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Abstract

Many machine learning applications and tasks rely on the stochastic gradient
descent (SGD) algorithm and its variants. Effective step length selection is crucial
for the success of these algorithms, which has motivated the development of
algorithms such as ADAM or AdaGrad. In this paper, we propose a novel algorithm
for adaptive step length selection in the classical SGD framework, which can be
readily adapted to other stochastic algorithms. Our proposed algorithm is inspired
by traditional nonlinear optimization techniques and is supported by analytical
findings. We show that under reasonable conditions, the algorithm produces step
lengths in line with well-established theoretical requirements, and generates iterates
that converge to a stationary neighborhood of a solution in expectation. We test
the proposed algorithm on logistic regressions and deep neural networks and
demonstrate that the algorithm can generate step lengths comparable to the best
step length obtained from manual tuning.

1 Introduction

Optimization problems that involve millions of unknown parameters and vast datasets are common
occurrences in machine learning. Addressing the computational demands of such problems necessi-
tates highly efficient implementations of stochastic gradient methods [4, 5]. In this context, the paper
proposes an algorithm that adaptively tunes the step length (or learning rate), striving to account
for the presence of nonlinearity in the true objective function and stochasticity in the function and
gradient approximations used in the iteration.

This algorithm is designed to minimize empirical risk,

F (w) =
1

n

n∑
i=1

f (w; ξi) :=
1

n

n∑
i=1

fi(w), (1)

where (ξi)
n
i=1 denote the training examples and f(·; ξ) : Rd → R is the composition of a prediction

function (parametrized by w ) and a loss function. {ξk} can be seen as representing a sequence of
jointly independent random variables. The training problem consists of finding an optimal choice of
the parameters w ∈ Rd with respect to F , i.e.,

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w) (2)
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For these type of problems, the current de facto optimization methods are the stochastic gradient
descent (SGD) method and its variants, such as Adam and AdaGrad. More concretely, a basic
mini-batch stochastic gradient algorithm at iteration k involves the update

wk+1 = wk − αk∇FSk
(3)

where we define
∇FSk

(wk) =
1

|Sk|
∑
i∈Sk

∇fi (wk) (4)

and the set Sk ⊂ {1, 2, . . .} indexes training data points. The sample Sk changes at every iteration
and in the basic mini-batch stochastic algorithm, its cardinality |Sk| remains the same. The step size
parameter of SGD algorithm is is often difficult to determine and a large number of approaches have
been proposed to address it, and none has been universally adopted.

The recent paper by Defazio et al. [10] proposes a steplength technique based on worst-case
complexity. It requires the estimation of the distance D from the initial point to the solution set as
well as the estimation of the Lipschitz constant G. In this paper, we take the view that the step length
parameter should depend on G but also on the variance in the stochastic gradient approximations (as
opposed to the distance to the solution).

Our Goals Whilst we do not purport that our algorithm is designed with the primary objective
of surpassing some of the existing state-of-the-art computational algorithms [16, 11, 1, 9] in terms
of efficiency or speed, our intention is to explicate the principles that govern the selection of step
lengths for stochastic algorithms in the most interpretable and transparent fashion. We have also
endeavored to demonstrate the intricacies of such an algorithm that incorporates these principles.
Furthermore, we contend that by allowing the discretion to select search directions dk (as expounded
in the algorithmic section), this framework can be adapted to various algorithms, e.g. [12, 14], not
just the standard SGD algorithm.

Stochastic Line Search or Stochastic Trust Region Methods In classical optimization, techniques
like trust region and line search are used to control step lengths since near the current iterate, the
step direction generated is usually a descent direction[17]. However, in stochastic optimization, the
direction’s quality can be questionable, and the value of exploring it is debated. Despite this, instead
of relying on external inputs for step length selection, several algorithms use classical nonlinear
optimization methods to dynamically determine step lengths during runtime. For instance, [6, 18, 21]
have each examined stochastic line search algorithms that potentially involve multiple function
evaluations on a given direction; [15] introduced a stochastic step search algorithm that modifies the
search direction each time a step is refused under a relaxed Armijo condition; in terms of trust region
approaches, [3, 7, 22] have each proposed remedies for adapting existing algorithms to stochasticities.

