~ ) =7 (Bp (€] ~p) <m |
Er |[(E-m)(E—m)'| 2nL
which describes that (i) the support of ¢ is S, (ii) the mean of ¢ lies in an ellipsoid of size v,
centered at y, and (iii) the covariance of ¢ is bounded from above by 7,X, with y; >0, 7, > 1, and

L > 0. We perform eigenvalue decomposition on the covariance matrix X as follows:
1 1\ |
E=UAU" = UA! (UAE)

where U € R"*" is an orthogonal matrix and A € R"™*" is a diagonal matrix. Without loss of
generality, we assume that the diagonal elements of A are arranged in a nonincreasing order. By
letting ¢ = UA? ¢, + u, we can reformulate Problem (2) as:

Om(m) :=min max Ep, {f (x,UA%é,‘I +,u>] , 3)

xeX P1eDy

where
]PI (gl & SI) — 1

Dw (81/’71,’)’2) =P ]EPI {6;] IEJPI [61} <M ,
Ep, [glgl—r} = Yol
with S := {¢ € R" | UA?E, + p € S}. Similar to Cheng et al. (2018) and Cheramin et al. (2022),

we make the following assumption throughout the paper.

ASSUMPTION 1. Function f(x,§) is piecewise linear convex in ¢, ie., f(x,&) = maxj {y)(x) +
yi(x) "€} with yp (x) = (yi (x), ...,y (x)) " and y2(x) affine in x for any k € [K], and S is polyhedral, i.e.,
S={Z| AZ<b} with A€ R*" and b € R, with at least one interior point.



PROPOSITION 1 (Cheramin et al. 2022). Under Assumption 1, Problem (3) has the same optimal value
as the following SDP formulation:

Om(m) = min s+ L, e Q4+ /71]ql, (42)
x,5,A,q,Q

- T
s—y(x) — AMb—yi(x) u+ Al Ap % <q+ (UA%) (AT A, —yk(x))>

s.t. . T i 0/
% (q + (UAf) (AT/\k — yk(X))) Q
Vke[K], (4b)
M ERL, Vke K], xe X, (4¢)

where A = {A1, ..., Ak}, q € R™, and Q € R™™,

Although Problem (4) is a convex program when x is given, it can be difficult to solve because a
large m leads to high-dimensional SDP constraints at size m + 1. As such SDP constraints originate
from the covariance matrix X, early attempts in Cheng et al. (2018) and Cheramin et al. (2022)
exploit the statistical information X to address the computational challenge while maintaining
solution quality. Specifically, they adopt the PCA, a dimensionality reduction method commonly
used in statistical learning, to capture the dominant variability of UA? ¢; by maintaining the first

my (< m) components of ¢; and fixing its other components at 0; that is,
1 1
g% UAz2 [gr/ 0m7m1] + U= Um><mlA1%l1 gr + H, (5)

1
where ¢, € R™ and U, € R"™ and Aj, € R™*™ are upper-left submatrices of U and A,
respectively. That is, the m; components of ¢, corresponding to the largest eigenvalues are main-
tained as uncertain and the other components are fixed at their means. With a lower-dimensional

random vector § , we can have a relaxation of Problem (3):

O (my) = rxrg} ]gleagi Ep, [f <x, UmxmlA,ilgr +y>] , (6a)
where
P, (. €S)=1
DL (8, 71,72) = { P, | B [&] v ] < (6b)
Ep, |:§r§;r:| = Yol
with
S:={E eR" | U Ai g +peS). (60)

Meanwhile, the corresponding SDP formulation of Problem (6) has SDP constraints with smaller
size at m; 4+ 1 and can be solved more efficiently than Problem (4), leading to an efficient “PCA
approximation.” Specifically, Cheramin et al. (2022) show that the following PCA approximation

@M(m1)= mi{’l S+721m1 .Qr+\/')’71||qr“2 (7a)

X5,A,

qerr



.
1 T
s—y0(x) —A{b—y(x) T+ AL Ap ! (qr + (UmwA,%ﬁ) (AT A, — yk(")))
=0

1 T
] (qr + (UmxmlAfnl> (AT A, —yk(x))> Q:r

s.t.

7

Vk € [K], (7b)
AMeRL, Vke[K],xe X, (7¢)

where A = {A1,..., Ak}, @ € R™, and Q, € R™*™, provides a lower bound for the optimal value of
Problem (3) (i.e., Problem (4)). The PCA approximation that leads to an upper bound for the optimal
value of Problem (3) can be similarly derived. Hereafter, we call the problem whose optimal value
is a lower bound of the original Problem (3) as an outer approximation. In contrast, the problem
generating an upper bound is called an inner approximation of Problem (3).

However, relying on only the statistical information (i.e., dominant variability) to choose the
components and reducing the high-dimensional uncertainty space may not lead to the best
approximation performance. Although Cheramin et al. (2022) provide a performance guarantee
to bound the gap between the original and approximated objective values, it is difficult to close
the gap when reducing the dimensionality of ¢;. Such a difficulty is not surprising because main-
taining only the largest statistical variability in the PCA approximations does not capture the
optimality conditions of the original problems (e.g., Problem (3)). We provide an example as fol-
lows to illustrate that choosing the components of &, corresponding to the largest eigenvalues can

be even worse than choosing the components corresponding to the least eigenvalues.

EXAMPLE 1. Given x € X, we consider the CVaR;_, of a cost function g(x,¢) formulated as the

following optimization problem (Rockafellar and Uryasev 2000):

mmt—i—l]E]p[g( & -1,

teR
where « € (0,1) is a risk tolerance level and function [-]* := max{0, - }. For brevity, we let g(x, &) =
XTE X = {xeRY | Tz =1}, D= {P| P eS) =1, Eslg] =, Esl( —w)(& — )] <E},
§ is compact, and p is in the interior of S. The distributionally robust counterpart of the above
CVaR problem can be formulated as

1
min max min f+ IE]P[ (x,&) —t]"
x€X PeD teR

= min maxt—l—llE]p[g( L&) — 1", 8)

xeX, teR PeD
where the equality holds by the Sion’s minimax theorem (Sion 1958) because t +
(1/a)Ep[g(x,&) — t]* is convex in f, concave (specifically, linear) in IP, and D is compact. By

Proposition 1, Problem (8) has the same optimal value with the following SDP formulation:

min s+1,eQ (9a)

x,5,t,A1,
A2,94,Q
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s—t—Ab+A[Ap 3 q+<UA%)TAT/\1)T
) o
(et () et (a0 () |
X c
o we ) e

XEX, tER, A €RY, M eR,.

s.t. =0, (9b)

100
Leta=005S={CeR®|0<¢ <21<&<32<8&<4},u=[1,23,x= [030] with eigen-
002

values 1, 3, and 2. Solving Problem (9) gives the optimal value 2 with ¢t = 2. When we follow
Cheng et al. (2018) and Cheramin et al. (2022) to perform PCA approximation over Problem (8)
by capturing only one component of the three components in ¢, we observe the following:
¢ Choosing the components corresponding the largest and second largest eigenvalues 3 and 2,
respectively, the PCA approximations both give the optimal value at 1 with t =1.
¢ Choosing the component corresponding the least eigenvalue 1, the PCA approximation gives

the optimal value at 2 with t = 2.

Example 1 shows that performing dimensionality reduction (i.e., from ¢ to g,) using the compo-
nents with the largest variability may not produce a good optimal value from the subsequent PCA
approximation (i.e., an SDP) and it can be even worse than using the components with the least
variability. To solve this issue, we integrate the dimensionality reduction with the subsequent
approximation in the following sections, leading to an optimized dimensionality reduction (ODR)
approach. Correspondingly, we obtain efficient lower and upper bounds in the following Sections

4-6 and more importantly, the bounds can achieve the optimal value of the original Problem (3).

4. Lower Bound

We extend the dimensionality reduction method (i.e., PCA) in (5) by introducing a decision vari-

able B within a certain set B,,, € R"*™ such that
E=UAZE +p~UABE, +p, (10)

where B will be optimized in the subsequent PCA approximation, i.e., optimized dimensionality
reduction. Note that when B = {O(m}Z’f)anl], (10) reduces to (5). By adopting (10), when we still
reduce the dimensionality space from m to m;, we allow B¢, to take linear combinations of the
original components of ¢, instead of taking only the components corresponding to the largest
eigenvalues. Therefore, we would like to choose a good (even an optimal) B to obtain a better

lower bound for Problem (3) than Problem (7).
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Given any m; € [m] and B € B,,,, we obtain a relaxation of Problem (3) by extending Problem
(6). If the relaxation provides a lower bound for the optimal value of Problem (3), then we may
choose the best B € B3,,, such that we obtain the largest possible lower bound. Thus, we build the
following integrated dimensionality reduction and optimization problem:

O (m;) = max min max Ep, {f (x, UA%BQ‘r —l—y)] , (11)

BeBm1 xeX PreDy

where Dy is defined in (6b) with

S, = {fr ceR™

UA%BgrﬂteS}. (12)

To ensure Problem (11) provides a lower bound for the optimal value of Problem (3), we need
to guarantee that B¢, should maintain partial or all information of ¢; while not introducing addi-
tional statistical information. That is, the distributional ambiguity set of B¢, should be contained

in that of ¢, i.e., Dy. It follows that

P(BE. €8) =1, (13a)
Ep[(BE,)'|Ep[BE,] = Ep[¢|(B'B)Ep[Z,] <71, (13b)
]E]P [Bgr(Bgr)T] = BIE]P[grg:]BT j ')/zlm- (13C)

Comparing the representation of D;, with (13), we define B,,, := {B € R™*"™ | B'B = L, } and
will show that Problem (11) provides a lower bound for Problem (3) under this definition (see
Theorem 1). Before presenting this theorem, we prepare the following two lemmas.

I, B

LEMMA 1. When B € R™*™, the following three constraints are equivalent: (i) [BT I
my

L, and (iii) BB < 1,,,.

} >0, (i) BBT <

Lemma 1 shows that both BB' <1,, and B'B < I,,, can be reformulated as an SDP constraint
B”% 1}31] = 0. Although this SDP constraint has a high dimension at m + m;, it is very sparse and
usually does not create additional computational challenges.

LEMMA 2. For any matrix V.€ R™" and symmetric matrices X € R™" and Y € R"™*™, we have: (i) If
X =Y, then VIXV = V'YV; (ii) If n = m and V is invertible, then X =Y is equivalent to VT XV =

VYV.

Lemma 2 shows that a PSD matrix (e.g., X — Y) remains PSD if it is pre-multiplied by an arbi-
trary matrix with appropriate dimensions (e.g., V') and post-multiplied by this arbitrary matrix’s
transpose (e.g., V). Furthermore, if this arbitrary matrix is invertible, then the original PSD matrix
is equivalent to the matrix after the pre-multiplication and post-multiplication. With Lemmas 1

and 2, we are now ready to present the following theorem.
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THEOREM 1. The following three conclusions hold: (i) Problem (11) provides a lower bound for the optimal
value of Problem (3), i.e., Op(my) < Oy (m) for any my < m; (ii) the optimal value of Problem (11) is
nondecreasing in my, i.e., Op(my) < Op(my) for any my < my < m; and (iii) when my = m, Problem (3)

and Problem (11) have the same optimal value, i.e., O (m) = Oy (m).

Theorem 1 shows that we obtain a lower bound for the optimal value of Problem (3) when
reducing the dimensionality space of ¢, while optimizing the choice of B € B,,, in Problem (11). When
the reduced dimensionality (i.e., 1) is higher, we obtain a better lower bound. We maintain the
optimal value of Problem (3) if the dimensionality space is not reduced (i.e., m; = m). Note that the
conclusions in Theorem 1 are similar to Theorem 2 in Cheramin et al. (2022), both demonstrating
the validity of dimensionality reduction in solving the moment-based DRO problems. However,
here by optimizing the choice of B € B,,,, Problem (11) provides a better lower bound than Prob-
lem (6) (i.e., the PCA approximation in Cheramin et al. 2022) does because the latter problem is
a special case of the former problem. More importantly, we may expect to close the gap between
O (m;) and Oy (m) when we choose a small ;. To that end, we follow the PCA approximation

(7) to reformulate Problem (11) as the following SDP formulation:

O (m;) = max O(my,B), (14)
BEBWL]
where
O(m, B) := min s + 72l ¢ Qe + v/ 71l (15a)
X,S,A,
qr,Qr
0 T T T 1 1) (AT !
t S—YR(X) = A b—yp(x) ' m+ AL Ap 2<qr+(UA2B) (A /\k—yk(x))) o
s.t. T =0,
3 (qr + (UA%B) (ATA — yk(x))> Q:
Vk € [K], (15b)
x€X; A={Ay,..., Ak}, A €RL, VK€ [K]; qr € R™; Q, € R, (15¢)

Now we would like to find a m; < m such that ®(m;) in Problem (14) is close (even equal)
to Oy (m) in Problem (4). Note that, if ©r(m;) = Oy (m), then comparing the SDP constraints
between (4) and (14) shows that the rank of Q in the optimal solution of Problem (4) can be smaller

than m. Specifically, we have the following conclusion holds.

THEOREM 2. Consider K < m and any optimal solution (x*,5,A",q", Q") of Problem (4) with S, =
s* —y)(x*) — AL b — y(x*) T + A A for any k € [K]. We can always construct another opti-
mal solution (x*,s*,/i*,q’, Q') of Problem (4) such that rank(Q’) < K, q' =V, Q' = VY, V', and
(UA%)T(AT)L,’; —ye(x*)) = Vv, forany k € [K], where Yy, € RK*K, Y, =0,V = [vy, Vk € [K]] € R™*K
with orthonormal vectors vy € R™, § € RX, and v, € R for any k € [K].
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As K is the number of pieces formulating the piecewise linear function f(x, ¢), Theorem 2 shows
that the rank of Q' that optimizes Problem (4) can be small. Note that when K > m, we have
rank(Q’) < m < K, thereby no need to consider this case in Theorem 2. Therefore, given any m; €
[m] and B € B,,,, the rank of the optimal Q, in Problem (15) may also be small. With an optimized
B € R™*™ in Problem (14), we then would like to choose a small m; and find a B € B,,, such that

Oy (m;) can be close to ®y(m). Specifically, we have the following conclusion holds.

THEOREM 3. Consider the optimal solution (x*,s*,A",q,Q’) of Problem (4), Sy(Vk € [K]), V, &,

vi(Vk € [K]), and Y1, that are defined in Theorem 2. When my > K, there exists a feasible solution B* =

[V,C] in Problem (14) with C € R™"~X and [V,C]"[V,C| = L, and given this B*, there exists a
: ; bk ot _ax AT 3% 45T T T O _ Y11 Ok (1my —K) .

feasible solution (x" =x*,s' =s",A =A ,q;=(d ,0,, ), Qf = [O(M]_mK U(W]—K)x(m1—l<):|) in Problem

(15) such that the corresponding objective value equals the optimal value of Problem (4), @y (m).

Theorem 3 shows that we may reduce the dimensionality space of the random parameters from
m to K while maintaining high-quality solutions. Meanwhile, when m; > K, we can always find a
feasible solution of Problems (14) and (15) such that the corresponding objective value is equal to
the optimal value of the original Problem (4). More importantly, the SDP constraints in Problem
(14) have smaller sizes (i.e., m; + 1) than those in Problem (4) (i.e., m + 1), potentially reducing
computational challenges because K is usually small (e.g., K = 2 in the distributionally robust
CVaR problem in Example 1). We used to conjecture that this constructed feasible solution is an
optimal solution of Problems (14) and (15) such that the optimal value of Problem (14) is equal to
the optimal value of Problem (4) when m; > K. Most numerical experiments (see Section 8) show
this conjecture may be correct, but we find a counter-example.

Now we provide an example as follows to illustrate that the optimal value of Problem (15) with

B = V is strictly less than the optimal value of Problem (4), which means that the constructed

X
0
0
ol
1

feasible solution (B = V) is not optimal.

EXAMPLE 2. We consider an instance of Problem (4), where m =n=4, v, =1, v =2, A

0
0
b=0,u=1,E=1L, K=3y)(x) =0 (Vk € [K]), yx(x) = Wix (Vk € [K]) with W, = |§ 0§
0

1
OO O
[Nl N}

0000 0000
W, = |:8égg],andw3 |:88(1)8],and/'\,’{XE]R4x1x3x41,x2€{7,1}},thenProb-
0002 0001

lem (4) becomes

{s —x Wiy 3(q- Wk"q =0, ke [K]} - (16)

i +2I +
me{s m®Q+1ql, %(q_wkx) Q

x€X,s,q,
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Solving Problem (16) gives the optimal value 59882 with x = [1,1,1,1]", Q =
0.0911 —0.0558 —0.0354 —0.0558

—0.0558 01115 —0.0558 0.1115 _ . .
00354 —0.0558 00911 —0.055s | - and rank(Q) = 2. By Theorem 2, we can correspondingly obtain a

—0.0558 0.1115 —0.0558 0.1115
0.7071 —0.5774 —0.1543

feasible V = 8 0'507 74 _099";%26 . Now given m; = K =3 and B =V, Problem (15) becomes

0.7071 0.5774 0.1543

X€X,8,qr,Qr

TwT 1 T T

i 21 e+ llar s=x'Wily (@ =V'Wex) | g vyrel.  ar
min {S-I— m; @ Qr + [|qrll, E (qr_VTWkX) 0, = K] (17)
Solving Problem (17) gives the optimal value 5.1139 with x = [1,—7,1,1]". That is, the optimal

value of Problem (15) with B = V is strictly less than the optimal value of Problem (4).

Theorem 3 and Example 2 show that while the optimized dimensionality reduction maintains
very high-quality solutions (mostly the optimal solutions as shown in our later numerical exper-
iments in Section 8), we may still potentially lose some useful information that achieves the opti-
mal solution of the original problem. To resolve this issue, we will also derive an upper bound
and a new lower bound for the optimal value of the original problem in the later sections.

