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1. Introduction

This paper is a continuation of our sustained interest in identifying classes of

linear and quadratic programs and linear complementarity problems (LPs,

QPs, and LCPs, respectively) for which the number of pivots in simplex-

type methods can be upper-bounded by certain quantities derived from the

problem input vectors and matrices. In favorable cases, such upper bounds

would be strongly polynomially bounded in the number of variables and con-

straints of the problems, hence rendering their strongly polynomial solvabil-

ity. Thus, this interest is different from the worst-case exponential behavior

or from the probabilistic average-case analysis of this kind of methods for

these problems, or from the polynomial analysis of the ellipsoid method or

interior-point approaches where the worst-case complexity is bounded by

the input size of the problem data. In what follows, we summarize some old
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and new results in the literature which provide the motivation for the kind

of results we aim to obtain.

Pre-2000: Since the seminal paper [30], there has been an extensive lit-

erature on the study of Leontief systems and associated linear programs

(LPs):

minimize
x∈Rn

c⊤x

subject to Ax = b and x ≥ 0,
(1)

where c ∈ Rn and b ∈ Rm are given vectors and the matrix A ∈ Rm×n

satisfies the following conditions: (a) each column of A has at most one

positive entry, (b) b ∈ Rm
++, and (c) a feasible solution of (1) exists. A matrix

A satisfying condition (a) is called pre-Leontief ; we call A pre-Leontief-plus

if each column of A has exactly one positive entry. A significant amount

of this literature is motivated by network-type problems [22, 14, 21] and

their solution by Dantzig’s simplex method. In particular, the reference [21]

shows that when A is a Leontief flow matrix, i.e., its entries are all integral

and the positive entries are all equal to one, then the LP (1) can be solved

in O(n2U log(npU)) pivots by the simplex method using Dantzig’s rule for

choosing the entering variable, where p is the largest entry of A in absolute

value, and U is a valid upper bound on any extreme-point solution. An

interesting observation remarked in the paragraph before Theorem 3 in [21]

is that this complexity for (1) can be obtained by considering the special

case where A is a Leontief flow matrix and the vector b is the vector of ones.

Post-2000: With no mention of the references [22, 14, 21], Ye [31] showed

that when the LP (1) is derived from a Markov decision problem with a

fixed discount rate, then the number of simplex pivots with the least reduced

cost rule to select the entering nonbasic variable is a low-order polynomial

in (m,n). Extending this special result to a general LP, the paper [16]

shows that for the general LP (1) the number of distinct basic solutions

generated by the simplex method with the same least reduced cost rule is

O
(
n
⌈
m
γ

δ
log

(
m
γ

δ

)⌉)
, where γ and δ are the maximum and minimum,

respectively, of the positive components of all the basic feasible solutions. A

companion reference [15] performs a similar analysis for the simplex method

for LPs with upper bounds. In a subsequent work [18], the authors show

that the constant γ can be computed by solving a linear program while the

computation of δ is NP-hard in general.

Strong polynomiality: The authors of the above references recognized

that their results can be used to infer the strong polynomiality of the simplex

method if polynomiality of the key constants in the respective bounds can be



ON THE NUMBER OF PIVOTS OF SIMPLEX METHODS FOR LP AND CQP 3

established. In general, however, a nondegeneracy assumption is needed to

ensure that the number of different basic solutions generated by the method

equals the number of pivots.

The role of the Z-property: A square matrix with nonpositive off-

diagonal entries is called a Z-matrix. If a Z-matrix further has a nonnegative

inverse, it is called a Minkowski matrix. It is known that a Z-matrix M is

Minkowski if and only if there exists a positive vector d such that Mx = d

has a nonnegative solution (Theorem 3.11.10 [6]). Thus if the system (1) is

feasible and A is a pre-Leontief-plus matrix, then subject to a proper permu-

tation of the columns, any feasible basis B of such a system with a positive

right-hand side must be a Minkowski matrix. Therefore, the nondegeneracy

assumption is satisfied by any feasible Leontief system because with b being

positive, it follows that B−1b > 0 is nondegenerate.

The matrix-theoretic Z-property has been responsible for the strongly poly-

nomial complexity of pivoting-type methods for solving various classes of

linear complementarity problems and bound-variable convex quadratic pro-

grams. The first result in this area is due to Chandrasekaran [4] for LCPs

with a Z-matrix. The most recent addition to this literature is the article

[25] that establishes the strongly polynomial solvability by parametric prin-

cipal pivoting for a certain class of convex quadratic programs with bounded

variables where some such bounds may be infinite. A brief summary of the

preceding results for LCPs with “H-matrices” with positive diagonals and

extensions can be found in the last reference.

Goals of this short note: Inspired by the analysis in [16] for linear pro-

grams, our work makes several important contributions that add to our

understanding of the performance of pivoting methods, and importantly,

the bottlenecks that may cause a large number of pivots in such methods.

• We give practical bounds on the two key constants γ and δ in the cited

reference for the case where A is a pre-Leontief-plus matrix; these bounds

are in terms of some constants derived from the Leontief properties of A and

the right-hand side vector b; see part B(ii) in Proposition 1.

• We apply the above results to a class of matrices for which the associ-

ated LCPs are solvable by the Simplex Method, a subject first advanced by

Mangasarian’s pioneering idea of solving LCPs as LPs [20].

