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Abstract

Robust optimization approaches compute solutions resilient to data un-
certainty, represented by a given uncertainty set. Instead, the problem
of computing the largest uncertainty set that a given solution can sup-
port was, so far, quite neglected and the only results refer to the single
stage framework. For that setting, it was proved that this problem can
be solved in polynomial time, when the uncertainty is modeled using the
cardinality constrained set. Here we study what happens if we consider a
two stage framework.

keywords: robust optimization, cardinality constrained uncertainty set,
two stage

1 Introduction
?〈sec:intro〉?

Data uncertainty in the parameters of mathematical programming formulations
has been recognized as a major issue in computing solutions of problems coming
from real-life applications. Therefore, several methods have been studied in the
literature to compute solutions that are resilient to data uncertainty. The most
popular ones are simulation [3, 28], stochastic programming [10, 14] and robust
optimization [4, 15]. Applications of these techniques to real-life problems are
very common, ranging from healthcare [1] to personnel scheduling [24] and net-
work design [19]. They differ from one another on the statistical information
that is required to derive the corresponding models and on the computational ef-
fort needed to solve them. In the present paper we focus on robust optimization
methods. These approaches assume that a limited statistical information can be
exploited, that is, the probability distribution associated with the uncertain pa-
rameters is unknown, but it is possible to partition the values that the uncertain
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parameters can take (realizations) into realizations of interest (the uncertainty
set) and realizations that are unlikely to occur. The underlying assumption
is that all the realizations in the uncertainty set have the same probability to
occur, whereas the others can be neglected. The scope is to compute the best
solution among the ones that are feasible for any realization of the uncertainty
in the given uncertainty set. The uncertainty set must be detailed enough to
represent the variability of the parameters, but simple enough to be tractable
from a computational point of view. A popular way to represent uncertainty
sets is to use ellipsoids or polytopes: some examples can be found in [7, 8, 12, 24].

In mixed-integer programming, the problem without uncertainty is commonly
referred to as the deterministic optimization (DET) problem and it can be
mathematically formalized, in a general way, as follows.

fDET min cTx

Ax ≥ b

xj ∈ Z j ∈ N

We denote by I and J the indices of constraints and variables and by N ⊆ J
the variables that are required to take integer values.

The problem that takes data uncertainty into account, instead, is known as
the robust problem and its mathematical model depends on the flexibility that
the robust solution must have. If one has to use the same solution x for all
the realizations of the uncertainty, we speak of single stage approaches. If, in-
stead, one can (at least partially) change the computed solution according to
the actual realization, we speak of multi stage or adjustable models. Single
stage approaches lead to models that are computationally easier to solve, but
multi stage frameworks correspond to less conservative (cheaper) solutions. We
consider here a two stage problem, where the x variables are partitioned into
first stage variables x1 and second stage variables x2. The value of the first
stage variables must be the same for any realization of the uncertainty (here
and now decisions), while the second stage ones can be changed, depending on
the actual realization (wait and see decisions). If x2 can be changed completely
when the realization changes, we speak of unrestricted recourse. If, instead,
the modifications that can be done are limited, we speak of restricted policies.
The unrestricted recourse provides the maximum flexibility at the expenses of
solving a computationally hard problem. The scope of the restrictions in the
policy is to guarantee some flexibility, while keeping the robust problem com-
putationally tractable [5]. A comparison of several policies that can be used
for the second stage variables in network design problems can be found in [23].
We suppose that the uncertainty only affects the coefficients of the first stage
variables and/or the right-hand sides of the constraints, whereas the coefficients
of the second stage variables are not uncertain (fixed recourse).

Denote by U the uncertainty set and by p the policy that must be used in
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computing the value of the second stage variables. Let [A1,A2] be the partition
of the constraint matrix A, where A1 represents the (uncertain) coefficients of
the first stage variables and A2 the (not uncertain) ones of the second stage
variables. Similarly, objective coefficients c are partitioned into c1 and c2. A
two stage robust problem (2ROB) can be formulated as follows, where the value
of the second stage variables depends on the policy p and the realization u. J1

denotes the set of the indices of the first stage variables and J2 refers to the
second stage ones. Set N is partitioned into N1 and N2 accordingly. The goal
is to find the first stage solution x1 that can be completed by a suitable second
stage solution under policy p for any u ∈ U and that has the most favorable
worst case.

f2ROB min q

q ≥ c1Tx1 + max
u∈U

c2Tx2(u, p)

A1ux1 + A2x2(u, p) ≥ bu u ∈ U
x1
j ∈ Z j ∈ N1

x2
j (u, p) ∈ Z j ∈ N2, u ∈ U

As already noted in [16], in many practical applications the validity of the es-
timations used to define the uncertainty set and to compute a robust solution,
may become unreliable long before the solution lifetime has reached its end,
leading to the necessity of reassessing, under more accurate and up-to-date val-
ues, the already computed solutions. This is also the case when unexpected
technological innovations or unpredictable external events have a disruptive ef-
fect on the considered system.