Note that Problem (14) is a nonconvex optimization problem due to the max-min operator.
That is, we develop a low-dimensional nonconvex optimization technique to solve the original
high-dimensional SDP problem, which can be significantly difficult to solve because of the large
sizes of SDP matrices. To further efficiently solve Problem (14), we first reformulate it into a bilin-
ear SDP problem (see Proposition 2) under the following assumption and then propose efficient

algorithms (see Section 7) to solve it.

ASSUMPTION 2. The set X is convex with at least one interior point. More specifically, we consider the
convex set X in a generic SDP form: X = {x e R" | ¥, (Aix;) + Ay = 0}, where A; € R™ for any
ie€{0,1,...,n} and some T > 1.

We use a;x + aj; (Vi € [7],j € [7]) to denote the elements of the matrix }I_; (Aix;) + Ao, where
a; € R". We let y)(x) = wix + d} and yi(x) = (wix +d}, ..., wi'x +di') " = Wix + d; for any k €
[K], where (w})" € R" foranyi € {0,1,...,m} and k € [K], W, € R™*" for any k € [K], and d;, € R”
for any k € [K]. The following proposition holds.

PROPOSITION 2. Under Assumption 2, Problem (14) has the same optimal value as the following bilinear
SDP formulation:

K 1 T T T
Oy (my) = max ) (tkdg + (tkyT +p (UAE B) ) dk> -Y Zz,-ja?j (18a)
b PP VKEK], 1 2 i=1j=1
ZB
K

K K
s.t. 1—21‘]{:0,\/%— Zpk
k=1 k=1

>0, 7ol — Y P =0, (18b)
2 k=1
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.
t (Ap—b)" +p; (UAZB) AT <0, vke K], (18¢c)
a 0 T T 1o\ ok
Y (tkwk + <tky + py (UA7B> >Wk> =Y ) zja; =0, (18d)
k=1 i=1j=1

ey | TB= -

[pk i | =0, ke K], BTB=1,, 220, (18¢)

where pr € R™ (k € [K]), P, € R"*™ (k € [K]), Z € R™", B € R™™, and z;; is the element of the
matrix Z. In addition, Z is the dual variable of the constraint Y ;| (A;x;) + Ao = 0 in X and Lt)’; 1;,’{ }
(Vk € [K]) are the dual variables of constraints (15b).

As solving Problem (18) may not provide the optimal value of Problem (4), we further quantify
the gap between the optimal value of Problem (18) (i.e., Problem (14)) and the original Problem
(4) (i.e., Problem (3)) and show that this gap is bounded from above by a constant, as shown in
the following proposition.

PROPOSITION 3. Given any my € [m] and B' such that (B')"B' = 1,,, we use (x*,s",A",q:,Q?)
to denote an optimal solution of Problems (14) and (15). We let P = 2511(72/4)1,,1 oM, and S =
min{Sy, Vk € [K]}, where
M, = (B’q: +(uat) (a2 - yk(x*))) (B'q: +(uat) (a2 - yk(x*))>T, vk e [K],
Sk=s"—y(x*) = AL b—ye(x*) 'u+ AL T Ap, Yk € [K].
Then, it holds that
0 < @Opm(m) — O (my) < gﬂ{ﬁ_ko} +(2VP =S /5 gy

Proposition 3 shows that, without solving the original Problem (4) that could be difficult to
solve, we can obtain a theoretically guaranteed high-quality solution after solving Problem (14),
which has a much smaller size than Problem (4). That is, the gap between the original optimal
value and the lower bound is bounded by a constant. In the next section, we will further develop

an upper bound for the optimal value of Problem (4) while closing the gap between them.

5. Upper Bound

We develop an inner approximation for Problem (3) by relaxing the second-moment constraint
in Dy while optimizing the choice of components in ¢; to be relaxed, leading to the best possi-
ble upper bound for the optimal value of Problem (3). Specifically, given m; € [m], we build the

following optimized inner approximation of Problem (3):

Ou(m;) := min O(my,B), (19)
BeBm1
where
— . 1
®(my,B) = min I[r’gapﬁ Ep, [f (x,UAzé,'I —i—,u)} (20)
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with
]PI (gl S 51) - 1

Dy(S,71,72) = { Py | Ewy [CIT } Ep, [51} <m \. (21)
Ep, [BTglng B} <7l

The second-moment constraint in Dy is relaxed from Ep, [(:,‘I(';,‘IT | < 721, Intuitively, the feasible
region defined by the ambiguity set Dy is larger than that by Dy. Therefore, we have several

conclusions based on this new ambiguity set Dy.

THEOREM 4. The following three conclusions hold: (i) Problem (19) provides an upper bound for the
optimal value of Problem (3), i.e., ®y(my) > Ow(m) for any my < m; (i) the optimal value of Problem (19)
is nonincreasing in my, i.e., @u(my) > Oy(my) for any my < my < m; and (iii) when m,; = m, Problem

(19) and Problem (3) have the same optimal value, i.e., @y(m) = Oy (m).

Theorem 4 shows that Problem (19) provides a valid upper bound for the optimal value of

Problem (3), ®\(m), and the upper bound is closer to ®y(m) if less information is relaxed in Dy.

PROPOSITION 4. Under Assumption 1, Problem (20) has the same optimal value as the following SDP

formulation:
O(my,B) = min s+ 721, ¢ Qr + v/71 [lall, (22a)
X,S,A,
9,04
0 T T T 1.7
st. {S —YR() = A b=y () T+ A Ap o juf ] =0, Vk € [K], (22b)
Ug r
-
q+ (UA%) (AT)\k - yk(x)) — Buy, Vke [K], (220)
xeX, qeR", Qe R"™M*™, (22d)
/iI {/\1,...,/\1(}, Ak E]RL, = {ul,...,uK}, uy Elle, Vk e [K] (226)

Proposition 4 shows that Problem (19) can be updated by replacing its inner optimization Prob-

lem (20) with Problem (22). With the updated Problem (19), we have the following conclusion.

THEOREM 5. Consider the optimal solution (x*,s*,i*,q’, Q') of Problem (4), Sx (Vk € [K]), V, J, Y11,
and vy (Vk € [K]) that are defined in Theorem 2. If my > K, then @y (m;) = Oy (m). Specifically, when
my = K, there exist optimal B =V and Q, = Y1y in Problem (19) such that ©y(m;) = @, (m;, V).

Theorem 5 shows that when m; > K, the optimal value of Problem (19) is always equal to the
optimal value of the original problem, ®y(n). We may interpret the insights as follows. Com-
paring the inner-approximation Problem (19) and the original Problem (3), we can notice that
they differ only in the second-moment constraints in their ambiguity sets. When m; = K, we

relax the original second-moment constraint from Ep, [&,& | < 721, to BTEp [&& |B < 71,1k with
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B € Bk. That is, this relaxation eventually does not lead to a different optimal value. Specifically,
under a worst-case distribution IP| generated by solving Problem (3), we have IE]pf« [g',‘I{,‘IT | 2 7121,
may be equivalent to B"Ep; (€& ]B < 7,I. Such equivalence largely depends on the property
provided by Theorem 2, which states that the rank of an optimal solution of Q of Problem (4)
is not larger than K. Note that the variable Q in Problem (4) is a dual variable with respect to
the second-moment constraint Ep, [&& ] < 7,1, indicating that the rank of Ep: [€,&] may not be

large. Specifically, we have the following proposition holds.

PROPOSITION 5. For any PSD matrix X € R"™™ such that rank(X) < m; < m, we have the following
equivalence holds:

X=1, < B'XB=1I,, VB€B,,.

COROLLARY 1. For any PSD matrix X € R™*" and rank(X) < my < m, there exists a B € B,,, such
that X < 1, is equivalent to BTXB < 1,,,.

In the context of solving Problem (3) and its inner-approximation Problem (19), Proposition 5
and Corollary 1 show that there exist a worst-case distribution IP; € Dy such that the rank of
Ep; [€,&] is not larger than K and an optimal solution B* € B,, such that Ep; [E& ] = 7.1, is
equivalent to (B*)"Ep; [£,& |B* < 12Ik. As such, even when we use a relaxed second-moment

constraint, Problem (19) with m; > K does not lose the optimality.

6. Lower Bound Reuvisited

Given that Problem (19) with m; = K maintains the optimal value of the original Problem (3), we
can further perform dimensionality reduction based on Problem (19) as we do in Section 4, thereby
obtaining a new lower bound for the optimal value of Problem (3). Specifically, we consider K < m

and recall that Bx = {B € R"*¥ | B'B = I }. Given any m; € [K], we consider

i mip g B [f (v UATZ ) @)
with
P;(&es)=1
Fu 6] nfg] <.
DLZ(SII,YlI,)/Z): P, ]EIPI BlrglngBl j’)’zlml ’
Ep, | B3 &8 Ba| = 0(k ) (k)

B = [By,B;], B, € R™™, and B, € R™(X=™), To obtain the above ambiguity set Di,, we
shrink the ambiguity set Dy of Problem (19) by replacing the second-moment constraint
IEIPI [BTglngB] j ')’21[( with IEIPI [Birglgl—rBl] j ’)/ZIm] and IEIPI [B;gIgITBz] j O(Kfml)X(Kfml)- The con-

straint [Ep, (B, @'IQ‘IT Bs] =< 0(k—m;)x(k—m,) implies that we project the random vector ¢, to the space
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spanned by B, and the second-moment value of the projected random vector is fixed at 0. By
doing so, we may slightly lose some information to characterize the distribution IP;, but we can
obtain a formulation with an even smaller size than Problem (19) and maintain high-quality solu-

tions. Specifically, the following theorem holds.

THEOREM 6. Under Assumption 1, by dualizing the inner maximization problem of Problem (23), we
obtain the following SDP formulation:

Ora(my) = mi? s+ 72l ¢ Qr + /71 llall (24a)

X,S,A,
q/Q;/ﬁ//ﬁ//’
BerZ
0 T T T 1/../\T
st {S “UO)mAebmy() T A Ar (W) ke k], (24b)
2% Q;
.

q+ (UA%) (ATAk - yk(x)) — Byu, + Byu!/, Vk € [K], (240)

x€X, q€R™, Q. R™*™, (244d)

By € R™™, B, € R™*(K=m) [B;,B,]" By, By =1, (24e)

A={Ay,.., Ak}, M eRL, V€ [K], (24f)

o' ={ul,..., ug}, up e R™, Vk € K], (24g)

o ={uf,...,uf}, uf e RE"™ vk e [K]. (24h)

In addition, the following three conclusions hold: (i) Problem (24) provides a lower bound for the optimal
value of Problem (4), i.e., Ora(my) < Ou(m) for any my < K; (ii) the optimal value of Problem (24) is
nondecreasing in my, i.e., Or,(my) < Orp(my) for any my < my, < K; and (iii) when my; = K, Problem (24)

and Problem (4) have the same optimal value, i.e., O (K) = Oy (m).

Recall that the lower bound provided by Problem (14) may not achieve the optimal value of
the original Problem (4) when reducing the dimensionality to K. However, the new lower bound

provided by Problem (24) achieves the optimal value of the original problem when m; = K.

7. Efficient Algorithm

In Sections 4-6, we provide two outer approximations (i.e., Problems (18) and (24)) leading to
lower bounds for the optimal value of Problem (3) and an inner approximation (i.e., Problem
(19)) leading to an upper bound. Although these approximations have matrices with smaller sizes
than the original problem (i.e., Problem (4)), they are nonconvex with bilinear terms. We derive
the Alternating Direction Method of Multipliers (ADMM) based on Hajinezhad and Shi (2018) to

solve them efficiently.

Consider the following nonconvex optimization problem with bilinear terms:

min {$(X,Y,2) = £(2) + 1 (X) + ra(Y) | Z=XY}, (25)
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where X € RPK, Y € RK*Q, and Z € RP*9, and the augmented Lagrangian for Problem (25):

L0 (Y;(X,Z);A) = F(Z) +11(X) + 12(X) + A e (Z = XY) + |z~ XY}
where A € R"*? represents a matrix with the Lagrangian multipliers, p > 0 is the penalty param-
eter, and || - || represents the Frobenius norm. When both r;(X) and r,(Y) are convex functions,
Hajinezhad and Shi (2018) derive the following ADMM Algorithm 1 and show that any limit
point of the sequence generated by Algorithm 1 is a stationary solution for Problem (25) under

certain assumptions (i.e., Assumption A in Hajinezhad and Shi 2018).

Algorithm 1 Generic ADMM for Problem (25)

Initialize: Y0, A°
Repeat: update (X,Z),Y and A alternatingly by

(X,Z)"! = argmin £ ((x,z);yf,A") ;
(x2)
Yt = argmin £, (Y; (x,z)f“,Af) ;
Y
AT = AT 4 (Zi+1 _ xi+1Yi+1>

Until Convergence.

Based on Algorithm 1 and its convergence property, we derive detailed ADMM algorithms
for Problems (18) and (24) (i.e., lower bounds) and Problem (19) (i.e., upper bound), leading to
three ADMM algorithms. Because (i) these algorithms are similar and all converge to stationary
solutions and (ii) the formulation for Problem (19) is simpler than those for Problems (18) and

(24), we only introduce the algorithmic details for solving Problem (19) thereafter.

7.1. ADMM for Problem (19)

Recall that Problem (19) is formulated as follows:

Oy(my) = Bmifk s+ 72lm, « Qr + /71 l4]l» (26a)
X,8,A,
q,Q:, 0
_ 4,0 T T T 1..T
st {S YO = A b = ye(x) 4 Ay Ap Z“k} 0, Vk € [K], (26b)
juk r
.
q+ (UA?) (ATA—yel(x)) = Bug, vk € K] (26¢)
x€X,B'B=1I,, BER™™, qcR", Q, ¢ R™*™, (26d)
A={AL,.. Ak}, A €RL, a={uy,...,ux}, up € R™, Vk € [K]. (26¢)

Note that B'B = 1,,, is a nonconvex constraint. When performing the ADMM algorithm, we
have to solve a nonconvex optimization problem in each iteration. To solve this issue, we intro-
duce iy = By, for any k € [K], C =B, and B = C'B, and rewrite Problem (26) as follows:

Oy(m) = ;ncir;;l s+ 72l @ Qr + /711 1qll2 (272)
x5,4,Qr,

Ak,uk,ﬁk,VkG [K]
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st [s ~IR00 = A¢b —y() Th o+ Ay Ap 5“;} =0, vke[K],  (27b)
jl}lk T
.
a+(UA?) (ATAk—ye(x)) =, Vk € [K], (27¢)
x€X, B=1,, A, €RY, Vk€ K], (27d)
iy =Bu, Vke [K], C=B, B=C'B, (27¢)

where u; € R™, i, € R",Vk € [K], q € R", Q, € R"*™, B € R™"™, C € R™™, and B € R™*™,

We then consider the following augmented Lagrangian function for Problem (27):
EU (B,‘ X,S,q, Qr, /\k, ﬁk,uk,Vk S [K],C, B,‘ ﬁk,Vk € [K]rAUerUZ)

K
=5+ 7oL, Qr + v all + Y (B (8~ Buy)) + Aur e (B~ C'B) + Auo e (C—B)
k=1
- P T P 2.0 2
+ Y 8 (e~ Bug) T (s — Bug) + 5 HB - CTBHF + I~ BIF +1(@7b) - 27d),
k=1
where B, € R" (Vk € [K]), Ay € R"™*™, and Ay, € R™™ are Lagrangian multipliers, p >
0 is the penalty parameter, and 1((27b) — (27d)) is an indicator function that takes 0 if

(B,C,B,x,3,q,Q;, A, uy, iy, Vk € [K]) satisfies constraints (27b)—(27d) and takes +co otherwise.

Algorithm 2 ADMM for Problem (27)

Initialize: B?, 8),Vk € [K],AY;, A,
Repeat: update (x,s,q, Qr, Ay, @iy, ug, Vk € [K],C,B) ,B and (B, Vk € [K], Ay1, Av) alternatingly by

(5,9, Qr, Ay, iy, u, Vk € [K], C,B)"

= argmin Lu (%5,9,Qr, M g we, ¥k € [K], C,B; B, (B, ¥k € [K], Aut, Awa)') (28)
(%5,9,Qr Ay, i uy, VkE[K],CB)
B —argmin £y (B; (x5,q,Qr, A G, we, ¥k € [K],C,B), (B, Vk € [K], Aut, Awa)') (29)
B

;’{+1 —Bi+p (ﬁ;‘{ﬂ _ Bi+1u;‘(+1) , Vke[K],

Agll _ A{n +p (giﬂ _ (Ci+1)TBi+1) ) Agzl _ A{J2 +p (Ci+1 _ Bi+1)

Until Convergence.

Following the framework of Algorithm 1, we design Algorithm 2 to solve Problem (27). We
initialize B’ = [O(n:;’;)xml] based on the PCA approximation in Cheramin et al. (2022). In this algo-
rithm, because of the newly introduced variables iy, Vk € [K], C, and B, in each iteration, we have
Problem (28) is a low-dimensional SDP problem and Problem (29) is a convex quadratic program.
Thus, Algorithm 3 can be performed efficiently. Meanwhile, similar to Algorithm 1, the following

convergence property holds.