In stead of treating step lengths as exogenous quantities that may require substantial tuning or using a
pre-set diminishing step length as proposed in [20], we propose to employ a progress ratio to gauge
the average progress made in past iterations and differentiate the effect of noise into a separate ratio.
This obviates the potential additional computation for the algorithm to backtrack multiple times
before taking a step and allows for a more comprehensive assessment of the overall progress made in
the previous iterations.

Contributions We propose a novel algorithm for determining the appropriate step length at the
runtime, thus avoiding extensive tuning. The numerical experiments show that the method proposed
in this paper—which we call the Stochastic Ratios Tracking method—produces step lengths that are
comparable to the best hand-tuned step lengths while achieving a good balance between computational
costs and training efficiency. Analytical results show convergence in expectation of the algorithm
under mild conditions while highlighting the effect of nonlinearity and stochasticity during the design
of step length selection principles.

2 The Stochastic Ratio Tracking Algorithm

When tackling stochastic optimization problems in machine learning, selecting an appropriate step
length parameter for gradient-based first-order methods depends on two key factors: nonlinearity
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and stochasticity. Nonlinearity, which is sometimes represented as curvature information, determines
the optimal choice of step length in a given direction in the conventional non-stochastic settings.
Stochasticity, on the other hand, relates to inaccuracies or noise in gradient estimates, and is often
characterized by variances or second moments. To achieve optimal performance, one must take into
consideration both non-linearity and stochasticity.

To motivate the proposed procedure, we cite a well-known result about the stochastic gradient method
(c.f. [5], Theorem 4.6). It has been established that if the step length is given by

α =
1

L(MV + 1)
, (5)

(where L is the Lipschitz constant, and MV is a scalar defined below) then the iterates given by the
stochastic gradient algorithm converge to a stationary point in expectation under certain conditions.
Specifically, the iterations update wk+1 = wk − α∇FSk

yields

E [F (wk)− F∗] ≤
(

1− 1

L(MV + 1)

)k−1
(F (w1)− F∗) , (6)

where F ∗ is the optimal function value. A result of this type can be established under various
conditions (c.f. [5], Assumptions 4.1 to 4.3); one of the conditions is

Eξk [‖∇f (wk, ξk) ‖2]− ‖∇F (wk)‖2 ≤MV ‖∇F (wk)‖2, (7)

here F (wk) denotes the true objective. We can approximate this condition at each given iterate k as:∑
i∈Sk
‖∇fi (wk) ‖2/|Sk| − ‖∇FSk

(wk)‖2

‖∇FSk
(wk)‖2

≤MV . (8)

We can compute the value on the left-hand side using Backpack [8] within an iteration, which provides
an approximation of MV , that we shall name the variance ratio estimate later in this paper.

While many problems in machine learning satisfy (7) 1, and in particular in some over-parametrized
models in data science [2], this assumption still can be perceived as somewhat strong. A more general
condition is

Eξk [‖∇f (wk, ξk) ‖2]− ‖∇F (wk)‖2 ≤MV ‖∇F (wk)‖2 +M.

We will discuss later that the presence of a constant term M ≥ 0 on the right-hand side would only
potentially introduce an overestimation of MV in our algorithm, which doesn’t affect convergence,
as the size of the overestimation is bounded above outside of a neighborhood of stationarity.

Besides using the noise ratio MV to account for stochasticity, we shall employ another ratio estimate
(progress ratio estimate) to allow the step to be adjusted to scale with 1

L as suggested in (5). In the
subsequent section, we shall explain the computations of the two ratios above.

2.1 Step Length Selection

Progress Ratio Estimates In this work, we abstain from employing back-tracking line search or
shrinking trust region within an iteration; instead, we opt to calculate a “Progress Ratio Estimate”
to evaluate the effectiveness of the current step length along the intended direction. After sufficient
information about past iterations is attained, we update the step length accordingly.