The aim of this paper is to study what happens to a given first stage solution
x̄1, when the predictions that were used to define the uncertainty set U are not
longer reliable and one has to determine which is the largest uncertainty set
that x̄1 can handle, under the modified conditions. In [16] the single stage case
was considered and it is proved that, computing the largest uncertainty set that
a solution can handle, is a problem that can be solved in polynomial time, when
the uncertainty set is defined using the cardinality constrained model [8]. To our
knowledge, no other paper in the literature considers the problem of computing
the largest uncertainty set that a solution can support. Here we focus on the
two stage framework and address what happens in this case, showing that the
problem can be polynomially solvable or not, depending on the recourse policy.
We will use network design problems to provide examples.

In §2 we formalize the problems of computing the largest uncertainty set in a
two stage framework, under the cardinality constrained uncertainty model. In
§3 we define the restricted problem and show how it is related to the considered
problems. In §4 we study the complexity of the restricted problem, consider-
ing both the unrestricted recourse and the affinely adjustable one [5]. In §5
conclusions are given.
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2 The problem

〈sec:prob〉The cardinality constrained model assumes that each uncertain parameter cor-
responds to a symmetric bounded random variable [6]. The probability distri-
bution is not given, but a nominal value and a maximum deviation from the
nominal value are known. Given uncertain parameter a1

ij , i ∈ I, j ∈ J1, let

ā1
ij and δij be its nominal value and maximum deviation. The actual value of

parameter a1
ij lies in the interval [ā1

ij − δij , ā1
ij + δij ]. Similarly, uncertain pa-

rameter bi, i ∈ I takes values in [b̄i − σi, b̄i + σi], where b̄i is its nominal value
and σi the maximum deviation. It is supposed that at most Γ parameters can
deviate from the nominal value at the same time. Let Γ be an integer number,
we denote by U(Γ, δ,σ) the uncertainty set obtained by applying the cardinality
constrained framework.

?〈def:ui〉?
Definition 2.1. Denote by z+

ij (z−ij) the positive (negative) percentage deviation

of parameter a1
ij from its nominal value and let y+

i (y−i ) be variables that play
the same role for bi. The uncertainty set U(Γ, δ,σ) can be defined as below.

U(Γ, δ,σ) =
{
a1
ij = āij + δij(z

+
ij − z

−
ij) i ∈ I, j ∈ J1

bi = b̄i + σi(y
+
i − y

−
i ) i ∈ I∑

i∈I

∑
j∈J1

(z+
ij + z−ij) +

∑
i∈I

(y+
i + y−i ) ≤ Γ

0 ≤ z+
ij ≤ 1, 0 ≤ z−ij ≤ 1 i ∈ I, j ∈ J1

0 ≤ y+
i ≤ 1, 0 ≤ y−i ≤ 1 i ∈ I }

The uncertainty set depends on two parameters: the level of robustness to be
ensured, represented by Γ; the level of uncertainty to be handled, represented
by δ and σ. When the values of these parameters increase, the uncertainty set
becomes larger. We want to answer to the following questions.

Q1 If new nominal and/or deviation values replace the old ones, which is the
maximum level of robustness Γ that solution x̄1 can guarantee?

Q2 If new nominal and/or deviation values replace the old ones, which is the
maximum level of robustness Γ that solution x̄1 can guarantee, without
exceeding a given budget for the second stage costs?

Q3 If we want to ensure a given level of robustness Γ, which is the maximum
percentage increase λ in the uncertainty level (deviation values) that we
can accept?

Q4 If we want to ensure a given level of robustness Γ, which is the maximum
percentage increase λ in the uncertainty level (deviation values δ and σ)
that we can accept, without exceeding a given budget for the second stage
costs?
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Q5 Given new nominal and/or deviation values and a robustness level Γ to
ensure, which is the minimum budget that we need for the second stage
solution?