PROPOSITION 6. Consider Algorithm 2 for solving Problem (27). We have that any limit point of the
sequence generated by Algorithm 2 is a stationary solution for Problem (27).
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7.2. A New ADMM for Problem (26)

Although Algorithm 2 has an appealing convergence property, it may generate a solution stuck in
a local optimum because we may quickly obtain a local solution C = B without further improve-
ments. Here we would like not to rewrite the nonconvex constraint B'B = I,,, and decide to solve
a nonconvex optimization problem in each iteration of a new ADMM algorithm. Specifically, we

only introduce @, = Bu, for any k € [K] and rewrite Problem (26) as follows:

Om(m) = angian s+ 72lm, @ Qr + /711 l4ll2 (30a)
At g VkE K]
s—y0) = A b=y () Tp+ AL Ap fuf
s.t. k k k 2% | =0, Vke K], (30b)
zuk Q;
.

q+ (UA%) (ATAk - yk(x)) =@, Yk € [K], (30¢)

x€X,B'B=1I,, BER™"™, qcR", Q, e R™*™, (30d)

Ay €RL, up € R™, @ € R™, Vk € [K], (30e)

i = Buy, Vk € [K} (30f)

We consider the following augmented Lagrangian function for Problem (30):

[’UZ (Br X/S/qur/Akrﬁk/ukrVk S [ ] ﬁk/vk € [ ]) =s+ ’)/217’”1 i Qr + m'quZ
K
+ 2 (,B]—cr (flk — Buy ) + 2 llk — Buk (uk — Buk) +1 ((30b) — (306)) ,
k=1
where B, € R" (Vk € [K]) are Lagrangian multipliers, p > 0 is the penalty parameter, and 1((30b) —

(30e)) is an indicator function that takes 0 if (B, x,s, q, Q;, Ak, Tix, ux, Vk € [K]) satisfies constraints

(30b)—(30e) and takes 4o0 otherwise.

Algorithm 3 ADMM for Problem (30)

Initialize: B, 8),Vk € [K]
Repeat: update (x,s,q, Qr, Ay, @y, ug, Vk € [K]), B and B, (Vk € [K]) alternatingly by

(x,5,q, Qr, Ay, iy, wy, Yk € [K])™

= argmin Luz (X/S, Q. Qr, Ay, Ty, vy, Vk € [K]; B, ﬁf(,Vk IS [K]) ; (31)
(%,5,9,Qr A, Gig,ug, Vke [K])
Bitl — argmin Ly (B; (x,5,9,Q:, Ag, iy, wy, Yk € [K])' ™, BL,Vk e [KD ; (32)

1+1 ﬁk"'p <~t+1 Bz+1 z+1> Vke[ ]

Until Convergence.

Now we design Algorithm 3 to solve Problem (30). We initialize B’ = [0 Ty } based on the

(m—mq)xmq

PCA approximation. In this algorithm, Problem (31) is a low-dimensional SDP problem, while,
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different from Problem (29) in Algorithm 2, Problem (32) is a nonconvex optimization problem.
We note that Problem (32) has the same optimal solution with the following problem:

K
max )  (B,u + ptisu, ) e B. (33)

BTB=In; (=1

Considering a similar problem maxgrg_;, Se®BwhereS € R"*" and § = UsZsV{ by the singular
value decomposition (SVD), Eldén and Park (1999) show that the optimal solution B* = UgVy{.
Now by letting Yr ,(B,u] + piru; ) = UyEZy VY, we can easily obtain the optimal solution of
Problem (33) (i.e., Problem (32)) as B* = Uy V{,. Therefore, although Problem (32) is nonconvex, it

can be solved extremely easily, by which Algorithm 3 can be performed efficiently.

8. Numerical Experiments

We perform extensive numerical experiments to demonstrate the effectiveness of our ODR
approach in solving two moment-based DRO problems: multiproduct newsvendor and CVaR
problems. The mathematical models are implemented in MATLAB R2022a (ver. 9.12) by the mod-
eling language CVX (ver. 2.2) and solved by the Mosek solver (ver. 9.3.20) on a PC with 64-bit
Windows Operating System, an Intel(R) Xeon(R) W-2195 CPU @ 2.30GHz processor, and a 128 GB
of memory. The time limit for each run is set at 2 hours. In Section 8.1, we specify the proposed
inner and outer approximations under the ODR approach in the context of the multiproduct

newsvendor and CVaR problems. In Section 8.2, we report and analyze all the numerical results.

8.1. Numerical Setup

In the deterministic multiproduct newsvendor problem, we consider m products and the demand
for each product i € [m] is ¢;. Given the wholesale, retail, and salvage prices: ¢ € R, v € R”, and

g € R", respectively, we decide an ordering amount x € R”! to minimize the total cost

flg)=c"x—v min{x g} —g" x=¢" =(c—v) x+(v-g) x-g"
:max{(c —v) ' x(c—g) x+(g— v)Tg}.
Note that this piecewise linear function f(x, ) has only two pieces, i.e., K= 2. When the demand

¢ is uncertain and its probability distribution belongs to a distributional ambiguity set Dy as

defined in Section 3, we obtain the following DRO counterpart:

Igﬁlpré‘z%ﬁo Ep [max{(c —v) ' x (c—g) x+(g— V)T:;"H . (34)

By Proposition 1, Problem (34) has the same optimal value as the following SDP formulation:

xrrsli\n s+ 720 e Q-+ /1119l (352)
27/,
A2,94,Q
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] g .
s—(c—v)'x—A{ (b—Ap) §<q+(UA%) ATA1>
st e -0, (35b)
}(q+ (ual) ATA1> Q
[ T T T, 1 T AT !
s (c=g)x—A{ (b aw+(v-8)Tn §(a+ (UAY) (ATAz+v-g)) .
C
T — Y
§<q+(UA%) (ATA2+v—g)> Q
xERY, A €R, 1, €R,, g€ R", Q € R™*™, (35d)

By the first outer approximation (18), the following problem provides a lower bound for the

optimal value of Problem (35):

.

tou” +pl (UAZB - 36
B2, ( oM + P ( ) > (g—v) (36a)

t2,p2,P2
s.t. 1—-t1 -t =0, /71— Hp1+p2”220, (36b)
T
H(Au—b)T +p; (UA%B) AT <0, (360)
T T 1o\ T AT

t(Au—b)" +p; (UAzB) AT <0, (36d)
Yolmy —P1 =P =0, ty (c—v) +1(c—g) =0, (36e)
f1 Pqﬂ) {tz quw B B=1 36f
|:P1 P1 Y p2 P2 Y mys ( )
B e R"™ ™, p; e R™, pp e R™, P e R™M*™, P, € R™*™, (36g)

By the inner approximation (19), the following problem provides an upper bound for the opti-

mal value of Problem (35) and reaches the optimal value of Problem (35) when m; > 2:

min s+ YLy, ¢ Qr + /71 lqll, (37a)
B,X,S,Al,/\z,
q,Qr,uy,up
-
St [S —(c— V)T’{ — A1 (b—Ap) %“q =0, (37b)
U1 Qr
srlemp A b oA ey 2], @70
U2 Q:
-
q-+ (UA%) ATA; =By, (37d)
T
q+ (UA%) (ATAZ +v— g) = Buy, (37e)
xERY, AR, 1 eR,, BTB=1,,, (37f)
qeR", Qe R™M*™ BeR™ ™, uy € R™, u; € R™. (37g)

By the second outer approximation (24), the following problem with m; <2 provides another
lower bound for the optimal value of Problem (35) and reaches the optimal value of Problem (35)

when m; = 2:

min s+l ¢ Qc + /71 [l (38a)
B,B,X,S,A1 ,/\2,

q,Qr,ug,up,hy hy
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T T 1. T
s.t. [S —lemv) x=A (b= Ap) oy } -0, (38b)
U1 Qr
_ _ Ty A1 _ . T 1..T
{5 (C g) x— A, 1(b Af") + (V g) B 30y } =0, (38¢)
Zup O
T T _
q+ (UA?) ATA; =Bu; + Bhy, (38d)
T _
q+ (UA%) (ATAZ fvo g) = Bu, + Bhy, (38¢)
x€R", A eRl, A, €RY, [B,B]"[B,B] = I, (38f)
qeR", Q, e R™*™ BeR™ ™, BeR" (K-m) (38g)
u; ER™, uy e R™, hy e RK=™  h, e RE™, (38h)

When the dimension m of ¢ is large, the original Problem (35) becomes very difficult to solve
because of the large-scale SDP constraints. Nevertheless, with our ODR approach, Problems (36)-
(38) have SDP matrices with very small sizes (e.g., K + 1 = 3), largely reducing the computational
burden while maintaining the original problem’s optimal value and optimal solution x. Note that
the DRO counterpart of the CVaR problem has been introduced and reformulated in Example 1.

The inner and outer approximations can be derived similarly and thus are omitted here.

8.2. Numerical Results

We compare the performance of our ODR approach (that provides two lower bounds and one
upper bound) with three benchmark approaches: (i) the Mosek solver with default settings, which
can provide the optimal value of the original problem; (ii) The low-rank algorithm proposed by
Burer and Monteiro (2003) to solve the SDP reformulation of the original problem, i.e., Problem
(4), generating a lower bound for the optimal value of Problem (4); and (iii) The existing PCA
approximation proposed by Cheramin et al. (2022). For the third benchmark, we consider the
reduced dimension m; € {100% x m,80% x m,60% x m,40% x m,20% x m,K = 2}, where this
approach generates PCA-based lower and upper bounds for the original problem. Our proposed

inner and outer approximations under the ODR approach are solved using Algorithm 3.

8.2.1. Instance Generation and Table Header Description We consider various instances of
the multiproduct newsvendor and CVaR problems. In the former problem, the mean and standard
deviation of ¢ are randomly generated from the intervals [0,10] and [1, 2], respectively. We further
generate a correlation matrix randomly using the MATLAB function “gallery(‘randcorr’,n)” and
then convert it to a covariance matrix. We follow Xu et al. (2018) to set the wholesale, retail, and
savage prices as ¢c; =0.1(5+i—1), v, =0.15(5+i—1), and g =0.05(5+i — 1) for any i € [m],
respectively. Meanwhile, we consider m € {100,200,400,800,1200,1600,2000} in this problem.

In the CVaR problem, we set « = 0.05, and the mean and standard deviation of ¢, i.e.,  and o,

are randomly generated from the intervals [—5,5] and [1,2], respectively, where ¢ is supported on
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[ — 20,4+ 20]. The covariance matrix is generated similarly as above. Meanwhile, we consider
m € {100, 200,400,800, 1200,1600,2000} in this problem.

For each of the above two problems with a given value of m, we randomly generate five
instances. We report both the average and instance-level performance in six tables, with the aver-
age performance in Tables 1-2 and instance-level in Tables C2-C9 (see Appendix C). Here we
describe several table headers that are shared by these tables. We use “Mosek” and “Low-rank”
to represent the performance of the Mosek solver and the low-rank algorithm, respectively. The
abbreviations “LB,” “UB,” and “RLB” represent lower, upper, and revisited lower bounds, respec-
tively. Specifically, the labels “ODR-LB,” “ODR-UB,” and “ODR-RLB” denote the lower-bound
performance after solving the first outer approximation (18) with m; = K, the upper-bound per-
formance after solving the inner approximation (19) with m; = K, and the other lower-bound
performance after solving the second outer approximation (24) with m; = K, respectively (see
Tables 1-2 and C2-C3). The labels “PCA-LB” and “PCA-UB” denote the PCA-based lower and
upper bounds provided by the PCA approximation in Cheramin et al. (2022), respectively (see
Tables C4—-C9). In Tables 1-2, we use “PCA-100%,” “PCA-80%,” “PCA-60%,” “PCA-40%,” “PCA-
20%,” and “PCA-22%" to denote the performance of the PCA approximation when the reduced

dimension m; equals 100% x m, 80% x m, 60% x m, 40% x m, 20% x m, and K = 2, respectively.

In all the tables, we use “Size” to represent the value of m and “Time” to represent the computa-
tional time in seconds required to solve each instance. We use “Gap1” (resp. “Gap2”) to represent
the relative gap in percentage between a lower (resp. an upper) bound and the optimal value
provided by the Mosek solver. That is,

optimal value — lower bound
|optimal value|

upper bound — optimal value

1 =
Gap |optimal value|

% 100%.

x 100%, Gap2 =

We further use “Interval Gap” to represent the relative gap in percentage between a lower bound
and an upper bound, i.e.,

upper bound — lower bound

Interval Gap = lupper bound|

x 100%. (39)

Specifically, for both the ODR approach and the low-rank algorithm, we take the objective value of
“ODR-UB” as the value of “upper bound” in (39). For the PCA approximation approach, the value
of “upper bound” in (39) is provided by this approach itself. The objective values of each instance
provided by all the approaches, i.e., “Mosek,” “Low-rank,” “ODR-LB,” “ODR-UB,” “ODR-RLB,”
“PCA-LB,” and “PCA-UB,” are provided in Tables C2-C9.

“" o

Finally, we use to represent that no result can be obtained within the time limit (i.e., two
hours). For instance, the Mosek solver cannot solve the original problem to the optimality within
two hours when m > 400. Hence, we cannot obtain the value of “Gap1” for the “Mosek,” “ODR-

LB,” and “ODR-RLB” approaches.
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Table 1 Average Performance on the Newsvendor Problem

Size (m) 100 | 200 | 400 800 1200 | 1600 | 2000
Mosek Time (secs) 13.02 | 363.54 - - - - -
Gapl (%) 252 | 1.79 - - - - -
Low-rank  Time (secs) 026 | 0.80 | 546 | 47.34 | 110.33 | 309.00 | 825.62
Interval Gap (%) | 427 | 3.66 | 267 | 232 | 228 | 236 | 2.52
Gapl (%) 0.09 | 0.00 - - - - -
ODR-LB Time (secs) 077 | 078 | 0.83 0.85 1.13 201 | 2.54
Interval Gap (%) | 1.81 | 1.83 | 144 | 144 | 156 | 173 | 1.96
Gapl (%) 0.03 | 0.03 - - - - -
ODR-RLB  Time (secs) 195 | 2,60 | 433 9.75 | 20.83 | 38.36 | 56.68
Interval Gap (%) | 1.74 | 1.86 | 146 | 146 | 156 | 178 | 1.98
ODR-UB Gap2 (%) 1.68 | 1.80 - - - - -
Time (secs) 195 | 260 | 433 | 975 | 20.83 | 3836 | 56.68
Gapl1 (%) 0.00 | 0.00 - - - - -
Time (secs) 13.04 | 361.54 - - - - -
PCA-100%  Gap2 (%) 0.00 | 0.00 _ _ - - _
Time (secs) 12.99 |361.91 - - - - -
Interval Gap (%) | 0.00 | 0.00 - - - - -
Gapl (%) 0.50 | 0.31 - - - - -
Time (secs) 5.05 |120.72 |3348.00| - - - .
PCA-80%  Gap2 (%) 1223 | 1113 | - : ; - -
Time (secs) 7.77 |155.39 |4793.72| - - - -
Interval Gap (%) | 14.54 | 12.90 | 13.57 - - - -
Gapl1 (%) 098 | 0.73 - - - - -
Time (secs) 1.44 | 28.73 | 785.63 - - - -
PCA-60% Gap?2 (%) 2333 | 24.07 | - _ . - _
Time (secs) 2.29 | 44.28 | 1196.98 - - - -
Interval Gap (%) | 31.76 | 32.79 | 31.87 - - - -
Gapl (%) 1.69 | 1.20 - - - - -
Time (secs) 0.39 | 521 | 12543 |3351.00| - - -
PCA-40%  Gap2 (%) 3579 | 3594 | - - - - -
Time (secs) 057 | 803 | 177.96 |5237.40| - - -
Interval Gap (%) | 58.50 | 58.26 | 56.45 | 57.18 - - -
Gapl (%) 2.71 | 1.90 - - - - -
Time (secs) 015 | 043 | 649 | 136.97 | 971.60 |3546.30 | -
PCA-20%  Gap2 (%) 4792 | 4819 | - - - - -
Time (secs) 017 | 0.60 | 925 | 203.97 |1340.46|4940.28 | -
Interval Gap (%) | 97.74 | 84.05 | 90.65 | 93.17 | 92.38 | 94.27 -
Gapl (%) 426 | 3.24 - - - - -
» Time (secs) 011 | 012 | 013 | 020 | 026 | 036 | 0.50
PCA-S7%  Gap2 (%) 5760 | 5925 | - - - - -
Time (secs) 013 | 014 | 016 | 022 | 032 | 046 | 0.60
Interval Gap (%) | 147.12 | 154.40 | 141.39 | 149.18 | 146.92 | 150.96 | 153.57
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Table 2 Average Performance on the CVaR Problem
Size (m) 100 | 200 | 400 800 1200 | 1600 | 2000
Mosek Time (secs) 16.00 | 451.34 - - - - -
Gapl (%) 281 | 3.34 - - - . -
Low-rank  Time (secs) 2.79 | 691 | 20.78 | 75.84 | 171.48 | 635.15 | 1630.04
Interval Gap (%) | 3.64 | 3.92 | 454 | 481 714 | 480 | 473
Gapl (%) 0.03 | 0.03 - - - - -
ODR-LB Time (secs) 097 | 1.31 | 5.03 | 1485 | 2885 | 4823 | 71.18
Interval Gap (%) | 0.89 | 0.62 | 1.83 165 | 3.76 1.78 1.52
Gap1 (%) 829 | 6.65 - - - - -
ODR-RLB  Time (secs) 229 | 477 | 9.44 | 39.87 | 8458 | 113.93 | 172.53
Interval Gap (%) | 9.07 | 7.19 | 936 | 11.76 | 898 | 871 8.38
ODR-UB Gap2 (%) 0.87 | 0.60 - - - . -
Time (secs) 229 | 477 | 9.44 | 39.87 | 8458 | 113.93 | 172.53
Gap1 (%) 0.00 | 0.00 - - - - -
Time (secs) 16.05 | 452.56 - - - - -
PCA-100%  Gap2 (%) 0.00 | 0.00 - _ - - -
Time (secs) 15.87 |451.05 - - - - -
Interval Gap (%) | 0.00 | 0.00 - - - - -
Gapl (%) 34.06 | 33.79 - - - - -
Time (secs) 6.19 | 154.19 | 3830.44 - - - -
PCA-80% Gap2 (%) 7444 | 7931 | - - - - -
Time (secs) 6.35 |149.15|4172.78 - - - -
Interval Gap (%) | 60.13 | 62.89 | 70.26 - - - -
Gap1 (%) 92.94 | 84.33 - - - - -
Time (secs) 1.97 | 42.75 | 1103.60 - - - -
PCA-60% Gap2 (%)  |170.40|157.30| - - - - -
Time (secs) 212 | 38.33 | 1036.52 - - - -
Interval Gap (%) | 96.94 | 93.32 | 102.80 - - - -
Gapl (%) 155.36 | 150.26 | - - - . -
Time (secs) 049 | 6.26 | 152.85 |4236.06| - - -
PCA-40%  Gap2 (%)  [31048|30120| - - - - -
Time (secs) 0.70 | 8.03 | 170.81 |4185.96 - - -
Interval Gap (%) | 113.70 | 112.28 | 119.30 | 124.90 - - -
Gapl (%) 185.66 | 210.06 | - - - - -
Time (secs) 0.18 | 056 | 6.76 | 148.34 [1032.09 [3887.06| -
PCA-20% Gap2 (%) | 45720 |628.70| - - - - -
Time (secs) 040 | 1.71 | 15.38 | 235.30 |1351.00 [4534.18| -
Interval Gap (%) | 115.47 [ 119.49 | 119.97 | 122.84 | 127.39 | 127.89 -
Gapl (%) 208.99 | 260.15| - - - - -
0 Time (secs) 011 | 012 | 014 | 0.19 028 | 043 0.53
PCA-S7 % Gap2 (%)  |49051|74523| - - - - -
Time (secs) 035 | 1.34 | 232 | 447 | 573 | 824 | 1265
Interval Gap (%) | 118.45 | 118.99 | 119.19 | 119.52 | 119.61 | 119.64 | 119.74
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8.2.2. Numerical Performance From Tables 1-2 and C2-C9, we have the following observa-
tions. First, when m € {100,200}, where the Mosek solver solves each instance of the original
problem to the optimality, our ODR approach performs much better than the three benchmark
approaches. Both the “ODR-LB” and “ODR-RLB” provide a smaller value of “Gap1” than the
low-rank algorithm and the PCA approximation, and require a shorter computational time than
the three benchmark approaches. The “ODR-UB” also provides a smaller value of “Gap2” than
the PCA approximation if m; # 100% x m therein and requires shorter computational time.