More rigorously, within an iteration k, we generate an index set Sk and fix it. We compute the
stochastic gradient∇FSk

(wk) and the search direction dk (for instance, SGD has dk = −∇FSk
(wk);

this framework also allows other choices of dk). We then evaluate the Progress Ratio Estimate with
step length α as ρ̂k(α):

ρ̂k(α) =
FSk

(wk + αdk)− FSk
(wk)

α∇FTSk
(wk)dk

. (9)

Here the same sample Sk is used in (9). Note that the condition ρk(α) ≥ c1 is the Armijo condition
on FSk

stating that the step length is to have provided a sufficient decrease in the objective. We

1This condition is sometimes referred to as ‘homogeneity of minima’: a minimizer of F is a minimizer of f
with probability one [19].
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track ratio (9) over a set of iterations and if the average value of ρ̂ in these iterates is large enough,
we increase the step length, as this suggests that more progress may be achievable. On the other
hand, if that ratio tracks to a small value, we shrink α to facilitate the alignment between progress
and expectation. In other words, this non-dimensional ratio ρ̂ is employed to assess the degree of
alignment between the stochastic objective function and its local linear model. A value of the ratio in
proximity to 1 indicates the stochastic objective function exhibits linear behavior along the direction
dk and the progress achieved by traversing a distance of α in this direction is in accordance with the
anticipated progress.

Our progress ratio tracking, therefore, determines whether the steplengths should be adjusted. We
now consider how to choose the actual value of αk.

Variance Ratio Estimates As already mentioned in the paragraph surrounding (5), the step length
must depend on the error/noise in the gradient approximation, it’s natural to measure this noise
in the form of the mini-batch variance. Thanks to the recent advent of Backpack [8], obtaining
estimates of M̂V from mini-batch updates has become relatively effortless in PyTorch, with only
minor computational overhead. We perform this as follows:

We re-iterate that the stochastic objective FSk
is often referred to as a ‘mini-batch’ with cardinality

|Sk| = m (where m = 16, 32, 64, ... are commonly used):

FSk
(wk) =

1

|Sk|
∑
i∈Sk

fi (wk) , ∇FSk
(wk) =

1

|Sk|
∑
i∈Sk

∇fi (wk) (10)

This motivates an estimated empirical value M̂V,k, that would allow the satisfaction of (8) when used
in place of MV :

M̂V,k =
V̂k

‖∇FSk
(wk)‖2

, with V̂k =
∑
i∈Sk

‖∇fi (wk) ‖2/|Sk| − ‖∇FSk
(wk)‖2 (11)

This dimensionless ratio M̂V,k is used to quantify the magnitude of noise inherent in the estimates of
stochastic gradients. As explained before, it serves as an indicator of the relative second moment of
the stochastic gradients, a quantity that an ideal step length should inversely dependent upon.

We comment again on the condition in (7). A weaker assumption can be written as
Eξk [‖∇f (wk, ξk) ‖2]−‖∇F (wk)‖2 ≤MV ‖∇F (wk)‖2 +M . If this weaker assumption is satisfied
(with M > 0) instead of (7), we might overestimate MV , but the overestimation will be no more than
M/‖∇Fk(wk)‖, which is bounded above by M/ε if ‖∇Fk(wk)‖ > ε, i.e., if the iterates are outside
the neighborhood of a stationary point. Hence, replacing (7) with a weaker assumption doesn’t affect
the convergence of the algorithm to the stationary neighborhood.

In the next section, we shall proceed to expound upon the algorithm. It is pertinent to reiterate that
the incorporation of the progress ratio estimates ρ̂k is intended to factor in nonlinearity and enable
the scaling of steps with 1/L, while the variance ratio estimates M̂V,k are intended to account for
the impact of noise or inaccuracies in the gradient estimates. By isolating and addressing the effects
of nonlinearity and noise separately, the algorithm can leverage mechanisms designed for classical,
non-stochastic non-linear optimization in the stochastic setting.

2.2 Specification of the Algorithm

In the k-th iteration, upon generating ∇FSk
(wk) and dk, our proposed algorithm calculates the

quantities ρ̂k(α) for a trial step size α and M̂V,k using the expressions provided in the previous
subsection. These values, ρ̂k(α) and M̂V,k, are then appended in buffers vρ and vM , respectively. (If
the size of vρ and vM exceed a predetermined memory length N , we delete the oldest values from
the buffer.) The algorithm then takes the step:

wk+1 = wk +
αk

mean(vM ) + 1
dk (12)

Once the size of vρ reaches the pre-specified memory length N , the algorithm decides whether to
increase or decrease αk based on the values in vρ. Our strategy is to compute the mean of the values
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in vρ (denoted as ρ̄) and compare it with user-defined parameters c1 and c2, where 0 < c1 ≤ c2 < 1.
If ρ̄ < c1, then α is reduced, and if ρ̄ > c2, then α is increased.