Questions Q1 and Q3 are related to the maximum robustness that first stage so-
lution x̄1 can ensure and they correspond to the two stage maximum robustness
(2MR) problem below.

〈pr:2mr〉Problem 2.1. Given a solution x̄1, a budget B (possibly infinite), values ā1
ij,

δij for i ∈ I, j ∈ J1 and b̄i, σi for i ∈ I, the 2MR problem consists of deter-
mining the largest Γ for which x̄1 can be completed by a suitable second stage
solution x2(u, p) respecting the policy p, for any realization of the uncertainty u
in U(Γ, δ,σ), without exceeding B.

To avoid trivial cases, we suppose that x̄1 cannot support the realization where
|I| × (1 + |J1|) parameters (that is, all the uncertain parameters) change simul-
taneously. Mathematically, the problem can be formalized as follows, where we
look for the minimum Γ such that there exists a realization η ∈ U(Γ + 1, δ,σ)
with the property that: either (i) there is a constraint i ∈ I that cannot be
satisfied by any second stage solution for realization η; or (ii) any solution that
is feasible for all constraints i ∈ I and realizations u ∈ U(Γ + 1, δ,σ), exceeds
budget B for realization η.

f2MR min Γ

such that ∃η ∈ U(Γ + 1, δ,σ) with the property that

either

∃i ∈ I such that

max
x2

∑
j∈J1

a1η
ij x̄

1
j +

∑
j∈J2

a2
ijx

2
j (η, p) < bηi

or

c2Tx2(η, p) > B for all x2 such that

A1ux̄1 + A2x2(u, p) ≤ bu u ∈ U(Γ + 1, δ,σ)

Let us now address questions Q2 and Q4, which are formalized into the two
stage maximum uncertainty (2MU) problem that follows.

〈pr:2mu〉Problem 2.2. Given a solution x̄1, a budget B (possibly infinite), and values
Γ, ā1

ij, δij for i ∈ I, j ∈ J1 and b̄i, σi for i ∈ I, the 2MU problem consists of
determining the largest percentage increase λ in the deviation values for which
x̄1 can still be completed by a suitable second stage solution x2(u, p) respecting
the policy p, for any realization of the uncertainty u ∈ U(Γ, (1 + λ)δ, (1 + λ)σ),
without exceeding B.

The 2MU problem can be formulated as below and, to avoid trivial cases, we
assume that the problem is feasible when λ = 0.

f2MU maxλ
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B ≤ c2Tx2(u, p) u ∈ U(Γ, (1 + λ)δ, (1 + λ)σ)

A1ux̄1 + A2x2(u, p) ≥ bu u ∈ U(Γ, (1 + λ)δ, (1 + λ)σ)

λ ≥ 0

x2
j (u, p) ∈ Z j ∈ N2, u ∈ U(Γ, (1 + λ)δ, (1 + λ)σ)

Consider now question Q4, which correspond to the minimum budget (2MB)
problem below.

〈pr:2mb〉Problem 2.3. Given a solution x̄1, values Γ, ā1
ij, δij for i ∈ I, j ∈ J1 and b̄i, σi

for i ∈ I, the 2MB problem consists of determining the minimum value B, if any,
for which x̄1 can still be completed by a suitable second stage solution x2(u, p)
respecting the policy p, for any realization of the uncertainty u ∈ U(Γ, δ,σ).

This problem can be expressed by the formulation that follows. To avoid trivial
cases, we assume that f2MU is feasible.

f2MB minB

B ≤ c2Tx2(u, p) b ∈ U(Γ, δ)

A1ux̄1 + A2x2(u, p) ≥ bu u ∈ U(Γ, δ,σ)

x2
j (u, p) ∈ Z j ∈ N2, u ∈ U(Γ, δ,σ)

3 The restricted problem

〈sec:ristretto〉We now show that all the problems defined above are related to a unique prob-
lem, that we call the restricted (RES) problem.

?〈pr:res〉?Problem 3.1. Let x̄1 be given values for the first stage variables, the RES
problem consists of solving the 2ROBC problem with x1 fixed to x̄1.

Mathematically, the restricted problem can be formulated as follows

fRES min q

q ≥ max
u∈U(Γ,δ,σ)

c2Tx2(u, p)

A1ux̄1 + A2x2(u, p) ≥ bu u ∈ U(Γ, δ,σ)

x2
j (u, p) ∈ Z j ∈ N2, u ∈ U(Γ, δ,σ)

and it is easy to see that it coincides with the 2MB problem (Problem 2.3).
The relation between the 2MR problem (Problem 2.1) and the RES problem is
summarized in the result below.

