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Counterfactual explanations play an important role in detecting bias and improving the explainability of

data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for

which the decision of the model changes. Most of the existing methods can only provide one CE, which

may not be achievable for the user. In this work we derive an iterative method to calculate robust CEs, i.e.

CEs that remain valid even after the features are slightly perturbed. To this end, our method provides a

whole region of CEs allowing the user to choose a suitable recourse to obtain a desired outcome. We use

algorithmic ideas from robust optimization and prove convergence results for the most common machine

learning methods including decision trees, tree ensembles, and neural networks. Our experiments show that

our method can efficiently generate globally optimal robust CEs for a variety of common data sets and

classification models.
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1. Introduction

Counterfactual explanations, also known as algorithmic recourse, are becoming increasingly

popular as a way to explain the decisions made by black-box machine learning (ML)

models. Given a factual instance for which we want to derive an explanation, we search for

a counterfactual feature combination describing the minimum change in the feature space

that will lead to a flipped model prediction. For example, for a person with a rejected

loan application, the counterfactual explanation (CE) could be “if the annual salary would

increase to 50,000$, then the loan application would be approved.” This method enables

a form of user agency and is therefore particularly attractive in consequential decision

making, where the user is directly and indirectly impacted by the outcome of the ML

model.

The first optimization-based approach to generate CEs has been proposed by Wachter

et al. (2018). Given a trained classifier h :X → [0,1] and a factual instance x̂∈X , the aim
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is to find a counterfactual x̃∈X that has the shortest distance to x̂, and has the opposite

target. The problem to obtain x̃ can be formulated as

minimize
x∈X

d(x̂,x) (1)

subject to h(x)≥ τ, (2)

where d(·, ·) is a distance function, often chosen to be the ℓ1-norm or the ℓ2-norm, and

τ ∈ [0,1] is a given threshold parameter for the classification decision.

Others have built on this work and proposed approaches that generate CEs with

increased practical value, primarily by adding constraints to ensure actionability of the pro-

posed changes and generating CEs that are close to the data manifold (Ustun et al. 2019,

Russell 2019, Mahajan et al. 2019, Mothilal et al. 2020, Maragno et al. 2022). Nonetheless,

the user agency provided by these methods remains theoretical: the generated CEs are

exact point solutions that may remain difficult if not impossible to implement in practice.

A minimal change to the proposed CE could fail to flip the model’s prediction, especially

since the CEs are close to the decision boundary due to minimizing the distance between x̂

and x̃. As a solution, prior work suggests generating several CEs to increase the likelihood

of generating at least one attainable solution. Approaches generating several CEs typically

require solving the optimization problem multiple times (Russell 2019, Mothilal et al. 2020,

Kanamori et al. 2021, Karimi et al. 2020), which might heavily affect the optimization time

when the number of explanations is large. Maragno et al. (2022) suggest using incumbent

solutions, however, this does not allow to control the quality of sub-optimal solutions. On

top of that, the added practical value may be unconvincing: each of the CEs is still sensitive

to arbitrarily small changes in the actions implemented by the user (Dominguez-Olmedo

et al. 2021, Pawelczyk et al. 2022, Virgolin and Fracaros 2023).

This problem has been acknowledged in prior work and falls under the discussion of

robustness in CEs. In the literature, the concept of robustness in CEs has different mean-

ings: (1) robustness to input perturbations (Slack et al. 2021, Artelt et al. 2021), (2)

robustness to model changes (Rawal et al. 2020, Forel et al. 2022, Upadhyay et al. 2021,

Ferrario and Loi 2022, Black et al. 2021, Dutta et al. 2022, Bui et al. 2022), (3) robustness

to hyperparameter selection (Dandl et al. 2020), and (4) robustness to recourse (Pawel-

czyk et al. 2022, Dominguez-Olmedo et al. 2021, Virgolin and Fracaros 2023). The latter
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perspective, albeit very user-centered, has so far received only a little attention. Our work

focuses on the latter definition of robustness in CEs, specifically, the idea of robustness

to recourse. This means that a counterfactual solution should remain valid even if small

changes are made to the implemented recourse action. In other words, we aim to define

regions of counterfactual solutions that allow the user to choose any point within that

region to flip the model prediction. While existing research has tackled this problem, their

solutions are not comprehensive and have room for further improvements. In the remainder

of this section, we will explore the related prior work and present our own contributions

to this field.

Pawelczyk et al. (2022) introduce the notion of recourse invalidation rate, which amounts

to the proportion of recourse that does not lead to the desired model prediction, i.e., that

is invalid. They model the noise around a counterfactual data point with a Gaussian dis-

tribution and suggest an approach that ensures the invalidation rate within a specified

neighborhood around the counterfactual data point to be no larger than a target recourse

invalidation rate. However, their work provides a heuristic solution using a gradient-based

approach, which makes it not applicable to decision tree models. Additionally, it only

provides a probabilistic robustness guarantee. Dominguez-Olmedo et al. (2021) introduce

an approach where the optimal solution is surrounded by an uncertainty set such that

every point in the set is a feasible solution. They also model causality between (per-

turbed) features to obtain a more informative neighborhood of similar points. Given a

structural causal model (SCM), they model such perturbations as additive interventions

on the factual instance features. The authors design an iterative approach that works only

for differentiable classifiers and does not guarantee that the generated recourse actions are

adversarially robust. Virgolin and Fracaros (2023) incorporate the possibility of additional

intervention to contrast perturbations in their search for CEs. They make a distinction

between the features that could be changed and those that should be kept as they are, and

introduce the concept of C-setbacks; a subset of perturbations in changeable features that

work against the user. Rather than seeking CEs that are not invalidated by C-setbacks,

they seek CEs for which the additional intervention cost to overcome the setback is min-

imal. Perturbations to features that should be kept as they are according to a CE are

orthogonal to the direction of the counterfactual, and Virgolin and Fracaros (2023) approx-

imate a robustness-score for such features. A drawback of this method is that it is only
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applicable in situations where additional intervention is possible, and not in situations

where (e.g., due to time limitations) only a single recourse is possible.

Our work addresses robustness to recourse by utilizing a robust optimization approach

to generate regions of CEs. For a given factual instance, our method generates a set of

CEs such that every solution in this set is a valid CE. This approach gives the user more

flexibility in selecting a solution that best suits their needs. Additionally, the generated

CEs are optimal in terms of their objective distance to the factual instance. The proposed

algorithm is proven to converge, ensuring that the optimal solution is reached. This is dif-

ferent from prior work that provides only heuristic algorithms which are not provably able

to find the optimal (i.e., closest) counterfactual point with a certain robustness guarantee

(e.g., Pawelczyk et al. 2022, Dominguez-Olmedo et al. 2021). Unlike prior research in this

area, our approach is able to provide deterministic robustness guarantees for the CEs gen-

erated. Furthermore, our method does not require differentiability of the underlying ML

model and is applicable to the tree-based models, which, to the best of our knowledge, has

not been done before.

In summary, we make the following contributions:

• We propose an iterative algorithm that effectively finds global optimal robust CEs for

trained decision trees, ensembles of trees, and neural networks.

• We prove the convergence of the algorithm for the considered trained models.

• We demonstrate the power of our algorithm on several datasets and different ML

models. We empirically evaluate its convergence performance and compare the robustness

as well as the validity of the generated CEs with the prior work in the literature.

• We release an open-source software called RCE to make the proposed algorithm easily

accessible to practitioners. Our software is available in a dedicated repository1 through

which all our results can be reproduced.

2. Robust Counterfactual Explanations

We consider binary classification problems, i.e., we have a trained classifier h : X → [0,1]

that assigns a value between zero and one to each data point in the data space X ⊆ Rn.

