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In the academic literature and in expert testimony, the Polsby-Popper score is the most popular way to

measure the compactness of a political district. Given a district with area A and perimeter P , its Polsby-

Popper score is given by (4πA)/P 2. This score takes values between zero and one, with circular districts

achieving a perfect score of one. In this paper, we propose the first mathematical optimization models to

draw districts with optimum Polsby-Popper score. Specifically, we propose new mixed-integer second-order

cone programs (MISOCPs), which can be solved with existing optimization software. We investigate their

tractability by applying them to real-life districting instances in the USA. Experiments show that they

are able to: (i) identify the most compact majority-minority districts at the tract level; (ii) identify the

most compact districting plans at the county level; and (iii) refine existing tract-level plans to make them

substantially more compact. Our techniques could be used by plaintiffs when seeking to overturn maps that

dilute the voting strength of minority groups. Our python code and results are publicly available on GitHub.

1. Introduction

In the academic literature and in expert testimony, the Polsby-Popper score is the most popular

way to measure the compactness of a political district. This score was first proposed for districting

by Polsby and Popper (1991) in a law journal, although the same score had already been proposed

for measuring the roundness of sand grains in a paleontology journal 64 years prior (Cox 1927).

Mathematically, the Polsby-Popper score of a district is a function of its area A and perimeter P :

(Polsby-Popper score)
4πA

P 2
.
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The normalizing factor 4π ensures that the score takes values between 0 and 1, with circular

districts achieving a perfect score of 1—a consequence of the well-known isoperimetric inequality.

Compactness—whether measured via the Polsby-Popper score or otherwise—is one of many cri-

teria that are used when partitioning a state into political districts. Other traditional redistricting

principles state that districts should have nearly equal populations (“population balance”), that

they should be contiguous on the map, and that they should not unnecessarily divide political sub-

divisions such as counties, cities, and towns. In response to recent partisan gerrymandering, reform

groups have also sought new laws to promote competitiveness, partisan fairness, or proportionality,

or to promote the use of independent redistricting commissions to draw district lines (instead of

state legislatures who have an obvious conflict of interest).

Federal law in the USA also requires states to abide by the Voting Rights Act (VRA) of 1965,

which prohibits racial discrimination in voting. Section 2 of the VRA has been used to overturn

maps that dilute the voting power of minority groups. Under the Supreme Court’s ruling in Thorn-

burg v. Gingles (1986), a successful vote dilution claim must first show that the minority group is

“sufficiently large and geographically compact to constitute a majority in a single-member district”.

That is, the court requires plaintiffs to provide an alternative map (or “demonstration districts”)

showing that such a majority-minority district is possible. The Supreme Court also ruled that,

when drawing minority-opportunity districts, plans must abide by traditional districting principles

“including but not limited to compactness, contiguity, respect for political subdivisions or commu-

nities defined by actual shared interests” and not let race be the “predominant factor” lest they be

ruled a racial gerrymander in violation of the Equal Protection Clause of the 14th Amendment.

At the time of writing, the Supreme Court is deciding the case Merrill v. Milligan about whether

Alabama must draw a second Black-opportunity district to satisfy the VRA. Much of the expert

testimony concerns the ability to draw suitable demonstration districts, with particular attention

being paid to the tradeoffs between political subdivision preservation, district compactness, and

minority representation. Pertinently, an amicus brief was filed in this case by a team of compu-

tational redistricting experts who wrote that “optimization algorithms are well-suited to the task
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of generating [remedial plans in Section 2 litigation] . . . as they can identify innovative combina-

tions of geography that better comply with multiple traditional redistricting principles than any

individual mapmaker is likely to find manually through trial and error” (DeFord et al. 2022).

Our Contributions. In light of the foregoing discussion, it is clear that political districting

involves numerous tradeoffs between competing criteria and that illuminating them can have huge

impacts in the legal arena. To do this in a transparent manner, we propose to use mathematical

optimization. To have the biggest impact, we would like to use the Polsby-Popper score to measure

compactness as it is the most popular score, but its nonlinear nature makes it mathematically

distinct from the (integer) linear optimization models found in the operations research literature

on districting. Further, districting is already an NP-hard combinatorial problem without this non-

linearity, which may scare off the disinclined. Nevertheless, we show that the Polsby-Popper score

can be captured in a mixed-integer second-order cone program (MISOCP) which is a type of opti-

mization problem that some solvers have only recently begun to support. Additionally, we show

how to encode the equivalent inverse or L−1 average Polsby-Popper score (Duchin 2018) and the

Schwartzberg score (Schwartzberg 1965) as MISOCPs. Despite the challenges posed by nonlinear-

ity and NP-hardness, we find that our optimization models can: (i) identify the most compact

majority-minority districts at the tract level; (ii) identify the most compact districting plans at the

county level; and (iii) refine existing tract-level plans to make them substantially more compact.

These abilities may assist in Section 2 litigation when satisfying the first Gingles precondition or

assist in the drawing of remedial districts. Our python code and computational results are publicly

available at: https://github.com/AustinLBuchanan/Polsby_Popper_optimization.

2. Background and Literature Review

We have already seen that traditional redistricting principles include population balance, contigu-

ity, and compactness. Current practice in the USA is that congressional districts often differ in

population by just one person, e.g., each of Alabama’s seven congressional districts has a popula-

tion of either 717,754 or 717,755 according to the 2020 Census. However, larger deviations of up to

https://github.com/AustinLBuchanan/Polsby_Popper_optimization
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1% have been justified. For example, in Tennant v. Jefferson County (2012) the US Supreme Court

upheld West Virginia’s three congressional districts that had populations of 615,991 and 616,141

and 620,862 that, when compared to the ideal district population 617,664.67, had a total deviation

of (620,862−615,991)/617,664.67 = 0.79%. Still, a majority of states enact districts with 1-person

deviation to avoid litigation. Meanwhile, when drawing state senate and state house districts, larger

deviations approaching 10% are typical in practice and permitted by the courts (Hebert et al.

2010, Davis et al. 2019). For example, California’s State Senate districts vary in population from

938,834 at the low end, to 1,036,376 at the high end, for a total deviation of nearly 100,000 people,

or 9.87%. Contiguity is often required by state law and is usually not a point of contention. Even

when not required to do so, states typically enact contiguous districts.

Meanwhile, compactness is harder to define and open to interpretation. Although dozens of

alternative compactness scores have been proposed, few states specify which ones to use, and

many people simply rely on the “eyeball test”. Indeed, the mathematician Peyton Young opined

in 1988 that, due the flaws of most compactness scores, “compactness should either be abandoned

as a standard altogether, or left in the domain of the dictionary definition, to be interpreted

by the courts in the light of the circumstances”. We refer the reader to Young (1988) for an

overview of various compactness scores (e.g., Reock, Schwartzberg, Taylor, Boyce-Clark, length-

width, perimeter, moment-of-inertia) and their strengths and weaknesses, cf. Niemi et al. (1990),

Bar-Natan et al. (2020), Duchin (2022).

One criticism of perimeter-related scores, like the Polsby-Popper score, is that they suffer from

the Coastline Paradox in which boundary lengths are not well-defined and depend on the choice

of map projection and the “size of your ruler” (Bar-Natan et al. 2020, Barnes and Solomon 2021).

Another criticism can summarized with the slogan “land does not vote; people do”. In 2010, 47%

of all census blocks were uninhabited (Freeman 2014); reassigning these blocks to different districts

can significantly change the Polsby-Popper score, but the districts would function the same. Or,

imagine two counties separated by a river; if the river winds back and forth in a fractal-like manner,
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then the Polsby-Popper score would almost require these two counties to be in the same district,

but if the river flowed straight then it may be convenient for them to be in different districts. As

mathematician and expert witness Moon Duchin puts it, “it is not a great state of affairs when your

metrics are heavily impacted by irrelevant factors but not impacted at all by important features

of the problem you are studying” (Duchin 2022).