Specifically, Tables C2—C3 show that the objective value of “ODR-LB” reaches the optimal value
of the original problem for most of the instances, while the “ODR-LB” reduces the computational
time by up to three orders of magnitude compared to the Mosek solver. The “ODR-UB” and
“ODR-RLB” also provide objective values that are near-optimal for each instance and reduce the
computational time significantly. Tables C4-C9 show that our ODR approach (including “ODR-
LB,” “ODR-UB,” and “ODR-RLB”) provides a better solution in terms of the objective value than
the PCA approximation if the reduced dimension m; < 80% x m in the latter approach. That
is, even if we maintain 80% of the random parameters corresponding to the largest eigenvalues
to be uncertain in the PCA approximation by focusing on only their statistical information, the
performance is worse than our ODR approach, where we optimize the dimensionality reduction
from m to K = 2 (i.e., maintaining only 1% of the original dimensionality size when m = 200). More
importantly, the inner and outer approximations of our ODR approach can be solved efficiently.

Second, when m > 400, where the Mosek solver cannot solve any instance of the original prob-
lem to the optimality, our ODR approach also performs better than the benchmark approaches.
The “ODR-LB” provides a smaller value of “Interval Gap” (within 2%) and requires a much
shorter computational time than both the low-rank algorithm and the PCA approximation. For
instance, when m = 1600, the low-rank algorithm and “ODR-LB” take 370.02 and 2.03 seconds
to solve an instance of the multiproduct newsvendor problem and provide the value of “Interval
Gap” at 1.97% and 1.36%, respectively. The PCA approximation solves this instance only when
the reduced dimension m; is not larger than 20% x m, by which it takes 3548.4 seconds while the
solution quality is very poor, providing the value of “Interval Gap” at 90.8%. More importantly,
our ODR approach is not sensitive to the value of m, while the benchmark approaches perform
much worse when m is larger. Thus, when we cannot obtain the optimal value of the original
problem, the “ODR-LB” and “ODR-UB” can be efficiently solved to provide a shorter interval
that includes the optimal value than the benchmark approaches. That is, our ODR approach can
provide a near-optimal solution very efficiently for the moment-DRO problems where other best

possible benchmark approaches are struggling.
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Third, the performance of “ODR-RLB” is similar to that of “ODR-LB,” while the latter is more
computationally efficient because the former has more equality constraints than the latter. Com-
pared to “Low-rank,” the “ODR-RLB” performs better in the multiproduct newsvendor problem
while it provides a larger value of “Interval Gap” in the CVaR problem, and the “ODR-RLB”
requires a shorter computational time in both problems. Compared to the PCA approximation,

the “ODR-RLB” is better with respect to both the solution quality and computational time.

8.2.3. Numerical Insights Tables 1-2 and C2-C9 show that our ODR approach performs bet-
ter than the PCA approximation with respect to the objective values for all the cases except that
the “PCA-100%" (i.e., the original problem) provides the optimal value when the problem size
is small, i.e., m € {100,200}. Note that the PCA approximation reduces the dimensionality of the
random vector ¢ by focusing on only the statistical information of ¢, while the ODR approach
integrates the dimensionality reduction with the optimization of the original problem. Here we
would like to further demonstrate the benefits of our approach, thereby providing insights into
how we can choose the value of B without solving the models in our ODR approach.

Consider the multiproduct newsvendor problem. The PCA approximation chooses the ran-
dom parameters corresponding to the largest eigenvalues by maximizing the expectation of &',
i.e., the variability of {. Adopting the idea of our ODR approach to integrate the dimensional-
ity reduction with the subsequent optimization problem, we can consider the objective function
f(x,&) when choosing the random parameters in ¢. Specifically, we can maximize the variability
of (g — v)'¢&, which is the only random component in f(x,&). By (10), we solve the following
problem to reduce the dimension from m to m;:

max Eo[(g—v) 6 (5~ v)| ~Ep |(g— )" (UATBE, +) (UAIBE ) (gv)]

BTB=I,,
=Ep { T

< UAng‘r UA%Bgr) " ouatBELT + mﬁ) (g— v)]
—Ep { v) T < UAngr UA%Bgr)T + WT) (g — v)} . (40)

Nl=

By introducing r = (A2U")(g — v), Problem (40) clearly has the same optimal solution as

max r BB'r. (41)

BT B=Ly,
PROPOSITION 7. We have B* = [t/ |||, 0y« (m,—1)] is an optimal solution of Problem (41).

By considering the partial feature of the original optimization problem, the optimal B* of
Problem (40) by Proposition 7 performs better than the PCA approximation that only considers
statistical information of random parameters. Note that our proposed inner and outer approxi-
mations of the ODR approach consider the complete feature of the original optimization prob-

lem and can provide an even better choice of B. In the multiproduct newsvendor problem with
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K =2, we can compare the B* of Problem (40) with the optimal B provided by our proposed
outer approximation (18) with m; = K. Specifically, letting m = 10, we have (i) the optimal value

given by the PCA approximation (lower bound) with m; = K is —18.62; (ii) the optimal value

-
. . . _ [~0.8696 —0.0478 0.3285 —0.0930 —0.2762 0.2126 —0.0456 —0.0034 0.0361 0.0097] ' .
givenby (40)is —17.53 withB=| 0 0 0 0 0 0 0 o o |

(iii) the optimal value given by (18) (lower bound) with m; = K is —17.38 with

B — —0.8964 —0.1886 02094 —0.0327 —0.2497 02215 —0.0548 —0.0216 0.0289 0.0104 | Clearl our ODR
| 0.0143 0.0052 —0.0014 —0.0004 0.0034 —0.0035 0.0010 0.0006 —0.0003 —0.0002| * Y,

approach performs the best and the value of B from solving (40) is close to that from our ODR
approach (the Frobenius norm of the difference between the two matrices is less than 0.1). That
is, if a decision-maker does not have enough capacity to solve the approximations of our ODR
approach, the decision-maker may consider partial feature of the optimization problem when

reducing the dimensionality.

9. Conclusion

Moment-based DRO provides a theoretical framework to integrate moment-based information
from available data with optimal decision-making. Extensive studies have demonstrated the
effectiveness of this framework in solving various industrial applications under uncertainties.
Although moment-based DRO problems can be reformulated as SDPs that can be solved in poly-
nomial time, solving high-dimensional SDPs is significantly challenging. More importantly, high-
dimensional random parameters are generally involved in industrial applications, demanding
efficient approaches to solve the high-dimensional SDPs in the context of moment-based DRO.

Current approaches adopt the PCA to first reduce the dimensionality of random parameters
using only the statistical information and then solve the subsequent low-dimensional approxima-
tion (SDPs). We show that performing dimensionality reduction using the components with the
largest variability may not produce a good optimal value from the subsequent PCA approxima-
tion and it can be even worse than using the components with the least variability (Example 1).
Thus, we integrate the dimensionality reduction with subsequent SDP problems and hence pro-
pose an optimized dimensionality reduction (ODR) approach for the moment-based DRO (Sec-
tions 4-6), aiming to drastically reduce the computational time of solving the SDP reformulations
while maintaining the optimal solution of the original problem.

We first derive an outer approximation under the ODR approach to provide a lower bound for
the optimal value of the original problem (Theorem 1), where the lower bound is nondecreasing
in the reduced dimension m;. We expect to choose a small 11, to close the gap between the derived
lower bound and the original optimal value. To that end, we show that the rank of each SDP

matrix with respect to an optimal solution of the original high-dimensional SDP reformulation is
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small, guiding us on how to optimize the dimensionality reduction (Theorem 2). With this low-
rank property, we observe that the derived lower bound can be close to the original optimal value
(Theorem 3) but may not reach it (Example 2). Nevertheless, we show that the gap between this
lower bound and the original optimal value is bounded by a constant (Proposition 3). Further-
more, we derive an inner approximation to provide an upper bound for the optimal value of the
original problem (Theorem 4). More importantly, this upper bound reaches the original optimal
value when the reduced dimension 1, is small (Theorem 5). Building on this significant result, we
further derive an outer approximation to provide the second lower bound for the optimal value
of the original problem, where the gap between the new lower bound and the original optimal
value can be closed when the reduced dimension 1, is small (Theorem 6).

The two outer and one inner approximations derived for the original problem are all low-
dimensional SDPs and nonconvex with bilinear terms (Propositions 2 and 4 and Theorem 6). We
accordingly develop modified ADMM algorithms to solve them efficiently (Section 7). Finally,
we demonstrate the effectiveness of our ODR approach in solving multiproduct newsvendor
and CVaR problems. We compare our ODR approach and algorithms with three benchmark
approaches: the Mosek solver, the low-rank algorithm by Burer and Monteiro (2003), and existing
PCA approximations by Cheramin et al. (2022). Numerical results show that our ODR approach
significantly outperforms these benchmark approaches in both computational time and solution
quality. Our approach can obtain an optimal or near-optimal (mostly within 0.1%) solution and
reduce the computational time by up to three orders of magnitude. More importantly, unlike the
existing approaches that become more computationally challenging when the dimension m of ran-
dom parameters increases, our approach is not sensitive to 7, demonstrating significant strength
in solving large-scale practical problems (Section 8.2.2). In addition, we provide insights into why
our ODR approach performs better than the existing PCA approximations (Section 8.2.3).

Our research can be further extended in various directions. First, this paper considers a piece-
wise linear cost function in the original problem. Thus, it would be attractive to consider a more
general objective function. Second, it would be interesting to apply our approach to more appli-
cation problems to generate practical insights. Third, our ODR approach can be potentially gen-
eralized to solve general SDPs with certain structures. Thus, it would be appealing to exploit the
structures of SDP constraints and apply the ODR approach to solve more general SDPs. We leave

the above extensions for future research.
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Appendix A: Table of Notations

Table A1  Summary of Notations

Notation

Description

Random Variables:

¢ The random vector ¢ € R
1 The random vector ¢; € R™ obtained by the linearly transformation of ¢
C; The random vector ¢, € R" obtained by reducing the dimension of &;
Distributions:
P The probability distribution of the random vector ¢
1Py The probability distribution of the random vector &;
P, The probability distribution of the random vector ¢,
Decision Variables:
X The decision variable x € R"
s, A, q, Q Decision variables in original SDP problem
/i XZ:{Al,...,AK}
qr, Qr Decision variables in PCA approximation
B The decision variable used in the optimized dimensionality reduction
te, Pr, Px, Z Decision variables used in the lower bound

I nloAll
r/u u /BllBZ

Decision variables used in the revisited lower bound

Parameters and Sets:

xR R 0IP

The feasible set of decision variable x

The distributional ambiguity set constructed by statistical information

The distributional ambiguity set corresponding to &;

The support of ¢

A scalar y1 >0

A scalar v, >1

The estimated mean of &

The estimated covariance matrix of ¢

Two matrices produced by the eigenvalue decomposition on the covariance matrix X
S:={¢| AZ<b}

The support of ¢;

The support of ¢,

The distributional ambiguity set corresponding to ¢,

The feasible set of decision variable B € R™*™

The distributional ambiguity set by relaxing the second-moment constraint in Dy

Optimal Value Functions:

Onm(m)
Owm(m)
O (m1)
@(mllB)
Oy(my)
®(ml/ B)
Ora(my)

The optimal value of the original problem

The optimal value of the PCA approximation

The optimal value of the first outer approximation

The optimal value of the subproblem of the first outer approximation
The optimal value of the inner approximation

The optimal value of the subproblem of the inner approximation

The optimal value of the second outer approximation
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Appendix B: Technical Proofs
B.1. Proof of Lemma 1

First, we have

I, B
B' I,

]t0<:>lm—BIm11BTtO<:> BB' <1,

where the first equivalence is by Schur complement and the second is because I, =T,

Second, we have

[Im B

a 0«<—=1, —B'I.'B~0<= B'B=<1,,
B' I, 1 m 1

where the first equivalence is by Schur complement and the second is because I,,' = I,,. Thus, the
lemma is proved. [

B.2. Proof of Lemma 2
(i) Suppose X = Y. For any a € R", we have Va € R". It follows that

X =Y=(Va)" (X—Y)(Va) >0, Yac R"
<~a (VI(X-Y)V)a>0, VacR"
<=V (X=Y)V=0 < VXV=V'YV.
(ii) First, for any V € R™*", we have
XY= V'XV=V'YV

by (i). Second, suppose V'XV > V'YV. Note that V! € R™". According to (i), the matrix
VXV — V'YV remains as PSD if it multiplies (V') " before it and V! after it, i.e.,

(V) VIXVV = (v VTiYvv L
It follows that X > Y because (V™!)'V"T =1, and VV! =1,. Thus, X > Y is equivalent to
VXV >=VTYVif VeER™™isinvertible. [
B.3. Proof of Theorem 1
(i) Given any x € X and B € B,,,, i.e, B'B=1,,, we define { = UA%B;‘r + p and use S; and D,

to denote its support and ambiguity set, respectively. As S, = {¢, € R™ | UA%BCr +peS}and
S;={leR"|{= UA’BZ, + 1, & € 8.}, we can deduce S; € S. We also have

(Er, 0] —#) = (Er, (2]~ 1) 2)
= (Epr [UA% Bgr} ) "E Ry, [UA% Bgr}
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=Ep, |¢, | B'BEp, [ ri| = Ep, [f;‘:} Ep, [gr} <M (43)
where the inequality holds because of (6b). Meanwhile, we have

1 1
Ep, [({—p#)(§—p)"] =Ep, [UAZB;@‘IBTAZUT}
jUA%B’)/ZIm]BTA%UT = ’)/ZUA%BBTA%UT < ’)’QUAUT =7,%, (44)

where the first inequality holds because of (6b) and the second inequality holds because B'B =
I, leading to B'B < I,,,, which is further equivalent to BB' <1, by Lemma 1. By S; C S, (43),
and (44), it follows that D, lies in Dy, i.e., D; C Dyyp.

Therefore, given any x € X and B € B,,,, we have

max IEIPr |:f (X, UA%Bgr +V)} = 11%131;(5 IE]Pg [f (X, C)] < Igggl\)/[(o Ep [f (X, g)] ’

PreDy,
where the equality holds by change of variables and the inequality holds because D; C Dyy. It
follows that

max min max [Ep, {f (x,UA%Bgr +,uﬂ <min max Ep[f(x,¢)],

BEBm, xeX PreDy xeX PeDyy

which demonstrates that the optimal value of Problem (11) is a lower bound for that of Problem
(3) (i-e., Problem (2)).