•We analyze the iteration count of a pivoting method for quadratic program-

ming due independently to Dantzig [8, 7] and to van de Panne-Whinston[28,

29]; this method is formally described as Algorithm 4.2.11 in [6, pages 248–

251] where a proof of the finite-step termination of the algorithm can be
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found. Subsequently, we will abbreviate this as the DvPW algorithm. More-

over, we provide two applications and show how to estimate the complexity-

related bounds in those contexts.

2. The Leontief LP

Let A ∈ Rm×n be pre-Leontief-plus. As such, we may assume with no

loss of generality that the matrix A is structured as follows: For each row

i = 1, · · · ,m, there is a group of columns Gi such that aij > 0 for all j ∈ Gi;

note that Gi ∩ Gi′ = ∅ because each column of A has exactly one positive

entry. Let kg be the number of elements in group Gg for g = 1, · · · ,m so

that

m∑
g=1

kg = n. We remark that if b > 0 and the problem (1) is feasible,

then Gg ̸= ∅ for all g. By permuting the columns of A if needed, we may

assume that the elements in these m groups of columns are consecutively

labelled in the same order as {1, · · · , n} so that with G1 = {1, · · · , k1}, we

have, inductively, Gg =


 g−1∑

j=1

kj

+ 1, · · · ,
g∑

j=1

kj

 , for g = 2, · · · ,m.

Below is an example of a 3× 11 matrix A with 3 groups each with 4, 3, and

4 columns respectively arranged with the column labels being the same as

the labels of the variables:

x1 x2 x3 x4 | x5 x6 x7 | x8 x9 x10 x11


+ + + + | ⊖ ⊖ ⊖ | ⊖ ⊖ ⊖ ⊖

⊖ ⊖ ⊖ ⊖ | + + + | ⊖ ⊖ ⊖ ⊖

⊖ ⊖ ⊖ ⊖ | ⊖ ⊖ ⊖ | + + + +

With A structured as displayed, and Gg ̸= ∅ for all g = 1, · · · ,m, we define

an m×m matrix A with entries

āig ≜


min
j∈Gg

aij if i = g

−max
j∈Gg

| aij | if i ̸= g.

The off-diagonal entries of A is clearly nonpositive; so A is a Z-matrix. In

what follows we assume that the matrix A is Minkowski.

Proposition 1. Let A ∈ Rm×n be pre-Leontief. The following two state-

ments (A) and (B) hold:

(A) If the system Ax = b, x ≥ 0 has a solution for some b ∈ Rm
++, then
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(i) every basic feasible solution is nondegenerate;

(ii) for every feasible basis B ∈ Rm×m, there exists a vector dB ∈ Rm
++ such

that BdB > 0;

(iii) the system Ax = b ′, x ≥ 0 has a solution for all b ′ ∈ Rm
+ .

(B) Conversely, if A is pre-Leontief-plus and the matrix A is Minkowski,

then

(i) the system Ax = b, x ≥ 0 has a solution for all vectors b ∈ Rn
+; moreover,

(ii) if x̄ is any basic feasible solution of the the system Ax = b, x ≥ 0, where

b ∈ Rm
++, then

δ ≜ min
1≤i≤m

 bi
max
j∈Gi

aij

 ≤ δx̄ ≤ γx̄ ≤ max
1≤i≤m

[
(A )−1b

]
i
≜ γ,

where δx̄ and γx̄ are the smallest positive element of x̄ and the largest element

of x̄, respectively.

(iii) Let C ≜
γ

δ
. Then for any vector c ∈ Rn for which the LP (1) with

b ∈ Rn
++ has an optimal solution, the simplex method with the least reduced

cost rule will solve the LP (1) in no more than O(n ⌈mC log (mC)⌉ ) pivots.

Proof. We prove only the bounds on x̄. Let B ∈ Rm×m be a feasible basis

corresponding to x̄; thusB x̄β = b, where x̄β consists of the basic components

of x̄ corresponding to the basis B. By the above arrangement of the columns

of A, each column of B has exactly one positive elements, which are the

diagonals of B; moreover, we have βi ∈ Gi for all i = 1, · · · ,m. On one

hand, for all i = 1, · · · ,m, we have bi = (B x̄β )i ≤ Bii x̄βi
= aiβi

x̄βi
. Thus

x̄βi
≥ bi

aiβi

≥ bi
max
j∈Gi

aij
. This establishes the lower bound for δx̄. On the

other hand, we have, bi = (B x̄β)i = aiβi
x̄βi

+

m∑
g ̸=i

aiβg x̄βg ≥
m∑
g=1

āig x̄βg for

all i = 1, · · · ,m. Thus b ≥ Ax̄β. The upper bound for γx̄ follows readily by

the nonnegativity of the inverse of A. The last statement of the proposition

is due to [16] and requires no proof. □

In the next section, we give a class of LPs for which the constant C can be

identified more explicitly in terms of the problem data.