Nevertheless, compactness scores feature prominently in expert testimony and legal briefs. As

law professor and mapmaker Nate Persily has observed, “judges tend to like compactness measures

because they have the feel of objective criteria against which you can evaluate whether one plan

is better than another. . . Generally speaking, judges are also struck by the aesthetics, but they

lean on the measures whenever possible” (Duchin and Walch 2022, Persily 2004). In particular,

Duchin (2018) has declared the Polsby-Popper score to be “the most-cited compactness score in

the redistricting literature and in expert testimony”.

2.1. Minority Representation

Another key criterion in the USA is the Voting Rights Act (VRA) of 1965 which prohibits racial

discrimination in voting. The VRA was originally passed in response to widespread disenfranchise-

ment of Black citizens, particularly in southern states, and has been reauthorized and amended

multiple times (Laney 2008, Gordon and Spencer 2022). For example, in 1975 protections were

extended to “language minorities”, which Congress defined as “persons who are American Indian,

Asian American, Alaskan Natives or of Spanish heritage” (Ancheta 2007). In the 1980 case Mobile

v. Bolden, the Supreme Court interpreted the VRA as forbidding discriminatory intent. Congress,

not happy with this interpretation, clarified in 1982 that the VRA forbids discriminatory effects.

Since 1965, the number of Black elected officials has increased 30-fold, with similar increases in

Hispanic representation (Gordon and Spencer 2022). Without the VRA, this would have been

unlikely (Grofman 1982, Chen and Stephanopoulos 2021, Duchin and Spencer 2021).

Section 2 of the VRA has been used to overturn maps that dilute the voting power of minority

groups. To bring a Section 2 claim, one must first pass the three Gingles prongs (or “preconditions”)
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established by the Supreme Court in the 1986 case Thornburg v. Gingles: “First, the minority group

must be able to demonstrate that it is sufficiently large and geographically compact to constitute

a majority in a single-member district. . . Second, the minority group must be able show that is is

politically cohesive. . . Third, the minority must be able to demonstrate that the white majority

votes sufficiently as a bloc to enable it. . . [to] usually defeat the minority’s preferred candidate”.

The Supreme Court elaborated in Bartlett v. Strickland (2009), that the minority group must

constitute a numerical majority (> 50%) among the voting age population in the demonstration

districts. After the Gingles hurdles are cleared, courts consider the “totality of the circumstances”

and may ultimately require the maps to be redrawn (Persily 2004). In the remedial districts, it is not

required for the minority group to constitute a numerical majority; minority opportunity districts

are also permitted in which the minority group constitutes less than 50% of the district but is

nevertheless able to elect preferred candidates with crossover support from other groups (Grofman

et al. 2001, Lublin et al. 2020).

Meanwhile, the Supreme Court has found racial gerrymandering to be unconstitutional, violating

the Equal Protection Clause of the 14th Amendment. In Shaw v. Reno (1993), the court over-

turned North Carolina’s 12th district, finding it so “bizarre” that it only could have been drawn

on the basis of race. This district has been reported to have a Polsby-Popper score of 0.01 (Hofeller

2015). Likewise, in Miller v. Johnson (1995), the court overturned Georgia’s 11th district, finding

it improper for map drawers to use race as the “predominant factor” to the subordination of “tra-

ditional race-neutral redistricting principles, including but not limited to compactness, contiguity,

[and] respect for political subdivisions”. In 2010, it was observed that every district overturned

based on Shaw was built from census blocks, rather than from larger units like census tracts or

precincts (Hebert et al. 2010). Figure 1 shows the overturned districts from Shaw and Miller.

Presently, the Supreme Court is deciding the case Merrill v. Milligan. Accordingly, the court’s

precedent regarding the VRA and the Equal Protection Clause may change at any moment (Chen

and Stephanopoulos 2021, Duchin and Spencer 2021, 2022, Gordon and Spencer 2022).
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Figure 1 The US Supreme Court overturned North Carolina’s 12th district in Shaw v. Reno (1993) and Georgia’s

11th district in Miller v. Johnson (1995).

2.2. Variants of the Polsby-Popper score

As we have seen, the Polsby-Popper score of district D is defined as follows.

(Polsby-Popper score) PP(D) :=
4πAD

P 2
D

,

where AD is the area of the district and PD its perimeter. The normalizing factor 4π ensures that

the score takes values between 0 and 1, with circular districts achieving a perfect score of 1.

Example. Calculations below show that the Polsby-Popper scores of disks ( ), squares (■), and

regular hexagons ( ) are approximately 1, 0.7854, and 0.9069, respectively.

(disk, radius r) PP( ) =
4πA 
P 2
 

=
4π(πr2)

(2πr)2
= 1.

(square, side length t) PP(■) =
4πA■

P 2
■

=
4π(t2)

(4t)2
=

π

4
≈ 0.7854.

(hexagon, side length t) PP( ) =
4πA

P 2
=

4π(3
√
3t2/2)

(6t)2
=

π
√
3

6
≈ 0.9069. □

If we take the multiplicative inverse (or reciprocal) of the Polsby-Popper score, we get an equiva-

lent score in the sense that it ranks districts by compactness in the same way, but with smallest-score

districts being most compact:

(Inverse Polsby-Popper score) PP(D)−1 :=
P 2

D

4πAD

.
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For example, the inverse Polsby-Popper scores of disks, squares, and regular hexagons are 1, 4/π≈

1.2732, and 6/(π
√
3)≈ 1.1027, respectively.

Taking the square root of the inverse Polsby-Popper score gives the Schwartzberg

score (Schwartzberg 1965, Duchin 2022):

(Schwartzberg score) PP(D)−1/2 :=
PD√
4πAD

,

which also ranks districts in the same way. Interestingly, the Schwartzberg score was proposed back

in 1965, decades before the Polsby-Popper score, and Schwartzberg expressed concern in accurately

measuring district perimeters and proposed a discretized “gross perimeter” instead.

Since these scores are equivalent, one could find an optimally compact single district by opti-

mizing any one of the scores (making sure to choose min/max appropriately). Similarly, we can

impose equivalent compactness constraints in terms of any one score. However, when optimizing or

constraining the compactness of an entire districting plan, this is less clear. Should one aggregate

the individual district compactness scores into a single score for the entire plan? If so, how? Here

we review some existing approaches.

Years ago, the popular mapping software Maptitude began reporting the average Polsby-Popper

score (along with the minimum, maximum, and standard deviation), so it may come as no surprise

that the “straight average” has proliferated throughout districting circles (pun intended). This

includes websites like Dave’s Redistricting App (DRA 2023), Harvard’s ALARM project (McCartan

et al. 2022a), and the Princeton Gerrymandering Project (Princeton Gerrymandering Project 2023)

(which also reports the minimum score). Duchin (2021), in her expert report in the case Milligan

v. Merrill (before it was appealed to the US Supreme Court), reported the average Polsby-Popper

score for Alabama’s enacted plan as 0.222, as well as the average scores of four demonstration

plans A, B, C, and D, as 0.256, 0.282, 0.255, and 0.249, respectively. Other experts in this case also

report the average, including William S. Cooper (for the plaintiffs) and Thomas M. Bryan (for the

defendants). Schutzman (2020) also uses the average Polsby-Popper score. Barnes and Solomon
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(2021), when calculating the Polsby-Popper score of a non-contiguous district, take the average

across the district’s connected components.

Meanwhile, in her expert report in League of Women Voters of Pennsylvania v. Commonwealth

of Pennsylvania, Duchin (2018) uses

what mathematicians would call an L−1 average Polsby-Popper score: we average the reciprocals

of the PP scores of the 18 districts. The reason to average reciprocals instead of the straight

scores is to attach a heavier penalty to plans with one extremely low score among the districts.

Chikina et al. (2017) and Vagnozzi (2020) use the equivalent sum of inverse Polsby-Popper scores.

Later, we observe that the average Polsby-Popper score may sacrifice the compactness of a few

districts to perfect the others. We also show that Barnes-Solomon averaging leads to pathological

behavior, preferring bizarre “Swiss cheese” districts.

2.3. Computational Approaches for Districting

Because of the population balance and contiguity constraints, districting problems are generally

NP-hard (Dyer and Frieze 1985, Altman 1997) and are not expected to admit polynomial-time

algorithms. Consequently, many researchers have proposed heuristics, beginning as early as 1961

with flood fill (Vickrey 1961). New heuristics are being proposed all the time, and we invite readers

to consult surveys on districting heuristics by Ricca et al. (2013) and Becker and Solomon (2022).