(ii) For any m; < my; < m, By € R™™, and C € R™ (™) guch that B/B; = I,, and
[B1,C]"[B;,C] = I,,, we have B, = [B;,C] € R"™. Meanwhile, we have B,, = {B €
R™™ | B'B =1, } and define {; = UA%Bi{,'ri +p € R™ for any i € [2], where ¢, € R". Clearly,
B, € B,,, because B, B, = I,,. We further define the ambiguity set of {; as

Déi - {]PCi } .Z;z’ ~ ]PCV gi = UA%Biéri +u, gri ~ ]Pri € Dri}’ Vie [2]1 (45)

where D,; represents the ambiguity set of ¢ for any i € [2]. Given {; ~ IP;, € Dy, there exists a
g, ~ P €D, suchthat{, = UA%Blg‘rl +u= UA%BZZr2 +mu, where &= (£,,0, ) €R™.

mp—my

By using S, (see definition in (12)) to denote the support of £, for any i € [2], we have

I[’{g’,‘rl € Srl} :IP{UA%Bli;’rl tpe S} :IP{UA%BZg‘rZ tpu es} =1,
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where the second equality holds because UA%Blf.frl = UA%BZZ‘Q. It follows that IP{ {:‘rz €S, =1

by the definition of S,,. In addition, we have ]E[f,_":2 JE[Z,] = IE[@,‘:1 JE[¢,,] <7 and

T
E |:gr1 gr1i| Oml x(my—my)

% 5T
IE |:§r261‘2i| =
(my—my)xmy O(my—my)x (my—my)

j ,}/ZIMZ‘

Thus, the probability distribution of Z‘rz belongs to D,,. Meanwhile, by the definition of D, for any
i€2]in(45)and {, = UA%BZ(?r2 +pu, we have IP;, € D¢, and further D;, C D¢,. Therefore, for any
x € X, B; € R™™, and C € R"*("=™) guch that B/ B; =1,,, and [B;,C]" [B;,C] =1,,,, we have

max Ep, [f ()] < max e, [f (%)) (46)
a="a Pz, €Pg,

Together with the definitions of ; (Vi € [2]) and B,, inequality (46) leads to

max [Ep, [f (x,UA%Bléfr1 +y)} < max IE]pgz [f (x,UA%[Bl,C](',‘r2 +y)} .

]Pr] eDr] ]Pr2 eDrz
Considering an optimal solution B; € R™*™ of Problem (11), for any x € X’ and C € R"*(m2~m)
such that [B;,C]"[B;,C] =1,,,, we have

max Ep, {f (x,UA%BIQ‘r1 +y)} < max Ep_ [f (x,UA%[B;‘,C]gr2 +y)} .

Py, €Dy, Pr, €Dr,

For any C € R"*("2=") such that [B}, C] " [B},C] = L,,,, we have

min max Ep, [f (x, UA%BE’H —i—y)} < min max IE]pgz [f (x, UA%[BT,C]Q‘r2 —i—y)} ) 47)

x€X Pr, €Dy x€X TPr,€Dr,

It follows that

max min max Ep, [f (X,UA%Blifrl +ﬂ)]

Bl B,= Im xeX ]l’rleDrl

=min max Ep, [f (x,UA%B’{i,"r1 +;l>]

xeX ]1"r1 EDrl

<min max Ep [f <x,UA%[B1‘,C]§,‘r2 +y)}

xeX ]Pr2 €Dr2

< max min max Ep, {f (X,UA%BZé(Q +ﬂ>] ,

BzeBm2 xeX Pr, €Dy,

where the first inequality holds by (47) and the second inequality holds because [B;,C] € B,,
That is, the optimal value of Problem (11) is nondecreasing in ;.

(iii) When m; = m, we have B € B,, C R™*", i.e.,, B'B =1,,. First, we have @ (m) < Oy(m) by
the conclusion (i). Second, when B =1,,, Problem (11) becomes Problem (3). Because B =1,, is a
feasible solution of Problem (11), it follows that @ (m) > Oy(m). Therefore, we have O (m) =
Oum(m). O
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B.4. Proof of Theorem 2

Note that the optimal solution (x*,s*,ft*,q*,Q*) of Problem (4) leads to the optimal value s* 4
v21, Q" + /71 ]|q"||,- Based on this optimal solution, we construct a feasible solution of Problem
(4), denoted by (x/, s/, )AL/, q’,Q’) such that X' = x*, s’ =s*, and A=A

Now we construct the values of q" and Q’. By constraints (4b), we have

*

1\ T T
Sy % <q* + (UAf) (ATA; — Yk (X*))>
b(ar+ (0ad) (ATA; - x) ) o

By Schur complement, we can equivalently rewrite (48) as

=0, Vke[K]. (48)

45,0° - <q* + (UA%)T (ATA; — yk(x*))> <q* + (UA%)T (ATA; — yk(x*))>T,Vk € [K]. (49)

Note that K < m. Thus, through the Gram-Schmidt process, we can always construct K orthonor-

mal vectors vy € R", Vk € [K], and K real vectors a; € R¥, Vk € [K], such that
T
(UA%) (ATA; — yi(x")) = Vay, Vk € [K], (50)

V = [v;, Vk € [K]] € R"*X. We further extend V to [V, V] € R"™" with V € R"*"X guch that
all the column vectors of [V, V] can span the space of R". As q* € R", we can find a, € R and

a, € R" K such that
q* = Va() + \750 (51)

As Q" € R"™™, we can then decompose Q* as

x 1 | Y1 Yoo \4
Q=[VV] [Yﬂ Yzj [\—,T
=VY;;V + VY, VI + VY,V + VY, VT, (52)

where Yy, € RKK) Yy, € RKX0K) Y, € ROK*K and Y,, € R"Kxm=K) Ag Q* > 0, we have
-1
{Yn le} =[v \7]—1 Q* [gi} = 0 by Lemma 2. By (49), (50), and (51), we have

Yr1 Y
45,Q" = (Vay + Vap + Va,) (Vag + Va, + Va,) ', Vk € [K]. (53)
By (52) and (53), we have
45 (VY VT + VY0 VI 4 VY,V 4+ VY5, V) = (Vay + Vi + Vay) (Vao + Vag + Va,) ', Vk € [K].

By Lemma 2, we further have

4V (VY VI + VY VI + VY,V + VY, VTV
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= V' (Vay + Vay + Va;)(Va + Va, + Vay) 'V, Vk € [K]. (54)
Because VIV =0,V'V=0,and V'V = I, constraints (54) become
45, Y1, = (ap +ag)(ag +a;) ', Vk € [K]. (55)
Now we let @' = Vagand Q' = VY{; V'. By (55) and Lemma 2, we have

4SkQ/ :4.S]<VY11‘/T b (Va() + Vak) (Va() + Vak)T
.
_ (q' +(uat) (aTa; - yk(x*))> (q’ +(uat) (aTa; - yk(x*))> , ke K. (56)

Comparing (4b) and (56), we have (x/,s’, /i/, q’,Q’) is a feasible solution of Problem (4) and the

corresponding objective value is

S+ mln e Q'+ vnqll, 25"+ 1lue Q" + V1 llq'(l, (57)

where the inequality holds because (X, s/, )AL/, q’,Q’) is a feasible solution of Problem (4) and Prob-

lem (4) is a minimization problem. Note that

e @)= (V91 [0 3] (3] = ([3 3] (9] v )

_ Yu Yio| ) _
=tr < l:Y,Zl Yzz] ) =IxeYy+1, koY

Z IK (] Yll = tr(Yn) = t?"(YnVTV) = tT(VYnVT) = tr(Q/)
=1I,e Q/r

where the first equality holds by the definition of a matrix’s trace, the second equality holds by

(52), the third equality holds by the cyclic property of a matrix’s trace, the fourth equality holds

T Y Yo

because |V,
Y21 Yoo

VT} [V V] =1, and the first inequality holds because {
Y, > 0. Meanwhile,

} >~ 0 and accordingly I,,_x ®

la’ll;=(q")" q" = (Vay + Vao) " (Vay + Vao) = (ag 2 + a; a)
>agay=(Vay) ' (Vay)) = (q) ' q'=|q'[l5,
where the second equality holds by (51), the third equality holds because V'V =0, V'V =
0, VIV=Ix, V'V =1, g, and the first inequality holds because a, a, > 0. Thus, we have
s+l e Q'+ vrql, <"+ 72Lu 0 Q"+ V1 llq7],- (58)
Combining (57) and (58) leads to

S+l e Q + 1lld |, =5+ 7L, e Q" + 1 lq"|l,,

which indicates that (x,s',A’,q’,Q’) is also an optimal solution of Problem (4). Meanwhile, note
that rank(Q’) = rank(VY;; V') < min{rank(V),rank(Yy;)} <K, § = ay, and vy = a; for any k €
[K]. Thus, the proof is complete. [
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B.5. Proof of Theorem 3
We construct a solution (x*,s*,f, q!, Qf, B") of Problems (14) and (15) by setting x" = x*, s" = 5%,
A=A qi=(6",0;, )", Qf = [0<m?{j;)xl< O(nf)l’f;)”:(;iKJ ,and B = [V, C], where C € R™*("1=K) and
[V,C]"[V,C] =1,,. First, we show this constructed solution is feasible to Problems (14) and (15).
Clearly, this solution satisfies constraints (15¢). In addition, from Problem (4), as q' = V§ and
Q' =VY;; V', for any k € [K], we have

.

S ;<V(5+ (UA%)T (ATA; —yk(x*))>

=0
. -
1 <V5 + (UA%) (ATA; — yk(x*))> VY, VT

7

which, by Schur complement, is equivalent to

S, (VYHVT) - % <V5 + (UA%)T (ATA;; - yk(x*))) (V(S + (UA%)T (ATA;; - yk(x*)>>T. (59)

From (59), for any k € [K], we have the following inequality holds by Lemma 2:

Se([V,C]'VY V[V, C])

T

- EI[V,C]T <V5 + (UA%)T (ATA; — yk(x*))> <V5 + (UA%>T (ATA; — yk(x*))> [v,C],

which is equivalent to

T

50 - (qI + (UATBY) (AT - m(x*))) <qI +(ualE) (aTa; - m(x*))) (60)

by the construction of the solution qf, Qf,B* and [V,C]"V = [Ix, 0xx(m,—x)| . By Schur comple-
ment, (60) indicates that the constructed solution (x',s", )A\Jr, q!,Qf, BY) also satisfies constraints
(15b) and thus it is a feasible solution of Problems (14) and (15).

Second, we show the objective value of this feasible solution (x*, s*, Al q',Q/,B") is equal to the

optimal value of Problem (4). The objective value corresponding to this solution is

s' 7l @ Q7+ V[, = 5"+ ol @ Yu + /1 |19,
="+ ydge (YnVIV) + /7116,
=5 + 7L, e (VY V') + VvV lléll,
=5 "+ 70,0 Q" + /11| 4],
=5 +ml,0Q + V'S
=s"+70,0Q + ﬁm
=s"+ 7L, eQ +v11Vq'q
=s"+ 7L, e Q + 7 [ql
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where the first equality holds by the construction of (x',s*, ]AU, q!,Q!,B"), the second equality
holds because V'V = I, the third equality holds by the cyclic property of a matrix’s trace, the
fourth equality holds by the definition of Q' in Theorem 2, and the seventh equality holds because
q=Vé U

B.6. Proof of Proposition 2

We consider the Lagrangian dual of the inner minimization part (i.e., Problem (15)) of Problem
(14) as follows:

max min L (x s, A, 9, Qi Z, t, pr, Pr, Vk € [K ]) (62)
|:tk pk =0, ;:é‘f}oo
pr Px

Vke[K],

70

where the Lagrangian function

E <X/ S, i/ q:, Qr; Z/ tk/ Pk, Pk/ Vk € [K]>

K
y b Py
Px |

k=1

=s+ 7l 0 Qe+ vmillail, - Z ( (Aix;) +Ao>
=1

0 T Ty L AT Aqy 1 12) ' AT !
s=y () = Ab—y() m+ M Ap Lo+ (UAIB) (ATA—yi(x)

1 1B (ATA, —
bat (UAIB) (ATA i) Q.
K K . AT K
(1=t )s— ) <tk (An—b)" +p/ (UAB) AT) At vrilad, - Yopia
k=1 k=1 e
K T T 1)’
+ | vl = Y P | @ ZEZU (aux + %) + E <tkyk <tku + Pr (UAfB> ) yk(x))
k=1 i=1j=1
K K L AT K
=\ 1=t |s— Z(tk(Aﬂ b)' +p; (UAB) AT) Mt vmliad: - Y pia
k=1 k=1 -
K T T T
+ (’)’zlml - ZP") ° Qr - ZZZU&,‘]'X ZZZ,](ZU + Z <tkwk + (tkﬂ + P« (UA%B) ) Wk> X
=1 i=1j=1 i=1j=1
1< j j=
+) <tkd + (tky +py (UA B) )dk)
=1
K K . L AT K
=|1- Etk> s—). <tk (Ap—b)" +p; (UAB) AT) At Vil = 2o pi g
k=1 k=1 k=1
K K 1 T T T
=+ ’)’2[,,1] — ZPk eQ, + Z (tkwg + (tk‘MT + p}j (UAEB) > Wk> — ZZzijaij X
k=1 k=1 i=1j=1

K T T
Ly <tkdk T (tku +p/ (UA%B)T> dk> — )zl

i=1j=1
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To present the objective value of the inner minimization problem of (62) from going to negative

infinity, we require

K K K
1-) 65=0, v7i—||px| >0, 7oL, — ) _Pc =0, (63a)
k=1 k=1 ||, k=1
T T 1) AT
t (A —b)' +p; (UAzB) AT <0, Vk e [K], (63b)
K : T T T
y (tkwg + (tk;ﬂ +pi (UA?B) > wk) ~-Y Y zja; =0, (630)
k=1 i=1j=1
e Pr| o, ke K], Z = d
{pk P | =0, ke K], 0. (63d)

Then, the dual problem of Problem (15) can be described as follows:
K

T T T
by + (tn” +pi (UATB) ) di) - a0 64
DA k; < kdy + ( Mt P ) K ;;Zﬂlz} (64)

s.t.  (63a) — (63d).

By integrating the outer maximization part of Problem (14) and Problem (64), we obtain the
bilinear SDP problem (18). Now we would like to prove the strong duality between Problem (15)
and Problem (64); that is, these two problems share the same optimal value, which further shows
that Problem (14) has the same optimal value as Problem (18). To that end, we find an interior
point of Problem (15).

Let x' be an interior point in X, we can construct an interior point by setting A=
1,1}, 8" = 5L RO +1b +y(X) ' n—1/Ap| +1, q; = 0, and Q] = Y, 1/(4(s' —
V) =1/b—ye(x) '+ 1] Ap)) (UATB) T (AT1, — (X)) (AT, — (X)) T (UA?B) + 1,,,. Clearly,
(UA?B)T(AT1, — (X)) (AT1, — yk(x’))T(UA%B) >~ 0. Thus, Q. > 0. Now we only need to show
that constraints (15b) hold in the positive-definite sense with respect to this constructed solution.

By the construction of Q., for any k € [K], we have
1\ 1\
(COEERIDICONERTY)
4(s =) =L b= y(¥) Tu +1/ Ap)
1\ 1\ T
<(UAzB) (ATL -y (x’))) ((UAzB) (AT - w(x’)))

a VK € [K]:K £k 4 (5/ —yp(x) — 10— ye(X)Tp+ 11TAF’)

where s’ — %, (x') — 1, b — yu (x') " + 1] A > 0 by the construction of s'. By Schur complement,

T

Q. -

T

+1,, >0, (65)

(65) is equivalent to
.

)
¢ ) =1y 1 A 3 ((UAT) (AT - ()

T =0, Vk € [K].
3 ((UAZB) (AT —yk(x/))> Q.
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Thus, (X, s/, A, q;,Q)) is an interior point of Problem (15) and the strong duality between Problem
(15) and Problem (64) holds. [

B.7. Proof of proposition 3
First, we have @y(m) > O(m;) > O(my,B') = s* + 7.1, ® Q; + /71]|q;||2, where the first
inequality holds by conclusion (i) of Theorem 1 and the second inequality holds because B’ is a
feasible solution of Problem (14) and this problem is a maximization problem.

Next, we would like to construct a feasible solution (x/,s’, /i/, q’,Q’) of Problem (4). We set x' =
x*, A= A, s =5 +s, q =B'q;,and Q' =B'Q!(B')" + Q,, where sy > 0 and Q, > 0 and their
values will be decided later. Clearly, this solution satisfies constraints (4c). For this solution to

satisfy constraints (4b), the values s, and Q, should satisfy

(5c-+50) (BQ; (B) +Q0) = (B'qr +(uAt) (a2 - yk<x*>))

Note that, if (S +50)Qp = (1/4)M; for any k € [K], then (66) holds. By the definition of My, we
have M, - 0 for any k € [K]. Therefore, for any s, > 0, we can construct
Koo
Q=) ka

k=1

such that (66) holds and hence (x/, s/, i/, q’,Q’) is a feasible solution of Problem (4). The objective

value (denoted by @) with respect to this constructed solution is

S/ + ’)’Zlm b Ql + ﬁ qu||2 =s" + So + ’)’2Im o B/Q:(B/)T + 721"7 d QO + W ||qu:H2
=gs* +50 + ’)/zlml ° Q: + r)/ZIm L4 QO + m‘|q:”2

K
:® ,B/ Im M/
O(my )+50+k21:4 o M;

Y2
= 4(S + 50)
where the second equality holds because I, e BQ; (B )" =1, e Q;(B')'B' =1, e Q; and
(q7)"(B")"B'q; = (q}) " q;. As this constructed solution is a feasible solution of Problem (4), which

is a minimization problem, we have @y (m) < 04, It follows that

K
Oum(m) — Or(my) <Oy —O(my, B ) =so+ ) I I,  M,. (67)
k=1

Y2
— (S + So)
We further choose a value of s, to minimize the the right-hand side (RHS) of (67). Note that (i) If
VP — S < 0, then the RHS of (67) is minimized at P/S with s, = 0; (ii) If /P — S > 0, then the RHS
of (67) is minimized at 2v/P — S with s, = /P — S. Therefore, we conclude that the proposition
holds. [
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B.8. Proof of Theorem 4

(i) For any &; ~ IP; € Dy, we have Ep, [i;lgi ] 2 721, Then, by Lemma 2, for any given x € X
and B € B, , i.e, B'B =1, we further have B™ (Ep,[&,& ])B < B (7.L,,)B, i.e., Ep [BT&& B] =<
’yzBTImlB = 7,1, It follows that Dy C Dy. Thus, given any x € X and B € B,,,, we have

max Ep, [f (x,UA%CI%—y)} > max Ep, [f <x,UA%§,‘I+,u)} .