Theorem 3.1. The 2MR problem is polynomially solvable if and only if the RES
problem is polynomially solvable and it can be solved solving at most log2(|I| ×
(1 + |J1|)) instances of the RES problem.
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Proof. If x2 respects the budget, the pair (Γ,x2) is feasible for the 2MR prob-
lem if and only if x2 is feasible for the RES problem with the given Γ. By the
equivalence between optimization and separation [13], the 2MR problem is poly-
nomially solvable if and only if the RES problem is polynomially solvable. The
2MR problem can be solved by performing a binary search on Γ, where, at each
step, a RES problem is solved. This search has complexity log2(|I|× (1+ |J1|)).
Since the solution computed by solving the RES problem, if any, is the cheapest
possible, if the optimal solution of the RES problem does not respect the finite
budget B (if any) no solution within the budget exists for the considered Γ
value.

A similar argument can be used for problem 2MU (Problem 2.2).

Theorem 3.2. The 2MU problem is polynomially solvable if and only if the
RES problem is polynomially solvable.

Proof. If x2 respects the budget, the pair (λ,x2) is feasible for the 2MU problem
if and only if x2 is feasible for the RES problem with deviations (1 + λ)δ and
(1 + λ)σ. By the equivalence between optimization and separation [13], the
2MU problem is polynomial if and only if the RES problem is polynomially
solvable.

In the rest of the paper we investigate the complexity of the RES problem and,
hence, of answering the questions in §2, depending on the chosen flexibility
policy p.

4 Complexity results

〈sec:complessita〉The RES problem include, as special case, the DET problem with fixed x1,
which corresponds to situations where either both δ = 0 and σ = 0 or Γ = 0.
If the DET problem with fixed x1 is already NP-hard, then the RES problem
is NP-hard as well, independently of the policy p. Therefore, we assume in
what follows that the DET problem is polynomially solvable for fixed x1 values.
Note that this setting is quite common in the applications, where the decision
process is usually decomposed into (more) difficult decisions to be made at the
strategic level (first stage variables) and somehow easier decisions to be made
at the operational level (second stage variables) [24]. Below, we investigate the
complexity of the RES problem, depending on the policy p. We consider two
policies: the unrestricted recourse and the affinely adjustable one [5].

Note that we did not make any assumptions on the first stage variables and,
hence, the polynomiality of the RES problem does not directly imply the poly-
nomiality of the 2ROB problem. On the other hand, if the RES problem is
NP-hard, the 2ROB problem is also NP-hard by the equivalence between opti-
mization and separation [13]. We will present examples where the RES problem
is polynomial, but the 2ROB problem is not. To keep the presentation sim-
ple, without loss of generality we assume that no costs are associated with the
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second stage variables and, hence, the RES problem becomes a feasibility prob-
lem, where one has to check if there exist solutions x2(u, p) for u ∈ U(Γ, δ,σ)
satisfying the constraints below.

A1ux̄1 + A2x2(u, p) ≥ bu u ∈ U(Γ, δ,σ)

4.1 The unrestricted recourse policy
?〈sec:ur〉?The unrestricted recourse policy assumes that the values of the second stage

variables can be arbitrarily changed depending on the current value of the un-
certain parameters. This ensures the maximum possible flexibility, which means
the minimum costs and the minimum conservatism, but it has the drawback that
the corresponding problems are generally difficult to solve. This is true also for
the RES problem, even when the uncertainty affects only the right-hand sides
and, to show it, we will refer to network design applications.

Let us consider two network design problems, the Capacitated Edge Activation
(CEA) problem [20, 21] and the Network Loading (NL) problem [2, 17]. The
CEA problem is the following.

〈pr:cea〉Problem 4.1. Given a capacitated graph G(V,E) (network), where the capacity
of each edge becomes available only if the edge is activated, and a set of demands
between node pairs (commodities), to be routed on the network, the CEA problem
consists of selecting a minimum cost set of edges to be activated, to ensure a
feasible routing of the commodities.

The NL problem can be defined as follows.

〈pr:nl〉Problem 4.2. Given an uncapacitated graph G(V,E) (network) and a set of
demands between node pairs (commodities) to be routed on the network, the NL
corresponds to determining minimum cost integer capacities to be installed on
the edges to route the commodities.

The main difference between the CEA problem (Problem 4.1) and the NL prob-
lem (Problem 4.2) is that in the former the capacities are given, whereas in the
latter they must be computed. Assume now that the demands are uncertain and
that the uncertainty set is modeled using the cardinality constrained approach
[22, 23].