2.1. Mangasarian’s class of LCPs. In [20], Mangasarian introduced a

class of matrices M ∈ Rn×n for which the LCP, which we denote by the

pair (q,M): 0 ≤ z ⊥ w = q + Mz ≥ 0, with q ∈ Rn, where ⊥ is the
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perpendicularity notation which in this context denotes the complementarity

relation between the two vectors z and w, can be solved by a single LP. Some

important properties of this class of matrices are obtained in [5]. Coined a

hidden Z-matrix in [23, 24], a matrix M belongs to this class if there exist

Z-matrices X and Y and positive vectors r̄ and s̄ such that (a) MX = Y and

(b) r̄⊤X+ s̄⊤Y > 0. We highlight two important properties of such a matrix

M : (i) X must be nonsingular; and (ii) the matrix A ≜
[
X⊤ Y ⊤ ]

∈
Rn×2n is pre-Leontief; see [5]. Most importantly, a solution of the LCP

(q,M), which must exist if the problem is feasible, can be obtained by

letting z̄ = Xv̄, where v̄ is the unique solution of the LP:

minimize
v

p⊤v

subject to q + Y v ≥ 0 and Xv ≥ 0,

for any vector p ∈ Rn such that p⊤X > 0; such a vector p must necessarily

be positive if X is Minkowski. The dual LP is

minimize
( r,s )≥ 0

q⊤s

subject to X⊤r + Y ⊤s = p.
(2)

We can apply Proposition 1 to the latter dual LP by assuming that the

matrix A with entries defined below is Minkowski:

āij =

{
min(Xii, Yii ) if i = j

−max ( |Xji |, |Yji | ) if i ̸= j

}
∀ i, j = 1, · · · , n. (3)

We recall that a real square matrix is a P-matrix if all its principal minors

are positive. It is a fundamental result in LCP theory that if M ∈ Rn×n is a

P-matrix, then the LCP (q,M) has a unique solution for all vectors q ∈ Rn.

Without assuming nondegeneracy, the following result gives an upper bound

on the number of pivots for the simplex method to compute such a solution

when M is additionally hidden Z.

Proposition 2. Let M be a hidden Z-matrix with the two defining Z-

matrices X and Y . Suppose that the matrix A with entries defined by (3)

is Minkowski. Then both M and X must be P-matrices and the following

two statements hold.

• For every vector q ∈ Rn, the LCP (q,M) has a unique solution; moreover,

such a solution can be obtained via LP duality by solving the dual LP (2)

for any vector p satisfying p⊤X > 0.

• For every vector q ∈ Rn and any vector p satisfying p⊤X > 0, an optimal

solution to the dual LP (2) can be obtained by the simplex method with the
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least reduced cost rule in no more than O(n ⌈nC log (nC)⌉ ) pivots, where

C ≜

[
max
1≤i≤n

[
(A )−1p

]
i

]
×

[
max
1≤i≤n

max(Xii, Yii )

pi

]
.

Proof. By [6, Theorem 3.11.19], being hidden Z, the matrix M is P if and

only if there exists a vector v > 0 such that for any index set α ⊆ [n] ≜

{1, · · · , n}, we have Wv > 0, where W ≜

[
Xαα Xαᾱ

Yᾱα Yᾱᾱ

]
, where ᾱ is

the complement of α, and each of the four blocks in W is a submatrix

of X and Y , respectively, whose rows and columns are indexed by the pair

(α, ᾱ), correspondingly. For any nonnegative vector a, it is easy to show that

Wa ≥ A
⊤
a, provided that X and Y have nonnegative diagonal elements.

Consequently, if A is Minkowski, then so is its transpose; hence a positive

vector v exists such that A
⊤
v > 0. This is enough to show that M is P. By

taking α = [n], it follows that W = X and thus Xv > 0, which implies X

is a Minkowski matrix and thus a P-matrix. Finally, the claim about the

number of pivots of the simplex method for solving the dual LP (2) follows

readily from part B(iii) in Proposition 1. □

3. Nonnegatively Constrained Convex Quadratic Programs

In this section, we derive an upper bound for the DvPW pivoting algorithm

for solving the convex quadratic program (QP):

minimize
z∈Rn

+

v(z) ≜ 1
2 z

⊤Mz + q⊤z, (4)

where the matrix M is symmetric positive semidefinite and q is arbitrary.

This QP is the dual of the strictly convex QP:{
minimize

x∈Rm

1

2
x⊤Qx+ p⊤x subject to Ax ≤ b

}
with a positive definite Q ∈ Rm×m via the identifications: M = AQ−1A⊤

and q = b + AQ−1p. Thus a solution of (4) will yield an optimal solution

of the latter QP. The Karush-Kuhn-Tucker (KKT) conditions for (4) are

given by the LCP (q,M). In terms of the vector w = q + Mz we have

v(z) = 1
2 [q

⊤z + w⊤z] for an arbitrary vector z. Note that if A has linearly

independent rows, then the matrix M is positive definite.

For any index subsets α and γ of [n] ≜ {1, · · · , n}, Mαγ is the submatrix

of M with rows indexed by α and columns indexed by γ; in particular,

Mαα is a principal submatrix of M ; qα is similarly defined. Associated with

an index set α with Mαα nonsingular is the basic solution (zα, 0), where

zα = −(Mαα)
−1qα. We call the index set α feasible if zα ≥ 0. The full

vector (zα, 0) is a solution of the LCP (q,M) if the vector of reduced costs
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wᾱ = qᾱ − Mᾱα(Mαα)
−1qα is nonnegative, where ᾱ is the complement of

α in [n]. We note that by the symmetry and positive semidefiniteness of

M , the nonsingularity of the principal submatrix Mαα is equivalent to its

positive definiteness; moreover, the Schur complement, denoted (M/Mα) ≜
Mᾱᾱ −Mᾱα(Mαα)

−1Mαᾱ, remains symmetric positive semidefinite.

