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Abstract

Bilevel optimization problems are known to be challenging to solve in practice.
In particular, the feasible set of a bilevel problem is, in general, non-convex, even
for linear bilevel problems. In this work, we aim to develop a better understanding
of the feasible set of linear bilevel problems. Specifically, we develop means by
which to identify when a bilevel problem is unbounded or infeasible. We show that
extending the well-known high point relaxation with lower-level dual feasibility
constraints is relevant to detecting when a bilevel problem is infeasible due to its
lower-level problem being unbounded. Moreover, we present a new linear model
to detect that a bilevel problem is unbounded when that unboundedness originates
from the upper-level variables alone. Furthermore, we derive two sets of sufficient
conditions to guarantee bilevel boundedness. Finally, we highlight that constraints
that are implied by others are not necessarily redundant for bilevel problems.

1 Introduction

Bilevel optimization is a hierarchical modelling framework involving two nested opti-
mization problems: the upper-level and the lower-level problems. On the one hand,
the upper-level decision-maker must anticipate the reaction of the lower level to deter-
mine its set of optimal solutions. On the other hand, given an upper-level decision, the
lower-level decision-maker acts optimally according to its own interests.

This decision-making process can be represented mathematically in its as follows:
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min
x,ỹ

c⊤x+ d⊤1 ỹ (B.1)

s.t. A1x+B1ỹ ≤ b1 (B.2)

x ≥ 0 (B.3)

ỹ ∈ argmin
y

d⊤2 y (B.4)

s.t. A2x+B2y ≤ b2 (B.5)

y ≥ 0 (B.6)

where x ∈ Rnx , y, ỹ ∈ Rny , A1 ∈ Rn1×nx , A2 ∈ Rn2×nx , B1 ∈ Rn1×ny , B2 ∈ Rn2×ny ,
b1 ∈ Rn1 , and b2 ∈ Rn2 . In this formulation, (B.1)-(B.3) corresponds to the upper-level
problem, while (B.4)-(B.6) corresponds to the lower-level problem. This formulation is
said to be optimistic because when there are multiple optimal solutions for the lower
level, the best one with respect to the upper-level objective value is selected. We consider
this optimistic formulation throughout this paper. Furthermore, we assume that the
lower-level objective is not constant (i.e., that d2 ̸= 0). This assumption on non-trivial
lower-level problems is not restrictive, as, without it, the bilevel problem can be reduced
to a single-level linear problem (see Remark 1).

There has been a growing interest in bilevel optimization in recent years [9], greatly
due to the various real-life applications for which this framework provides an ideal
modelling paradigm. A few examples of bilevel optimization applications are network
design and energy market operation [2, 18]. For an introduction to bilevel optimization
refer to [4], and for a review of current methods and applications for bilevel problems,
as well as an extensive bibliography, consult [9].

Despite the numerous potential applications in the field, bilevel problems are known
to be challenging to solve in practice. In fact, even in the linear case, the feasible sets of
bilevel problems are, in general, non-convex, and bilevel problems are strongly NP-hard
[11].

In this paper, we are concerned with gaining a better understanding of the feasible
set of linear bilevel problems, often denoted as the inducible region. We seek to develop
means to identify when a bilevel problem is unbounded or infeasible. In particular, we
emphasise the study of bilevel problems with unbounded single-level relaxations.

The main contributions of our work are as follows: We show that extending the
high point relaxation (formally defined in Section 3) with lower-level dual constraints
is relevant to detecting when a bilevel is infeasible due to the unboundedness of its
lower-level problem. Moreover, we present a new linear model to detect that the bilevel
is unbounded when that unboundedness originates from the upper-level variables alone.
Furthermore, we derive sufficient conditions to guarantee bilevel boundedness and fur-
ther strengthen these conditions by taking advantage of lower-level dual information.
Finally, we highlight issues arising from redundancy in bilevel problems and discuss how
it differs from redundancy in its single-level relaxations.

Below, we denote some standard notation that is used throughout this paper. For
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any feasible upper-level variable x, the lower-level optimal-value function is defined as:
φ(x) = min

y≥0

{
d⊤2 y : A2x+B2y ≤ b2

}
. Similarly, the optimal-value function of the dual

lower-level problem is φD(x) = max
λ≥0

{
(A2x− b2)

⊤λ : B⊤
2 λ ≥ −d⊤2

}
. Following [10], we

say that these functions are well-defined if the problems have a finite optimal value
and are ill-defined otherwise. We denote the inducible region, which is the feasible set
of the bilevel problem, as FB = {(x, y) ∈ Rnx×ny : (B.2)-(B.6)}. In addition, let the
extended inducible region, including the lower-level dual variables, be denoted as F+

B =
{(x, y, λ) ∈ Rnx×ny×n2 : (x, y) ∈ FB; B⊤

2 λ ≥ −d⊤2 ; λ ≥ 0; (A2x− b2)
⊤λ ≥ φD(x)}.