We are now ready to state our algorithm below:

Algorithm 1: Stochastic Ratio Tracking Algorithm (SRT)
1 Initialize w0 and α0, pick 0 < c1 ≤ c2 < 1, τ > 1 and memory buffers vρ , vM and length N .
2 for k = 0, 1, ... do
3 Generate index set Sk, evaluate∇FSk

by (10), compute dk;
4 Evaluate M̂V,k by (11) and ρ̂k(αk) by (9);
5 Append ρ̂k(αk) to vρ and M̂V,k to and vM ; if size of a buffer exceeds N , delete oldest

element;
6 if size of vρ = N then
7 if mean(vρ) > c2 then
8 αk+1 = ταk
9 clear vρ

10 else if mean(vρ) < c1 then
11 αk+1 = αk/τ
12 clear vρ
13 end
14 end
15 Update iterate by (12);
16 end

To illustrate the implementation of this algorithm, we provide the following schematics in Figure 1.

Figure 1: Schematics of the SRT algorithm. Left: computation of estimates. Right: Trial step and
iteration updates.

3 Fixed Step Lengths and Batch Sizes Experiments

We first showcase the ratios ρ̂k, M̂V,k in controlled settings before presenting convergence theory.
More specifically, for Logistic regression and DNN problems, we employ the stochastic gradient
algorithm with different fixed step lengths and across different batch sizes. We show that the choice
of step length α has a direct impact on the estimated and ρ̂k, and similarly the choice of batch size
‖Sk‖ affects the estimated and M̂V,k as expected.
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3.1 Batch size’s influence on M̂V,k

As discussed in the previous sections, the values of M̂V,k quantify the level of stochasticities in
the gradient estimations, where a better estimation of the gradient in a larger-sized batch should be
reflected in smaller values in the estimations of M̂V,k. We demonstrate this effect in this subsection.

We start the initial round of experiments in Figure 2 with logistic regression on the gisette dataset
[13], where we run the SGD algorithm with a constant step length of 0.003 for 10 epochs. We repeat
the same experiment with batch size ‖Sk‖ of 8 and 64, and included, in each of the left and right
panels, an example of typical results in Figure 2. In each of the panels, from top to bottom, we report
FSk

(wk), step length, M̂V,k and ρ̂k, respectively.

Figure 2: Logistic regression with the gisette data. Each of left and right panels contains a typical run
with a constant step length of 0.003; each panel contains from top to bottom: FSk

(wk), M̂V,k, Vk,
ρ̂k(α); the left panel has a minibatch size of 8 while the right panel has a minibatch size of 64.

As we observe from Figure 2, throughout the training progress, the values of ρ̂k remained largely
comparable when batch size increased from 8 to 64; however, M̂V values reduced, indicating that the
noise in the gradient is reduced and larger steps can be favored.

We continue to perform similar experiments on Deep Neural Networks. We train a 3-layer feed-
forward neural network on the Fashion-MNIST data, using a constant step length of 0.5. Similar to
before, we vary the batch size from 16 to 256 in the left and right panels of 3, respectively. Each
panel again contains FSk

(wk), step length, M̂V,k and ρ̂k, from top to bottom.

Figure 3: DNN with the Fashion-MNIST data. Each of left and right panels contains a typical run
with a constant step length of 0.5; each panel contains from top to bottom: FSk

(wk), M̂V,k, Vk,
ρ̂k(α); the left panel has a minibatch size of 16 while the right panel has minibatch size of 256.

Similar to Figure 2, for deep neural networks results presented in Figure 3, throughout the training
progress, when batch size increased from 16 to 256, M̂V values reduced, as expected.
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3.2 Step size’s influence on ρ̂k

As discussed in the section around (9), we expect ρ̂k to be close to 1 when step lengths are picked to
be small (as analytical functions are locally approximated by linear ones) and may oscillate wildly
when step lengths are large relatively—we demonstrate this effect in this subsection.