Another legally impactful line of computational work is called ensemble analysis (Chen and

Stephanopoulos 2021, Duchin and Spencer 2021, DeFord and Duchin 2022). Here the idea is to

generate a large collection of districting plans, ideally drawn randomly from an explicit target

distribution (McCartan and Imai 2023, Clelland et al. 2021, Cannon et al. 2022, Procaccia and

Tucker-Foltz 2022) considering the “rules of the game” like traditional redistricting principles and

the Voting Rights Act. If an enacted plan is an outlier in this (empirical) distribution of plans,

say, with respect to the number of seats won by a particular party, then this may suggest that

it was intentionally drawn to be a partisan gerrymander. Many ensemble approaches are based

on a Markov chain Monte Carlo framework (MCMC) that moves from one districting plan to a
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neighboring or similar districting plan in a random walk (Fifield et al. 2015, Liu et al. 2016, Cho and

Liu 2018, Adler and Wang 2019, Autry et al. 2021). To mitigate or avoid the dependence on initial

conditions, more recent approaches use larger search neighborhoods like recombination (DeFord

et al. 2021) or avoid the Markov chain approach altogether (McCartan and Imai 2023, McCartan

et al. 2022b). Recent approaches also do a better job of preserving political subdivisions like

counties (Autry et al. 2021, McCartan and Imai 2023, Clelland et al. 2022) and drawing minority

opportunity districts (Becker et al. 2021, Cannon et al. 2023).

Many optimization-based approaches have also been proposed, beginning as early as 1963 using

facility location integer programming models and transportation techniques (Weaver and Hess

1963, Hess et al. 1965). Other integer programming models have been proposed based on expo-

nentially many set partitioning variables (Garfinkel and Nemhauser 1970, Mehrotra et al. 1998)

or polynomially many assignment or labeling variables, see Validi and Buchanan (2022). Many

of these optimization models seek compactness as their objective (Hess et al. 1965, Hojati 1996,

Validi et al. 2022, Validi and Buchanan 2022), although more recent models also consider partisan

fairness (Swamy et al. 2023, Gurnee and Shmoys 2021), minority representation (Önal and Patrick

2016, Arredondo et al. 2021), and political subdivision preservation (Birge 1983, Önal and Patrick

2016, Shahmizad and Buchanan 2023).

Challenges faced by these optimization models include the contiguity constraints and the large

size of districting instances. A popular way to impose contiguity uses the flow-based constraints of

Shirabe (2005, 2009), see also Oehrlein and Haunert (2017), Validi et al. (2022). Another approach

is to use cut-based or separator-based constraints. The number of these constraints grows expo-

nentially in the number of geographic units, so they are usually applied in a branch-and-cut

fashion (Oehrlein and Haunert 2017, Validi et al. 2022, Validi and Buchanan 2022), see also Car-

vajal et al. (2013), Buchanan et al. (2015), Wang et al. (2017), Fischetti et al. (2017). Another

popular approach uses the tree-based constraints of Zoltners and Sinha (1983) or the subsequent

distance-based (Mehrotra et al. 1998, Cova and Church 2000, Caro et al. 2004, Önal and Patrick
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2016, Gurnee and Shmoys 2021) or DAG-based generalizations (Shahmizad and Buchanan 2023).

These constraints are fast in practice and always return contiguous solutions, but are invalid in the

sense that they cut off some solutions. Zhang et al. (2022) propose a perfect or integral linear-size

model for partitioning the n nodes of a planar graph into k contiguous districts, but unfortunately

struggle to impose population balance efficiently.

All of these optimization models are mixed-integer linear programs, either originally or after

reformulation. In contrast, this paper proposes mixed-integer second-order cone programs (MIS-

OCPs) which have nonlinear constraints (Drewes 2009, Belotti et al. 2013, Benson and Sağlam

2013), and we solve them without linearization. With the additional expressiveness afforded by

the second-order cone constraints, we can propose the first optimization models for handling the

Polsby-Popper score and its variants.

2.4. Terminology and Notation

Consider a simple graph G= (V,E) whose vertices represent a state’s geographic units (e.g., coun-

ties, tracts, blocks) and whose edges indicate which geographic units are adjacent on the map.

Each geographic unit i∈ V has an associated population pi, and the population of a district D⊂ V

is indicated by the shorthand p(D) :=
∑

i∈D pi. The number of districts is k. The ideal district

population equals the total population p(V ) divided by k. The smallest and largest populations

permitted in a district are given by L and U . A districting plan is a partition of the vertices into

k contiguous and population-balanced districts (D1,D2, . . . ,Dk). That is, each district Dj should

induce a subgraph G[Dj] that is connected, and its population p(Dj) should lie between L and U .

To calculate district areas, we need the area ai of each geographic unit i∈ V . The area of district

D is then
∑

i∈D ai. For perimeters, we need the border length be between adjacent geographic units

e= {u, v} ∈E, as well as the border length bi between geographic unit i∈ V and the state’s exterior

(which is zero if i belongs to the state’s interior). The subset of edges with one endpoint in district

D is denoted by δ(D). Then, the total perimeter of district D is that which lies in the state’s

interior, b(δ(D)) =
∑

e∈δ(D) be, plus that which coincides with the state’s border, b(D) =
∑

i∈D bi.
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2.5. Computational Setup

Throughout this paper, we apply our techniques to districting instances from the USA. The raw

input data comes from the 2020 US Census (US Census Bureau 2021a,b), with initial processing

conducted by the (Redistricting Data Hub 2021) and final processing conducted by Daryl DeFord.

In our computational experiments, we typically use an ordinary desktop PC (Windows 10 enter-

prise, Intel Core i7-4790 CPU at 3.6 GHz, 16 GB RAM). To solve MISOCPs, we use Gurobi v10.0.1.

(In initial testing, we also used the FICO Xpress Solver, with substantially similar running times.)

Our code is written in Python, handles graphs using NetworkX, reads input data using the Ger-

ryChain package, and is available at https://github.com/AustinLBuchanan/Polsby_Popper_

optimization. We typically consider congressional redistricting instances for which the number

of districts k is publicly known and determined after the 2020 Census. We typically impose a 1%

total population deviation (±0.5%), setting L= ⌈0.995 · p(V )/k⌉ and U = ⌊1.005 · p(V )/k⌋, under

the relatively standard hypothesis that 1-person deviation could be achieved with minor tweaks.

3. The Perils of Straight Averaging

In this section, we make some qualitative observations about straight averaging. First, we observe

that averaging the Polsby-Popper scores of the districts, as done by many (DRA 2023, McCartan

et al. 2022a, Princeton Gerrymandering Project 2023, Schutzman 2020), encourages one to sacrifice

the compactness of a few districts to perfect the shape of the others. This may lead to districting

plans that fail the eyeball test but nevertheless score well. Second, we observe that the practice

of averaging the Polsby-Popper scores of a disconnected district’s components, as done by Barnes

and Solomon (2021), leads the Polsby-Popper score to prefer bizarre “Swiss cheese” districts.

3.1. Sacrificial Districts

Consider the problem of drawing equal-area districts for the Euclidean plane to maximize the

average Polsby-Popper score. One approach is to tile the plane with equal-sized squares, which

would lead to an average Polsby-Popper score of π/4≈ 0.7854. Better yet, we could tile the plane

with equal-sized hexagons, as in Figure 2, giving an average Polsby-Popper score of π
√
3/6≈ 0.9069.

https://github.com/AustinLBuchanan/Polsby_Popper_optimization
https://github.com/AustinLBuchanan/Polsby_Popper_optimization
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Figure 2 Tiling the plane by hexagon-shaped districts gives an average Polsby-Popper score of π
√
3/6≈ 0.9069.