This paper is organised as follows. In Section 2, we gather relevant background
results on the inducible region and its properties, as well as on handling unbounded
single-level relaxations. In Section 3, we introduce the high point relaxation and extend
it with lower-level dual constraints. In addition, in Section 3.1, we show that the latter is
particularly useful for detecting infeasible bilevel problems due to an unbounded lower-
level problem. Section 4 is divided into two parts. In Section 4.1, we present two results
that help describe the inducible region, and in Section 4.2, we discuss redundancy in the
bilevel setting. In Section 5, we investigate bilevel problems with unbounded single-level
relaxations. First, in Section 5.1, we consider the case when the relaxation model is
unbounded, but the lower-level variables are bounded and derive conditions that lead
to bilevel unboundedness. Second, in Section 5.2, we consider the general case when
neither upper- nor lower-level variables are known to be bounded and derive two sets
of sufficient conditions for guaranteeing the boundedness of a bilevel problem. Finally,
we finish with some concluding remarks in Section 6.

2 Background

In this section, we provide motivation for our work and relevant background literature.
This section is divided into two parts: In Section 2.1, we discuss the inducible region
and some of its properties, while in Section 2.2, we discuss unbounded single-level
relaxations.

2.1 Inducible Region

In this section, we focus on the feasible region of the bilevel problem, denoted as the
inducible region, and summarise some important results regarding the characterisations
and properties of this set. This is not an overview of algorithmic approaches to solving
bilevel problems. For more information on these approaches, the reader is redirected to
[12].

Bilevel problems are challenging to solve, and that is reflected in the complex struc-
ture of their feasible set. In fact, the inducible region of bilevel problems is generally
non-convex, even in the linear case. In addition, this feasible set can be disconnected
or empty in the presence of coupling constraints, which are upper-level constraints that
depend on lower-level variables [7].
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One interesting theorem lends greater geometric insight into what the inducible
region looks like. This result states that the inducible region of a linear bilevel problem
is comprised of faces of the feasible shared constraint set of upper- and lower-level
constraints, and it is obtained under the assumption that this shared constraint set is
non-empty and compact [2]. These faces are associated with optimal vertices of the
dual of the lower-level problem and their objective value. Furthermore, if the bilevel
does not have coupling upper-level constraints, then these faces are connected [1].

To the best of our knowledge, there is currently no way to directly feed a bilevel
problem into a ready-to-use optimization solver. Therefore, most approaches reformu-
late the bilevel problem as a single-level optimization model. This reformulation of the
inducible region into a single-level feasible set can be achieved by replacing the lower
level with optimality conditions. Some of the most commonly studied reformulations
include the optimal-value function, the Karush-Kuhn-Tucker (KKT), and the strong-
duality reformulations.

In the optimal-value function reformulation [17], the inducible region is reformulated
into the shared constraint set in addition to the constraint (d⊤2 y ≤ φ(x)), ensuring the
lower-level value is optimal. This reformulation is often difficult to obtain in analytical
form. In the KKT reformulation, the lower-level problem is replaced with its equivalent
KKT optimality conditions [14], thereby introducing linear complementarity constraints
to the feasible set. This reformulation is valid when the lower-level problem is convex
and satisfies a constraint qualification. Lastly, in the strong-duality reformulation, the
lower-level problem is replaced with the lower-level primal and dual constraints as well
as the strong-duality condition (d⊤2 y ≤ (A2x − b2)

⊤λ). This strong-duality constraint
introduces bilinearities to the feasible set and works for linear lower-level problems.

Moreover, various representability results concerning the inducible region have been
introduced to study what types of sets can be modelled as feasible regions of linear
bilevel problems [3]. It is shown that the inducible region of a continuous linear bilevel
problem can be equivalently modelled as the feasible region of a linear complementarity
problem or as a finite union of polyhedra. Conversely, any finite union of polyhedra (or
linear complementarity feasible set) can be represented using the feasible set of a linear
bilevel problem.

Finally, we note that most research assumes that the inducible region is bounded
either directly or by assuming that the feasible set of its relaxation is bounded. To the
best of our knowledge, the complexity of the decision problem regarding whether there is
a direction of unboundedness for the bilevel problem has never been directly answered.
We suspect that solving this problem is a challenging task. As we previously detailed,
linear bilevel problems can be equivalently reformulated as linear complementarity prob-
lems. In addition, finding a direction of unboundedness for a linear complementarity
problem corresponds to finding a non-zero solution to the corresponding homogeneous
linear complementarity problem [8], and linear complementarity problems are NP-hard
[6]. This suggests that deciding whether a direction of unboundedness of a linear bilevel
problem exists might also be a difficult task.
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2.2 Unbounded Relaxations

As noted in Section 2.1, reformulating the bilevel problem as a single-level optimization
model comes at the cost of introducing nonlinearities to the problem. Consequently,
many bilevel solution approaches start by relaxing these complicating constraints and
solving a simpler single-level relaxation.