A point x ∈ X is then predicted to correspond to class +1, if h(x)≥ τ and to class −1,

otherwise. Here τ ∈ [0,1] is a given threshold parameter which is often chosen to be τ = 0.5.

1https://github.com/donato-maragno/robust-CE

https://github.com/donato-maragno/robust-CE
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Given a factual instance x̂ ∈ X which is predicted to be in class −1, i.e., h(x̂) < τ , the

robust CE problem is defined as

minimize
x∈X

d(x, x̂) (3)

subject to h(x+ s)≥ τ, ∀s∈ S, (4)

where the d(x, x̂) represents a distance function, e.g., induced by the ℓ1-, ℓ2- or ℓ∞-norm,

and S ⊂ Rn is a given uncertainty set. The idea of the problem is to find a point that is

as close as possible to the factual instance x̂ such that for all perturbations s ∈ S, the

corresponding point x+s is classified as +1 which is enforced by constraints (4); see Figure

1. This results in a large set of counterfactual explanations.

We consider uncertainty sets of the type

S = {s∈Rn | ||s|| ≤ ρ}, (5)

where ∥ · ∥ is a given norm. Popular choices are the ℓ∞-norm, resulting in a box with

upper and lower bounds on features, or the ℓ2-norm, resulting in a circular uncertainty

set. We refer to Ben-Tal et al. (2009) for a discussion of uncertainty sets. From the user

perspective, choosing the ℓ∞-norm has a practical advantage since the region S is a box,

i.e., we obtain an interval for each attribute of x̂. Each attribute can be changed in its

corresponding interval independently, resulting in a counterfactual explanation. Hence, the

user can easily detect if there exists a CE in the region which can be practically reached.

We note that the model in (3)-(4) has infinitely many constraints. One approach often

used in robust optimization is to rewrite constraints (4) as

min
s∈S

h(x+ s)≥ τ,

and dualize the optimization problem on the left hand side. This leads to a problem

with a finite number of constraints. Unfortunately, strong duality is required to perform

this reformulation, which does not hold for most classifiers h involving non-convexity or

integer variables2. In the latter case, we can use an alternative method popular in robust

optimization where the constraints are generated iteratively. This iterative approach to

2See Appendix A for the well-known dual approach applied to linear models.



Maragno et al.: Finding Regions of Counterfactual Explanations via Robust Optimization
6

0.3 0.4 0.5 0.60.1

0.2

0.3

0.4

factual instance
RCE

Figure 1 Robust CE for a neural network and using a box uncertainty set. All points in the red region are

classified as −1, all points in the white region as +1.

solve problem (3)-(4) is known as the adversarial approach. The idea is to consider a relaxed

version of the model, where only a finite subset of scenarios Z ⊂S is considered:

minimize
x∈X

d(x, x̂) (MP)

subject to h(x+ s)≥ τ, ∀s∈Z. (6)

This problem is called the master problem (MP), and it only has a finite number of con-

straints. Note that the optimal value of (MP) is a lower bound of the optimal value of

(3)-(4). However, an optimal solution x∗ of (MP) is not necessarily feasible for the original

problem, since there may exist a scenario in S that is not contained in Z for which the

solution is not feasible. More precisely, it may be that there exists an s ∈ S such that

h(x∗ + s)< τ , and hence, x∗ is not a robust counterfactual. In this case, we want to find

such a scenario s∗ that makes solution x∗ infeasible. This can be done by solving the

following, so called, adversarial problem (AP):

max
s∈S

τ −h(x∗+ s). (AP)

The idea is to find a scenario s∗ ∈ S such that the prediction of classifier h for point x∗+s∗

is −1, i.e., τ −h(x∗+s∗)> 0. If we can find such a scenario and add it to the set Z in the

MP, then x∗ cannot be feasible anymore for (MP). To find the scenario with the largest

impact, we maximize the constraint violation in the objective function in (AP). If the

optimal value of (AP) is positive then x∗+s∗ is classified as −1, and the optimal solution
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Figure 2 Iterations of Algorithm 1 to find the optimal robust CE for a decision tree. For each (MP) solution, we

show the uncertainty box around it. As long as the box overlaps with the red region, a new scenario

can be found and the solution moves in the next iteration.

Algorithm 1 Adversarial Algorithm

Input: S, x̂, ε > 0

Z = {0}

repeat

x∗← Solve (MP) with Z, x̂

s∗,opt← Solve (AP) with x∗,S

Z ←Z ∪{s∗}

until opt≤ ε

Return: x∗

s∗ is added to Z, and we calculate a solution x∗ of the updated (MP). We iterate until

no violating scenario can be found, that is, until the optimal value of (AP) is smaller or

equal to zero. Note that in this case h(x∗ + s)≥ τ holds for all s ∈ S, which means that

x∗ is a robust counterfactual. Algorithm 1 shows the steps of our approach, and Figure 2

shows its iterative behaviour. Each time a new scenario s is found by solving the AP, it is

added to the uncertainty set Z, and the new solution x∗ moves to be feasible also for the

new scenario. This is repeated until no scenario can be found anymore, i.e., until the full

box lies in the correct region. Note that instead of checking for a positive optimal value of

(AP), we use an accuracy parameter ε > 0 in Algorithm 1. In this case, we can guarantee

the convergence of our algorithm using the following result.
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Theorem 1 (Mutapcic and Boyd, 2009). If X is bounded and if h is a Lipschitz

continuous function, i.e., there exists an L> 0 such that

|h(x1)−h(x2)| ≤L∥x1−x2∥

for all x1,x2 ∈X . Then, for any tolerance parameter value ϵ > 0, Algorithm 1 terminates

after a finite number of steps with a solution x∗ such that

h(x∗+ s)≥ τ − ε

for all s∈ S.

Indeed without Lipschitz continuity, the convergence of Algorithm 1 cannot be ensured.

We elaborate on this necessity in the following example, for which Algorithm 1 does not

terminate in a finite number of steps.

Example 1. Consider a classifier h : R2→ [0,1] with h(x) = 0, if x2 >
1
2
and h(x) = 1,

otherwise. The threshold is τ = 0.5, i.e., a point is classified as 1, if x2 ≤ 1
2
and as −1,

otherwise. The factual instance is ẑ = (0,2), which is classified as −1. Furthermore, the

uncertainty set is given as S = {s∈R2 : ∥s∥∞ ≤ 1}. We can warm-start Algorithm 1 with

the (MP) solution x1 = (0,0). Now, assume that in iteration i the optimal solution returned

by (AP) is si = (1, 1
2
+
∑i

j=1

(
1
4

)j
). Note that in the first iteration s1 = (1, 3

4
) lies on the

boundary of S and x1+s1 is classified as −1, i.e., it is an optimal solution of (AP). We are

looking now for the closest point x2 to x̂ such that x2+s1 is classified as 1, that is, it has a

second component of at most 1
2
. This is the point x2 = (0,−1

4
) which must be the optimal

solution of (MP). Note that s2 is again on the boundary of S and x2 + s2 = (1, 1
2
+ 1

8
) is

classified as −1. Hence, s2 is an optimal solution of (AP). We can conclude inductively

that the optimal solution of (MP) in iteration i is xi = (0,−
∑i

j=1

(
1
4

)j
) and that si is

an optimal solution of (AP) in iteration i. Note that the latter is true, since the value of

h is constant in the negative region, and hence, each point in the uncertainty set is an

optimal solution of (AP). If the latter solutions are returned by (AP), then the sequence of

solutions xi converges to the point x̄= (0,−1
3
) which follows from the limit of the geometric

series. However, x̄ is not a robust CE regarding S, since for instance, x̄+(0,1) = (0, 2
3
) is

classified as −1. Consequently, Algorithm 1 never terminates. This example is illustrated

in Figure 3.