Can we do better? To do so, at least some of the district shapes would need to be “nearer” to a

circle than that of a hexagon. While it is not possible to tile the plane with disks themselves, one

can get close to a tiling, with more than 90% of the plane covered. Specifically, this is achieved

by the hexagonal packing arrangement in which each circle is surrounded by six other circles, as

in Figure 3. This arrangement achieves the highest density among lattice packings with a density

of π
√
3/6 ≈ 0.9069, which turns out to equal the Polsby-Popper score of a hexagon. With the

remaining “scraps” of the plane, one can piece together highly non-compact “districts” whose

Polsby-Popper scores are small, but nevertheless positive. Thus, a circles-and-scraps districting

plan can achieve a slightly higher average Polsby-Popper score than a tiling by hexagons, as 90.69%

of the districts achieve a perfect score of one, and the remaining 9.31% of the districts achieve a

positive score. One could complain that the scraps are disconnected and that their districts will be

as well. In response to this complaint, one could adjust the districts by keeping the circle centers

where they are, but shrinking their radii by ε > 0 to connect the scraps to each other.

In a more concrete example, consider the rectangle given in Figure 4 which has height H =

2+2
√
3 and width W = 8. It admits a packing with 11 circles of radius r= 1. The rectangle itself

has an area of H ·W ≈ 43.7128 which is slightly less than 14π. So, by slightly elongating its height

and width, we can generate a rectangular districting instance in which the task is to partition

the rectangle into 14 districts, each with an area of π. In a circles-and-scraps districting plan,

we can have 11 circles and 3 scrap districts, so the average Polsby-Popper score would be larger

than 11/14≈ 0.7857. Meanwhile, any partition of this state into rectangular districts would have
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Figure 3 Packing circular districts in a hexagonal lattice arrangement (and constructing the remaining districts

from the scraps) gives an average Polsby-Popper score of more than π
√
3

6
≈ 0.9069.

a worse average Polsby-Popper score, as the highest-scoring rectangle is in fact a square which

has Polsby-Popper score π/4≈ 0.7854. This shows the extent to which the average Polsby-Popper

score may sacrifice the compactness of a few districts to perfect the others.

Figure 4 Circle packing for rectangle with side lengths H = 2+2
√
3 and W = 8.

3.2. Swiss Cheese Districts

As previously mentioned, Barnes and Solomon (2021) compute the Polsby-Popper score of a non-

contiguous district by taking the average over its connected components. Here we show an undesir-

able consequence of this choice. Consider the rectangular state in Figure 5 that is split into k= 2

square districts. The Polsby-Popper score of each district is π/4≈ 0.7854.

Are higher scores possible? Yes, in fact we can get arbitrarily close to one. The idea is to cut

circles from the left and right sides and assign these holes to the opposite sides. As the number of

holes grows, the Polsby-Popper scores of these “Swiss cheese” plans approach one. For example, the

districts in Figure 5 have Polsby-Popper scores greater than 0.90 under Barnes-Solomon averaging.
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Figure 5 Straight averaging prefers “Swiss cheese” plans

Meanwhile, if we directly compute the Polsby-Popper scores, ignoring the fact that the Swiss

cheese districts are disconnected, then we get scores that better reflect their bizarre shapes; if the

squares have side lengths of 6 and the holes have radius 1/2, then each district has area A= 36

and perimeter P = 4(6)+9π+9π≈ 80.5487, giving a Polsby-Popper score of roughly 0.0697.

4. MISOCP for Drawing a Single District

As a warm-up, we propose a mixed-integer second-order cone program (MISOCP) for drawing a

single district with optimum Polsby-Popper score. To understand its computational performance,

we apply it to various instances in the USA. First, we find an optimally compact district for

Oklahoma. Second, we draw an Asian-majority district in California, similar to the current district

CA-17. Next, we show how to draw a second Hispanic-majority district in Chicago, Illinois and a

third Native-American-majority state senate district in South Dakota. Finally, motivated by the

pending Supreme Court case Merrill v. Milligan, we draw Black-majority districts for Alabama.

We strongly suspect that each of these districts can be extended into feasible districting plans, see,

e.g., McDonald (2019). Recall that the VRA does not require such majority-minority districts to

be enacted, but demonstrating that they are possible to draw is nevertheless a step that plaintiffs

must fulfill to have their case heard, per the Supreme Court’s rulings in Gingles and Bartlett.

4.1. The MISOCP Model

We seek a single district D⊆ V from graph G= (V,E) with optimum Polsby-Popper score that is

contiguous (i.e., the subgraph G[D] is connected) and population-balanced (i.e., L ≤ p(D) ≤ U).

To model this, we introduce a binary variable xi for each geographic unit i∈ V indicating whether

it is selected in the district. We also use a binary variable ye indicating whether the edge e ∈ E
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belongs to the cut δ(D) between D and V \D. Last, we use continuous variables A and P for the

area and perimeter of district D, respectively.

The Polsby-Popper objective 4πA/P 2 is not directly permitted in an MISOCP; however, a

satisfactory reformulation exists. Specifically, introduce a variable z representing the inverse Polsby-

Popper score P 2/(4πA) and minimize z subject to the rotated second-order cone (or Lorentz cone)

constraint P 2 ≤ 4πAz. In an optimal solution, this constraint will hold at equality, meaning that z

will equal the inverse Polsby-Popper score, and 1/z will equal the Polsby-Popper score.

So, our MISOCP for drawing a single district is as follows. Its continuous relaxation is an SOCP

which admits specialized interior-point algorithms and the use of outer approximation cuts.

min z (1a)

s.t. P 2 ≤ 4πAz (1b)

P =
∑
e∈E

beye +
∑
i∈V

bixi (1c)

A=
∑
i∈V

aixi (1d)

xu−xv ≤ ye ∀e= {u, v} ∈E (1e)

L≤
∑
i∈V

pixi ≤U (1f)

D= {i∈ V | xi = 1} is connected (1g)

xi ∈ {0,1} ∀i∈ V (1h)

ye ∈ {0,1} ∀e∈E. (1i)

The objective (1a) minimizes the inverse Polsby-Popper score. Constraint (1b) ensures that z is

at least the inverse Polsby-Popper score (and the objective forces it to hold at equality). Con-

straints (1c) and (1d) capture the perimeter and area of the district, respectively. Constraints (1e),

which are imposed for each orientation of edge e ∈ E, indicate that if one endpoint of e= {u, v}

belongs to the district but the other endpoint does not, then the edge e between them is cut.

Strictly speaking, this constraint permits ye = 1 even when xu = xv, although this will not occur in
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an optimal solution. Constraints (1f) impose population balance. Constraint (1g) states that the

district should be connected. As written, this is not a linear constraint, but there are many ways to

achieve contiguity that we experiment with later. Also, we will see that the compactness objective

often achieves contiguous solutions on its own.

4.2. A compact district for Oklahoma

In our first application, we draw a single congressional district for Oklahoma with optimum Polsby-

Popper score. We use census tracts as our geographic units, of which there are 1,205. According to

the 2020 Census, Oklahoma had a population of 3,959,353 to be divided over k= 5 congressional

districts. We permit a total population deviation of 1% (±0.5%), setting bounds of L= 787,912

and U = 795,829. After 44 seconds of computation on our desktop PC, the MISOCP solver Gurobi

v10.0.1 returns an optimal solution with an inverse Polsby-Popper score of roughly 1.3466, i.e.,

a Polsby-Popper score of roughly 0.7426, as depicted in Figure 6. By chance, the district mostly

follows the boundaries of Oklahoma County, which has a rectangular shape. It was not necessary

to impose explicit contiguity constraints; the compactness objective achieved contiguity “for free”.

Figure 6 A district for Oklahoma (with optimum Polsby-Popper score).

4.3. Asian-majority district in California

In our second application, we draw an Asian-majority congressional district for California. Fol-

lowing the Supreme Court’s opinion in Bartlett, we impose that the minority group’s voting age

population (VAP) is at least 50% of the district’s voting age population. Mathematically, denote

by mVAP
i as this minority group’s VAP and pVAP

i as the total VAP in geographic unit i∈ V .
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When calculating mVAP
i , we use the “any part” racial classification, which was also used in Moon

Duchin’s expert report for Milligan v. Merrill (Duchin 2021). For example, someone who checked

both the “Asian” and “White” boxes on their Census form would be included in the Asian mVAP
i .