The most common relaxation of a bilevel problem is the high point relaxation (HPR)
which is obtained by simply optimizing the upper-level objective over the shared con-
straint set of upper- and lower-level constraints (formal definition in Section 3). It is
known that an optimal solution of the bilevel can be found at a vertex of this relaxation
[2], which hints at the relevance of the HPR model in bilevel optimization.

When this relaxation is infeasible, we can conclude that the corresponding bilevel
problem is also infeasible. If this relaxation is finite optimal, then the bilevel problem
can either be finite optimal or infeasible, and each algorithm proceeds differently to try
to find an optimal solution when one exists. However, if this relaxation is unbounded,
nothing can be concluded about the optimality status of the corresponding bilevel. The
examples in [12, 19] show that when the HPR model is unbounded, the corresponding
bilevel can be finite optimal, unbounded, or infeasible.

Due to this inconclusiveness, most bilevel solution approaches assume that the feasi-
ble set of the HPR is bounded. Consequently, there is little existing research regarding
what happens to the bilevel problem when its relaxation is unbounded.

The majority of progress in the study of unbounded HPR models is made under
the assumption that this unboundedness originates in the lower-level problem alone. In
fact, if there is an upper-level variable that is feasible for the HPR and its corresponding
lower-level problem is unbounded, then the bilevel problem is infeasible (Lemma 2 in
[19]). This key theorem has driven most of the results in this field.

In [19], a mixed-integer linear problem is designed to track the reason for the un-
boundedness of the HPR. Depending on whether an optimal solution of this mixed-
integer linear problem has a positive, zero, or negative objective value, we can conclude
that the bilevel is infeasible, unbounded, or finite optimal, respectively (Lemmas 6-8
in [19]). These results are derived for mixed-integer linear bilevel problems under the
assumption that all upper-level variables are integer and bounded, and they can be
easily adapted to linear bilevel problems with bounded upper-level variables.

Furthermore, it is shown in [10] that, when the HPR is unbounded, one can detect
upfront whether the lower-level problem is unbounded by solving a linear problem that
does not depend on upper-level variables. Depending on whether the optimal value of
this linear model is negative or not, one can conclude that either the bilevel is infeasible
or the lower-level problem is well-defined for every feasible point of the HPR. Never-
theless, when the HPR is unbounded, but the lower-level problem is not unbounded,
solving this linear model will not allow us to determine the status of the original bilevel.

To sum up, studying which conclusions can be drawn about the bilevel problem
when its relaxation is unbounded is a relevant topic that is often overlooked. In this
paper, we propose some results to help close this gap by studying the inducible region
in relation to the feasible set of bilevel relaxations.
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3 Single-Level Relaxations

Linear single-level relaxations are very important in (linear) bilevel optimization, es-
pecially since solving these relaxations is an essential part of many bilevel solution
approaches [12].

As previously mentioned, the most common single-level relaxation of a bilevel prob-
lem is obtained by relaxing the lower-level optimality constraint (B.4). This relaxation
is called the high point relaxation and it is defined as:

min
x,y

{
c⊤x+ d⊤1 y : (x, y) ∈ FHPR

}
(HPR)

where FHPR = {(x, y) : (B.2), (B.3), (B.5), (B.6)} denotes the feasible set. Note that
this model is indeed a relaxation of the corresponding bilevel problem [2].

Recall that we assume that the lower-level objective is not constant, as d2 ̸= 0. In
Remark 1, we show that without this assumption, the bilevel problem is equivalent to
its HPR.

Remark 1 (Non-constant Lower-level Objective Assumption). The single-level lower-
level optimal value reformulation of the bilevel problem (B) can be written as:

min
x,y

c⊤x+ d⊤1 y

s.t. A1x+B1y ≤ b1

A2x+B2y ≤ b2

d⊤2 y ≤ φ(x)

x, y ≥ 0

In the case where the lower-level objective is constant and d2 = 0, it is easy to
observe that the optimal value constraint d⊤2 y ≤ φ(x) becomes trivial, because d⊤2 y = 0
for any y, and φ(x) = 0 for any feasible x. Removing this constraint leads to the HPR.
Hence, when d2 = 0, the bilevel feasible set is equivalent to the feasible set of its HPR.
Thus, the original problem did not require a bilevel optimization framework.