Maragno et al.: Finding Regions of Counterfactual Explanations via Robust Optimization
9

0.11 0.29 0.69 1.09

0.3

0.1

0.5

0.9

Iteration: 1

0.11 0.29 0.69 1.09

0.3

0.1

0.5

0.9

Iteration: 2

0.11 0.29 0.69 1.09

0.3

0.1

0.5

0.9

Iteration: 3

0.11 0.29 0.69 1.09

0.3

0.1

0.5

0.9

Iteration: 4

Figure 3 Illustration of the iterations of Algorithm 1 for the problem in Example 1. The purple square represents

the current (MP) solution, while the yellow triangle represents the solution of the adversarial problem.

The distance of the adversarial solutions to the decision boundary is
(
1
4

)i
in iteration i.

One difficulty is modeling the constraints of the form h(x+ s)≥ τ for different trained

classifiers. For decision trees, ensembles of decision trees, and neural networks, these con-

straints can be modeled by mixed-integer linear constraints as we present in the following

section. Another difficulty is that h is discontinuous for decision trees and ensembles of

decision trees. To handle these models, we have to find Lipschitz continuous extensions of

h with equivalent predictions to guarantee convergence of Algorithm 1.

3. Trained Models

In this section, we give reformulations for (MP) and (AP) –specifically for decision trees,

tree ensembles, and neural networks– that satisfy the conditions needed in Theorem 1 for

convergence.

3.1. Decision Trees

A decision tree (DT) partitions the data samples into distinct leaves through a series of

feature splits. A split at node j is performed by a hyperplane ã⊤
j x= b̃j. We assume that

ãj can have multiple non-zero elements, in which we have the hyperplane split setting –

if there is only one non-zero element, this creates an orthogonal (single feature) split. We
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denote the index-set of all split nodes j by N . Then, each leaf i of the tree is given by a

subset of splits N i
≤ ⊆N and N i

< ⊆N , where N i
≤ ∩N i

< = ∅. Formally, we define

Li = {x∈X : a⊤
j x≤ bj, j ∈N i

≤; a
⊤
j x< bj, j ∈N i

< }.

Furthermore, it always holds that Rn =
⋃

i∈LLi, where L is the index set of all leaves,

and Li ∩ Lk = ∅ for every pair i ̸= k. Each leaf i is assigned a weight pi ∈ [0,1], which is

normally determined by the fraction of training data of class 1 inside the leaf. The classifier

is a piecewise constant function h, where h(x) = pi if and only if x is contained in leaf i.

Since, h is a discontinuous step-function, and it is not Lipschitz continuous. To achieve

convergence of our algorithm, we have to find a Lipschitz continuous function assigning

the same classes to each data point as h. To this end we define the function

h̃(x) =


τ, x∈Li, pi ≥ τ ;

τ − min
j∈N i

≤∪N i
<

bj −a⊤
j x, x∈Li, pi < τ.

We choose this function to have a constant value of τ for all leaves with pi ≥ τ while for

a point x in one of the other leaves, we subtract from τ the minimum slack-value of the

point over all leaf-defining constraints. Since the minimum slack on the boundary of the

leaves is zero, h̃ is a continuous function and it holds h̃(x)< τ in the interior of the latter

leaves. Note that the value of h decreases if we a point is more far away from the boundary

of the leaf. Unfortunately, due to imposed continuity, the predictions on the boundaries

of the leaves can be different than the original predictions of h. We show in the following

lemma that h̃ is Lipschitz continuous and, except on the leaf boundaries, the same class is

assigned to each data point as it is done by the original classifier h.

Lemma 1. The function h̃ is Lipschitz continuous on X and int
(
{x : h̃(x)≥ τ}

)
⊆ {x :

h(x)≥ τ} ⊆ {x : h̃(x)≥ τ}, where int(·) denotes the interior of the set.

Proof. We first show, that h̃ is Lipschitz continuous. To this end, let x,y ∈X . Consider

the following three cases. Case 1: Both points are contained in a leaf with prediction 1,

i.e., x∈Li and y ∈Li′ with pi, pi′ ≥ τ . In this case we have

|h̃(x)− h̃(y)|= |τ − τ |= 0≤ ∥x−y∥. (7)
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Case 2: Point x is in a leaf with prediction 1, and point y is in a leaf with prediction −1,

i.e., x∈Li and y ∈Li′ with pi ≥ τ and pi′ < τ . Since x is not contained in Li′ , there must

be one node j∗ (without loss of generality, we assume that j∗ ∈N i′
≤) such that a⊤

j∗y ≤ bj∗

and a⊤
j∗x> bj∗. It holds h̃(x) = τ ≥ h̃(y), and we obtain

|h̃(x)− h̃(y)|= τ − (τ − min
j∈N i′

≤∪N i′
<

bj −a⊤
j y) (8)

= min
j∈N i′

≤∪N i′
<

bj −a⊤
j y (9)

≤ bj∗ −a⊤
j∗y (10)

< bj∗ −a⊤
j∗y+a⊤

j∗x− bj∗ (11)

= a⊤
j∗(x−y) (12)

≤ ∥aj∗∥∥x−y∥, (13)

where the first inequality follows from j∗ ∈ N i′
≤ ∪N i′

< , the second inequality follows from

a⊤
j∗x> bj∗, and for the last inequality we apply the Cauchy-Schwarz inequality.

Case 3: Both points are contained in a leaf with prediction −1, i.e., x ∈Li and y ∈Li′

with pi, pi′ < τ . First assume that i ̸= i′. Without loss of generality, we also assume that

h̃(x)≥ h̃(y). In this case, we have

|h̃(x)− h̃(y)| ≤ τ − (τ − min
j∈N i′

≤∪N i′
<

bj −a⊤
j y), (14)

which follows from h̃(x)≤ τ for all x ∈X . We can prove Lipschitz continuity in this case

by following the same steps as in Case 2. When i= i′, we designate j∗ as the index which

attains the minimum in

τ − min
j∈N i

≤∪N i
<

bj −a⊤
j x. (15)

Then, we have

|h̃(x)− h̃(y)|= τ − bj∗ +a⊤
j∗x− (τ − min

j∈N i′
≤∪N i′

<

bj −a⊤
j y) (16)

≤−bj∗ +a⊤
j∗x+ bj∗ −a⊤

j∗y (17)

= a⊤
j∗(x−y) (18)

≤ ∥aj∗∥∥x−y∥, (19)
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where we use j∗ ∈N i′
≤ ∪N i′

< for the first inequality, and the Cauchy-Schwarz inequality for

the last one.

Following the three cases above, we show that h̃ is Lipschitz continuous with Lipschitz

constant L=maxj∈N ∥aj∥.

We now show the second part of the result. First, assume for x that h(x) ≥ τ . This

implies that x is contained in a leaf Li with pi ≥ τ , and hence, h̃(x) = τ showing the

second inclusion. For the first inclusion, let now x be a point in the interior of the set

{x : h̃(x) ≥ τ}. Assume the contrary of the statement, i.e., it is contained in a leaf Li

with pi < τ . We can assume that the leaf is full-dimensional, since otherwise the interior is

empty. Then, by definition of h̃, it must hold that

τ − min
j∈N i

≤∪N i
<

bj −a⊤
j x≥ τ. (20)

That is, there is a node j ∈N i
≤∪N i

< such that a⊤
j x= bj. Since the leaf is a full-dimensional

polyhedron, there exists a δ̄ > 0 and a direction v such that a⊤
j (x+δv)< bj for all 0< δ < δ̄

and all j ∈ N i
≤ ∪N i

<. Consequently, h̃(x+ δv) < τ for all 0 < δ < δ̄. This implies that x

cannot be in the interior of the set {x : h̃(x)≥ τ}, which is a contradiction. Thus, x must

be contained in a leaf with pi ≥ τ which proves the result. □

We can now derive the formulations for (MP) and (AP) for our tree model. By using