Throughout we make a blanket assumption that the optimal value of the

QP (4) is finite. Two constants play an important role in the following

analysis: λmax(M), which is the largest eigenvalue of M , and ρmin(M) ≜
min

α:Mαα≻0
λmin(Mαα), where Mαα ≻ 0 means that Mαα is positive definite

and λmin(•) denotes the smallest eigenvalue of a positive definite matrix.

We make some comments on ρmin(M). If M itself is (symmetric) posi-

tive definite, then ρmin(M) = λmin(M). In general, it can be shown that

ρmin(M) ≤ λ+
min(M), where λ+

min(M) > 0 is the smallest positive eigenvalues

of M . Indeed, consider the eigen-decomposition M =
k∑

i=1

λiu
i(ui)⊤, where

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 are the positive eigenvalues of M and the family

{ui}ki=1 are the associated normalized eigenvectors (thus ∥ui∥ = 1). Take any

index set α such that |α| = k and {uiα}ki=1 are linearly independent, and let

M̂ ≜ Mαα =
k∑

i=1

λi û
i(û i)⊤ ≻ 0, where û i ≜ uiα. Take a vector v ∈ Rk such

that ∥v∥ = 1 and v is orthogonal to û i for all i = 1, . . . , k−1. It follows that

ρmin(M) ≤ ρmin(M̂) ≤ v⊤M̂ v = λk

(
v⊤û k

)2
≤ λk ∥v∥2 ∥uk∥2 ≤ λk =

λ+
min(M). The following upper bound on the norm of any basic feasible so-

lution of (4) can easily be obtained.

Lemma 1. For any basic feasible solution z of the LCP (q,M) with M

being symmetric positive semidefinite, one has ∥ z∥1 ≤
√
n ∥ q− ∥2
ρmin(M)

, where

q− ≜ max{0,−q}.

Proof. For any basic feasible solution z = (zα, 0), we have ρmin(M) ∥ z ∥22 ≤
z⊤Mz = −z⊤q ≤ z⊤q− because z is nonnegative. Hence ∥ z ∥1 ≤

√
n ∥ z ∥2 ≤√

n ∥ q− ∥2
ρmin(M)

, which is the desired bound. □

For a matrix F ∈ Rn×m, we denote its largest singular value by λmax(F ) =√
λmax(FF⊤) = λmax(F

⊤). For a subset α of [n] with cardinality |α|, we
denote by Fα• the rows of F indexed by α and the transpose of Fα• by

F⊤
α• ∈ Rm×|α|. Note that λmax(Fα•) = λmax(F

⊤
α•) ≤ λmax(F ). Similar

definitions apply to F•β for any subset β of [m].
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In contrast to many other pivoting-type algorithms for solving QPs, a sig-

nificant feature of the DvPw algorithm is that it can always terminate in

finite steps even when the problem (4) is degenerate. Referring to [6, Al-

gorithm 4.2.11] for details, we sketch the DvPW algorithm for solving the

LCP (q,M) as follows. It is convenient to use the tableau form to represent

w = q +Mz;

1 z

q⊤z 0 q⊤

w q M

(5)

After each principle pivot in which the basic variables zα and wβ (where β

is the complement of α), and the product q⊤z are expressed in terms of the

nonbasic variables wα and zβ, we obtain the following tableau:

1 wα zβ

q⊤z −q⊤α (Mαα)
−1qα q⊤α (Mαα)

−1 q⊤β − q⊤α (Mαα)
−1Mαβ

zα −(Mαα)
−1qα (Mαα)

−1 −(Mαα)
−1Mαβ

wβ qβ−Mβα(Mαα)
−1qα Mβα(Mαα)

−1 Mββ−Mβα(Mαα)
−1Mαβ

(6)

Consisting of major and minor cycles, the algorithm starts with an index set

α of the basic z-variables for which the following two conditions hold: (a)

Mαα is nonsingular (thus positive definite), and (b) zα = −(Mαα)
−1qα ≥ 0.

With wβ ≱ 0 where β is the complement of α, a most negative component

wr with r ∈ min
i∈β

wi is identified and the algorithm attempts to increase the

value of zr by pivoting while keeping the basic z-components nonnegative;

this is determined by a ratio test as in the standard simplex method in

linear programming. There are two types of pivots, depending on whether

(a) the increase of zr is blocked by a basic z-component becoming zero, or

(b) wr is the blocking variable, i.e., its value reaches zero. In the former

case, there is one less basic z-component after the pivot, and zr continues

its increase; this is termed a minor cycle. In the latter case, zr becomes

basic while its complement wr becomes nonbasic; this completes the current

major cycle. Notice there are at most n− 1 minor cycles within each major

cycle because there are at most n − 1 basic z-variables to be (potentially)

pivoted out during each major cycle. Thus, in order to analyze the total

number of pivots in the algorithm, it suffices to upper bound the number
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of major cycles. The derivation of such bounds is the principal task in the

following analysis. Note that at the beginning of each major cycle t, the pair

(zt, wt) is primal feasible and satisfies complementarity; i.e., 0 ≤ zt ⊥ wt;

for such a pair, we have vt = v(zt) = 1
2 q

⊤zt.