In the logistic regression task, we fixed a batch size of 8 and varied the step length from 0.3 to 3e− 4
and examined the resulting values of ρ̂k(0.3) and ρ̂k(3e − 4) in Figure 4. We observed that the
values of ρ̂k(0.3) were widely dispersed across the interval [0,1], with many values being close to
0, indicating potentially too large of step sizes. In contrast, the values of ρ̂k(3e− 4) were clustered
around 1, indicating more progress maybe available for larger step sizes.

Figure 4: Logistic Regression with Different Step Lengths. Left column: Steplength 3e-1; Right
column: Steplength 3e-4.

We conducted similar experiments on DNN for the Fashion-MNIST dataset and varied the step lengths
0.5 to 5e− 4 and examined the resulting values of ρ̂k(0.5) and ρ̂k(5e− 4) in Figure 5. We observed
that, similar to logistic regression, ρ̂k(0.5) exhibited wild oscillations with values approaching 0,
while ρ̂k(5e− 4) clustered around 1. For this application, a step length of 0.5 improved the stochastic
objective but caused erratic oscillations, while 5e-4 resulted in slow training progress or "stalling".
SRT would decrease the step length in the former case to prevent oscillations and increase it in the
latter case to promote progress.

Figure 5: Deep Neural Network with Different Step Lengths. Left column: Step length 5e-1 (erratic
oscillation in objective); Right column: Step length 5e-4 (training stalling).

Given that the behaviors of ρ̂k and M̂V,k generally align with our expectations, we will now proceed
to present the convergence results for this algorithm in the next section, followed by the application
of the algorithm for training tasks in the subsequent section.
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4 Convergence Result for the SRT Algorithm

We present the main convergence result for the algorithm below and defer its proof to the appendix.

Convergence Theorem Assume that the stochastic objective function FSk
(w) and the true objec-

tive function F (w) are µ,L smooth; that Eξk [∇FSk
(wk)] = ∇F (wk), and Eξk [‖∇FSk

(wk) ‖2]−
‖∇Fk‖2 ≤MV ‖∇Fk‖2 +M and let c1 and c2 be picked such that:

1− µ

2L
< c1 < c2 < 1− µ

2τL
(13)

and that the estimated M̂V,k = MV , then for all k such that k > k0, where

k0 = N ·max

(
0, logτ

µ

τL2α0
, logτ

α0

L

)
the expected optimality gap satisfies the following inequality:

E[F (wk)− F ∗] ≤ η +

(
1− 2(1− c1)µ

τ(MV + 1)L

)k−k0
[F (wk0)− F ∗ − η] (14)

where
η =

τM

4µ(1− c1)(MV + 1)
. (15)

This theorem highlights that under µ,L smoothness assumptions of the stochastic and true objective
functions, the algorithm proposed is convergent towards a stationary neighborhood surrounding the
true objective of size η. The stationary neighborhood η is proportional to the non-diminishing error
term denoted as M in the second movement bound of the gradient. The theorem further shows that
the optimal step length is attained at iteration k0, after which the algorithm additionally manifests a
linear convergence rate that depends upon the problem’s conditioning.

While the algorithms enjoy a favorable linear convergence rate to the stationary neighborhood as
characterized by the optimality gap, the somewhat restrictive assumptions leave room for future
research directions. For instance, we have assumed for simplicity that the estimated M̂V reflects the
true value. As a potential future direction, one may assume the distribution of ‖∇FSk

‖ and derive
high probability bounds for the estimated values. Another limitation of the analysis is that the choices
of c1, c2 require information about the conditioning of the problem. While many practical methods
exist for estimating this information, we have found in practice that the algorithm is robust with
respect to different choices of c1, c2, and that this restriction is purely technical to ensure that the step
length eventually settles to a fixed value.

5 Numerical Experiments with SRT

To show SRT algorithm’s capability of automatic step length tuning, we tested with logistic regression
and deep neural network training tasks. All codes were written in Python; experiments on Deep
Neural Networks were implemented in Pytorch with BackPACK[8]. Logistic regression experiments
are done on a MacBook Pro with Intel i7 processor with 32 GBs of DDR4 RAM. Deep Neural
Network experiments were done on a PC with Nvidia GeForce GPU with 11GB of dedicated VRAM.