Guidance from the US Department of Justice for Section 2 enforcement also suggests this practice

when a respondent selects a minority race and a white race, but when someone selects multiple

minority group boxes the DOJ will “allocate these responses on an iterative basis to each of the

component single-race categories for analysis” (U.S. Department of Justice 2021). The Citizen

Voting Age Population (CVAP) also plays a role in VRA case law. Since the decennial census does

not have a citizenship question, this information is typically inferred using American Community

Survey (ACS) data. However, we use only VAP data in this paper. This is one reason why our

analysis should be considered preliminary and not legally conclusive.

Then, to obtain a majority-minority district, we impose the constraint:

∑
i∈V

mVAP
i xi ≥

1

2

∑
i∈V

pVAP
i xi.

We also require the district to be contained within Santa Clara County, as does the current Asian-

majority district CA-17. Santa Clara County has a total of 408 census tracts. After two seconds, we

obtain the district depicted in Figure 7 that has a Polsby-Popper score of 0.5933. Again, explicit

contiguity constraints were not required.

Figure 7 An Asian-majority district in California, similar to CA-17.
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4.4. Hispanic-majority districts in Chicago, Illinois

In our third application, we consider Hispanic-majority districts in Chicago, Illinois. Presently,

there is one Hispanic-majority district IL-4 which touches Cook County and DuPage County. In

the previous redistricting cycle, this district was the famous “earmuff” district, drawn to connect

two Latino communities—largely Puerto Rican in the north and Mexican-American in the south—

without diluting the vote of a largely African-American community in-between (Levine 2018). The

2010 and 2020 vintages of this district are depicted in Figure 8.

Figure 8 The Hispanic-majority district IL-4 in Illinois, past and present.

Using the MISOCP model, we draw a Hispanic-majority district within Cook and DuPage Coun-

ties that has a Polsby-Popper score of 0.7363, as depicted in Figure 9. Curious if we could draw

two Hispanic-majority districts, we attempted to find a Hispanic-majority “double district”, i.e.,

with twice the requisite population, under the hypothesis that it could subsequently be split into

two Hispanic-majority districts. Indeed, we successfully obtained a double district, also depicted in

Figure 9. Both the single and double districts are fully contained within Cook County, and neither

needed explicit contiguity constraints.

4.5. Native-American-majority districts in South Dakota

In our fourth application, we consider drawing Native-American-majority districts in South Dakota.

Due to its small population, South Dakota receives just one (“at-large”) congressional seat. How-

ever, South Dakota has 35 seats in their state senate that do rely on districts. In the early 2000s,

there was one Native-majority (> 90%) senate district, which was overturned under the VRA for
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Figure 9 An alternative Hispanic-majority district and double district for Illinois.

packing too many Native Americans into a single district and diluting their vote. In the remedial

plan, two districts were drawn to each have a Native-American majority. This remains true today,

with the 26th district roughly corresponding to the Rosebud Indian Reservation and the 27th

district roughly corresponding to the Pine Ridge Indian Reservation.

Under the Supreme Court’s ruling in Johnson v. De Grandy (1994), a vote dilution claim is

likely to be unsuccessful if the number of minority-opportunity districts is already proportional

to the minority group’s statewide population. Pertinently, the current number of Native-majority

state senate districts (2) is less than a proportionality baseline of 3.15 = 0.09× 35.

So, we were curious whether a third Native-majority district could be drawn and attempted to

draw a Native-majority “triple district” using the MISOCP. Initially, our code returns the triple

district on the left of Figure 10, which has a hole in the middle around Pierre, which is the state’s

capital and seat of Hughes County. In a second attempt, we forbid any part of Hughes County

to be in the triple district and add explicit contiguity constraints as a, b-separator inequalities in

a cut callback (Validi et al. 2022, Validi and Buchanan 2022). We obtain the triple district on

the right side of Figure 10, which separates the state into left and right components. Luckily, the

left and right components have populations that are suitable to build 7 districts and 25 districts,

respectively. Interestingly, this triple district largely covers not only the Rosebud and Pine Ridge

Indian Reservations that the 26th and 27th districts currently touch, but also brings in much of

the Standing Rock and Cheyenne River Indian Reservations to their north.
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Figure 10 First and second attempts at a Native-American-majority triple district for the South Dakota Senate.

4.6. Black-majority districts in Alabama

In our fifth application, we draw Black-majority congressional districts for Alabama, motivated by

the pending Supreme Court case Merrill v. Milligan. In 2022, the Alabama legislature enacted a

congressional districting plan in which one of their seven districts had a Black majority (district

7). Plaintiffs remarked that the state is more than 27% Black and that the enacted plan places

counties from the state’s “Black Belt” into majority-White districts. To satisfy the first Gingles

precondition, mathematician and expert witness Moon Duchin drew alternative maps in which two

districts had a Black majority (districts 2 and 7). Figure 11 shows the enacted map and Duchin’s

Plan D which have average Polsby-Popper scores of 0.222 and 0.249, respectively. The enacted

plan splits six counties once each, for a total of six splits. Duchin’s Plan D splits four counties once

each, and one county twice, again for a total of six splits.

Figure 11 Alabama’s enacted plan and Duchin’s Plan D
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We use the MISOCP to build a Black-majority “double district” using census tracts. To impose

contiguity, we use the flow-based constraints of Shirabe (2005, 2009). Given the emphasis on polit-

ical subdivisions in Merrill v. Milligan, we also require that the district consist of whole counties

plus two partial counties. To model this restriction, we introduce a binary variable for each county

indicating whether it is split (i.e., if some of the county, but not all, is picked in the district). Like-

wise, we introduce a binary variable indicating whether some of the county is picked in the district,

and another indicating whether all of it is picked. The split variable equals the difference between

them (some minus all). Straightforward logical inequalities relate the some and all variables to

the original xi variables.

Initially, we obtain the district on the left side of Figure 12, which separates the Gulf Coast from

the rest of the state. In our second attempt, we forbid any portion of Baldwin County or Escambia

County to be in the double district. We obtain the Black-majority double district on the right of

Figure 12. This double district is similar to the two Black-majority districts from Duchin’s Plan

D. One difference is that Duchin’s districts also include the Black Belt counties of Barbour and

Russell, better preserving this community of interest.

Figure 12 First and second attempts at a Black-majority double district for Alabama.

5. MISOCPs for Drawing a Districting Plan

Now, we seek districting plans that are optimally compact with respect to the Polsby-Popper

score. That is, instead of drawing a single compact district within a state, we seek to partition
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the state into k compact districts. In the following, we seek to optimize the average: (1) inverse

Polsby-Popper score; (2) Polsby-Popper score; and (3) Schwartzberg score.

5.1. Inverse Polsby-Popper Score

We find that the inverse Polsby-Popper score is mathematically more convenient than the Polsby-

Popper and Schwartzberg scores, so we first propose an MISOCP for it. The variable definitions

are similar to before, but with an additional index j for the district number. The binary variable

xij equals one when geographic unit i∈ V is assigned to district j ∈ [k] = {1,2, . . . , k}. The binary

variable yj
e equals one when edge {u, v} ∈ E, with u < v, is cut because geographic unit u ∈ V is

assigned to district j but geographic unit v ∈ V is not. The continuous variables Pj, Aj, and zj

capture the perimeter, area, and inverse Polsby-Popper score of district j, respectively.

Our MISOCP to minimize the average inverse Polsby-Popper score is:

min
1

k

k∑
j=1

zj (2a)

s.t. P 2
j ≤ 4πAjzj ∀j ∈ [k] (2b)

Pj =
∑
e∈E

bey
j
e +

∑
i∈V

bixij ∀j ∈ [k] (2c)

Aj =
∑
i∈V

aixij ∀j ∈ [k] (2d)

xuj −xvj ≤ yj
e ∀e= {u, v} ∈E, ∀j ∈ [k] (2e)

L≤
∑
i∈V

pixij ≤U ∀j ∈ [k] (2f)

Dj = {i∈ V | xij = 1} is connected ∀j ∈ [k] (2g)

k∑
j=1

xij = 1 ∀i∈ V (2h)

xij ∈ {0,1} ∀i∈ V, ∀j ∈ [k] (2i)

yj
e ∈ {0,1} ∀e∈E, ∀j ∈ [k]. (2j)

The objective (2a) minimizes the average inverse Polsby-Popper score. The constraints of model (2)

are analogous to those of model (1) but are written for k districts instead of one. Another change is
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that the assignment constraints (2h) require each geographic unit i∈ V to be assigned to one dis-

trict. As written, this model suffers from symmetry, but this can be ameliorated with the extended

formulation for partitioning orbitopes of Faenza and Kaibel (2009), cf. Validi and Buchanan (2022).