The derivation proceeds in several lemmas, the first of which gives an amount

of decrease of the objective value from the beginning of one major cycle to

the end of the same cycle.

Lemma 2 (Strict decrease for each major cycle). Let w̄r be the value of wr

at the beginning of t-th major cycle. Then vt − vt+1 ≥
w̄2
r

4λmax(M)
.

Proof. Assume that the t-th major cycle consists of K minor cycles and

we denote the increment of zr during each minor cycle as ∆k. Let w̄k
r be

the value of wr at the beginning of the k-th minor cycle so that w̄1
r =

w̄r ≤ · · · ≤ w̄K+1
r = 0. We have |w̄k

r | − |w̄k+1
r | = ∆k sk, where sk ≜

mrr −Mrαk
(Mαkαk

)−1Mαkr with αk being the corresponding α-index set in

k-th minor cycle within the major cycle t. Then we can see that 0 ≤ sk ≤
mrr ≤ λmax(M), which follows from the positive definiteness of Mαkαk

and

the Courant-Fischer Theorem. Hence ∆k ≥ |w̄k
r | − |w̄k+1

r |
λmax(M)

. Letting z̄t,k and

w̄t,k denote the values of the vectors z and w, respectively, at the beginning

of the k-th minor cycle within the t-th major cycle, we then have

v(z̄t,k)− v(z̄t,k+1) = 1
2 q

⊤( z̄t,k − z̄t,k+1 ) + 1
2

[
( z̄t,k)⊤w̄t,k − ( z̄t,k+1)⊤w̄t,k+1

]
= −∆k

2

[
qr − q⊤αk

(Mαkαk
)−1Mαk,r

]
+ 1

2

[
( z̄t,k)⊤w̄t,k − ( z̄t,k+1)⊤w̄t,k+1

]
=

∆k

2
| w̄k

r |+ 1
2

[
( z̄t,k)⊤w̄t,k − ( z̄t,k+1)⊤w̄t,k+1

]
,

where the last equality is due to z̄αk
= −(Mαkαk

)−1qαk
and w̄k

r = qr +

Mrαk
z̄αk

. Hence, with vt = v(z̄t,1) and vt+1 = v(z̄t,K+1) and since ( z̄t,1)⊤w̄t,1−
( z̄t,K+1)⊤w̄t,K+1 = 0, we deduce

2(vt − vt+1) =

K∑
k=1

|w̄k
r |∆k ≥

K∑
k=1

|w̄k
r |+ |w̄k+1

r |
2

∆k (since | w̄k
r | ≥ | w̄k+1

r |)

≥
K∑
k=1

(
|w̄k

r |+ |w̄k+1
r |

)
2

(
|w̄k

r | − |w̄k+1
r |

)
λmax(M)

=
1

2λmax(M)

K∑
k=1

(
w̄k
r

)2
−
(
w̄k+1
r

)2
=

w̄2
r

2λmax(M)
.

This completes the proof. □
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Remark 1. From the proof, we see that we can replace λmax(M) in the

denominator of the bound by max
i

Mii. We retain λmax(M) in the bound

as it will be combined with λmin(M) to obtain the condition number of M

in Theorem 2.

By the bound in Lemma 1, we obtain the next lemma that gives the deviation

from optimality of the iterates during the DvPW algorithm.

Lemma 3 (Distance to v∗). For each major cycle, vt−v∗ ≤
√
n ∥ q− ∥2
ρmin(M)

| w̄r |,

where v∗ is the optimal value of (4).

Proof. With (z̄t, w̄t) denoting the value of the pair (z, w) at the beginning

of the t-th major cycle, we have the following string of inequalities:

v∗ − vt ≥ ( w̄t )⊤( z̄∗ − z̄t ) (by the gradient inquality of the objective)

=( w̄t
β )

⊤z̄∗β (since z̄t ⊥ w̄t and w̄t
α = 0)

≥w̄r

n∑
i=1

z̄∗i = −|w̄r|∥z̄∗∥1, (by the definition of the negative w̄r = min
i∈β

wt
i)

from which the desired bound of vt − v∗ follows readily. □

We can now combine Lemmas 2 and 3 to yield an upper bound on the subop-

timality of any basic feasible solution obtained during the DvPW algorithm

for solving the QP (4).

Theorem 1. Let κ ≜
4λmax(M) ∥ q− ∥22

ρmin(M)2
. Then vt − v∗ ≤

κn

t− 1
.

Proof. Define a sequence of deviations: {et} with et ≜ vt − v∗. Then by

Lemmas 2 and Lemma 3, we have

et − et+1

e2t
=

vt − vt+1

(vt − v∗)2
≥ w̄2

r

4λmax(M)

ρmin(M)2

n ∥ q− ∥22 w̄2
r

=
1

κn
.

Since et ≥ et+1, which implies e2t ≥ et et+1, hence, it follows that
1

et+1
− 1

et
≥

1

κn
, which yields

1

et
≥ 1

e1
+

1

κn
(t−1) ≥ 1

κn
(t−1) from which the claimed

bound of et follows readily. □

While the DvPW algorithm is a finite algorithm on the pivots (see e.g. [6]),

this finite termination is not captured by Theorem 1. In order to complete

this finite-termination analysis, we need to introduce the two constants γ

and δ for the QP (4). In the following, we restrict our definition to a positive

definite matrix M . Specifically, let

δqp ≜ min
feasible α

min
i∈α

{
zαi | zαi ≜

[
−(Mαα)

−1qα
]
i
> 0

}
and γqp ≜ max

feasible α
max
i∈α

zαi .