When we solve a network design problem using a two stage framework, the de-
cisions on the capacities (both to install and to activate) are regarded as first
stage variables, as they correspond to strategic choices, whereas the actual rout-
ing of the demands corresponds to second stage variables because, in practical
applications, the related decisions are adopted in a second time, at the opera-
tional level. The unrestricted recourse policy is known as dynamic routing, the
single stage approach is called static routing and there exist other policies, for
example the affine routing [27], corresponding to the affinely adjustable policy
in [5]. The problem of checking if given capacities (either activated or installed)
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can support all the realizations of the demands in the uncertainty set by a given
routing policy, is known as the separation problem and it corresponds to the
RES problem.

The separation problem for the robust CEA and the robust NL problem with
dynamic routing is known to be NP-hard by the results in [25]. Hence, the same
holds for the general RES problem.

Theorem 4.1. The RES problem with unrestricted recourse and right-hand side
uncertainty is NP-hard.

Proof. The problem of checking if given capacities can support uncertain de-
mands by dynamic routing under the cardinality constrained uncertainty model
is NP-hard [25].

Also note that the separation problem for the network design problems men-
tioned above is not polynomial also when the cardinality constrained uncertainty
set is replaced by the so-called hose polyhedron [12], by the results in [11, 18].
This also confirms that, in general, the 2ROB problem with unrestricted re-
course is difficult, even when the deterministic problem is polynomial, the un-
certainty set is computationally tractable and the uncertainty only affects the
right-hand sides [26].

4.2 Adjustable policies
?〈sec:adj〉?An adjustable policy assumes that the value of the second stage variables can

be changed within some restriction. Typically, it is assumed that they change
according to some function of the uncertain parameters. We discuss the most
popular of such functions, the affinely adjustable (aff ) one [5]. This policy was
introduced to ensure some flexibility, while guaranteeing, at the same time, that
the 2ROB problem remains computationally tractable. The affinely adjustable
policy forces the values of the second stage variables to be affine functions of the
uncertainty. This means that the second stage variables must follow the rule
below, which limits x2 to be an affine function of A1 and b.

x2
j (u, aff) = wj +

∑
h∈I

∑
h∈J1

vhkj a1u
hk +

∑
h∈I

thj b
u
h j ∈ J (1) eq:adj

In this case, the RES problem can be solved in polynomial time.

Theorem 4.2. The RES problem is polynomially solvable under the affinely
adjustable policy.

Proof. Using equations (1) in the RES problem, we have that x̄1 can be com-
pleted by suitable second stage values if the system below is feasible.∑
j∈J1

a1u
ij x̄

1
j +

∑
j∈J2

a2
ij(wj +

∑
h∈I

∑
k∈J1

vhkj a1u
hk +

∑
h∈I

thj b
u
h) ≥ bui i ∈ I, u ∈ U(Γ, δ,γ)
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Recall that a1u
ij = ā1

ij + δij(z
+
ij − z

−
ij) and bui = b̄i + σi(y

+
i − y

−
i ). The above

system is feasible if the optimization problem below, whose variables are w, v
and t, has optimal value α ≤ 0.

minα

α+
∑
j∈J2

a2
ij(wj +

∑
h∈I

∑
k∈J1

ā1
hkv

hk
j )+

+ min
z+,z−,y+,y−

∑
j∈J1

δij x̄
1
j (z

+
ij − z

−
ij) +

∑
j∈J2

∑
h∈I

∑
k∈J1

a2
ijδhkv

hk
j (z+

hk − z
−
hk)

+
∑
j∈J2

∑
h∈I

thj σh(y+
h − y

−
h )− σi(y+

i − y
−
i )

 ≥ b̄i −∑
j∈J1

ā1
ijx

1
j i ∈ I

t ∈ R|I|×|J
1|,w ∈ R|J

1|,v ∈ R|I|×|J
1|×|J2|

The inner min assumes that t,v and w are given and it is a linear programming
problem in the variables z+, z−,y+,y−. We report below the primal and the
dual problem for constraint i and fixed w̄, v̄, t̄.