Lemma 1, we can use h instead of h̃ to model Constraints (6) in (MP). Then, we can

adapt the decision tree formulation proposed by Maragno et al. (2022) and reformulate

Constraint (6) of (MP) as

a⊤
j (x+ s)−M(1− li(s))≤ bj, i∈L, j ∈N i

≤,s∈Z, (21)

a⊤
j (x+ s)−M(1− li(s))< bj, i∈L, j ∈N i

<,s∈Z, (22)∑
i∈L

li(s) = 1, s∈Z, (23)∑
i∈L

li(s)pi ≥ τ, s∈Z, (24)

li(s)∈ {0,1}, i∈L,s∈Z, (25)

where M is a predefined large-enough constant. The variables li(s) are binary variables

associated with the corresponding leaf i and scenario s, where li(s) = 1, if solution x+ s
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is contained in leaf i. Constraints (23) ensure that each scenario gets assigned to exactly

one leaf. Constraints (21) and (22) ensure that only if leaf i is selected for scenario s, i.e.,

li(s) = 1, then x+s has to fulfill the corresponding constraints of Li while the constraints

for all other leaves can be violated, which is ensured by the big-M value. Note that in

our computational experiments we use an ε̃-accuracy parameter to reformulate the strict

inequalities as non-strict inequalities. Finally, Constraints (24) ensure that the chosen leaf

has a weight pi which is greater than or equal to the threshold τ . We can remove all variables

and constraints of the problem related to leaves with pi < τ together with constraint (24),

since only leafs which correspond to label +1 can be chosen to obtain a feasible solution.

Using the Lipschitz continuous function h̃, (AP) can be reformulated as

τ +max
s∈S
−h̃(x∗+ s). (26)

Optimizing −h̃(x∗ + s) over S is equivalent to iterating over all leaves Li with pi < τ and

maximizing the same function over the corresponding leaf. The problem is formulated as:

maximize − τ + min
j∈N i

≤∪N i
<

{bj −a⊤
j (x

∗+ s)} (27)

subject to a⊤
j (x

∗+ s)≤ bj, j ∈N i
≤, (28)

a⊤
j (x

∗+ s)< bj, j ∈N i
<, (29)

s∈ S (30)

for each such leaf. Using a level-set transformation and substituting the latter problem in

(26) leads to

maximize α (31)

subject to α≤wj, j ∈N i
≤ ∪N i

<, (32)

a⊤
j (x

∗+ s)+wj ≤ bj, j ∈N i
≤, (33)

a⊤
j (x

∗+ s)+wj < bj, j ∈N i
<, (34)

s∈ S,w≥ 0, (35)

which is equivalent to maximizing the minimum slacks of the constraints corresponding to

the leaves. Geometrically this means that we try to find a perturbation s such that x∗+s

is as deep as possible in one of the negative leaves; see Figure 4. Note that the problems
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Figure 4 Slack values of a solution regarding the leaf-defining constraints where the minimum slack is maximized.

(31) are continuous optimization problems that can be solved efficiently by state-of-the-art

solvers, such as, Gurobi Gurobi Optimization, LLC (2022) or CPLEX Cplex (2009).

Heuristic Variant. Using Algorithm 1 can be computationally demanding, since it

requires solving (MP) and (AP) many times in an iterative manner. An alternative and

more efficient approach can be conducted, where we try to find a CE x∗ that is robust

only regarding to one leaf of the tree. More precisely, this means that x∗ + s is contained

in the same leaf for all s∈ S. This is an approximation, since for each scenario s, the point

x∗+s could be contained in a different neighboring leaf leading to better CEs; see Figure

5. Hence, the solutions of the latter approach may be non-optimal. When restricting to

one leaf, we can iterate over all possible leaves Li with pi < τ and solve the resulting (MP):

minimize d(x, x̂) (36)

subject to a⊤
j x+ ρ||aj ||∗ ≤ bj, j ∈N i

≤, (37)

a⊤
j x+ ρ||aj ||∗ < bj, j ∈N i

<, (38)

x∈X , (39)

and choose the solution x∗ for the leaf which yields the best optimal value. Note that, in

that case, we do not need binary assignment variables anymore, since we only consider one

leaf for (MP). Alternatively, we can obtain the same result modelling the entire decision

tree using auxiliary binary variables, one for each leaf i with pi ≥ τ .

3.2. Tree Ensembles

In the case of tree ensembles like random forest (RF) and gradient boosting machines

(GBM), we model the validity constraints by formulating each base learner separately.
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Figure 5 (Left) the CE of the heuristic approach where the whole set is restricted to be contained in one leaf.

(Right) an optimal CE where the uncertainty set can overlap over different leaves of a decision tree.

Assume we obtain K base learners. Since each base learner is a decision tree, we can use

the construction of the constraints (21)-(25) and apply them to all base learners separately.

Then, we add the constraints to the master problem, where each base learner k gets a

separate copy li(s)(k) of the assignment variables and has its own set of node inequalities

given by aj(k) and bj(k). Additionally, we have to replace constraint (24) by∑K
k=1

∑
i∈L li(s)(k)pi(k)

K
≥ τ, (40)

where pi(k) is the weight of leaf i in base learner k. This constraint forces the average

prediction value of the tree ensemble to be larger than or equal to τ . Note that to model a

majority vote, we can use pi(k) ∈ {0,1}. Since a random forest is equivalent to a decision

tree, the same methodology for (AP) can be used as in Section 3.1. Note that for classical

DTs we may iterate over all leaves and solve Problem (31). However, deriving the poly-

hedral descriptions of all leaves for an ensemble of trees is very time consuming. Instead

(AP) can be reformulated as

maximize α (41)

subject to α≤wk
j , j ∈N i

≤(k)∪N i
<(k), ∀k ∈ [K], (42)

aj(k)
⊤(x∗+ s)+wk

j ≤ bj(k), j ∈N i
≤(k), ∀k ∈ [K], (43)

aj(k)
⊤(x∗+ s)+wk

j < bj(k), j ∈N i
<(k), ∀k ∈ [K], (44)

s∈ S, wk ≥ 0, ∀k ∈ [K], (45)
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where N i
≤(k),N i

<(k) are the indices of the nodes of tree k as defined in Section 3.1 and we

use [K] to denote the set of the first K positive integers, that is [K] = {1, . . . ,K} .

Finally, note that since the classifier of an ensemble of trees is equivalent to a classical

decision tree classifier, the convergence analysis presented in Section 3.1 holds also for the

ensemble case.

3.3. Neural Networks

In the case of neural networks convergence of Algorithm 1 is immediately guaranteed when

we consider ReLU activation functions. More precisely, the evaluation function h : X →

[0,1] of a trained neural network with rectified linear unit (ReLU) activation functions

is Lipschitz continuous, since it is a concatenation of Lipschitz continuous functions; see

Appendix B for a formal proof.

Moreover, neural networks with ReLU activation functions belong to the MIP-

representable class of ML models (Grimstad and Andersson 2019, Anderson et al. 2020).