Consequently, we assume d2 ̸= 0 throughout the rest of the paper.
Another valid single-level linear relaxation is the HPR with lower-level dual feasi-

bility, which can be defined as:

min
x,y,λ

c⊤x+ d⊤1 y (HPR+DF)

s.t. (x, y) ∈ FHPR

B⊤
2 λ ≥ −d⊤2

λ ≥ 0

where the two constraints added correspond to the feasibility conditions of the dual
lower-level problem φD(x).
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Note that this is indeed a relaxation of the original bilevel problem. In fact, the
(HPR+DF) problem can be obtained by relaxing the complementarity conditions of the
single-level KKT reformulation of a linear bilevel problem. Alternatively, (HPR+DF)
can be obtained by relaxing the strong-duality condition from the strong-duality single-
level reformulation.

3.1 Advantages of (HPR+DF)

In the HPR+DF relaxation, the dual variables λ are not explicitly connected with the
other variables (x, y) and do not appear in the objective. Therefore, the question as
to whether this relaxation brings any added benefit when compared to the classic HPR
formulation naturally arises. Theorem 1 partly answers this question. We show that
even though the dual information is not explicitly connected with the primal informa-
tion, there may be an advantage in using this model for bilevel algorithms that require
solving a linear relaxation.

Theorem 1. If (HPR+DF) is feasible, then the lower-level optimal-value function φ(x)
is well-defined for all points (x, y, λ) that are feasible for (HPR+DF).

Proof. Assume that (HPR+DF) is feasible, and let (x, y, λ) be a feasible solution. Then,
we know that y is feasible for the lower-level problem φ(x). Therefore, the lower-level
problem is feasible (either finite optimal or unbounded).

Similarly, we know that λ is feasible for the dual lower-level problem φD(x). Hence,
the dual lower-level problem is feasible (either finite optimal or unbounded). Conse-
quentially, the lower-level problem φ(x) (dual of the dual lower-level problem) is either
finite optimal or infeasible.

From the two statements above, we can conclude that the lower-level problem is
finite optimal for x. From the arbitrariness of (x, y, λ), we conclude that the lower-level
optimal-value function φ(x) is well-defined for every feasible point of the (HPR+DF).

Note that Theorem 1 does not hold in general for the HPR problem, as we illustrate
in Example 1.

Example 1 (HPR Feasible and φ(x) Ill-defined). Consider the following linear bilevel
problem illustrated in Figure 1:
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min
x,ỹ

y

s.t. x− ỹ ≤ −1

x ≥ 0

ỹ ∈ argmin
y≥0

{ − y :

4x− y ≤ 8}

Figure 1

x

y

0 1 2 3 4 5

1

2

3

4

5

4
x
−

y
≤

8

−x
+
y
≤
1

HPR

LL Obj.
UL Obj.

In this example, the HPR model is feasible, as (x, y) = (1, 1) ∈ FHPR. However, for
x = 1, the lower-level problem is unbounded; accordingly, φ(1) = −∞ is ill-defined.

Theorem 1 indicates that this alternative HPR+DF relaxation is particularly rele-
vant for instances where the lower-level problem is unbounded, and the bilevel problem
is, therefore, infeasible. In these instances, the HPR model might not help us detect
that the bilevel problem is infeasible (see Example 1). However, since the HPR+DF
problem would be infeasible, we could conclude that the original bilevel problem is also
infeasible.

4 Descriptions of the Inducible Region

The aim of this section is to better understand and describe the inducible region. In
Section 4.1, we present two descriptions of the inducible region using faces generated
by lower-level constraints, while in Section 4.2, we highlight how redundancy differs in
bilevel optimization compared with single-level optimization.

4.1 Structure of Lower-Level Faces

In this section, we derive some theorems to describe and approximate the inducible
region. First, we show that the inducible region is contained in a union of a subset
of faces defined by lower-level constraints. Second, we describe the finite union of
polyhedra, which is equivalent to the extended inducible region following the work in [3].
These results are the premises for deriving sufficient conditions for the unboundedness
of a bilevel problem in Section 5.2.

We start by defining the lower-level candidate faces of the HPR feasible set as:

Hi = {(x, y) ∈ FHPR : (A2x+B2y)i = (b2)i}, for i ∈ {1, ..., n2}
Hi+n2 = {(x, y) ∈ FHPR : yi = 0}, for i ∈ {1, ..., ny}

Note that some of these sets Hi might be empty, some might contain a single point,
and others might be a facet of FHPR.

We introduce the first main result of this section in Theorem 2.
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Theorem 2. There exists a subset I ⊆ {1, . . . , n2 + ny} such that

FB ⊆
⋃
i∈I

Hi

where FB is the inducible region.