Pi(w̄, t̄, v̄) min
∑
j∈J1

δij x̄
1
j (z

+i
ij − z

−i
ij )

+
∑
j∈J2

∑
h∈I

∑
k∈J1

a2
ijδhkv̄

hk
j (z+i

hk − z
−i
hk)

+
∑
j∈J2

∑
h∈I

t̄hj σh(y+i
h − y

−i
h )− σi(y+i

i − y
−i
i )

(γi)
∑
i∈I

(y+i
i + y−ii ) +

∑
i∈I

∑
j∈J1

(z+i
i + z−ii ) ≤ Γ

(ρ+i
h ) 0 ≤ y+i

h ≤ 1 h ∈ I
(ρ−ih ) 0 ≤ y−ih ≤ 1 h ∈ I
(β+i
hj ) 0 ≤ z+i

hk ≤ 1 h ∈ I, k ∈ J1

(β−ihj ) 0 ≤ z−ihk ≤ 1 h ∈ I, k ∈ J1

Di(w̄, t̄, v̄) max−Γγi −
∑
h∈I

(ρ+i
h + ρ−ih )−

∑
h∈I

∑
j∈j1

(β+i
hj + β−ihj )

(y+i
h ) − γi − ρ+

h ≤
∑
j∈J2

t̄hj σh h ∈ I \ {i}

(y−ih ) − γi − ρ−h ≤ −
∑
j∈J2

t̄hj σh h ∈ I \ {i}
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(y+i
i ) − γi − ρ+

i ≤
∑
j∈J2

t̄ijσi + σi

(y−ii ) − γi − ρ−i ≤ −
∑
j∈J2

t̄ijσi − σi

(z+i
hk) − γi − β+

hk ≤ δhkx̄
1
k +

∑
j∈J2

a2
ijδhkv̄

hk
j h ∈ I, k ∈ J1

(z−ihk) − γi − β+
hk ≤ −δhkx̄

1
k −

∑
j∈J2

a2
ijδhkv̄

hk
j h ∈ I, k ∈ J1

γi ≥ 0,β+i,β−i ≤ 0,ρ+i,ρ−i ≥ 0

Replacing the inner min by its dual and noting that the max is redundant, we
get the formulation below.

minα

α+
∑
j∈J2

a2
ij(wj +

∑
h∈I

∑
k∈J1

ā1
hkv

hk
j )+

− Γγi −
∑
h∈I

(ρ+i
h + ρ−ih )−

∑
h∈I

∑
j∈j1

(β+i
hj + β−ihj ) ≥ b̄i −

∑
j∈J1

ā1
ijx

1
j i ∈ I

− γi − ρ+
h ≤

∑
j∈J2

thj σh h ∈ I \ {i}, i ∈ I

− γi − ρ−h ≤ −
∑
j∈J2

thj σh h ∈ I \ {i}, i ∈ I

− γi − ρ+
i ≤

∑
j∈J2

tijσi + σi i ∈ I

− γi − ρ−i ≤ −
∑
j∈J2

tijσi − σi i ∈ I

− γi − β+
hk ≤ δhkx̄

1
k +

∑
j∈J2

a2
ijδhkv

hk
j h ∈ I, k ∈ J1, i ∈ I

− γi − β+
hk ≤ −δhkx̄

1
k −

∑
j∈J2

a2
ijδhkv

hk
j h ∈ I, k ∈ J1, i ∈ I

t ∈ R|I|×|J
1|,w ∈ R|J

1|,v ∈ R|I|×|J
1|×|J2|

γi ≥ 0,β+i,β−i ≤ 0,ρ+i,ρ− ≥ 0 i ∈ I

Hence, the RES problem corresponds to a (polynomially solvable) linear pro-
gramming problem.

It is easy to see that the same argument can be used to prove that, for the
robust NL and CEA problem with affine routing and/or hose uncertainty, the
RES problem is also polynomial. In this way, we get two examples of problems
where the RES problem is polynomial, but the 2ROB problem is not. In fact,
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independently of the routing policy and of the uncertainty set describing the
demands, the robust NL and CEA problem include the problems without un-
certainty and, hence, the Steiner Tree problem, as special case and are, therefore,
NP-hard [9, 20].

5 Conclusions
〈sec:conclusioni〉

We considered a two stage robust optimization problem with cardinality con-
strained uncertainty, where the computed first stage solution must be re-assessed.
The goal was to compute the largest uncertainty set that a given first stage solu-
tion can handle. We proved that the polynomiality of this problem depends on
the recourse policy. In particular, if the values of the second stage variables can
arbitrarily be changed to adapt them to the current values of the parameters,
then the problem is NP-hard. If the affinely adjustable policy is adopted, then
the problem can be solved in polynomial time.
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