5.2. Polsby-Popper Score

To maximize the average Polsby-Popper score, we would like to

max
1

k

k∑
j=1

1

zj

subject to the same constraints from model (2). This is a mixed-integer nonlinear programming

(MINLP) problem that does not seem to admit a direct reformulation as a MISOCP. Its continuous

relaxation is nonconvex as it requires the maximization of a (separable) convex function. It could

be solved using a spatial branch-and-bound algorithm (Smith and Pantelides 1999) by branching

on the continuous variables zi. However, we propose a different approximate approach that avoids

spatial branching through a binary expansion of the 1/zj terms, similar to Temiz et al. (2010).

Specifically, express the Polsby-Popper score 1/zj using binary variables bij as follows, where the

user can set the desired precision through the parameter t. We choose t = 20, meaning that the

binary expansion of the Polsby-Popper score will be off by less than one part in a million.

t∑
i=1

2−ibij =
1

zj
.

By the maximization objective, it suffices to impose this equation as a less-than-or-equal inequality.

Then, after multiplying both sides by zj, we obtain

t∑
i=1

2−ibijzj ≤ 1.

Next, introduce new variables wij to replace the terms bijzj. We impose the equation wij = bijzj

with a suitable big-M using the following constraints:

zj +M(bij − 1)≤wij ≤Mbij

0≤wij ≤ zij.
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The left inequalities ensure that bijzj ≤wij, while the right inequalities ensure that wij ≤ bijzj. For

them to be valid, it is required that each district have a Polsby-Popper score of at least 1/M . In

our experiments, we use M = 16.

Finally, our MISOCP to maximize the average Polsby-Popper score is:

max
1

k

k∑
j=1

t∑
i=1

2−ibij (3a)

s.t.
t∑

i=1

2−iwij ≤ 1 ∀j ∈ [k] (3b)

zj +M(bij − 1)≤wij ≤Mbij ∀i∈ [t], ∀j ∈ [k] (3c)

0≤wij ≤ zj ∀i∈ [t], ∀j ∈ [k] (3d)

bij ∈ {0,1} ∀i∈ [t], ∀j ∈ [k] (3e)

(x, y, z) satisfies (2b)− (2j). (3f)

5.3. Schwartzberg Score

To minimize the average Schwartzberg score, we would like to

min
1

k

k∑
j=1

√
zj

subject to the same constraints from model (2). This objective is the minimization of a (separable)

concave function, which we reformulate to be compatible with MISOCP solvers. We begin by

introducing a continuous variable sj for the Schwartzberg score of each district j ∈ [k] and change

the objective to

min
1

k

k∑
j=1

sj.

By the minimization objective, it suffices to relate the Schwartzberg sj variables to the inverse

Polsby-Popper variables zj with inequalities of the form zj ≤ s2j . While these constraints are non-

convex, we can apply binary expansion on zj and convert these inequalities into second-order cone

constraints. Similar to before, we assume that the inverse Polsby-Popper score zj of each district is
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less than M and use t to denote the user-chosen precision, say M = 17 and t= 20. Again, introduce

binary variables bij for each i= 1,2, . . . , t and each j ∈ [k]. See that the expression
∑t

i=1 2
−ibij takes

values between zero and (nearly) one, so we set the inverse Polsby-Popper score zj to be

1+ (M − 1)
t∑

i=1

2−ibij,

which can take values between 1 and (nearly) M .

Finally, our MISOCP to minimize the average Schwartzberg score is:

min
1

k

k∑
j=1

sj (4a)

s.t. 1+ (M − 1)
t∑

i=1

2−ib2ij ≤ s2j ∀j ∈ [k] (4b)

zj ≤ 1+ (M − 1)
t∑

i=1

2−ibij ∀j ∈ [k] (4c)

bij ∈ {0,1} ∀i∈ [t], ∀j ∈ [k] (4d)

(x, y, z) satisfies (2b)− (2j). (4e)

The second-order cone constraints (4b) and linear constraints (4c) together impose that zj ≤ s2j .

Note that bij = b2ij as bij is binary, so the left side of inequality (4b) will equal the right of (4c).

5.4. Application to County-Level Districting

Now, we apply the MISOCP models to county-level districting instances in the USA. In these

experiments, we seek to answer the following questions. How quick are the models? Does the running

time heavily depend on which objective is used? We apply them to ten states that could conceivably

draw county-level plans while satisfying a ±0.5% deviation: Arkansas, Idaho, Iowa, Kansas, Maine,

Mississippi, Montana, Nebraska, New Mexico, and West Virginia. After the 2010 and 2020 censuses,

only Iowa and West Virginia enacted county-level plans; the others are considered out of curiosity

and to supplement our testbed.

To impose contiguity, we use the flow-based constraints of Shirabe (2005, 2009), cf. Oehrlein and

Haunert (2017), Validi et al. (2022), which sufficed for county-level instances in prior work (Validi
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et al. 2022, Validi and Buchanan 2022). We inject a warm start solution obtained by solving the

model of Hess et al. (1965), which is very quick for county-level instances (Validi et al. 2022), and

then apply the local search procedure that is developed later in Section 6.1. We also safely fix

some variables to zero or one by exploiting the population balance constraints, see the L-fixing

and U -fixing procedures for labeling models due to Validi and Buchanan (2022). For symmetry

handling, we use the extended formulation for partitioning orbitopes due to Faenza and Kaibel

(2009), cf. (Validi and Buchanan 2022). Results are given in Table 1.

Table 1 MISOCP results on county-level results for the average: inverse Polsby-Popper score (PP−1),

Polsby-Popper score (PP), and Schwartzberg score (PP−1/2). We report the optimal objective value (or best lower

and upper bounds [LB,UB]) and solve time in a 3600s time limit (TL).

PP−1 PP PP−1/2

state |C| k obj time obj time obj time

AR 75 4 3.3176 108.55 [0.32,0.44] TL [1.74,1.85] TL

ID 44 2 3.4966 0.68 0.3127 1.43 1.8584 1.29

IA 99 4 2.1725 162.03 [0.47,0.68] TL [1.37,1.46] TL

KS 105 4 2.3903 438.23 [0.46,0.72] TL [1.32,1.57] TL

ME 16 2 2.8979 0.06 0.3500 0.31 1.6993 0.30

MS 82 4 3.3847 197.47 [0.34,0.46] TL [1.64,1.84] TL

MT 56 2 2.9482 0.69 0.3400 2.58 1.7165 1.22

NE 93 3 2.4400 21.58 0.4128 2615.25 1.5606 196.70

NM 33 3 2.4268 0.45 0.4135 10.40 1.5571 1.27

WV 55 2 5.0111 0.72 0.2360 1.71 2.2264 1.53

First, we observe that MISOCPs solve quickest with the inverse Polsby-Popper objective, with

each instance solving in under eight minutes. The average Polsby-Popper and Schwartzberg objec-

tives take longer, reaching the time limit on four instances (where k= 4 and |C| ≥ 75). The average

Polsby-Popper objective seems to be the most challenging, e.g., taking 44 minutes for Nebraska.
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Several of these instances can be solved with more time. For example, after 11.6 hours, we obtain

a maximum average Polsby-Popper score of 0.3318 for Arkansas. After 1.6 hours, we obtain a

minimum average Schwartzberg score of 1.8016. The associated maps are depicted in Figure 13.

We observe that the middle map, obtained from the average Polsby-Popper score, is different from

the others. In particular, its eastern district includes the “Arkansas Delta” counties that border

the Mississippi River. This jagged river border gives the eastern district a poor Polsby-Popper

score, but permits the other districts to have shorter perimeters, resulting in a higher average score.

This matches the qualitative observation from Section 3 that the average Polsby-Popper score may

sacrifice the compactness of some districts to improve that of others.