Proof. If FB = ∅, the result is trivial. If FB ̸= ∅, then let (x, y) ∈ FB. Since y ∈ φ(x)
and d2 ̸= 0, we know that there exists (at least) one lower-level constraint active at
(x, y). Equivalently, there exists i ∈ {1, . . . , n2+ny} such that (x, y) ∈ Hi. By building
I such that i ∈ I, we conclude that (x, y) ∈

⋃
i∈I Hi. We can repeat this process for

every (x, y) ∈ FB to obtain a subset I such that FB ⊆
⋃

i∈I Hi.

Note that we have built the subset I such that for all i ∈ I, Hi ̸= ∅. Therefore,
{Hi}i∈I are faces of the HPR feasible set, and we refer to them as such throughout the
rest of the paper.

Note also that there might be no subset I such that the opposite inclusion
⋃

i∈I Hi ⊆
FB is true, as depicted in Example 2.

Example 2 (Converse Inclusion of Theorem 2 Does Not Hold). Consider the following
linear bilevel problem illustrated in Figure 2:

min
x,ỹ

x+ y1 + y2

s.t. x ≥ 0

(ỹ1, ỹ2) ∈ argmin
y1,y2≥0

{y2 :

y1 − y2 ≤ 0

− y1 − y2 ≤ −2

y1, y2 ≥ 0}

Figure 2

y1

y2

x

H1

H2

H3

LL Obj.

In this example, the lower level faces H1, H2 and H3 are defined by constraints
(y1 − y2 ≤ 0), (−y1 − y2 ≤ −2), and (y1 ≥ 0), respectively, and the inducible region is
shaded in green. The candidate face associated with y2 ≥ 0 is empty.

It is clear that H3 does not intersect the inducible region. Moreover, H1 and H2

both intersect the inducible region but are not contained in it. Thus, there is no subset
I of lower-level faces whose union is contained in the inducible region.
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In addition, we can define candidate faces of (HPR+DF) associated with lower-level
dual constraints as:

Di = {(x, y, λ) ∈ FHPR+DF : λi = 0}, for i ∈ {1, ..., n2}
Di+n2 = {(x, y, λ) ∈ FHPR+DF : (B⊤

2 λ)i = (−d2)i}, for i ∈ {1, ..., ny}

Once again, some of these Di sets might be empty, some might contain a single
point, and others might be a facet of FHPR+DF.

Finally, we present a characterisation of the inducible region as a finite union of
polyhedra based on the results in [3], which show that a continuous linear bilevel rep-
resentable set is precisely a finite union of polyhedra.

Lemma 1. The extended inducible region is the finite union of polyhedra:

F+
B =

⋃
ω∈{1,2}n2+ny

Pω

where, for ω ∈ {1, 2}n2+ny , the polyhedron Pω is defined as:

Pω = {(x, y, λ) ∈ FHPR+DF : (x, y) ∈ Hi ∀i : ωi = 1;

λ ∈ Di ∀i : ωi = 2}

Proof. This proof uses Lemmas 29, 30, and 27 from [3] in the first, second, and third
equalities, respectively.

F+
B = {(x, y, λ) ∈ FHPR+DF : (b2 −A2x−B2y) · λ = 0; y · (B⊤

2 λ+ d2) = 0}
=
{
(x, y, λ) ∈ FHPR+DF : max{−(b2 −A2x+B2y);−λ} ≥ 0;

max{−y;−(B⊤
2 λ+ d2)} ≥ 0}

}
=

⋃
ω∈{1,2}n2

Pω

4.2 Redundancy in the Bilevel-Setting

In this section, we present some observations and results about redundancy in bilevel
optimization. We discuss redundancy in the bilevel setting as a mechanism to remove
constraints, as well as some potential pitfalls in extending this concept from single-level
optimization.

A redundant constraint is often defined as a constraint that is implied by other con-
straints and, consequently, is unnecessary to describe the feasible region. In addition to
unnecessarily increasing the size of an optimization problem, redundant constraints can
also lead to degeneracy. In single-level optimization, when detected, these constraints
can be removed without altering the problem.
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Detecting redundant constraints in bilevel optimization, in particular lower-level
constraints, could be relevant to reducing the subset I of lower-level faces containing
the inducible region (see Theorem 2). Nevertheless, in bilevel optimization, degeneracy
cannot always be avoided due to the parametric nature of the lower-level problem [15].

Although redundant constraints can be safely removed when solving the HPR, this
removal is not generally valid for the bilevel problem as depicted in Example 3.

Example 3 (Difficulty with Removing Redundant Constraints in Bilevel Optimization).
Consider the following linear bilevel problem illustrated in Figure 3:

min
x,ỹ

− y

s.t. − x− y ≤ −3

x− y ≤ 3

x ≥ 0

ỹ ∈ argmin
y

{y : y ≥ 0}

Figure 3

x

y

0 1 2 3 4 5

1

2

3

4

5

−
x−

y ≤
−
3 x

−
y
≤
3

HPR

UL Obj.
LL Obj.