]PIEDU ]PIEDM

It follows that

min min max Ep, [f (x,UA%‘i,‘I —1—;4)} > min max Ep, [f (x,UA%é‘I —I—yﬂ ,

BeBu, xeX TPeDy xeX PreDy

which demonstrates that the optimal value of Problem (19) is an upper bound for that of Problem
(3) (i-e., Problem (2)).

(ii) Consider any m; < m, < m. We have B,, := {B € R"™ | B'B =1,,} and consider an
optimal solution (B*,x*) of Problem (19), i.e., Bngggl 1’)21};1 fnax Ep, [f(x, UAZE + ).

Note that (B*) "B* =I,,,. We can then construct B’ = [B*,C] € R"*"2 such that C € R"*(m2~m)
and B’ € B,,, i.e., (B') "B’ =1,,. With B/, we use Dj; to denote the corresponding ambiguity set

defined in (21). By the second-moment constraint in Dy;, we have

Ep, |(B)) 8/ B|

=Er, |[B",C 8/ [B",C]|

g, [(B)7EE B (B*)Tglg;c]
"l CTgE BT CTg/C

jr)/2lm2/

which implies that Ep, [(B*)Ti,"lf‘,‘lT B*| < 7,1, . It follows that D; C Dy. Therefore, we have

max Ep, {f (x*,UA%EjI +y)} > max Ep, [f <x*,UA%§‘I —I—,uﬂ . (68)

PreDy IP1eD];

Because B’ € B,, and x* € X, the constructed solution (B’,x*) is feasible to the problem

min min max Ep [f(x, UA%@fI + #)]. Then, we have

BeBm, xeX PreDy

Oy(m,) = min min max Ep, [f <x,UA%§,‘I —l—,uﬂ

BEBu, xeX PieDy

< max Ep, [f <x*,UA%§I -I-pl)}

PIED{J

< max [Ep, [f <X*IUA%§I —hu)}

]PIEDU

= min min max Ep, {f (X,UA%gl‘i‘P‘)]

BeBm1 xeX PreDy
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= ®U(m1),

where the first inequality holds because (B’,x*) is a feasible solution of the problem
Brggﬂz 1’)21)1;1 Hg?e%){i Ep, [f(x, UA%g'fI + )], the second inequality holds by (68), and the second equal-
ity holds because (B*,x*) is an optimal solution of Problem (19). That is, the optimal value of
Problem (19) is nonincreasing in m1;.

(iii) When m; = m, we have B € B,, C R"*", i.e., B' B = L,,. First, we have Oy (m) > Oy (m) by
the conclusion (i). Second, when B =1,,, Problem (19) becomes Problem (3). Because B=1,, is a
feasible solution of Problem (19), it follows that ®@y(m) < @y(m). Therefore, we have Oy(m) =

B.9. Proof of Proposition 4

First, by Theorem 3 in Cheramin et al. (2022), Problem (20) has the same optimal value as the

following problem:

min s+ 7L, 0 Qv all, (699)
1 T T T

st. s> f (x, UAE + ,4> — & BQBTE —q'E, VEES, (69b)

Q. >0, xeX, Qe R"™ qeR". (69¢)

Next, we apply the strong duality theorem to constraints (69b). We define
g(&) =5+ & BQB &+ & — 1200 — (%) (UALg +), Vke [K].
As function f(x, §) is piecewise linear convex, we can reformulate (69b) as
gk(&) >0, V¢ €S, Vke [K],
which is equivalent to

min 2(&;) >0, Vk € [K]. (70)

1
A (UA7 CI'W) <b, §eR™

For any k € [K], the Lagrangian dual problem of min <k(€)) is

1
A(UA2G+p)<b, Z1ER™

max min gx(&) + A, <A (UA%;‘I + ,u> - b) ,

/\k >0 §I€]R’”

where A, € R’. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (70) are equivalent to

max min gx(&,) + A, (A (UA%@’I +;1> - b) >0, Vk € [K],

Ae>0 &t
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which are further equivalent to

W= 0:5+8 BQB & +q'8 —yi(x) — () (UARE +p1)
+A <A (UA%gI + p) - b) >0, V& € R", Vk € [K]. (71)

Note that B'B = I,,,; that is, all the column vectors of B are orthogonal. We can then extend B
o [B,B] € R™™ with B € R"*("=™) such that all the column vectors of [B,B] span the space of
R™. Thus, we can always find ¢, € R™ and ¢, € R"™™ such that

¢1=Bg, + B,

It follows that constraints (71) become

MW= 0:5+8 Qy +q (BE +BE,) —18(0) — 300 (UAE (BE, +BE,) + )
+A] (A (UA® (BZ, +BE,) +p) —b) >0, ¥, € R™, &, e R™™, vk [K].  (72)

We further define

T T
s 00~ Ab - l0 A Ar 3 (BTa (UATB) (ATA - () )

Z,= - , Vk € [K].
H(B7a+ (UatB) (ATA-wix)) o
Thus, we have
(72) = W 20: (1E]) Z (1,gI>T+g2T (]?,Tq+ (uaiB ) (ATA — ) >0,
VE €R™,E € R"™, Yk € [K].
— 31, >0: (1,51) ( g) >0, V& € R™, Vk € [K]; (73)
B'q+ (UA %1‘3) (A"A¢ — v (x)) =0, Vk € [K].
= 3N>0:Z=0, B q+ (UA'B) (ATA—3i(x)) =0, ¥k € [K]
<IN, >0:Z, -0, B' (q+ (UA%)T (AT A —yk(x))> =0, Vk € [K]. (74)

.
= IN>0wER™: Z, =0, q+ (UA%) (ATAy — yi(x)) =Buy, Vk€ [K].  (75)

The first equivalence holds due to the definition of Z;. For the third equivalence, clearly <
follows from the definition of a PSD matrix. To prove =, we consider two possible cases for
any (7o € R,g" € R™)" € R™*: (i) if 170 = 0, then (o, 17T)Zk(170,1f)T =17'Q,x > 0 because Q,
is PSD; (ii) if 170 # 0, then we have (170,517 ) Zx (10,17 )" = 13(1, )Zk(l )T > 0 according to (73).
Therefore, = holds. For the fifth equivalence, (74) shows that q-+ (UAZ) (ATA, — yx(x)) is in
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the null space of B and thus cannot be represented by basis vectors in the space of B. Because
[B, B] span the space of R", we have q + (UA?)T(ATA,— Yx(x)) should be in the space of B. That
is, there exists u; € R"™ such that q + (UA?)T (AT A; — yx(x)) = Bu for any k € [K]. Meanwhile,

because B'B =1, , we have
1 T
B'q+ (UAB) (A"A—yi(x)) = B Bus = uy, Vk € [K],

Finally, we obtain Problem (22) by replacing constraints (69b) with (75) and replacing B'q +
(UA?B)T (AT A — yi(x)) with w. O
B.10. Proof of Theorem 5
Consider m; = K. We construct a solution (x',s", )ALJF, q',Qf,a", B") of Problem (19) by setting x" =
x,st=s,A'=A", q" =q' = V3, Qf =Yy, B' =V, and &} = & + v (k € [K]).

First, we show this constructed solution is feasible to Problem (19). Clearly, this solution satisfies

constraints (22d)—(22e). By the construction of the solution, for any k € [K], we further have

q" + (UA%)T (ATA; - yk(x*)) = Vi + (UA%)T (ATA; — yi(x"))
= V& + Vv, = B'al,

where the first equality holds by the construction of q', the second equality holds by (50), and
the third equality holds by the construction of . Thus, this solution satisfies constraints (22¢).
Meanwhile, V'V =1Ix =1, . It follows that (B") 'B" =1,,,.

In addition, from Problem (4), as ' = VJ and Q' = VY, V', for any k € [K], we have

1\ | i
Sk : <V5 + (UAT) (ATA; — yk(x*))>
N =0,
1 <V5 + <UA7> (ATA; — yk(x*))> VY, V'
which, by Schur complement, is equivalent to
1\ | 1\ | !
48, (VY V') = <V5 - (Um) (ATA; - yk(x*))> <V5 + (UA?) (ATAL — yk(X*))>
= (Vaf) (Vu]) ", (76)

where the equality holds by (50) and the construction of . From (76), for any k € [K], we have
the following inequality holds by Lemma 2:

48 (VIVYn VT V) = VT (vaf) (Va) v,
which is equivalent to

45, Y1 = uful’ (77)
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because V'V = Ix. By Schur complement, for any k € [K], (77) further becomes

1..+T
1Sk+ 2k
5 llk Yll

-0

which indicates that the constructed solution (x*,s*,)A\Jr,q*,Qj, a%,B") also satisfies constraints
(22b) and thus it is a feasible solution of Problem (19).

+

. . . At N . . .
Second, we show this feasible solution (x',s",A, q",Q!,a%, B") is an optimal solution of Prob-

lem (19). The objective value corresponding to this solution is

s'+ 7oL, @ Q + V11 ||q7], = 8" + 72l o Yu + v 9],
=5"+ 7L, ¢ (YuV'V) + /7114l
=s"+Lue (VY0 V') + 71,
=s"+ L, e Q'+ 1d,
= Ou(m),

where the first equality holds by the construction of (x',s", XT, q',Qf, 4", B"), the second equal-
ity holds because V'V = I, the third equality holds by the cyclic property of a matrix’s trace,
and the fourth equality holds by the definition of Q' in Theorem 2. Therefore, the solution
(x',st, /f, q',Q/, 4", B") is an optimal solution of Problem (19).

Finally, when m; > K and m; < m, we have Oy(m;) > Oy (m) by the conclusion (i) in Theorem
4 and Oy(m;) < Oy(K) = Oy (m) by the conclusion (ii) in Theorem 4. It follows that Oy (m;) =
Oum(m). O
B.11. Proof of Proposition 5

First, by Lemma 2, for any B € 3,,,, we have
X=<L,—B'XB=<B'IL,B=1I,,.

Second, we perform eigenvalue decomposition on X, i.e, X = QAQ', where Q € R™*" is a
matrix with orthonormal column vectors and A € R™™ is a diagonal matrix. Without loss of
generality, we assume that the diagonal elements of A are arranged in a nonincreasing order and
let A, «m, represent the upper-left submatrix of A.

Now we let B = Q,,,, where Q,,., is the left submatrix of Q. Then we have B € 53,,, and

B'XB <1I,, — B'QAQ'B =<1, = Q,,,, QAQ" Q,y, <Ly,

— [ImllOle(Tﬂfﬂ’ll)]A[Ifﬂl/Ole(mfml)]T = Iml

— Amlxml = Iml — A =1,
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= QAQ' <QL,Q" = X<I,

where the first deduction holds by the eigenvalue decomposition of X, the second deduction
holds by the construction of B, the third deduction holds because all the column vectors in Q are
orthonormal, the fourth deduction holds by the definition of A, ., the fifth deduction holds
because rank(X) < m;, the sixth deduction holds by Lemma 2. Thus, if B'XB < I, forany B €

B,,,, then we have X < I,,. The proof is complete. ~ []

B.12. Proof of Theorem 6

By dualizing the inner maximization problem of Problem (23) and integrating it with the outer

minimization operators, we first obtain the following formulation:

m(iynQN s+ 72l © Q4+ V1 (1qll, (783)
x,5,9,Qr,Qr
B1,B;

1
st s> f(x UMM +p) — & BIQB & — & B.Q/BIE —q'8, VG €S, (78D)
Q. =0,Q'>0,xc X, Q. c Rm*m, Q¢ REK-m)xK=m) g cR™ (78¢)

B, € R™"™,B, € R™* (™), [By,B,]"[By, Bo] = I. (78d)
Next, we apply the strong duality theorem to constraints (78b). We define
g(8) =5+ &/ BIQUBI &+ & B2Q/B; &+ '8 — () —yi(x) (UALE +p1), VK€ [K].
As function f(x, §) is piecewise linear convex, we can reformulate (78b) as
8x(&) =0, v, € 8, Vk € [K],
which is equivalent to

min 2(&;) >0, Vk € [K]. (79)

1
(onbgen) b geme

gk(8y) is

For any k € [K], the Lagrangian dual problem of e

max min (&) + A/ <A (UA%EI + y) - b) ,

A0 EER™

where A, € R'. Because there exists an interior point for the primal problem, the strong duality

holds. Thus, constraints (79) are equivalent to

max min gx(&,) + A, (A (UA%@’I +;1> - b) >0, Vk € [K],

Ae>0 &t
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which are further equivalent to
Wi >0:5+ 8 BIQUBI g, + & B.QUBIE + 978 — y)(x) — yi(x)” (UALZ +p)
+A; (A(UAZgG +p) —b) >0, Vg €R”, ke [K] (80)

Note that B'B = I,,,; that is, all the column vectors of B are orthogonal. We can then extend B
to [B, B] € R™" with B € R™*("~K) such that all the column vectors of [B, B] span the space of R".
Thus, we can always find &, € R™, &, € R, and &, € R" X such that

& =B1g, + By, + BE,.
It follows that constraints (80) become
A >0:s+ §1TQ;‘:1 + ‘:zTQggz + qT (B1&, + Bo, + BE;) — y,?(x)

— ()7 (UL (B.g, + Bog, + BE,) + 4
+ A7 (A (UA* (Big, + B, + BE) + 1) — b) >0,

V& eR™,E e RE™, & e R" K, Vk € [K]. (81)
We further define
s—yh(X) = A b —y(x) ' m+AAp J(h)T 3(h))T
Z,= ?h:/ Q; Omlx(If,*ml) , Vk e [K],
h O(Kfml)xml Qr

where h, = B] q + (UA?B;)T(ATA; — yx(x)) and h! = B] q + (UA?B,) " (ATA; — y(x)) for any
k € [K]. It follows that
(81) <= 3A,>0: (1,gf,g§) Z (1,gf,g§>T v (gT(H (UA%B)T (ATA, —yk(x))> >0,
V& €R™, & € RK™ & € R" K, vk € [K].
— Inz0: (1E.8)z (1, gl,gz> >0, Vg eR™, & e RC™, Vke [K]; (82)
BTq+( f) (AT — v (x)) =0, Vk € [K].
s 3N>0: Z, -0, BTq+ (UA%B)T (ATAx — y(x)) =0, ¥k € [K].
e A, >0:Z,=0, B" <q+ (UA%)T (AT A —yk(x))> =0, Vk € [K]. (83)
< AN >0,u, € R™,u) e R ™ :
2,70, q+ (UAY) (A"Ac— () = Byuj + Bouf, Vk € [K]. (84)

The first equivalence holds due to the definition of Z;. For the third equivalence, clearly <= fol-

lows from the definition of a PSD matrix. To prove ==, we consider two possible cases for any
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(mo € Ry € R™, 5, € RN™)T € R¥: (i) if 1 = 0, then (170,11, , 11, ) Ze(o, 1y 11, )T = 11 Qoo +
1, Q/11, > 0 because Q. and Q/ are PSD; (ii) if 779 # 0, then we have (10,4, ,1, )Zc(n0,4} 1, )" =
n3(1, %, %)Zk(l, %, %)T > 0 according to (82). Therefore, = holds. For the fifth equivalence,
(83) shows that q + (UA%)T(AT/\,( — yx(x)) is in the null space of B and thus cannot be rep-
resented by basis vectors in the space of B. Because [B, B] span the space of R”, we have q +
(UA?)T(AT A — y(x)) should be in the space of B. That is, there exists uj € R™ and u} € RK-™
such that q + (UA?)T(AT A, — y¢(x)) = Byuj + Byu/ for any k € [K]. Meanwhile, because BTB =

Ix, we have

.
hi=B/q+ (UA'B) (A"Ac—yi(x)) =B/ Biw, = uj, ¥k € K],

.
h! =B)q+ (UA%BZ) (ATA — yk(x)) =B, Bouy =uy, Vk € [K].