Figure 13 County-level plans for Arkansas that are optimal for the average: inverse Polsby-Popper score, Polsby-

Popper score, and Schwartzberg score.

6. Handling Large Instances

To handle large districting instances, we propose a local search heuristic. In the spirit of Henzinger

et al. (2020), our local search neighborhood permits nodes to relocate to nearby districts, say, to

any district that lies within h hops. Meanwhile, nodes that are deep in the district’s interior are

forced to stay in their current district. To find an improved districting plan within this local search

neighborhood (with respect to compactness), we simply solve the associated MISOCP. We apply

the approach to the notable VRA case Merrill v. Milligan in Alabama.
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6.1. MISOCP Local Search

In graph theory, the h-hop neighborhood of a vertex i ∈ V is the set of vertices Nh(i) = {v ∈

V | dist(i, v)≤ h} within h hops of i. Relatedly, we can define the h-hop neighborhood of a districting

plan. Below, we consider a districting plan d : V → [k] as a map from each vertex to a district.

Definition 1 (h-hop neighborhood of a districting plan). Let d be a districting plan.

The districting plan d′ belongs to its h-hop neighborhood Nh(d) if, for every vertex i∈ V , there is

a vertex v ∈ V satisfying

1. v ∈Nh(i), i.e., v belongs to i′s h-hop neighborhood, and

2. d′(i) = d(v), i.e., i’s new district d′(i) is v’s old district d(v).

Observe that the h-hop neighborhood of a districting plan always contains itself, i.e., d∈Nh(d),

provided that h≥ 0. The only plan in a districting plan’s 0-hop neighborhood is itself, N 0(d) = {d}.

The parameter h allows the user to control the size of the local search neighborhood and the

difficulty of the associated MISOCPs. For small values of h, like h= 1 or h= 2, the MISOCPs are

still relatively easy to solve and give a much larger search neighborhood than the usual flip and

swap neighborhoods that only relocate one or two nodes per iteration.

Below is a high-level implementation of the MISOCP local search heuristic.

1. Begin with a feasible districting plan d.

2. Using the MISOCP, find a more compact districting plan d’ in the h-hop neighborhood Nh(d);

if none exist, then terminate.

3. Update d← d′ and goto Step 2.

There are multiple ways to implement the MISOCP local search neighborhood. We simply write

out the full MISOCP and update the upper bounds on the xij variables in each iteration. That is,

impose an upper bound of one on xij if there is a vertex v ∈Nh(i) in its h-hop neighborhood that

currently belongs to district j; otherwise, impose an upper bound of zero. By running breadth-

first search once from each district, we can update these nk upper bounds in time O(km+ nk)

which is O(nk), as planar graphs are sparse and satisfy m=O(n). This will ultimately fix most xij
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variables to zero, which the solver removes in preprocessing. This simple implementation suffices

for tract-level instances.

If working with larger block-level instances, then one may want to merge vertices together where

possible, similar to Henzinger et al. (2020). Namely, let Ihj (d) be the interior of district j in district-

ing plan d, i.e., the subset of vertices whose h-hop neighborhood is fully contained within district

j. Then, collapse each connected component of G[Ihj (d)] into a single node, with the new weights

(e.g., populations, areas, and border lengths) set appropriately. This is slightly different than the

approach of Henzinger et al. (2020), as they did not impose contiguity constraints and could

collapse the entirety of Ihj (d) into a single node. However, in our initial experiments, we encoun-

tered significant numerical stability issues on block-level instances. Intuitively, this is because some

borders between census blocks are quite small (e.g., in cities), whereas borders in rural areas can

be significantly longer, particularly along bodies of water. The situation is arguably worse for the

areas ai, which may be proportional to the square of the border lengths. The dramatic differences

in coefficients in the perimeter constraints (2c) and area constraints (2d) make the block-level

MISOCPs prone to numerical instability, leading MISOCP solvers to actively replace tiny values

with zeros. Accordingly, we do not apply the MISOCPs to block-level instances and do not bother

merging district interiors in our implementation.

6.2. Complexity of the Local Search Neighborhood

Given a districting plan, how difficult is it to find a more compact plan (say, with respect to

the inverse Polsby-Popper score) in its local search neighborhood? For typical neighborhoods, like

flip and swap, this is polynomial-time solvable by brute force. However, for the proposed h-hop

neighborhood, this is less clear as there may be exponentially many plans to sift through.

We show that this problem is NP-complete, even when there are only k = 2 districts and the

hop parameter is set to h = 1. This may sound unsurprising given that districting plans usually

must be contiguous and population-balanced, and these constraints are often thought to be the

source of the difficulty, but we show that the problem remains hard even when these constraints

are relaxed, indicating that the inverse Polsby-Popper objective it itself hard.
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Theorem 1. Given a districting plan, it is NP-complete to determine whether there is a more

compact plan (with respect to the average inverse Polsby-Popper score) in its h-hop neighborhood.

This problem remains NP-complete even when h = 1, k = 2, and the contiguity and population

balance constraints are relaxed.

Proof. First, we provide a reduction from the subset sum problem to a “gift” version of subset

sum. In the subset sum problem, we are given a list of positive integers a1, a2, . . . , aq, and the

question is whether there is a subset of them whose sum equals half of the total
∑q

i=1 ai. Let

tq =
∑q

i=1 ai/2 be this target value. The gift subset sum problem is nearly the same, except that

the input also includes a subset whose sum is just one unit below the target value. To reduce

the subset sum problem to the gift subset sum problem, simply add two new integers to the list

aq+1 = aq+2 = tq + 1, meaning that there are now n = q + 2 integers and the new target value is

t= 2tq +1. Observe that the first q integers a1, a2, . . . , aq sum to 2tq = t− 1, which is one less than

the new target t. It can also be seen that the original subset sum instance is a “yes” if and only if

the gift subset sum instance is a “yes”.

Next, observe that our local search problem belongs to NP because a districting plan in the h-

hop neighborhood that is more compact (with respect to the average inverse Polsby-Popper score)

is a suitable witness. To show NP-hardness, we provide a reduction from gift subset sum in which

positive integers a1, a2, . . . , an are given as input. Again, denote by t=
∑n

i=1 ai/2 the target value.

We construct the districting instance in Figure 14.

The rectangular geographic units down the center have widths a1, a2, . . . , an and height one.

Thus, their areas are a1, a2, . . . , an, totaling 2t. There is one unit of space between rectangles i and

i+1, and one-half unit of space above rectangle 1 and below rectangle n. Thus, the total height

of the bounding rectangle is 2n, giving the entire state an area of A= 4nt. There are four other

geographic units named left, center-left, center-right, and right. There are jagged (river) boundaries

between left and center-left, and between center-right and right, so that these jagged borders have

a large length, say, M =
√
128nt(n+ t)2. These jagged boundaries lie sufficiently to the left or
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left right

center-left center-right

a1

a2

a3

...

an

t

t− 1

1

2n

Figure 14 NP-hardness reduction from the “gift” subset sum problem.

right, say t− 1 units from the center, so as not to touch the center rectangles. The leftmost and

rightmost borders are each t units from the center. The left and right units have equal areas (2n),

as do the center-left and center-right units (2nt− 2n− t).

For local search purposes, define the initial districts as follows. Create the first district from the

left unit, center-left unit, and center rectangles from the “gift” solution to the subset sum problem

(i.e., with widths a1, a2, . . . , an−2). Create the second district from what remains. The perimeter of

each district is

P = P1 = P2 = 4(n+ t),

and the first district’s area is two units less than the right district’s area (A1 = 2nt − 1 versus

A2 = 2nt+1). So, the average inverse Polsby-Popper score is

1

2

(
P 2

1

4πA1

+
P 2

2

4πA2

)
=

P 2

8π

(
1

A1

+
1

A2

)
(5a)

=
P 2

8π

(
1

2nt− 1
+

1

2nt+1

)
(5b)

<
P 2

8π

(
2

2nt− 1

)
=

4(n+ t)2

π(2nt− 1)
. (5c)

As the left and right units lie within their districts’ interiors, they must remain in the first and

second district, respectively. Meanwhile, all other geographic units lie on a district boundary and
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are permitted to switch districts in the 1-hop neighborhood. However, because of the long border

between the left and center-left units, M =
√

128nt(n+ t)2, it would be undesirable for them to be

in different districts, as the average inverse Polsby-Popper score would be

1

2

(
P 2

1

4πA1

+
P 2

2

4πA2

)
>

P 2
1

8πA1

≥ M 2

8π(4nt)
=

128nt(n+ t)2

32πnt

=
4(n+ t)2

π
>

4(n+ t)2

π(2nt− 1)
.