In this example, the lower-level constraint y ≥ 0 is redundant as it is implied by the
upper-level constraints (−x−y ≤ −3) and (x−y ≤ 3). However, deleting it changes the
inducible region and the problem’s optimality status by making the only bilevel feasible
solution (x, y) = (3, 0) infeasible.

The main reason for this issue is that the redundant constraint is a lower-level in-
equality that is implied by a set of upper-level constraints. A more detailed discussion
of this can be found later on in this section.

In fact, the same problem can prevail even if the redundant constraint is not active
at the bilevel optimal solution. This issue arises because the independence of irrelevant
constraints (IIC) property does not hold for bilevel problems in general [16]. In other
words, adding a lower-level constraint that is inactive at the optimal solution of the
bilevel problem might change the inducible region and, consequently, the optimal solu-
tion of that bilevel problem [13]. Despite being valid in single-level optimization, this
property is shown to only hold in bilevel optimization if the HPR optimal solution is also
bilevel optimal [16]. In practice, this condition is seldom verified for bilevel problems.

We define that a constraint is bilevel-redundant for the feasible set FB (or F+
B ) if it

can be removed from the feasible set without changing it.
As depicted in Example 3, some constraints might be implied by others without

being bilevel-redundant. In the rest of this section, we discuss the cases in which
these redundant constraints that are implied by others are also bilevel-redundant and
can therefore be removed. We consider upper- and lower-level redundant constraints
separately.
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Upper-level redundant constraints can always be safely removed, because they do
not affect the lower-level optimal value function. Therefore, removing an upper-level re-
dundant constraint corresponds to removing a redundant constraint from the single-level
optimal-value function reformulation. In other words, upper-level redundant constraints
are also bilevel-redundant. Note that this conclusion is not contradictory with the re-
sults in [16] because, in that work, the IIC property is defined with respect to lower-level
constraints.

By contrast, lower-level redundant constraints require a more detailed analysis, as
Example 3 indicates that they are not always bilevel-redundant. We distinguish two
types of lower-level redundant constraints, depending on the type of constraints implying
them.

The first type of lower-level redundant constraints are implied only by other lower-
level constraints. In this case, the constraint is redundant for both the shared constraint
set and the lower-level feasible set for any fixed feasible upper-level variable x. This
redundancy at both levels implies that removing the redundant constraint will not af-
fect the shared constraint set, nor will it change the lower-level optimal-value function.
Therefore, lower-level redundant constraints that are implied only by lower-level con-
straints are always bilevel-redundant.

The second type of lower-level redundant constraints cannot be implied only by other
lower-level constraints. As illustrated in Example 4, this type of redundant constraint
can, in some cases, be bilevel-redundant and, in others, not. Hence, each case needs to
be accessed individually.

Example 4 (Lower-Level Redundant Constraint Implied by Upper Level). Consider
the following linear bilevel problem with parameter α ∈ {−1, 1} illustrated in Figure 4:

min
x,ỹ

− x+ ỹ

s.t. − x+ 2ỹ ≤ 4

x ≥ 0

ỹ ∈ argmin
y≥0

{αy :

− x+ y ≤ 2,

− x− y ≤ −2}

Figure 4

x

y
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3

4

5

−x
+ 2y

≤ 4

−x
+
y
≤
2

−
x−

y ≤
−
2

HPR

The lower-level constraint (−x + y ≤ 2) is redundant because it is implied by the
upper-level constraint (−x+2y ≤ 4) and the lower-level constraint (−x− y ≤ −2). De-
pending on the value of the parameter α, this constraint can either be bilevel-redundant
or not. We detail these two possibilities below.
Case 1: α = 1 ⇒ Bilevel-redundant

In this case, the inducible region is defined by the union of the line segments {(x, y) :
−x−y = −2; x ∈ [0, 2]} and {(x, 0) : x ≥ 2}. If we remove the redundant constraint, the
inducible region remains unchanged. Consequently, the constraint is bilevel-redundant.
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Case 2: α = −1 ⇒ Not bilevel-redundant
In this case, the inducible region is the singleton {(0,2)}. If we remove the redundant

constraint, the lower-level problem at x = 0 becomes unbounded. Hence, the bilevel
problem becomes infeasible. This clearly changes the inducible region, and consequently,
the constraint is not bilevel-redundant.

When lower-level redundant constraints cannot be implied only by lower-level con-
straints, further conclusions can be drawn if the redundant constraint is parallel to
another constraint. In fact, in [13], the authors present a complete presolve method for
removing parallel rows, including cases where both upper- and lower-level constraints
are simultaneously involved.