12 SHAONING HAN, XINYAO ZHANG, AND JONG-SHI PANG

We first restate Lemma 3 in terms of γqp when M is positive definite.

Lemma 3 ′. If M ≻ 0, then for each major cycle, vt − v∗ ≤ nγqp | w̄r |.

Proof. This follows from vt − v∗ ≤ |w̄r| ∥ z∗ ∥1 proved in Lemma 3 and from

∥ z∗ ∥1 ≤ nγqp. □

We can now prove the following finite termination of the DvPW algorithm

when M is positive definite. A noteworthy point about this result is that the

condition number of the matrix M appears in the bound, This seems to be

the first time that the condition number of a matrix appears in bounding the

number of pivots in a simplex-type method for solving quadratic programs.

Theorem 2. If M ≻ 0, then for any vector q, the DvPW algorithm with

the least reduced cost rule computes the unique optimal solution of the QP

(4) in no more than 1 + 8

(
nγqp
δqp

)2

cond(M) iterations, where cond(M) ≜

λmax(M)

λmin(M)
is the condition number of M .

Proof. Similar to the proof of Theorem 1 and using Lemma 3 ′ instead, we

can derive

et − et+1

e2t
≥ w̄2

r

4λmax(M)

1

n2 w̄2
r γ

2
qp

=
1

4λmax(M)n2 γ2qp
,

which implies

vt − v∗ ≤
4λmax(M)n2 γ2qp

t− 1
. (7)

Define I1 ≜ supp(zt)\supp(z∗) and I2 ≜ supp(z∗)\supp(zt), where supp(•)
denotes the support of a vector, i.e., the index set of the nonzero components

of the vector. We claim that if vt is not optimal, then |I1 ∪ I2| is not empty,

i.e. |I1∪ I2| ≥ 1. Indeed if I1∪ I2 = ∅, then supp(zt) = supp(z∗); this would

then imply that zt = z∗ by the nonsingularity of the principal submatrix of

M induced by supp(z∗). We can now establish the desired upper bound on

the iteration count t by the following string of derivations:

vt − v∗ = (Mz∗ + q)⊤(zt − z∗) + 1
2(z

t − z∗)⊤M(zt − z∗) (Taylor expansion)

≥ 1
2(z

t − z∗)⊤M(zt − z∗) (by the optimality of z∗)

≥ λmin(M)

2
∥zt − z∗∥22 ≥

λmin(M)

2

∑
i∈I1

(zti)
2 +

∑
i∈I2

(z∗i )
2

 ≥ λmin(M)

2
δ2qp.

Combining the last inequality with (7), we have t ≤
8n2λmax(M)γ2qp
λmin(M)δ2qp

+1. □
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If M is a Stieltjes matrix (i.e., a symmetric Minkowski matrix), the DvPW

algorithm for solving (4) essentially reduces to Chandrasekaran’s algorithm

[4]. It is known that in this case, the algorithm can terminate in n steps.

In essence, the proof is based on the observation that for any index set α,

we must have (Mαα)
−1Mαβ ≤ 0; this then implies that a z-variable once

becomes basic can only increase in value, and in particular, will not become

nonbasic. Thus, every pivot is the exchange of the nonbasic zr-variable with

the basic wr-variable, and the method terminates in n steps. In the recent

paper [12], it is shown that similar results can be established for submodular

objectives, which include the Stieltjes quadratic function as a special case.

This indicates that the iteration count for solving (4) with a Stieltjes matrix

is drastically lower than the general case for an arbitrary positive definite

M . Whether the bound in Theorem 2 can be improved remains a subject

to be further studied.

4. Some Applications

In this section, we give two applications of the theoretical results developed

in Section 3. The first application pertains to Theorem 1 and is a variant

of network flow least squares problems. The second application provides

a class of matrices Q to illustrate the estimation of the two key constants

γqp and δqp in Theorem 2; specifically, we consider Q that is the sum of a

“simple” matrix and a low-rank matrix.

4.1. Least squares in network flow problems. Consider a directed

graph G = (V,E) without self-loops, where V = [n] is the set of vertices

and E ⊆ V × V is the set of arcs. We assume n ≥ 2 in this section. Let

A ∈ R|V | × R|E| denote the vertex-arc incidence matrix of G, i.e., for all

v ∈ V and e ∈ E, Ave = 1 if e = (v, u) for some u ∈ V , −1 if e = (u, v) for

some u ∈ V , and 0 otherwise. We aim to solve

minimize
x≥0

∥Ax− b∥22+c⊤x, (8)

where b ∈ Rn and c ∈ R|E|
+ . In this context, M = A⊤A is called the edge-

Laplacian matrix of G, in contrast to the standard Laplacian matrix defined

as L = AA⊤. Note that since 1⊤A = 0, one can see that λmin(L) = λn(L) =

0 and unless 1⊤b = 0, the equation system Ax = b has no solution. Thus,

the quadratic term in the problem (8) can be interpreted as follows: given a

node-vector b ∈ R|V | that is “unbalanced”, i.e., for which the network system

Ax = b, x ≥ 0 is not feasible (due perhaps to corrupted or historical data),

compute a “small” correction (measured in the Euclidean norm) δb of b so

that the corrected system Ax = b+ δb, x ≥ 0 is feasible. Moreover, the cost

of traversing arc e ∈ E is denoted by ce. If c = 0, the problem (8) can be
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efficiently solved by combinatorial algorithms; see [13]. Nevertheless, With