Likewise, the right and center-right units must belong to the same district. Then, for any assignment

of center rectangles to districts, the perimeter of each district will again be P = 4(n+ t). So, the

average inverse Polsby-Popper score is again given by (5a), where the areas A1 and A2 satisfy

A1+A2 =A= 4nt. Removing the leading constant P 2/(8π), we are left with the internal expression

1

A1

+
1

A2

=
1

A1

+
1

A−A1

,

which is strictly convex in the (integer) variable A1 (for 0 < A1 < A) and symmetric about the

unique minimizer A1 = A/2. So, the only improved solution would come with A1 = A/2, whose

solution would evenly split the center rectangles’ areas between the two districts. So, there is a

more compact plan within the 1-hop neighborhood of the initial plan (with respect to the average

inverse Polsby-Popper score) if and only if the gift subset sum instance is a “yes”. □

6.3. Application to Alabama

Motivated by the pending Supreme Court case Merrill v. Milligan, we apply the local search

procedure to Alabama. We begin with a set of demonstration districts drawn by Milligan’s expert

witness Moon Duchin, see Plan D in Figure 11. Recall that, for Gingles reasons, this plan was

drawn to have two Black-majority districts. Duchin also sought to follow traditional redistricting

principles, using just six county splits and attaining an average Polsby-Popper score of 0.249,

already improving upon the enacted plan’s score of 0.222. Due to different implementation choices,

Dave’s Redistricting App (DRA) reports these average Polsby-Popper scores as 0.2515 and 0.2203,
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respectively. As proof of concept, we apply the proposed local search procedure to make Duchin’s

demonstration districts even more compact.

As we have seen, the proposed MISOCPs are challenged by block-level districting plans due to

their large size and numerical issues. So, we first approximate Duchin’s plan with census tracts

using an integer programming model. To do so, define a binary variable xij indicating whether tract

i∈ V is assigned to district j ∈ [k]. We require the tract-based districts to satisfy contiguity (using

a, b-separator inequalities in a cut callback) and a ±0.5% population deviation. Following Duchin,

districts 2 and 7 are required to have a Black-majority among the voting age population. Similar

to Abrishami et al. (2020), we use a transportation-based objective that depends on the hop-based

distance dist(Dj, b) from each district Dj to each block b in the block-level graph. Specifically,

define the cost of assigning tract i∈ V to district j ∈ [k] as the sum

cij =
∑
b∈Bi

(1+ pb)dist(Dj, b),

where Bi is the set of blocks in tract i and pb is the population of block b. This cost will be

zero if the tract i’s blocks are all already assigned to district j. The objective is to minimize the

transportation cost
∑

i∈V

∑k

j=1 cijxij. In one second of compute time, we obtain our tract-level

approximation which has an average Polsby-Popper score of 0.2347 according to DRA.

In a first attempt, we apply 2-hop local search, using the average inverse Polsby-Popper score

for best computational performance. We impose hard constraints on population balance (±0.5%),

contiguity, and Black majorities in districts 2 and 7. In five iterations of local search (with each

iteration limited to one minute of compute time), we obtain the plan on the left of Figure 15.

According to DRA, this plan has an average Polsby-Popper score of 0.3636, which is a substantial

improvement from the initial average score of 0.249 (or 0.2515 according to DRA). Unfortunately,

the number of county splits has increased from six (in the tract-level approximation) to nineteen.

In our second attempt, we add county splitting constraints. Specifically, we disallow tract i from

being assigned to district j if no other tract in its county was previously assigned to district j. This

is a somewhat restrictive constraint, but preserves the number of splits within each county (and
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Figure 15 First and second attempts at making Plan D more compact

thus the total number of splits). In three local search iterations, we obtain the plan on the right of

Figure 15. According to DRA, this plan has an average Polsby-Popper score of 0.2897, which is a

15% improvement from 0.2515.

Inspecting the two maps in Figure 15, we see that the first attempt, which was not bound by

county splitting requirements, ultimately found a more compact pair of districts on the state’s

northern border. Further, the number of splits in them is still small. Meanwhile, the second attempt

better preserved counties in the southern part of the state. To get the best of both plans, we grafted

them together and applied local search with county splitting constraints.

Finally, we arrive at the plan in Figure 16 which preserves two Black-majority districts and six

county splits. Moreover, this plan has an average Polsby-Popper score of 0.3068, which is nearly

a 40% improvement over Alabama’s enacted plan and a 22% improvement over Duchin’s Plan

D. If not already clear from Duchin’s demonstration districts, it is compatible with traditional

redistricting principles to draw two Black-majority (or Black-opportunity) districts.

Before concluding, we mention a few caveats. First, Alabama’s enacted plan and Duchin’s plan

were both drawn to satisfy a 1-person deviation (not a ±0.5% deviation). They also consider

municipality preservation and build districts largely from precincts (instead of tracts). Recognizing

these limitations, we acknowledge that the map shown in Figure 16 would not hold up in court,

but nevertheless feel that this has been a successful proof-of-concept exercise. With suitable tweaks
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Figure 16 Demonstration districts that are 22% more compact than Plan D

(e.g., using precinct-level data and post-processing to achieve 1-person deviation), this approach

could assist Section 2 litigants in satisfying the first Gingles precondition when seeking to overturn

districting plans that dilute the voting power of minority groups or when drawing remedial districts.

7. Conclusion and Future Work

Although the Polsby-Popper score is the most popular compactness score in the academic literature

and in expert testimony (Polsby and Popper 1993, Duchin 2018), it has largely been absent from the

operations research and mathematical programming literature, presumably because of its nonlinear

nature. We show how to capture the Polsby-Popper, inverse Polsby-Popper, and Schwartzberg

scores in mixed-integer second-order cone programs (MISOCPs), which optimization solvers began

supporting only recently. We demonstrate that the MISOCPs can be used to draw optimally

compact districts using counties or census tracts. By adding a single constraint, they can also

identify optimally compact majority-minority districts. This newfound ability may find applications

in Section 2 litigation when using the VRA to overturn political districting plans that dilute the

voting power of minority groups. Specifically, the MISOCPs can be used by plaintiffs to identify

districts that meet the first Gingles precondition. As proof of concept, we apply the MISOCP to

draw majority-minority districts in California, Illinois, South Dakota, and Alabama.

To handle very large instances, we propose a local search neighborhood called the h-hop neigh-

borhood, in the spirit of Henzinger et al. (2020). We show that it is NP-complete to find a more
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compact districting plan (with respect to the inverse Polsby-Popper score) within the h-hop neigh-

borhood of a given plan. This problem remains hard even when the contiguity and population

balance constraints are relaxed, there are only k = 2 districts, and the hop parameter is h = 1,

showing that the (inverse) Polsby-Popper objective is itself hard. However, we find that the pro-

posed MISOCPs are up for the task. Again, this ability may aid Section 2 litigants to refine an

initial set of (demonstration) districts to make them substantially more compact. As proof of con-

cept, we apply the MISOCP-based local search procedure to Alabama. Building on Duchin’s plan

D, we find that it is compatible with traditional redistricting principles for Alabama to draw two

Black-majority (or Black-opportunity) districts.

In future work, it would be interesting (and legally impactful) to use optimization to under-

stand the fundamental tradeoffs between district compactness (e.g., Polsby-Popper score) and other

criteria (e.g., population deviation, minority representation, political subdivision preservation, par-

tisan fairness). We suspect this to be a difficult task, requiring integer programming methods

beyond those developed in this paper. In recent literature, e.g., Schutzman (2020), Becker and

Solomon (2022), Swamy et al. (2023), McCartan (2023), researchers have proposed heuristic and

optimization-inspired methods to estimate the associated Pareto frontiers, but without guarantees.
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