Finally, the results in [5] regarding moving lower-level constraints to the upper-
level problem can also be relevant to the study of redundant constraints in the bilevel
setting. Here, the authors show that, under certain assumptions, lower-level constraints
that only involve upper-level variables can be moved to the upper level. This would
allow us to handle such constraints as belonging to the upper-level problem, where we
know that redundant constraints are bilevel-redundant.

5 bilevel problems with Unbounded Relaxations

As established in Section 2.2, when (HPR) is unbounded, nothing can be concluded
about the optimality status of the corresponding bilevel problem. The same holds true
when (HPR+DF) is unbounded. Example 5 depicts this inconclusiveness by depicting
three cases where the bilevel is infeasible, unbounded, and finite optimal.

Example 5 ((HPR+DF) Unbounded and Bilevel Inconclusive). Consider the following
linear bilevel problem with parameters α ∈ {−1, 1} and β ∈ {1, 2}:

min
x,ỹ

− x− ỹ

s.t. − x− ỹ ≤ −2

α(x− ỹ) ≤ β

x ≥ 0

ỹ ∈ argmin
y

{y : −x+ y ≤ 2; y ≥ 0}

The dual lower-level feasibility constraints are λ ≥ 0 and λ ≥ −1. The HPR+DF
problem is unbounded since it admits a feasible solution (1, 1, 0) and a direction of un-
boundedness (∆x,∆y,∆λ) = (1, 1, 0).

However, depending on the values of α and β, the bilevel can be infeasible, un-
bounded, or finite optimal. We detail these three cases below.
Case 1: (α, β) = (1, 1) ⇒ Bilevel Infeasible
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This case is illustrated in Figure 5.
The bilevel is infeasible because no so-
lution of the form (x, y) = (x, 0) veri-
fies the upper-level constraints.

Figure 5

x

y

0 1 2 3 4 5

1

2

3

4

5

−x− y ≤ −2

x
−
y
≤
1

−x
+
y
≤
2

HPR

UL Obj.
LL Obj.

Case 2: (α, β) = (−1, 2) ⇒ Bilevel Unbounded

This case is illustrated in Figure 6.
The bilevel is unbounded because
the sequence of bilevel-feasible points
(x, y) = (k, 0) for k ∈ Z+ : k ≥ 2
has an increasing upper-level objective
value.

Figure 6
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Case 3: (α, β) = (1, 2) ⇒ Bilevel Finite Optimal

This case is illustrated in Figure 7.
The bilevel is finite optimal because it
has a single feasible solution (x, y) =
(2, 0), which is, consequently, optimal.

Figure 7
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The rest of this section is divided as follows. In Section 5.1, we study the special
case when the relaxation model is unbounded, but the lower-level variables are bounded.
In this case, we introduce a linear model and derive a condition on its optimal value,
which allows us to conclude that the bilevel is unbounded. In Section 5.2, we derive
two sets of sufficient conditions to guarantee that a bilevel problem is bounded, despite
its relaxation being unbounded.
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5.1 bilevel problems with Bounded Lower Levels

A first natural extension to the work in the literature presented in Section 2.2 is to con-
sider the opposite case to the one studied so far, wherein the HPR model is unbounded,
but the lower-level variables are bounded. In this case, the unboundedness of the HPR
model originates in the upper-level problem.

Analogously to the model presented in [10], in this section, we introduce a linear
model that does not depend on lower-level variables. Moreover, we derive Theorem 3,
which allows us to extract some conclusions about the optimality status of the bilevel
problem when this model’s optimal value is negative.

Consider the following linear problem that does not depend on lower-level variables:

min
∆x

c⊤∆x (M)

s.t. A1∆x ≤ 0

A2∆x = 0

0 ≤ ∆x ≤ 1

Note that (M) is neither unbounded (because 0 ≤ ∆x ≤ 1) nor infeasible (because
∆x = 0 is a solution). Therefore, it must have a finite optimal solution with a non-
positive optimal objective value. Theorem 3 allows us to draw some conclusions about
the optimality status of the bilevel problem (B) from the optimal value of this linear
problem (M).

Theorem 3. Assume (B) is feasible. If (M) has a strictly negative optimal value, then
(B) is unbounded.

Proof. Let (x, y) be a feasible solution of (B), and let ∆x∗ be an optimal solution of (M)
with c⊤∆x∗ < 0. We will show that (∆x,∆y) = (∆x∗, 0) is a direction of unboundedness
of the bilevel problem. Let ϵ ∈ R+.