The ReLU operator of a neuron in layer l is given by

vli =max

0, βl
i0+

∑
j∈N l−1

βl
ijv

l−1
j

 , (46)

where βl
i is the coefficient vector for neuron i in layer l, βl

i0 is the bias value and vl−1
j

is the output of neuron j of layer l− 1. Note that in our model the input of the neural

network can be a data point x perturbed by a scenario s, i.e., all variables depend on the

perturbation s. The input in the first layer is v0(s) = x+ s and the output of layer l is

denoted as vlj(s). The ReLU operator (46) can then be linearly reformulated as

vli(s)≥ βl
i0+

∑
j∈N l−1

βl
ijv

l−1,s
j , s∈Z, (47)

vli(s)≤ βl
i0+

∑
j∈N l−1

βl
ijv

l−1,s
j +MLB(1− lli(s)), s∈Z, (48)

vli(s)≤MUBl
l
i(s), s∈Z, (49)

vli(s)≥ 0, s∈Z, (50)

lli(s)∈ {0,1} , s∈Z, (51)

where MLB and MUB are big-M values.
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The following is a complete formulation of the master problem (MP) in the case of neural

networks with ReLU activation functions:

minimize
x∈X

d(x, x̂) (52)

subject to
∑
j∈NL

βL
j v

L−1
j (s)≥ τ, s∈Z, (53)

vli(s)≥ βl
i0+

∑
j∈N l−1

βl
ijv

l−1
j (s), s∈Z, i∈N l, ∀l ∈ [L], (54)

vli(s)≤ βl
i0+

∑
j∈N l−1

βl
ijv

l−1
j (s)+MLB(1− lli(s)), s∈Z, i∈N l, ∀l ∈ [L],

(55)

vli(s)≤MUBl
l
i(s), s∈Z, i∈N l, ∀l ∈ [L], (56)

v0i (s) = xi + si, s∈Z, ∀i∈ [n], (57)

vli(s)≥ 0, s∈Z, i∈N l, ∀l ∈ [L], (58)

lli(s)∈ {0,1} , s∈Z, i∈N l, ∀l ∈ [L], (59)

where L represents the number of layers with [L] = {1, . . . ,L} and N l the set of neurons

in layer l. The first L− 1 layers are activated by a ReLU function except for the output

layer, which consists of a single node that is a linear combination of the node values in

layer L− 1. The variable vli(s) is the output of the activation function in node i, layer l,

and scenario s.

Likewise, the adversarial problem (AP) is formulated as

maximize
s∈S

τ −
∑
j∈NL

βL
j v

L−1
j , (60)

subject to vli ≥ βl
i0+

∑
j∈N l−1

βl
ijv

l−1
j , i∈N l, ∀l ∈ [L], (61)

vli ≤ βl
i0+

∑
j∈N l−1

βl
ijv

l−1
j +MLB(1− lli), i∈N l, ∀l ∈ [L], (62)

vli ≤MUBl
l
i, i∈N l, ∀l ∈ [L], (63)

v0i = si +x∗
i , i= 1, . . . , n, (64)

vli ≥ 0, i∈N l, ∀l ∈ [L], (65)

lli ∈ {0,1} , i∈N l, ∀l ∈ [L], (66)

s∈ S, (67)
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where x∗ is the counterfactual solution of (MP).

4. Experiments

In this section, we aim to illustrate the effectiveness of our method by conducting empirical

experiments on various datasets. The mixed-integer optimization formulations of the ML

models used in our experiments are based on Maragno et al. (2021). The experiments

are being run on a computer with an Apple M1 Pro processor and 16 GB of RAM. For

reproducibility, our open-source implementation can be found at our repository3. It is

important to note that to the best of our knowledge, the present work is the first approach

that generates a region of CEs for a range of different models, involving non-differentiable

models. Therefore, a comparison to prior work is only possible with Dominguez-Olmedo

et al. (2021) for the case of neural networks with ReLU activation functions.

BANKNOTE AUTHENTICATION DIABETES IONOSPHERE
4 features 8 features 34 features

Model Specs Comp. time (s) # iterations # early stops Comp. time (s) # iterations # early stops Comp. time (s) # iterations # early stops

ρ= 0.01

Linear ElasticNet 0.25 (0.01) – – 0.23 (0.01) – – 0.25 (0.01) – –
max depth: 3 1.53 (0.04) 1.00 (0.00) – 1.66 (0.07) 1.20 (0.09) – 1.66 (0.07) 1.10 (0.07) –
max depth: 5 1.86 (0.09) 1.10 (0.07) – 2.29 (0.11) 1.20 (0.09) – 1.96 (0.08) 1.10 (0.07) –DT
max depth: 10 3.90 (0.88) 2.00 (0.58) – 5.77 (0.48) 1.40 (0.13) – 2.86 (0.16) 1.20 (0.09) –
# est.: 5 3.50 (0.36) 1.75 (0.22) – 5.89 (1.98) 2.60 (0.83) – 3.79 (0.24) 1.70 (0.13) –
# est.: 10 6.74 (1.03) 2.60 (0.40) – 7.20 (0.94) 2.35 (0.29) – 8.76 (0.89) 2.85 (0.33) –
# est.: 20 21.21 (4.61) 4.55 (0.99) – 33.55 (7.48) 6.15 (0.79) – 22.33 (2.83) 4.40 (0.51) –
# est.: 50 115.79 (34.35) 7.80 (1.65) – 110.24 (32.43) 6.47 (1.39) 3 (ρ̄ = 0.007) 137.26 (33.37) 8.20 (1.20) –

RF∗

# est.: 100 214.38 (65.07) 6.44 (1.31) 2 (ρ̄ = 0.009) 274.09 (71.93) 8.87 (1.49) 5 (ρ̄ = 0.004) 285.62 (95.57) 8.27 (2.02) 9 (ρ̄ = 0.004)
# est.: 5 2.70 (0.22) 1.20 (0.14) – 2.76 (0.22) 1.85 (0.17) – 2.37 (0.15) 1.60 (0.13) –
# est.: 10 3.20 (0.30) 1.45 (0.15) – 2.72 (0.29) 1.50 (0.24) – 4.35 (0.44) 2.75 (0.30) –
# est.: 20 5.94 (0.50) 2.60 (0.23) – 4.25 (0.45) 2.15 (0.28) – 9.01 (1.11) 3.85 (0.50) –
# est.: 50 18.38 (1.62) 4.05 (0.35) – 24.60 (8.21) 5.85 (1.41) – 81.33 (28.39) 8.90 (1.36) –

GBM∗∗

# est.: 100 87.11 (26.24) 7.28 (0.77) 2 (ρ̄ = 0.006) 164.32 (42.12) 11.63 (2.00) 1 (ρ̄ = 0.004) 137.98 (22.74) 10.33 (0.97) 2 (ρ̄ = 0.007)
(10,) 1.63 (0.04) 1.00 (0.00) – 1.55 (0.06) 1.00 (0.00) – 2.22 (0.19) 1.80 (0.21) –
(10, 10, 10) 2.98 (0.15) 1.15 (0.08) – 2.40 (0.12) 1.15 (0.08) – 13.01 (3.57) 2.30 (0.40) –
(50,) 2.60 (0.14) 1.00 (0.00) – 2.09 (0.12) 1.05 (0.05) – 5.75 (0.75) 1.20 (0.12) –

NN

(100,) 3.53 (0.15) 1.00 (0.00) – 4.36 (0.62) 1.10 (0.07) – 61.31 (33.11) 1.50 (0.22) 10 (ρ̄ = 0.000)

ρ= 0.05

Linear ElasticNet 0.13 (0.00) – – 0.15 (0.01) – – 0.14 (0.00) – –
max depth: 3 1.00 (0.06) 1.70 (0.15) – 1.09 (0.07) 1.60 (0.15) – 1.02 (0.07) 1.30 (0.15) –
max depth: 5 1.18 (0.11) 1.80 (0.22) – 1.63 (0.13) 2.05 (0.22) – 1.33 (0.10) 1.60 (0.18) –DT
max depth: 10 2.22 (0.41) 2.95 (0.61) – 8.84 (1.49) 4.45 (0.59) – 3.68 (2.14) 2.95 (1.49) –
# est.: 5 2.85 (0.47) 3.25 (0.54) – 4.29 (0.73) 5.25 (0.86) – 2.27 (0.19) 2.35 (0.23) –
# est.: 10 13.51 (3.03) 8.95 (1.60) – 14.71 (3.53) 8.35 (1.24) – 7.41 (1.22) 5.15 (0.67) –
# est.: 20 13.86 (3.58) 5.53 (0.92) 1 (ρ̄ = 0.041) 89.00 (28.17) 14.00 (2.28) 2 (ρ̄ = 0.045) 47.44 (26.35) 9.50 (2.52) –
# est.: 50 101.21 (24.90) 11.37 (1.53) 1 (ρ̄ = 0.048) 303.27 (93.95) 16.73 (2.55) 9 (ρ̄ = 0.034) 307.72 (72.52) 19.31 (3.15) 7 (ρ̄ = 0.044)