c ̸= 0, the complexity for solving (8) does not seem to have been studied

in the literature, especially when c is not in the range of A⊤. For any arc

subset α ⊆ E, the undirected counterpart of the subgraph induced by α is

represented as Gα. A symmetric matrix Q is reducible if it is block diagonal

and each block is a proper submatrix of Q. Matrix Q is called irreducible if

it is not reducible. Lemma 4 states some basic results from spectral graph

theory (see e.g., [2]), which are needed to estimate the iteration count of the

DvPW algorithm on (8).

Lemma 4. Given a submatrix Mαα of M with α ⊆ E, the following state-

ments hold true.

• Mαα is nonsingular if and only if Gα is a forest;

• Mαα is irreducible if and only if Gα is connected;

• If Mαα is irreducible and nonsingular, then det(Mαα) = |α|+ 1;

• λmax(Mαα) ≤ 2|α|, and if Mαα is nonsingular, then λmin(Mαα) ≥
2π

n2
.

Proof. Write Mαα = A⊤
•αA•α. Since A•α is the incidence matrix of the

subgraph induced by the arc set α, it suffices to prove the results for α = E.

For this reason, we drop the subscript α throughout the proof. The first

inequality in the last conclusion follows from λmax(M) = λmax(L) ≤ 2|α| by
Corollary 4.14 [2]. Since M is nonsingular if and only if A has full column

rank and the latter is further equivalent to G containing no (undirected)

circle, the first conclusion holds true. The second conclusion is trivial. Due

to the second conclusion, we can assume without loss of generality that G

is a tree in the rest of the proof. Because the eigenvalue spectrum of A⊤A

coincides with the one of AA⊤, det(M) =
n−1∏
i=1

λi(L) which is exactly n times

the number of spanning tree of G by the renowned Matrix-Tree Theorem;

see Theorem 4.11 [2] for details. Since G itself is a tree, this implies that

det(M) = n = |α|+ 1. It remains to prove the second inequality in the last

conclusion. We first observe that λmin(M) = λn−1(M) = λn−1(L), where

λn−1(L) is called the algebraic connectivity of G. Since G is connected,

according to Proposition 4.3 of [11], λn−1(L) ≥ 2(1 − cos(π/n)) ≥ 2π

n2
,

where the last inequality is due to 1 − cos(t) ≥ t2/π ∀t ∈ [0, π/2]. This

finishes the proof. □

Combining Lemma 4 and Theorem 1, one can immediately deduce Proposi-

tion 3.
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Proposition 3. When applying the DvPW algorithm to (8), one has vt −

v∗ ≤
4n6 ∥b∥22
π2(t− 1)

.

Proof. By Lemma 4, λmax(M) ≤ 2n and ρmin(M) ≥ 2π

n2
. Now we estimate

∥q−∥22 ≤
∥∥∥∥[A⊤b+ c

]
−

∥∥∥∥2
2

≤
∥∥∥∥[A⊤b

]
−

∥∥∥∥2
2

≤λmax(L) ∥b∥22 = λmax(M) ∥b∥22
≤ 2n ∥b∥22 ,

where the second inequality is due to c ≥ 0. To get a shaper complexity

result, we note from Remark 1 that one can use max
i∈E

Mii = max
i∈E

∥A•i∥22 ≤ 2

in place of λmax(M) in the definition of κ. The conclusion follows from

Theorem 1 by plugging the bound of ρmin(M) and ∥q−∥22 in the formula of

κ. □

Proposition 4. Assume b and c are integer data. Then the DvPW algo-

rithm with the least reduced cost rule computes the unique optimal solution

of the QP (8) in no more than n4 ∥b∥22 /2 iterations.

Proof. Since the matrix M = A⊤A may not be positive definite unless G is

a forest, Theorem 2 is not directly applicable. For this reason, we proceed

after Lemma 2 and use notations consistent with those in this lemma. Since

M−1
αα is nonsingular, by Lemma 4, there exists a partition α = ∪k

i=1αi such

that each Gαi is a connected component of Gα. Note that Gαi is a tree.

Since Mαα is block diagonal, by definition we have w̄r = qr −MrαM
−1
αα qα =

qr −
∑k

i=1 (A•r)
⊤A•αiM

−1
αiαi

qαi . Observe that r /∈ α, and (A•r)
⊤A•αi ̸=

0 if and only if the subgraph Gαi is incident with edge r in G. Hence

there are at most two indices in [k], say i1 and i2, such that (A•r)
⊤A•αi ̸=

0. Consequently, w̄r = qr − (A•r)
⊤A•αi1

q̃1 − (A•r)
⊤A•αi2

q̃2, where q̃j ≜
M−1

αij
αij

qαij
is an integral multiple of 1/ det(Mαij

αij
) by Cramer’s rule for

j = 1, 2. Moreover, by our assumption q = A⊤b+ c is integral. This implies

that |w̄r| =
W

det(Mαi1
αi1

) det(Mαi2
αi2

)
for some integer W > 0. Therefore,

one can deduce from Remark 1 that

vt − vt+1 ≥ w̄2
r

4max
i

Mii
≥ 1

4

(
max

i
Mii

)[
det(Mαi1

αi1
) det(Mαi2

αi2
)
]2

≥ 1

8 [(|αi1 |+ 1)(|αi2 |+ 1)]2
≥ 2

(|αi1 + 1|+ |αi2 + 1|)4
≥ 2

n4
,
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where the third inequality is due to Lemma 4 and the fact that max
i