By replacing constraints (78b) with (84), we obtain the following problem:

min s 4 7ol *Q +v71llal, (85a)
QL.0Q! ,éﬁlfﬁ”,
By,B;
s=yp) =AM b =) T A A S(up) T ()T
s.t. T} Q Oy, x(k—my) | =0, Vk € [K], (85b)
1u// 0 "
2 Yk (K—mq)xmy r
.
q+ (UA%) (AT A — ye(x)) = Byuj + Byul, Vk € [K], (85¢)
xeX, qeR", Q e R™*™, Q] e RKm)xtk=m), (85d)
B, € R™™,B, € R™ &™) [By,B,]" [By,By] = I, (85€)
A={Ay, ..., A}, M €R,, VE€[K], (85f)
o' ={uj,...,ui}, uy, e R™, Vk € [K], (85g)
W' ={u},...,u}}, uf e R*"™, Vk € [K]. (85h)

Note that the value of Q;' does not contribute to the objective function (85a). We can then let M be
an arbitrarily large positive number and Q; = MI(x_,,)x(k—m,) be an optimal solution, by which
constraints (85b) become
s—y)(x) — A b— Tu+ A Ap (u))T
ye(x) = A, 1u§(yk(X) pHAcAr (W) v e (K. (86)
2 r
By replacing (85b) with (86), we obtain the formulation of Problem (24).
Based on the formulation of Problem (24), now we show that the three conclusions hold. Note

that for any B € By = {B € R™*X | B'B = I}, the optimal value of Problem (19), i.e., @y(K),

reaches the optimal value of the original Problem (4), i.e., ©Oy(m). We would like to show that
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by relaxing the constraints in Problem (19), we can obtain the exact formulation of Problem (24),
thereby the three conclusions hold.
First, we rewrite constraints (22b)—(22¢) in Problem (19) with m; = K by dividing B into [B;, B,]

and u; into ((u}) ", (uf)")". Thus, we obtain the following formulation:

mi}? s+ 720k 0 Q + 71 /9]l (87a)
0.Q,,8/a",
B1,B;
_ 4,0 —“Ab— T ALA 1 INT (T
st [S pe0) = Aeb —ye() gt dcAr 2 () D] o vke k), (s7b)
3 ()", (w)") Qr
T

q+ (UA%) (ATAy — y4(x)) = Byu} + Byuy, Vk € [K], (87¢)
xXeX, [BlzBZ]T[Bll Bz] =Ig, (87d)
q<€R", Q, € RK, B, e R™™ B, € R"™*K-m), (87e)
A={Ay, ..., A}, L €R,, V€ [K], (87f)
o' = {u),...,u}, u, e R™, Vk € [K], (87g)
o ={u/,...,ul}, u/ € R™, ke [K]. (87h)

Second, we relax constraints (87b) into

s —yp(x) — /\;bé_ugk()()T” + A Ap iggf =0, k€ [K], (88)
where Q) € R"1*™ is the upper-left submatrix of Q,. Note that if we use (88) to replace (87b), we
obtain a relaxation and accordingly lower bound for Problem (87). In addition, we further reduce
the optimal value of the relaxation by replacing Q, in the objective function (87a) with Q;. That
is, we obtain a lower bound for the optimal value of Problem (19) with m; = K (i.e., Problem
(4)). After these two steps of relaxations, we obtain the exact formulation of Problem (24). Thus,
we can conclude that Problem (24) is a relaxation of Problem (19) with m; = K. Therefore, by the

conclusion in Theorem 5, we have
@Lz(ml) S @U(K) = @M(m)

That is, the conclusion (i) holds.

For the conclusion (ii): For any 0 < m; < m, < K, we can follow the above two steps of relax-
ations to relax Problem (87) to the problem with the optimal value ®;,(m,), and based on this
relaxed problem, we can further relax it to the problem with the optimal value ®;,(m;). Because
all these problems are minimization problems, we have @, (1m;) < Op(m,).

For the conclusion (iii): When m; = K, Problem (24) becomes Problem (19) with m; = K. Thus,

by the conclusion in Theorem 5, we have

®L2(K) = @U(K) = @M(TH) O
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B.13. Proof of Proposition 7

Because B'B = 1,,, we have B'B < I,,,, which implies BB" < I,, by Lemma 1. It follows that

r' BB'r < r'r. Meanwhile, we have

T T T o T

* * —_ rr J—

r BB" r= [Hsz 015 (my—1) 0 rll2 =rr,
(m171)><1

indicating that B* = [r/||r||2, 0y (m,—1)] is an optimal solution of Problem (41). [

Appendix C: Instance-level Performance

Table C2 Instance-level Performance of Mosek, Low-rank, and ODR approaches on the Newsvendor Problem

Size Inst Mosek Time Low-rank Time Gapl ODR-LB Time Gapl ODR-UB Time Gap2 Interval ODR-RLB Gapl Interval
(m) No. (secs) (secs) (%) (secs) (%) (secs) (%) Gap (%) (%)  Gap (%)
1 |-1286.49 1232 | -1318.79 026 251 | -128655 092 0.00 -127291 2.00 1.06 107 -1286.67  0.01 1.08
2 [-1273.87 11.34 | -1306.17 026 254 | -127395 0.69 001 -1247.32 2.00 208 213 -127426  0.03 216
100 3 |-1332.03 13.36 | -1364.44 024 243 | -133756 052 042 -130545 1.97 2.00 246 -1332.36 0.02  2.06
4 [-1165.51 1441 | -1198.11 024 280 | -1165.77 086 0.02 -114727 197 157 161 -1165.85  0.03 1.62
5 [-1404.18 13.67 | -1436.49 028 230 | -140444 087 0.02 -1380.13 179 171 1.76 -1404.71  0.04 178
1 |-5024.99 342.00| -5113.92 077 177 | -5025.01 0.79 0.00 -4942.44 259 1.64 167 -5025.71  0.01 1.68
2 |-4905.57 432.57 | -4994.05 073 180 | -4905.69 0.77 0.00 -482653 2.60 1.61 1.64 -4906.38  0.02 165
200 3 |-5224.18 368.04 | -5312.91 074 170 | -522419 0.77 0.00 -514356 2.60 1.54 1.57 -5224.81  0.01 1.58
4 |-4544.90 338.68 | -4633.02 0.86 194 | -454492 078 0.00 -4420.02 261 275 283 -4549.09 009 292
5 |-5082.08 336.39 | -5170.61 093 174 | -5082.11 0.78 0.00 -5008.97 262 144 146 -5082.67  0.01 1.47
1 - - -21319.00  4.75 - | -21073.11 0.84 - -20609.54 4.63 - 2.25 -21085.65 - 2.31
2 - - -19704.00  4.18 - | -19456.89 0.83 - -1915447 411 - 1.58 -19458.73 - 1.59
400 3 - - -20768.00  9.18 - | -20522.01 0.83 - -20329.67 4.15 - 0.95 -20523.16 - 0.95
4 - - -20233.00  4.28 - | -19987.14 0.83 - -19720.16  4.61 - 1.35 -19988.39 - 1.36
5 - - -21098.00  4.92 - | -20851.12 0.83 - -20625.09 4.17 - 1.10 -20852.53 - 1.10
1 - - -79859.00  20.42 - | -79169.65 0.87 - -78077.61 9.75 - 1.40 -79175.14 - 141
2 - - -77257.00  27.47 - | -76565.62 0.85 - 7491699 1033 - 2.20 -76599.05 - 2.25
800 3 - - -81070.00  35.62 - | -80377.76  0.84 - -7931551 9.53 - 1.34 -80382.74 - 1.35
4 - - -81457.00  76.50 - | -80764.52 0.84 - 7996265 9.58 - 1.00 -80768.75 - 1.01
5 - - -81496.00  76.69 - | -80805.26 0.85 - -79792.38 9.55 - 1.27 -80813.71 - 1.28
1 - - -183630.00 109.14 - |-182370.00 1.14 - -180050.00 19.91 - 129 | -182370.00 - 1.29
2 - - -173670.00 117.37 - |-172400.00 1.12 - -169680.00 19.78 - 1.60 | -172410.00 - 1.61
1200 3 - - -182520.00 140.65 - |-181250.00 1.13 - -177660.00 22.55 - 2,02 |-181270.00 - 2.03
4 - - -178900.00  74.59 - |-177640.00 1.13 - -175060.00 20.25 - 147 | -177640.00 - 1.47
5 - - -185620.00 109.90 - |-184350.00 1.13 - -181780.00 21.68 - 141 | -184360.00 - 1.42
1 - - -315650.00 400.93 - [-313700.00 2.01 - -305200.00 41.39 - 279 | -313730.00 - 2.79
2 - - -309790.00 37220 - |-307850.00 2.00 - -302760.00 37.50 - 1.68 | -308420.00 - 1.87
1600 3 - - -324440.00 14956 - |-322490.00 2.01 - -317910.00 38.19 - 144 | -322510.00 - 1.45
4 - - -317670.00 25229 - |-315730.00 2.00 - -311360.00 37.82 - 140 | -315750.00 - 141
5 - - -327380.00 370.02 - |-325430.00 2.03 - -321070.00 36.89 - 136 | -325450.00 - 1.36
1 - - -498890.00 37527 - |-496170.00 2.56 - -486710.00 65.33 - 194 | -496420.00 - 2.00
2 - - -503680.00 456.47 - |-500960.00 2.53 - -493000.00 59.05 - 1.61 | -500980.00 - 1.62
2000 3 - - -474830.00 65228 - |-472110.00 2.50 - -464030.00 59.88 - 174 | -472230.00 - 177
4 - - -500770.00 1958.60 - | -498060.00 2.54 - -483530.00 4123 - 3.00 | -498090.00 - 3.01
5 - - -499180.00 685.50 - |-496460.00 2.54 - -489140.00 57.90 - 150 | -496490.00 - 1.50
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Table C3 Instance-level Performance of Mosek, Low-rank, and ODR approaches on the CVaR Problem
Size Inst Mosek Time Low-rank Time Gapl ODR-LB Time Gapl ODR-UB Time Gap2 Interval ODR-RLB Gapl Interval
(m) No. (secs) (secs) (%) (secs) (%) (secs) (%) Gap (%) (%)  Gap (%)
1 4.53 17.18 441 243 2.68 4.53 1.11  0.03 4.56 253 051 0.54 4.23 6.75 7.22
2 4.80 17.12 4.63 3.83 3.51 4.79 0.88 0.03 4.84 257 092 0.94 4.38 8.74 9.57
100 3 4.95 14.86 4.85 2.19 1.89 494 1.09 0.04 5.03 1.27  1.66 1.67 441 10.84 12.30
4 443 14.71 4.30 3.05 291 443 0.88 0.05 447 192 0.86 091 4.04 8.77 9.56
5 3.55 16.14 3.45 243 3.05 3.55 0.88 0.00 3.57 3.18 037 0.37 3.33 6.35 6.69
1 3.48  435.49 3.39 6.25 2.74 3.48 1.54 0.00 3.49 1.87 035 0.35 3.36 3.58 3.92
2 3.08 43893 2.96 8.91 3.81 3.08 152  0.01 3.10 5.08 0.66 0.66 2.99 2.84 347
200 3 296 47215 2.80 7.03 5.2 2.96 1.18 0.01 297 375 032 0.32 2.76 6.86 7.16
4 2.61  469.65 2.56 5.83 1.92 2.61 1.15 0.12 2.64 564 1.29 1.40 2.30 1193 13.06
5 3.29 44047 3.19 6.55 3.04 3.29 1.17  0.01 3.30 748 0.35 0.36 3.03 8.03 8.35
1 - - 1.84 21.65 - 1.87 5.09 - 1.89 7.13 - 0.58 1.77 - 6.01
2 - - 1.37 19.35 - 142 5.06 - 1.45 7.85 - 2.36 1.33 - 8.58
400 3 - - 1.63 18.83 - 1.68 4.16 - 1.75 11.30 - 3.78 1.48 - 15.14
4 - - 1.31 26.35 - 1.35 5.79 - 1.37 10.19 - 1.50 1.26 - 8.00
5 - - 1.72 17.72 - 1.77 5.03 - 1.78 10.72 - 0.91 1.62 - 9.08
1 - - 0.38 68.43 - 0.40 13.27 - 0.41 30.50 - 2.55 0.34 - 16.17
2 - - 0.43 84.54 - 0.44 17.25 - 0.44 53.51 - 0.41 0.40 - 8.89
800 3 - - 0.65 72.48 - 0.67 11.32 - 0.68 28.40 - 1.37 0.62 - 8.75
4 - - 0.32 84.69 - 0.33 20.70 - 0.34 35.89 - 3.20 0.28 - 18.17
5 - - 0.54 69.04 - 0.57 11.70 - 0.57 51.05 - 0.70 0.53 - 6.81
1 - - -0.22 159.23 - -0.21 26.73 - -0.20 66.29 - 6.16 -0.22 - 9.70
2 - - 0.05 184.83 - 0.05 29.53 - 0.05 96.83 - 4.99 0.05 - 8.97
1200 3 - - -0.24 172.05 - -0.23 27.23 - -0.23 74.17 - 2.57 -0.25 - 8.32
4 - - -0.05 193.84 - -0.04 30.20 - -0.04 96.19 - 3.49 -0.05 - 10.39
5 - - -0.23 147 .44 - -0.22 30.58 - -0.22 89.40 - 1.58 -0.24 - 7.51
1 - - -0.49 634.88 - -0.47 52.30 - -0.47 108.48 - 1.37 -0.50 - 6.46
2 - - -0.63 724.57 - -0.60 47.77 - -0.59 112.56 - 1.49 -0.66 - 11.10
1600 3 - - -0.65 548.77 - -0.63 39.49 - -0.61 10797 - 2.31 -0.68 - 10.98
4 - - -0.54 628.65 - -0.53 56.91 - -0.52 116.45 - 2.08 -0.56 - 8.11
5 - - -0.67 638.91 - -0.65 44.68 - -0.64 124.21 - 1.66 -0.69 - 6.91
1 - - -0.95 1654.35 - -0.92 69.48 - -0.91 168.84 - 0.82 -0.98 - 8.04
2 - - -0.87 1259.47 - -0.83 74.56 - -0.82 176.96 - 1.42 -0.89 - 8.27
2000 3 - - -0.88 1622.80 - -0.86 72.74 - -0.85 173.70 - 1.81 -0.92 - 8.67
4 - - -0.86 1558.60 - -0.83 74.70 - -0.82 171.74 - 2.06 -0.89 - 9.56
5 - - -0.91 2055.00 - -0.89 64.40 - -0.88 171.40 - 1.47 -0.94 - 7.35
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Table C4  Instance-level Performance of PCA Approximation on the Newsvendor Problem (Part 1)
(%) 100% 80%

Size Inst Mosek Time | PCA Time Gapl PCA Time Gap2 Interval PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) -LB (secs) (%) -UB (secs) (%) Gap (%) -LB (secs) (%) -UB (secs) (%) Gap (%)

1 |-1286.50 12.32 |-1286.50 12.25 0.00 -1286.50 12.26 0.00 0.00 -1294.60  4.81 0.63 -1095.30 832 14.86 1820

2 |-127390 11.34 |-127390 11.34 0.00 -1273.90 11.31 0.00 0.00 -1280.30  6.26 0.50 -1125.30 9.26 11.66 13.77
100 3 |-1332.00 13.36 |-1332.00 13.41 0.00 -1332.00 13.45 0.00 0.00 -1338.40  5.00 048 -1177.70 581 11.58 13.65

4 |-1165.50 14.41 |-1165.50 14.31 0.00 -1165.50 14.32 0.00 0.00 -1170.80  4.74 0.45 -1027.10 625 11.87 13.99

5 |-1404.20 13.67 |-1404.20 1390 0.00 -1404.20 13.59 0.00 0.00 -141020 443 043 -1247.20 920 11.18 13.07

1 |-5025.00 342.00 |-5025.00 341.02 0.00 -5025.00 340.13 0.00 0.00 -5039.50 108.66 0.29 -4489.90 154.84 10.65 12.24

2 | -4905.60 432.57 |-4905.60 428.21 0.00 -4905.60 428.05 0.00 0.00 -492340 159.12 0.36 -4291.10 14574 1253 14.74
200 3 |-5224.20 368.04 |-5224.20 367.90 0.00 -5224.20 365.32 0.00 0.00 -5236.10 129.56 0.23 -473540 165.19 9.36  10.57

4 |-4544.90 338.68 |-4544.90 337.53 0.00 -4544.90 338.40 0.00 0.00 -4562.50 99.16  0.39 -3978.80 156.46 12.46 14.67

5 |-5082.10 336.39 |-5082.10 333.06 0.00 -5082.10 337.63 0.00  0.00 | -5096.90 107.12 029 -4539.00 154.74 10.69 12.29

1 - - - - - - - - - -21115.00 3571.70 -  -18777.00 4340.70 - 12.45

2 - - - - - - - - - -19502.00 3118.80 -  -17147.00 4737.10 - 13.73
400 3 - - - - - - - - - -20576.00 356340 -  -17939.00 433540 - 14.70