RF∗

# est.: 100 156.28 (33.21) 8.70 (1.02) – 453.67 (111.27) 15.43 (2.19) 13 (ρ̄ = 0.032) 156.45 (116.11) 5.75 (2.29) 16 (ρ̄ = 0.029)
# est.: 5 1.57 (0.15) 1.75 (0.24) – 1.50 (0.10) 2.05 (0.20) – 1.97 (0.32) 2.65 (0.50) –
# est.: 10 4.84 (0.58) 3.55 (0.46) – 8.87 (4.44) 8.55 (3.21) – 11.76 (6.51) 8.85 (3.27) –
# est.: 20 12.72 (2.22) 8.28 (0.85) 2 (ρ̄ = 0.038) 41.81 (17.86) 17.05 (4.37) 1 (ρ̄ = 0.025) 19.20 (6.32) 9.45 (1.80) –
# est.: 50 73.23 (27.00) 13.76 (1.82) 3 (ρ̄ = 0.039) 223.87 (125.98) 19.86 (4.23) 13 (ρ̄ = 0.027) 139.18 (56.80) 16.31 (3.03) 7 (ρ̄ = 0.023)

GBM∗∗

# est.: 100 274.22 (51.40) 17.25 (1.57) 4 (ρ̄ = 0.040) – – 20 (ρ̄ = 0.022) 537.13 (295.04) 15.00 (2.08) 17 (ρ̄ = 0.022)
(10,) 0.90 (0.01) 1.00 (0.00) – 1.00 (0.04) 1.15 (0.08) – 2.96 (0.23) 3.00 (0.25) –
(10, 10, 10) 1.48 (0.03) 1.00 (0.00) – 2.02 (0.26) 1.65 (0.21) – 229.69 (104.80) 4.90 (0.67) 10 (ρ̄ = 0.039)
(50,) 1.39 (0.06) 1.00 (0.00) – 1.75 (0.13) 1.35 (0.11) – 19.06 (6.63) 2.37 (0.24) 1 (ρ̄ = 0.049)

NN

(100,) 1.83 (0.05) 1.00 (0.00) – 5.88 (1.19) 1.80 (0.16) – 289.62 (125.61) 2.70 (0.30) 10 (ρ̄ = 0.000)

* max depth of each decision tree equal to 3.; ** max depth of each decision tree equal to 2.

Table 1 Generation of robust CEs for 20 factual instances, using ℓ∞-norm as uncertainty set.

In the first part of the experiments, we analyze our method using three well-known

datasets: Banknote Authentication, Diabetes, and Ionosphere (Dua and Graff

3https://github.com/donato-maragno/robust-CE

https://github.com/donato-maragno/robust-CE
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BANKNOTE AUTHENTICATION DIABETES IONOSPHERE
4 features 8 features 34 features

Model Specs Comp. time (s) # iterations # early stops Comp. time (s) # iterations # early stops Comp. time (s) # iterations # early stops

ρ= 0.01

Linear ElasticNet 0.24 (0.01) – – 0.24 (0.01) – – 0.26 (0.01) – –
max depth: 3 2.09 (0.11) 1.45 (0.11) – 2.18 (0.13) 1.70 (0.15) – 5.54 (0.38) 1.20 (0.09) –
max depth: 5 2.64 (0.14) 1.53 (0.12) 1 (ρ̄ = 0.000) 4.21 (0.39) 2.00 (0.23) – 10.17 (0.78) 1.56 (0.16) 4 (ρ̄ = 0.000)DT
max depth: 10 4.61 (0.88) 2.70 (0.58) – 14.17 (2.64) 2.63 (0.50) 1 (ρ̄ = 0.000) 21.75 (2.58) 2.06 (0.26) 2 (ρ̄ = 0.000)
# est.: 5 5.20 (0.62) 2.35 (0.34) – 7.96 (1.65) 3.17 (0.55) 2 (ρ̄ = 0.004) 69.94 (10.77) 4.41 (0.54) 3 (ρ̄ = 0.006)
# est.: 10 10.83 (2.68) 3.41 (0.78) 3 (ρ̄ = 0.006) 15.20 (3.17) 4.20 (0.68) – 237.03 (41.12) 5.50 (0.70) 4 (ρ̄ = 0.003)
# est.: 20 22.59 (7.10) 4.15 (1.22) 7 (ρ̄ = 0.004) 104.42 (27.35) 9.81 (1.78) 4 (ρ̄ = 0.007) 370.21 (41.84) 7.33 (0.73) 5 (ρ̄ = 0.004)
# est.: 50 61.93 (14.29) 3.89 (1.22) 11 (ρ̄ = 0.004) 137.37 (39.96) 6.50 (1.51) 10 (ρ̄ = 0.004) 570.88 (111.94) 9.70 (1.61) 10 (ρ̄ = 0.001)

RF∗

# est.: 100 103.33 (31.75) 3.20 (0.89) 10 (ρ̄ = 0.004) 177.47 (41.01) 3.80 (0.86) 15 (ρ̄ = 0.002) 531.13 (121.00) 6.17 (0.98) 14 (ρ̄ = 0.001)
# est.: 5 4.50 (0.50) 2.50 (0.34) – 4.67 (0.47) 2.45 (0.26) – 11.47 (1.48) 4.42 (0.66) 8 (ρ̄ = 0.002)
# est.: 10 6.87 (0.88) 3.15 (0.42) – 6.11 (1.04) 2.70 (0.48) – 42.68 (6.67) 6.88 (0.86) 3 (ρ̄ = 0.001)
# est.: 20 14.02 (1.09) 4.40 (0.34) – 10.97 (1.45) 3.65 (0.49) – 58.16 (7.01) 9.62 (1.00) 4 (ρ̄ = 0.004)
# est.: 50 34.03 (3.15) 5.21 (0.44) 1 (ρ̄ = 0.010) 76.04 (33.09) 9.35 (2.21) – 192.70 (42.52) 14.77 (2.47) 7 (ρ̄ = 0.006)

GBM∗∗

# est.: 100 133.53 (24.40) 8.50 (0.98) 6 (ρ̄ = 0.007) 201.13 (77.68) 12.08 (2.92) 8 (ρ̄ = 0.005) 415.96 (80.09) 17.29 (3.36) 13 (ρ̄ = 0.003)
(10,) 1.64 (0.09) 1.00 (0.00) – 1.73 (0.05) 1.00 (0.00) – 4.73 (0.57) 1.27 (0.19) 9 (ρ̄ = 0.004)
(10, 10, 10) 2.54 (0.15) 1.00 (0.00) – 2.04 (0.10) 1.00 (0.00) 6 (ρ̄ = 0.000) 282.24 (193.65) 1.50 (0.50) 18 (ρ̄ = 0.003)
(50,) 2.42 (0.14) 1.00 (0.00) – 2.00 (0.08) 1.00 (0.00) 1 (ρ̄ = 0.000) 48.13 (12.76) 2.40 (0.51) 15 (ρ̄ = 0.008)

NN

(100,) 3.57 (0.14) 1.00 (0.00) – 5.28 (0.83) 1.15 (0.11) – 352.64 (153.96) 1.09 (0.09) 9 (ρ̄ = 0.000)