For the first set of experiments reported in Figure 6, we ran logistic regression on the gisette dataset
for 10 epochs with a batch size of 8, and initialized the step length at 0.1 and 1e− 4, in the left and
right panel respectively. We recorded the stochastic objective value in the top panels, the adjusted
step lengths α in the middle panels, and the computed ρ̂ in the bottom panels.

As observed in Figure 6, the SRT algorithm identifies step lengths as too large or small and adjusts
them accordingly. In both cases, the step lengths settled slightly above 1e-3, which match our best
hand-tuned step length.

For DNN training tasks, the behavior observed in Figure 7 is comparable to what was observed
before, where we applied the SRT algorithm to train a 3-layer feed-forward neural network on the
Fashion-Mnist dataset for 20 epochs. The SRT algorithm reduces the step length when it is too large
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Figure 6: SRT on Logistic Regression with Different Initial Step Lengths. Left column:Initial
Steplength 1e-1; Right column: Initial Steplength 1e-5; Each of the panels contains from top to
bottom: FSk

(wk), M̂V,k, Vk, ρ̂k(α).

Figure 7: SRT on the training of a feed-forward 3-layer Neural Network on the Fashion-Mnist data
with batch size 128. Left column:Initial Steplength 0.5; Right column: Initial Steplength 0.0005.
Each of the panels contains from top to bottom: FSk

(wk), M̂V,k, Vk, ρ̂k(α).

and increases it when it is too small. And in both cases, the final step length settled to around 0.06,
again comparable to our best hand-tuned step length.

In both Logistic regression and DNN training tasks, with initially too short or too long of step length
choices, SRT algorithm was successful in identifying and adjusting to step lengths which eventually
settle into similar values that are comparable to the best hand-tuned values.

6 Conclusions

This paper presents a novel step length selection algorithm, namely SRT, which stands out from
traditional methods by obviating the need for manual tuning efforts and enabling automatic step
size adjustments. The proposed algorithm is shown to be convergent under mild assumptions, and
the numerical results demonstrate its competitive performance across different training tasks. In
particular, SRT produces effective step lengths that are comparable to those obtained from manual
tunning.

As the proposed estimations of ρ̂k and M̂V,k offer novel insights for step length tuning and are
applicable to various problems and tasks, future work may involve conducting numerical experiments
with acceleration directions instead of the steepest descent direction. Additionally, relaxing the
assumptions necessary for convergence analysis by incorporating the underlying statistical nature
could be explored. We leave these potential avenues for future research.
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Appendix

In this section we present the proof for the main global convergence theorem:

Convergence Theorem Assume that the stochastic objective function FSk
(w) and the true objec-

tive function F (w) are µ,L smooth; that Eξk [∇FSk
(wk)] = ∇F (wk), and Eξk [‖∇FSk

(wk) ‖2]−
‖∇Fk‖2 ≤MV ‖∇Fk‖2 +M and let c1 and c2 be picked such that:

1− µ

2L
< c1 < c2 < 1− µ

2τL
(16)

and that the estimated M̂V,k = MV , then for all k such that k > k0, where

k0 = N ∗max

(
0, logτ

µ

τL2α0
, logτ

α0

L

)
the expected optimality gap satisfies the following inequality:

E[F (wk)− F ∗] ≤ η +

(
1− 2(1− c1)µ

τ(MV + 1)L

)k−k0
[F (wk0)− F ∗ − η] (17)

where

η =
τM

4µ(1− c1)(MV + 1)
. (18)

Proof: For any particular iteration k, by µ,L smoothness assumption of FSk
,

α∇FTSk
dk +

α2µ

2
‖dk‖22 ≤ FSk

(wk + αdk)− FSk
(wk) ≤ α∇FTSk

dk +
α2L

2
‖dk‖22 (19)

using the fact that dk = ∇FSk
,

−α‖∇FSk
‖2 +

α2µ

2
‖∇FSk

‖22 ≤ FSk
(wk + αdk)− FSk

(wk) ≤ −α‖∇FSk
‖2 +

α2L

2
‖∇FSk

‖22
(20)

dividing this inequality by −α‖∇FSk
‖2 and combining terms:

1− 1

2
µα ≥ FSk

(wk + αdk)− FSk
(wk)

−α‖gk‖2
≥ 1− 1

2
Lα (21)

using definition of ρ̂k(α) in (9) this implies:

ρ̂k(α) ∈
[
1− Lα

2
, 1− µα

2

]
(22)

If α > 1/L at iteration k this implies that

ρ̂k(α) ≤ 1− µα

2
< 1− µ

2L
< c1 (23)

Since the same argument for k will apply for k + 1, ..., k +N − 1, α will be decreased based on the
algorithm within N iterations.