4 - - - - - - - - - -20037.00 3130.60 -  -17530.00 5597.80 - 14.30

5 - - - - - - - - - -20896.00 3355.50 -  -18545.00 4957.60 - 12.68

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
800 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
1200 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
1600 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
2000 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -
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Table C5  Instance-level Performance of PCA Approximation on the Newsvendor Problem (Part 2)
T1(%) 60% 40%
Size Inst Mosek Time PCA Time Gapl PCA Time Gap2 Interval PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) -LB (secs) (%) -UB (secs) (%) Gap (%) -LB (secs) (%) -UB (secs) (%) Gap (%)
1 |-1286.50 12.32 | -1302.20 1.34 1.22  -947.57 227 2635 3743 | -1311.00 037 190 -798.73 0.61 3791 6414
2 |-127390 11.34 | -1287.10 147 1.04 -977.48 241 2327 31.68 -1295.20 0.37 1.67 -827.38 059 35.05 56.54
100 3 |-1332.00 13.36 | -1343.80 1.37 0.89 -103490 230 2230 29.85 | -1352.70 044 155 -871.01 0.53 3461 5530
4 |-1165.50 14.41 | -1175.80 149 0.88 -899.35 220 2284 3074 |-1186.10 038 177 -726.28 056 37.69 6331
5 |-1404.20 13.67 | -1416.30 151 0.86 -1097.00 227 2188 29.11 -1426.00 0.38 1.55 -930.82 053 3371 53.20
1 |-5025.00 342.00| -5060.30 27.90 0.70 -3850.80 4591 2337 3141 | -5082.70 546 115 -3280.60 794 3471 5493
2 |-4905.60 432.57 | -4942.40 28.01 0.75 -3681.80 44.88 2495 3424 | -496120 557 113 -3160.60 8.04 3557 56.97
200 3 |-5224.20 368.04| -5254.40 28.38 058 -4159.80 3824 2037 2631 | -5279.80 430 1.06 -3500.30 822 33.00 50.84
4 |-454490 338.68| -4586.40 2791 091 -329490 4476 2750 39.20 | -4612.30 550 148 -2691.30 8.05 40.78 71.38
5 |-5082.10 336.39 | -5117.90 3146 0.70 -3853.90 47.60 24.17 32.80 |-514140 526 117 -3271.50 7.87 35.63 57.16
1 - - -21169.00 821.43 -  -16441.00 1190.50 - 2876 |-21245.00 135.16 - -13992.00 172.88 - 51.84
2 - - -19565.00 806.29 -  -14518.00 124240 - 3476 |-19627.00 118.76 - -12219.00 190.53 - 60.63
400 3 - - -20633.00 746.19 -  -15382.00 118590 - 34.14 |-20701.00 126.90 - -13075.00 163.08 - 58.33
4 - - -20103.00 74590 -  -15039.00 1060.30 - 33.67 |-20166.00 126.71 - -12822.00 172.02 - 57.28
5 - - -20948.00 808.32 -  -16365.00 1305.80 - 28.00 |-21030.00 119.62 - -13638.00 191.30 - 54.20
1 - - - - - - - - - -79668.00 331570 - = -49697.00 5561.00 - 60.31
2 - - - - - - - - - -77065.00 332590 -  -47841.00 5349.40 - 61.09
800 3 - - - - - - - - - -80845.00 3064.50 -  -52462.00 4773.00 - 54.10
4 - - - - - - - - - -81234.00 373830 -  -52648.00 5373.90 - 54.30
5 - - - - - - - - - -81299.00 3310.60 -  -52083.00 5129.70 - 56.10
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
1200 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
1600 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
2000 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
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Table C6  Instance-level Performance of PCA Approximation on the Newsvendor Problem (Part 3)
71L(%) 20% m =2
Size Inst Mosek Time PCA Time Gapl PCA Time Gap2 Interval PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) -LB (secs) (%) -UB (secs) (%) Gap (%) -LB (secs) (%) -UB (secs) (%) Gap (%)
1 [-1286.50 12.32 | -1326.80 0.15 3.13 -635.71 0.17 5059 108.71 -1340.40 0.11 419 -543.04 0.13 57.79 146.83
2 |-127390 11.34 | -1304.70 0.15 242 -687.64 0.17 46.02 89.74 -1327.60  0.11 4.22 -542.22 0.13 5744 14485
100 3 |-1332.00 13.36 | -1365.40 0.15 251 -712.10 0.17 4654 91.74 -1383.50 0.11 3.87 -578.03 0.12 56.60 139.35
4 |-1165.50 14.41 | -1200.50 0.15 3.00 -566.47 0.17 5140 11193 -1226.10  0.11  5.20 -437.58 0.13 6246 180.20
5 [-140420 13.67 | -1439.40 0.15 2.51 -771.50 0.17 45.06 86.57 -1457.90 0.12 3.82 -649.78 0.13 53.73 124.37
1 |-5025.00 342.00| -5119.80 0.44 1.89  -2596.60 0.60 4833 9717 -5186.10 0.12 321 -2060.80 0.14 5899 151.65
2 |-4905.60 432.57 | -4994.40 0.41 1.81 -2562.50 0.63 4776 9490 -5075.90 0.12 347 -194650 0.14 6032 160.77
200 3 |-5224.20 368.04 | -5315.90 0.46 1.76  -2866.90 0.61 45.12 8542 -5381.30  0.12 3.01 -2311.10 0.14 5576 132.85
4 | -454490 338.68 | -4647.50 043 226 -2126.90 054 5320 11851 -4698.30 0.12 338 -1665.00 0.13 63.37 182.18
5 |-5082.10 336.39 | -5173.10 043 1.79 -2715.90 0.64 4656 9047 -5242.30 0.12 315 -214350 0.14 57.82 14457
1 - - -21339.00 6.70 - -11594.00 9.11 - 84.05 -21522.00 0.13 - -9371.90 0.16 - 129.64
2 - - -19708.00 6.24 - -9958.20 9.87 - 97.91 -19902.00 0.13 - -7542.00 0.16 - 163.88
400 3 - - -20799.00 6.73 - -10727.00 8.69 - 93.89 -20966.00 0.13 - -8775.80  0.16 - 138.91
4 - - -20248.00  6.92 - -10572.00  8.59 - 91.52 | -20433.00 0.13 - -8308.70  0.16 - 145.92
5 - - -21117.00  5.85 - -11362.00  9.99 - 85.86 | -21303.00 0.13 - -9320.10 0.16 - 128.57
1 - - -79911.00 154.48 - -40500.00  200.80 - 97.31 -80463.00 0.31 - -32126.00 0.24 - 150.46
2 - - -77307.00 144.71 - -38892.00 199.38 - 98.77 -77887.00 0.18 - -29920.00 0.22 - 160.32
800 3 - - -81103.00 124.46 - -42637.00 188.42 - 90.22 -81643.00 0.18 - -33281.00 0.22 - 145.31
4 - - -81485.00 126.10 - -43148.00 210.77 - 88.85 | -82068.00 0.18 - -33560.00 0.22 - 144.54
5 - - -81558.00 135.08 - -42763.00 220.47 - 90.72 -82118.00 0.18 - -33479.00 0.23 - 145.28
1 - - -183710.00 985.14 - -96727.00 1366.70 - 89.93 |-184810.00 0.26 - -76036.00 0.33 - 143.06
2 - - -173790.00 985.53 - -86447.00 1300.90 - 101.04 |-174850.00 0.26 - -66649.00 0.32 - 162.34
1200 3 - - -182600.00 979.76 - -96613.00 1363.80 - 89.00 |-183690.00 0.26 - -75896.00  0.33 - 142.03
4 - - -179020.00 921.56 - -91610.00 1247.70 - 9542 |-180010.00 0.26 - -71834.00 0.32 - 150.59
5 - - -185720.00 986.00 - -99561.00 1423.20 - 86.54 |-186830.00 0.26 - -78973.00 0.32 - 136.57
1 - - -315750.00 3582.30 -  -162510.00 4530.10 - 94.30 |-317380.00 0.36 - -125440.00 0.50 - 153.01
2 - - -309960.00 3567.80 -  -153820.00 4507.80 - 101.51 |-311670.00 0.36 - -118400.00 0.44 - 163.23
1600 3 - - -324640.00 3695.80 -  -168020.00 5346.20 - 93.22 |-326210.00 0.36 - -132570.00 0.43 - 146.07
4 - - -317780.00 3337.20 - -165280.00 4731.50 - 92.27 |-319500.00 0.38 - -127390.00 0.47 - 150.80
5 - - -327540.00 3548.40 - -172320.00 5585.80 - 90.08 |-329150.00 0.36 - -136190.00 0.49 - 141.68
1 - - - - - - - - - -501430.00 0.50 - -200430.00 0.60 - 150.18
2 - - - - - - - - - -506210.00 0.51 - -206390.00 0.59 - 145.27
2000 3 - - - - - - - - - -477400.00 0.51 - -174350.00 0.61 - 173.82
4 - - - - - - - - - -503420.00 0.50 - -201130.00 0.59 - 150.30
5 - - - - - - - - - -501710.00 0.51 - -202070.00 0.61 - 148.29
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Table C7  Instance-level Performance of PCA Approximation on the CVaR Problem (Part 1)
™ (%) 100% 80%

Size Inst Mosek Time |PCA Time Gapl PCA Time Gap2 Interval |[PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) | -LB  (secs) (%) -UB (secs) (%) Gap(%)| -LB (secs) (%) -UB (secs) (%) Gap (%)

1 4.53 1718 | 453 17.01 0.00 4.53 16.89 0.00 0.00 297 591 3450 728 6.01 6062 59.22

2 480 1712|480 1711 000 480 1684 0.00 0.00 |356 682 2579 733 594 5290 5147
100 3 495 14.86 | 495 1503 0.00 495 1480 0.00 0.00 |378 679 2355 675 641 3654 44.01

4 443 1471 | 443 1478 0.00 4.43 14.80 0.00 0.00 242 551 4535 848 732 9161 7148

5 355 16.14 | 355 1631 0.00 355 16.00 0.00 000 |209 594 4113 819 6.07 13054 7446

1 348 43549 348 439.62 0.00 3.48 439.48 0.00 0.00 229 165.75 3416 6.02 16746 7280 61.90

2 3.08 43893 | 3.08 440.76 0.00 3.08 437.38 0.00 0.00 192 14685 37.73 5.63 128.67 82.82 65.94
200 3 296 472.15| 296 470.65 0.00 296 469.18 0.00 0.00 |208 136.76 29.78 520 14738 75.64 60.02

4 261 469.65| 2.61 47019 0.00 2.61 468.57 0.00 0.00 1.66 17435 3624 5.16 14645 97.68 67.75

5 3.29 44047 3.29 441.60 0.00 3.29 440.62 0.00 0.00 227 14726 31.04 552 15578 6759 58.86

1 - - - - - - - - - 136 337740 - 330 425430 - 58.86

2 - - - - - - - - - 0.74 4014.60 - 3.34 4464.40 - 77.93
400 3 - - - - - - - - - 1.06 3517.60 - 343 392040 - 69.01

4 - - - - - - - - - 0.68 444620 -  3.83 401490 - 82.22

5 - - - - - - - - - 1.30 379640 - 3.53 4209.90 - 63.28

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
800 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
1200 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - -

2 - - - - - - - - - - - - - - - -
1600 3 - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - -

5 - - - - - - - - - - - - - - - -

2000

T W N
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Table C8  Instance-level Performance of PCA Approximation on the CVaR Problem (Part 2)
(%) 60% 40%
Size Inst Mosek Time |PCA Time Gapl PCA Time Gap2 Interval |[PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) | -LB  (secs) (%)  -UB  (secs) (%) Gap (%) | -LB  (secs) (%)  -UB  (secs) (%)  Gap (%)
1 4.53 1718 | 0.33  1.90 9281 11.67 2.02 15749 9721 |-276 050 16098 16.82 0.68 27099 116.44
2 4.80 1712 | 0.76 191 84.11 10.65 214 122.01 9284 |-218 049 14543 1435 0.71 199.20 115.19
100 3 495 1486 | 0.80 214 8382 11.67 214 13591 93.14 |-192 047 138.74 2042 0.68 312.79 109.38
4 443 1471 |-021 2.01 10464 1217 214 17481 101.69 |-2.55 049 157.66 1742 0.72 29334 114.66
5 355 1614 | 002 190 99.31 1286 219 261.77 99.81 |-2.63 050 174.02 2047 0.72 476.10 112.85
1 348 43549| 098 4350 7182 770 39.11 12099 8725 |-1.03 737 129.57 1153 7.88 230.93 108.94
2 3.08 43893059 4258 8072 7.00 39.09 12711 9151 |-1.80 5.84 15852 1143 801 270.79 115.78
200 3 296 47215| 037 4419 8741 805 38.07 17210 9537 |-1.22 586 14124 1210 810 309.15 110.08
4 2.61 469.65|-0.05 40.15 101.77 8.29 3896 21733 10056 |-2.07 6.34 179.30 1344 812 41457 11541
5 329 44047 )| 066 4335 7992 819 3641 14897 9194 |-140 588 14267 1253 8.06 280.57 111.21
1 - - 0.15 1173.60 - 4.99 1060.60 - 9694 |-1.71 152.21 - 9.13 154.43 - 118.75
2 - - -0.35 1058.30 - 514 100410 - 106.90 |-2.09 148.95 - 9.73 182.07 - 121.46
400 3 - - -0.21 1162.90 - 5.53 1057.90 - 103.81 |-1.97 151.57 - 9.78 172.16 - 120.16
4 - - -0.41 93548 - 5.77 1000.00 - 107.11 |-210 159.27 - 10.56 162.28 - 119.86
5 - - 0.04 118770 - 551 1060.00 - 99.24 |-1.53 152.23 - 941 183.13 - 116.29
1 - - - - - - - - - -2.06 4063.20 - 7.78 4084.70 - 126.55
2 - - - - - - - - - -1.98 4058.60 - 843 431380 - 123.45
800 3 - - - - - - - - - -1.71 4316.80 - 7.79 409210 @ - 122.00
4 - - - - - - - - - -2.09 4275.80 - 7.25 4089.90 - 128.80
5 - - - - - - - - - -1.80 4465.90 - 7.60 4349.30 - 123.70
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
1200 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
1600 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
1 - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - -
2000 3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
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Table C9  Instance-level Performance of PCA Approximation on the CVaR Problem (Part 3)
=1(%) 20% my =2
Size Inst Mosek Time |PCA Time Gapl PCA Time Gap2 Interval |PCA Time Gapl PCA Time Gap2 Interval
(m) No. (secs) | -LB  (secs) (%) -UB (secs) (%) Gap (%)| -LB (secs) (%) -UB (secs) (%) Gap (%)
1 4.53 1718 |-3.90 0.17 186.08 2352 0.41 41878 116.59 |-4.75 0.11 204.81 26.01 0.35 473.84 118.26
2 4.80 1712 |-3.50 0.18 17299 2050 041 327.37 117.08 |-471 0.11 19831 25.60 0.34 433.80 118.42
100 3 4.95 1486 |-3.56 0.18 172.05 2595 0.39 42476 11373 |-477 011 196.53 2595 0.34 42476 118.39
4 443 1471 [-390 0.17 188.06 26.11 040 489.61 11494 |-4.89 0.11 21047 2633 0.34 494.64 118.58
5 3.55 16.14 [-3.88 0.18 209.10 2578 0.39 62550 115.04 |-4.79 0.11 234.83 2578 0.35 625.50 118.58
1 348 43549 |-321 055 19220 2273 1.65 55279 11412 |-492 0.12 241.30 2595 1.29 645.08 118.96
2 3.08 43893|-3.48 0.58 212.88 2336 177 65793 11489 |-491 0.12 25940 2549 136 727.15 119.27
200 3 296 472.15|-341 056 21542 1986 1.75 57147 11719 |-495 0.12 267.31 2621 1.34 786.05 118.88
4 261 469.65|-3.32 054 22731 21.18 1.69 711.04 11570 |-4.74 0.12 281.72 26.17 1.35 902.11 118.13
5 329 44047 |-337 056 20250 24.69 171 65030 113.66 |-4.97 0.12 251.00 2520 1.33 665.76 119.72
1 - - -3.30  6.67 - 1691 15.91 - 11949 |-4.90 0.13 - 2550 8.32 - 119.21
2 - - -3.37  6.62 - 15.66 14.98 - 121.55 |-4.92 0.13 - 25.72  8.30 - 119.14
400 3 - - -3.59 717 - 16.55 15.43 - 121.69 |-494 0.14 - 25.80 8.32 - 119.16
4 - - -3.54 6.70 - 20.87 1548 - 116.97 |-4.94 0.14 - 2549 8.29 - 119.39
5 - - -3.53  6.65 - 17.51 15.08 - 120.15 |-4.99 0.14 - 26.18 8.35 - 119.07
1 - - -3.47 143.12 - 16.12 218.65 - 121.50 |-493 0.19 - 25.38 12.28 - 119.43
2 - - -3.50 144.60 - 15.70 216.28 - 122.28 |-495 0.19 - 25.63 14.29 - 119.30
800 3 - - |-3.34 155.60 - 1546 24510 - 121.62 |-490 0.19 - 2549 13.65 - 119.22
4 - - -3.45 143.77 N 13.99 242.98 - 124.68 |-4.97 0.19 - 25.04 11.44 - 119.85
5 - - -3.51 154.61 N 14.56 253.47 - 12413 |-498 0.19 - 25.15 11.68 - 119.79
1 - - -3.58 1080.30 - 12.77 1396.30 - 128.06 |-4.97 0.28 - 25.21 20.99 - 119.70
2 - - -3.46  956.30 - 14.20 1340.40 - 124.40 |-4.98 0.29 - 25.52 23.64 - 119.53
1200 3 - - -3.51 1080.90 - 12.90 1337.00 - 127.22 |-4.99 0.28 - 25.15 20.69 - 119.83
4 - - -3.47 958.77 - 12.84 1347.00 - 127.04 |-496 0.28 - 25.51 2254 - 119.44
5 - - -3.48 1084.20 - 11.51 1334.30 - 130.23 |-498 0.29 - 2545 19.78 - 119.57
1 - - -3.46 3648.80 N 12.85 4063.90 - 126.94 |-498 0.40 - 25.46 48.60 - 119.57
2 - - -3.43 4048.20 - 11.87 4949.60 - 128.92 |-4.99 0.40 - 25.53 41.03 - 119.56
1600 3 - - -3.53 3827.30 - 12.17 4732.50 - 129.00 |-4.99 0.42 - 25.35 45.68 - 119.68
4 - - -3.48 3652.40 - 13.09 4280.40 - 126.58 |-4.98 0.43 - 2547 46.43 - 119.57
5 - - -3.56 4258.60 - 12.70 4644.50 - 128.02 |-4.99 0.48 - 25.19 46.48 - 119.81
1 - - - - - - - - - -499 0.54 - 25.37 78.45 - 119.67
2 - - - - - - - - - -4.99 0.54 - 2527 84.03 - 119.76
2000 3 - - - - - - - - - -5.00 0.54 - 2526 79.27 - 119.78
4 - - - - - - - - - -5.00 0.53 - 2530 8126 - 119.76
5 - - - - - - - - - -498 0.53 - 25.24 80.23 - 119.73




	Introduction
	Literature Review
	Moment-based DRO
	Dimensionality Reduction
	Low-rank SDP Algorithms
	Integration of Machine Learning with Decision-making
	SDP Reformulation
	Lower Bound
	Upper Bound
	Lower Bound Revisited
	Efficient Algorithm
	ADMM for Problem (19)
	A New ADMM for Problem (26)

	Numerical Experiments
	Numerical Setup
	Numerical Results
	Instance Generation and Table Header Description
	Numerical Performance
	Numerical Insights


	Conclusion
	Table of Notations
	Technical Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1 
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Proposition 2 
	Proof of proposition 3
	Proof of Theorem 4
	Proof of Proposition 4
	Proof of Theorem 5
	Proof of Proposition 5
	Proof of Theorem 6
	Proof of Proposition 7
	Instance-level Performance