ρ= 0.05

Linear ElasticNet 0.15 (0.00) – – 0.34 (0.02) – – 0.26 (0.01) – –
max depth: 3 1.72 (0.17) 2.25 (0.19) – 6.71 (0.65) 2.40 (0.24) – 4.40 (1.35) 2.60 (0.90) –
max depth: 5 2.69 (0.52) 3.95 (0.74) 1 (ρ̄ = 0.026) 20.28 (2.88) 5.00 (0.68) 1 (ρ̄ = 0.000) 5.91 (1.09) 2.26 (0.40) 1 (ρ̄ = 0.000)DT
max depth: 10 4.44 (0.80) 4.95 (0.93) – 178.35 (34.48) 9.11 (1.30) 1 (ρ̄ = 0.045) 20.91 (10.20) 5.05 (1.51) –
# est.: 5 4.49 (0.64) 4.40 (0.64) – 117.95 (28.96) 9.63 (1.82) 1 (ρ̄ = 0.049) 28.79 (2.76) 6.35 (0.51) –
# est.: 10 12.39 (2.57) 6.82 (1.14) 3 (ρ̄ = 0.048) 200.39 (69.46) 12.92 (2.93) 7 (ρ̄ = 0.043) 232.63 (36.46) 10.79 (1.36) 1 (ρ̄ = 0.042)
# est.: 20 51.29 (18.03) 10.17 (2.32) 8 (ρ̄ = 0.049) 149.39 (46.57) 12.75 (2.78) 12 (ρ̄ = 0.042) 450.46 (68.06) 8.50 (1.06) 10 (ρ̄ = 0.027)
# est.: 50 93.18 (51.21) 7.78 (2.17) 11 (ρ̄ = 0.048) 560.78 (–) 6.00 (–) 19 (ρ̄ = 0.031) 510.69 (341.34) 7.50 (3.50) 18 (ρ̄ = 0.021)

RF∗

# est.: 100 108.47 (29.76) 5.25 (0.80) 8 (ρ̄ = 0.047) 868.10 (–) 4.00 (–) 19 (ρ̄ = 0.024) 495.03 (268.88) 9.00 (2.08) 17 (ρ̄ = 0.014)
# est.: 5 2.67 (0.33) 3.55 (0.47) – 8.89 (1.29) 3.68 (0.53) 1 (ρ̄ = 0.000) 11.38 (1.83) 5.74 (0.68) 1 (ρ̄ = 0.029)
# est.: 10 5.77 (0.45) 5.55 (0.44)) – 46.46 (14.33) 12.00 (3.12) – 72.15 (15.31) 15.19 (2.62) 4 (ρ̄ = 0.005)
# est.: 20 23.89 (3.55) 10.41 (1.00) 3 (ρ̄ = 0.046) 153.43 (43.11) 18.76 (3.73) 3 (ρ̄ = 0.036) 156.17 (19.16) 16.42 (1.71) 8 (ρ̄ = 0.005)
# est.: 50 123.75 (51.10) 18.14 (4.47) 6 (ρ̄ = 0.044) 243.24 (80.72) 24.50 (6.31) 14 (ρ̄ = 0.029) 894.23 (100.35) 32.50 (6.50) 18 (ρ̄ = 0.013)

GBM∗∗

# est.: 100 389.06 (124.83) 20.25 (3.32) 12 (ρ̄ = 0.044) – (–) – (–) 20 (ρ̄ = 0.020) – (–) – (–) 20 (ρ̄ = 0.010)
(10,) 0.91 (0.00) 1.00 (0.00) – 4.13 (0.13) 1.00 (0.00) – 36.34 (5.22) 1.68 (0.19) 1 (ρ̄ = 0.000)
(10, 10, 10) 1.45 (0.03) 1.00 (0.00) – 8.02 (0.86) 1.31 (0.18) 4 (ρ̄ = 0.024) 328.70 (72.59) 2.38 (0.35) 4 (ρ̄ = 0.012)
(50,) 1.36 (0.03) 1.00 (0.00) – 11.27 (1.10) 1.50 (0.15) – 57.07 (7.28) 1.22 (0.10) 2 (ρ̄ = 0.000)

NN

(100,) 2.26 (0.04) 1.00 (0.00) – 26.82 (3.39) 1.30 (0.13) – 111.85 (26.18) 1.44 (0.24) 11 (ρ̄ = 0.001)

* max depth of each decision tree equal to 3.; ** max depth of each decision tree equal to 2.

Table 2 Generation of robust CEs for 20 factual instances, using ℓ2-norm as uncertainty set.

2017). Before training the ML models, we scaled each feature to be between zero and

one. None of the datasets contain categorical features, which otherwise would have been

considered immutable or fixed according to the user’s preference. We apply our algorithm

to generate robust CEs for 20 factual instances randomly selected from the dataset. We

use ℓ∞-norm as uncertainty set with a radius (ρ) of 0.01 and 0.05. For each instance, we

use a time limit of 1000 seconds. Although less practical from a user’s perspective, we also

report the results using ℓ2-norm as uncertainty set in Table 2. The datasets used in our

analysis do not require any additional constraints, such as actionability, sparsity, or data

manifold closeness. However, it is important to note that these types of constraints can

be added to our formulations when needed by using constraints like the ones proposed in

(Maragno et al. 2022). The accuracy of each trained ML model is provided in Appendix

C.

In Table 1, we show (from left to right) the type of ML model, model-specific hyperpa-

rameters, and for each dataset, the average computation time (in seconds), the number of

iterations performed by the algorithm, and the number of instances where the algorithm
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hits the time limit without providing an optimal solution. For the computation time and

the number of iterations, we show the standard error values in parentheses. For the early

stops, we show the (average) maximum radius of the uncertainty set, which is feasible for

the generated counterfactual solutions in each iteration of the algorithm. The latter value

gives a measure for the robustness of the returned solution. As for hyperparameters, we

report the maximum tree depth for DT, the number of generated trees for RF and GBM,

and the depth of each layer in the NN. The results indicate that the computation time and

the number of iterations increase primarily due to the complexity of the ML models rather

than the number of features in the datasets. This complexity can also be a consequence

of model overfitting. In Figure 6, we illustrate this by visualizing the iterations for a DT

with a maximum depth of (a) 10 and (b) 3. As can be observed, the more complex model

substantially increases the number of iterations, and hence the computation time.

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6
factual instance
RCE

(a) Overfitting

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6
factual instance
RCE

(b) No overfitting

Figure 6 Comparison of decision trees with different maximum depths. The decision tree on the right has a

maximum depth of 3, while the one on the right has a maximum depth of 10 and is overfitted. The

overfitted decision tree leads to a higher number of iterations needed to find a robust solution, as

shown by the larger number of boxes/solutions generated before converging.

When the time limit is reached, we can still provide a list of solutions generated by

solving the (MP) at each iteration. Each one of these solutions comes with information

on the distance to the actual instance and the radius of the uncertainty set for which

the model predictions still belong to the desired class for all perturbations. Therefore, the
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decision-makers still have the chance to select CEs from a region, albeit slightly smaller

than intended. Overall the algorithm converges relatively quickly, however, our experi-

ments show that it converges slower when using ℓ2-norm as uncertainty set; see Table 2.

Furthermore, as expected, for a smaller radius of ρ = 0.01 we reach the global optimum

faster. Figure 7 shows the convergence behavior of various predictive models trained on

the Diabetes dataset and evaluated on a specific instance. Although the distance to the

factual instance (solid line) follows a monotonic increasing trend, the robustness (dashed

line) exhibits both peaks and troughs. This behavior can be attributed to the objective

function of (MP), which seeks to minimize the distance between the CE and the factual

instance. With each iteration of our algorithm, a new scenario/constraint is introduced to

(MP), resulting in a worse objective value (higher), but not necessarily an improvement in

robustness.