Mii ≤ 2,

and the fourth inequality is due to the mean-value inequality a1a2 ≤ (a1 +

a2)
2/4. The desired conclusion now follows from the fact that the objective

of 8 is nonnegative and has a trivial upper bound ∥b∥22. □

Note that any basic solution has the form M−1
αα qα which is homogeneous

in q for fixed M . Hence, if b and c are generic rational numbers, one can

scale b and c to make them integral and get an equivalent problem for which

Proposition 4 is applicable. It is important to note the significant difference

between the two bounds in the above two propositions. There are two key

factors that contribute to this difference; one is the integrality assumption

of the vectors b and c Proposition 4, which enables us to derive a constant

amount of decrease in each iteration, whereas no such constant decrease

is possible in Proposition 3. Another key background result is Lemma 4

that enables the bound of det(Mαα). These two properties: the integrality

assumption and a bound of det(Mαα), persist in the next class of problems

for which the general results of the last section can be sharpened.

4.2. A special class: M = KΞ + FF⊤. In this subsection, we consider a

structured version of (4)

minimize
z≥0

z⊤
(
KΞ + FF⊤

)
z + q⊤z, (9)

where K > 0 is an integer, q ∈ Rn, Ξ is a positive definite matrix, and

F ∈ Rn×r is a low-rank matrix. We assume all data of (9) are rational

numbers. Moreover, by properly scaling, one can further assume that the

entries of Ξ, F and q are integers. We are interested in the case where the

determinant of all Ξαα, denoted by det(Ξαα), and the rank of F are small.

For instance, in factor models of portfolio risk analysis, Ξ = I captures the

idiosyncratic variance of the portfolio in question, and the rank r represents

the number of economic factors and is usually a small number [1, 3, 17].

The case where a certain index of the stock market serves as the solely

economic factor (r = 1) is studied in [26]. Based on Theorem 2, the next

proposition offers an estimate for the number of iterations incurred during

the implementation of the DvPW algorithm.

Proposition 5. Assume that K, Ξ, F and, q are integer data. Define

D ≜ max
α⊆[n]

det(Ξαα). The DvPW algorithm with the least reduced cost rule

computes the unique optimal solution of the QP (9) in no more than

1 +
8n2D2r+2

[
Kλmin(Ξ) + λmax(F )2

]2r [
Kλmax(Ξ) + λmax(F )2

]
∥q∥22

Kλmin(Ξ)2r+3

(10)
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iterations. In particular, with Ξ = I, the iteration bound reduces to 1 +

8n2
[
K + λmax(F )2

]2r+1 ∥q∥22
K

.

Proof. We first estimate δ. By the Morrison-Woodbury formula, M−1
αα =

1

K
Ξ−1
αα−

1

K
Ξ−1
ααFα•R

−1F⊤
α•Ξ

−1
αα, where R = KI+F⊤

α•Ξ
−1
ααFα• ∈ Rr×r. More-

over, one has Ξ−1
αα =

1

det(Ξαα)
Ξ̃, where Ξ̃ is a certain integer matrix. As

a result, M−1
αα =

1

K det(Ξαα)
Ξ̃− 1

K det(Ξαα)
Ξ̃Fα•(det(Ξαα)R)−1F⊤

α•Ξ̃. Ob-

serve that det(Ξαα)R is an integral matrix. Since q is an integer vector, one

can deduce from Cramer’s rule that any component of the solution z is a

nonnegative integral multiple of
1

K det(Ξαα) det(det(Ξαα)R)
. Thus,

1

δ
≤ K det(Ξαα) det(det(Ξαα)R)

≤ K det(Ξαα)
r+1λmax(R)r = K det(Ξαα)

r+1
[
K + λmax

(
F⊤
α•Ξ

−1
ααFα•

)]r
≤ K det(Ξαα)

r+1
[
K + λmax(F

⊤
α•Fα•)/λmin(Ξαα)

]r
≤ KDr+1

[
K + λmax(F )2/λmin(Ξ)

]r
.

Furthermore, we have λmax(M) = λmax(KΞ + FF⊤) ≤ Kλmax(Ξ) +

λmax(FF⊤) = Kλmax(Ξ) + λmax(F )2, λmin(M) ≥ Kλmin(Ξ), and γ ≤

max
α

∥∥M−1
αα qα

∥∥
2
≤

∥q∥2
Kλmin(Ξ)

. Plugging all these bounds in Theorem 2,

we can easily deduce the claimed bound (10). □

5. Conclusions

In this note, we have studied the iteration count of Dantzig’s Simplex Meth-

ods for solving linear and convex quadratic programs. The complexity

bounds rely on the condition number of the matrix in question or/and the

magnitude of the basic solutions. These results supplement those in the ex-

isting literature and are particularly useful when some key constants can be

estimated under certain circumstances. Whether the iteration bounds can

be improved is an open question to be investigated in the future.
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