Conversely, if α < 1
τL

µ
L at iteration k we have

ρ̂k(α) ≥ 1− Lα

2
> 1− µ

2τL
> c2 (24)

Since the same argument for k will apply for k + 1, ..., k +N − 1, α will be increased based on the
algorithm within N iterations.

Thus after finitely many iterations,

αk ∈
(

1

τL

µ

L
,

1

L

)
(25)
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Also note: µ
L > 2(1− c1) by the choice of c1,

αk ∈
(

1

τL

µ

L
,

1

L

)
⊂
(

2(1− c1)

τL
,

1

L

)
. (26)

Since
1

L

/(
1

τL

µ

L

)
> τ, (27)

αk must eventually settle to a value in this interval. Furthermore, the number of iterations required to
produce a step in the above interval is

k0 = N ∗max

(
0, logτ

µ

τL2α0
, logτ

α0

L

)
(28)

Now consider the case when k > k0 i.e. a final step size ᾱ is achieved such that

ᾱ ∈
(

2(1− c1)

τL
,

1

L

)
(29)

From this point on, we assume that the optimal step size ᾱ is achieve, by the assumption that
M̂V = MV , the steps taken will admit:

wk+1 = wk −
ᾱ

MV + 1
∇FSk

(wk) (30)

By the L−Lipschitz continuity of F , we have

F (wk+1)− F (wk) ≤ ∇F (wk)
T

(wk+1 − wk) +
1

2
L ‖wk+1 − wk‖22 (31)

≤ − ᾱ

MV + 1
∇F (wk)

T ∇FSk
(wk) +

1

2

(
ᾱ

MV + 1

)2

L ‖∇FSk
(wk)‖22 (32)

Taking expectation with respect to ξk, we obtain

F (wk+1)− F (wk) ≤ − ᾱ

MV + 1
‖∇F (wk) ‖2 +

1

2

(
ᾱ

MV + 1

)2

LEξk [‖∇FSk
(wk)‖22] (33)

By the assumption that Eξk [‖∇FSk
(wk) ‖2]− ‖∇F (wk)‖2 ≤MV ‖∇F (wk)‖2 +M , we have

Eξk [‖∇FSk
(wk) ‖2] ≤ (MV + 1)‖∇F (wk)‖2 +M (34)

Plug this into the previous equation and obtain:

F (wk+1)− F (wk) ≤ − ᾱ

MV + 1
‖∇F (wk)‖2 +

1

2

(
ᾱ

MV + 1

)2

L
[
(MV + 1) ‖∇F (wk)‖2 +M

]
= − ᾱ

MV + 1

[
1− ᾱL

2

]
‖∇F (wk)‖2 +

ᾱ2L

2(MV + 1)2
M

= − ᾱ

2(MV + 1)
‖∇F (wk)‖2 +

ᾱ2L

2(MV + 1)2
M

≤ − ᾱµ

MV + 1
[F (wk)− F ∗] +

ᾱ2L

2(MV + 1)2
M

(35)
rearranging terms, subtracting F ∗ from both sides and obtain:

F (wk+1)− F ∗ ≤
(

1− ᾱµ

MV + 1

)
[F (wk)− F ∗] +

ᾱ2L

2(MV + 1)2
M

≤
(

1− 2(1− c1)µ

τ(MV + 1)L

)
[F (wk)− F ∗] +

M

2L(MV + 1)2

(36)

We subtract τM
4µ(1−c1)(MV +1) from both sides and obtain

F (wk+1)− F ∗ − τM

4µ(1− c1)(MV + 1)
≤
(

1− 2(1− c1)µ

τ(MV + 1)L

)[
F (wk)− F ∗ − τM

4µ(1− c1)(MV + 1)

]
(37)

Recursively apply this argument from k0 to k to attain the argument.
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