In the latter part of the experiment, we train a neural network with one hidden layer

containing 50 nodes using the same three datasets. For the Ionosphere dataset, we also

trained another neural network with one hidden layer containing 10 nodes. To generate

robust counterfactuals, we used the ℓ2-norm uncertainty set and tested our algorithm

against the one proposed by Dominguez-Olmedo et al. (2021) on 10 instances. In Table 3,

we report the percentage of times each algorithm was able to find a counterfactual that

was at least ρ distant from the decision boundary (robustness) and the percentage of times

the counterfactual was valid (validity). We test ρ values of 0.1 and 0.2 for each dataset.

Our approach consistently generated counterfactual explanations that were optimal in

terms of distance to the factual instance and valid. However, in the Diabetes dataset,

our algorithm failed to find a robust counterfactual in 20% of the cases. In contrast, the

algorithm proposed by Dominguez-Olmedo et al. (2021) often returned solutions that were

not entirely robust with respect to ρ, particularly with the increase in ρ and the complexity

of the predictive model. Even more concerning, their algorithm generated invalid solutions

in 10% of the cases for the Ionosphere dataset. Note that our experiments only cover

neural network models since the method in (Dominguez-Olmedo et al. 2021) cannot be

used for non-differentiable predictive models.

5. Discussion and Future Work

In this paper, we propose a robust optimization approach for generating regions of CEs

for tree-based models and neural networks. We have also shown theoretically that our
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(b) Random Forest
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(c) Gradient Boosting Machines

0 1 2
iterations

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

di
st

an
ce

 to
 fa

ct
ua

l i
ns

ta
nc

e

0.00

0.01

0.02

0.03

0.04

0.05

ro
bu

st
ne

ss

(d) Neural Network

Figure 7 Convergence plots for DT with max depth 10 (a), RF with 50 trees (b), GBM with 50 trees (c), and

NN with one hidden layer containing 100 nodes (d). The models are trained on the Diabetes dataset

and the uncertainty set is the ℓ∞-norm.

approach converges. This result has also been supported by empirical studies on different

datasets. Our experiments demonstrate that our approach is able to generate explanations

efficiently on a variety of datasets and ML models. Our results indicate that the proposed

method scales well with the number of features and that the main computational challenge

lies in solving the master problem as it becomes larger with every iteration. Overall, our

results suggest that our proposed approach is a promising method for generating robust

CEs for a variety of machine learning models.

As future work, we plan to investigate methods for speeding up the calculations of the

master problem by using more efficient formulations of the predictive models. Additionally,

we aim to evaluate the user perception of the robust CEs generated by our approach

and investigate how the choice of the uncertainty set affects the quality of the solution.

Another research direction is the implementation of categorical and immutable features



Maragno et al.: Finding Regions of Counterfactual Explanations via Robust Optimization
23

Dominguez-Olmedo et al. (2021) Our algorithm

ρ robustness validity robustness validity

Banknote NN(50)

0.1 80% 100% 100% 100%

0.2 0% 100% 100% 100%

Diabetes NN(50)

0.1 60% 100% 100% 100%

0.2 0% 100% 80% 100%

Ionosphere NN(10)

0.1 70% 90% 100% 100%

0.2 40% 90% 100% 100%

Ionosphere NN(50)

0.1 50% 100% 100% 100%

0.2 30% 100% 100% 100%

Table 3 Comparison between (Dominguez-Olmedo et al. 2021) and our algorithm regarding the percentage of

times each algorithm was able to find a counterfactual at least ρ distant from the decision boundary, and the

percentage of times the counterfactual explanations were valid and therefore resulting in a flip in the prediction.

into the model, which would require a reformulation of the uncertainty set to account for

the different feature types. This would lead to non-convex, discrete, and lower-dimensional

uncertainty sets.
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Appendix A: Linear Models

Although Algorithm 1 could still be used for the linear models, there is a well-known easier, and more

efficient dual approach to solve model (3)-(4). We review this approach briefly here for the completeness of

our discussion.

In the case of linear models, such as logistic regression (LR) or linear support vector machines (SVM), the

validity constraint (4) can be formulated as

β⊤(x+ s)+β0 ≥ τ, ∀s∈ S, (68)

where β ∈Rn is the coefficient vector and β0 ∈R is the intercept. Then, these constraints can be equivalently

reformulated as

β⊤x+β0 +min
s∈S

β⊤s≥ τ.

Since S is given in the form (5), the latter is equivalent to

β⊤x− ρ||β||∗ +β0 ≥ τ, (69)

where ∥ · ∥∗ is the dual norm of the norm used in the definition of S. The constant term ρ||β||∗ ensures that

the constraint (68) holds for all s∈ S. Note that constraint (69) remains linear in x independently of S. For
more details see, e.g., Dominguez-Olmedo et al. (2021), Bertsimas et al. (2019), Xu et al. (2008).

Appendix B: Proof of Lipschitz Continuity of Neural Networks

Suppose that we have a trained ℓ-layer neural network constructed with ReLU activation functions. If we

denote the resulting functional by f :Rn0 7→Rnℓ , then we can write

f(x) = σℓ(Wℓσℓ−1(Wℓ−1σℓ−2 . . .W2σ1(W1x) . . . )), (70)

where σm :Rnm 7→Rnm , m= 1, . . . , ℓ stands for the vectorized ReLU functions, and Wm ∈Rnm ×Rnm−1 , for

m= 1, . . . , ℓ, are the weight matrices. This shows that f is simply the composition of linear and component-

as well as piece-wise linear functions.

Given any two Lipschitz continuous functions g : Rp 7→ Rq and h : Rq 7→ Rs with respective Lipschitz

constants Lg and Lh, the composition h ◦ g :Rp 7→Rp is Lipschitz continuous with Lipschitz constant LhLg.

This simply follows from observing for a pair of vectors y,z ∈Rp that

∥h ◦ g(y)−h ◦ g(z)∥ ≤Lh∥g(y)− g(z)∥ ≤LhLg∥y− z∥. (71)

Next, for any u,v ∈Rnm , we have

∥Wmu−Wmv∥ ≤ ∥Wm∥s∥u−v∥. (72)

where ∥ · ∥s is the spectral norm. As the Lipschitz constant for any vectorized ReLU function is one, we

obtain the desired result by

∥f(x̄)− f(x̃)∥ ≤
ℓ∏

m=1

∥Wm∥s∥x̄− x̃∥ (73)

for any pair x̄, x̃∈Rn0 . □
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Appendix C: Performances of Predictive Models

CART RF GBM NN
LR

3 5 10 5 10 20 50 100 5 10 20 50 100 (10) (10, 10, 10) (50) (100)

Banknote

Train 0.97 0.94 0.98 1.00 0.96 0.97 0.96 0.97 0.97 0.99 0.99 1.00 1.00 1.00 0.98 0.99 1.00 1.00

Test 0.96 0.89 1.00 1.00 0.96 0.93 0.93 0.96 0.93 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Diabetes

Train 0.77 0.77 0.84 0.97 0.77 0.77 0.79 0.80 0.80 0.80 0.83 0.87 0.93 0.99 0.78 0.79 0.80 0.82

Test 0.72 0.77 0.72 0.69 0.72 0.69 0.69 0.67 0.71 0.59 0.67 0.69 0.59 0.62 0.69 0.64 0.73 0.77

Ionosphere

Train 0.88 0.93 0.97 1.00 0.93 0.95 0.94 0.96 0.96 0.99 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.99

Test 0.83 0.88 0.83 0.83 0.88 0.92 0.92 0.92 0.92 0.88 0.88 0.92 0.92 0.92 0.89 0.92 0.88 0.88

Table 4 Train and test accuracy scores of the predictive models used for the experiments.

Table 4 displays the accuracy score of each predictive model employed in the experiments, with their per-

formance being reported for both the training and testing sets.
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