First, note that (x+ ϵ∆x∗, y) is a bilevel feasible point because it verifies all upper-
and lower-level constraints:

A1(x+ ϵ∆x∗) +B1y ≤ b1 (as A1∆x∗ ≤ 0; ϵ ≥ 0)

x+ ϵ∆x∗ ≥ 0 (as ∆x∗ ≥ 0; ϵ ≥ 0)

A2(x+ ϵ∆x∗) +B2y ≤ b2 (as A2∆x∗ ≤ 0; ϵ ≥ 0)

y ≥ 0

and it is lower-level optimal:

d⊤2 y ≤ φ(x+ ϵ∆x∗) = φ(x) (as A2∆x∗ = 0)

Second, since c⊤∆x∗ < 0, the upper-level objective value at (x+ ϵ∆x∗, y) decreases
with increasing ϵ ∈ R+.

Therefore, (∆x∗, 0) is a direction of unboundedness of the bilevel problem, and it
follows that the bilevel problem is unbounded.
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5.2 Guaranteeing Bilevel Boundedness

In this section, we consider the general case when neither upper- nor lower-level variables
are known to be bounded. In Section 5.2.1, we derive sufficient conditions to guarantee
that a bilevel problem is bounded. These conditions involve solving up to (n2 + ny)
linear problems. In Section 5.2.2, we extend these conditions to use lower-level dual
information. If the correct constraint index is provided, this extension could allow us
to guarantee bilevel boundedness by solving two linear problems.

5.2.1 Sufficient Conditions for Bilevel Boundedness

We introduce a linear optimization problem to help detect whether the unbounded-
ness of the HPR originates in the unboundedness of the corresponding bilevel problem.
Consider the following linear problem (Ui) for i ∈ {1, ..., n2 + ny}:

ξi = min
∆x,∆y

c⊤∆x+ d⊤1 ∆y (Ui)

s.t. A1∆x+B1∆y ≤ 0

A2∆x+B2∆y ≤ 0

0 ≤ ∆x,∆y ≤ 1

(∆x,∆y) ∈ H∆
i

where H∆
i ensures that once active, the lower-level constraint i remains active along the

direction (∆x,∆y):

H∆
i = {(∆x,∆y) : (A2∆x+B2∆y)i = 0}, for i ∈ {1, ..., n2}

H∆
i+n2

= {(∆x,∆y) : ∆yi = 0}, for i ∈ {1, ..., ny}

Note that (Ui) is neither unbounded (because 0 ≤ ∆x,∆y ≤ 1) nor infeasible
(because (∆x,∆y) = (0, 0) is a solution). Therefore, it is finite optimal and has a non-
positive optimal value. The following theorem shows how (Ui) can be used to derive
sufficient conditions for bilevel boundedness.

Theorem 4. Assume (B) is feasible. If ξi=0 for all i ∈ I, then (B) is bounded.

Proof. We prove the theorem by proving its contrapositive: If the bilevel problem is
unbounded, then there exists k ∈ I, such that (Uk) has a strictly negative objective
value: ξk < 0.

Assume the bilevel problem is unbounded. From Theorem 2, we know that FB ⊆⋃
i∈I Hi. Hence, there exists k ∈ I such that Hk is an unbounded face of the feasible

set of (HPR), and there exists (∆x,∆y) a direction of unboundedness for the bilevel
problem along Hk. Without loss of generality, we assume that ∆x,∆y ≤ 1. By the

16



definition of a direction of unboundedness, we know that:

c⊤∆x+ d⊤1 ∆y < 0,

A1∆x+B1∆y ≤ 0,

A2∆x+B2∆y ≤ 0,

∆x,∆y ≥ 0.

Since along this direction one remains on Hk, then we also know that (∆x,∆y) ∈
H∆

k . Therefore, (∆x,∆y) is a feasible solution of (Uk) and it has a strictly negative
objective value. Hence, ∃k ∈ I : ξi < 0.

Furthermore, to obtain this guarantee on bilevel boundedness, we need only check
the subset I ⊆ {1, ..., n2 + ny}. The task of reducing subset I by excluding lower-level
faces that are unnecessary for the inducible region was briefly discussed in Section 4.2.
Finally, note that the converse of Theorem 4 is not true, as shown by Example 6.

Example 6 (Counterexample of the Converse of Theorem 4). Consider the linear bilevel
problem in Case 3 of Example 5 illustrated in Figure 7. In this example, the bilevel has
an optimal solution (x, y) = (2, 0). Hence, it is bounded. However, the (Ui) model
associated with the lower-level constraint (−x + y ≤ 2) has a strictly negative optimal
value since the corresponding face is unbounded in a direction of increasing upper-level
objective.

5.2.2 Extending Sufficient Conditions with Dual Information

In this section, we will extend the sufficient condition for bilevel boundedness presented
in Section 5.2.1. Analogously to (Ui), we introduce another linear problem using lower-
level dual information defined for i ∈ {1, ..., n2 + ny}:

ξDi = min
∆x,∆y,∆λ

c⊤∆x+ d⊤1 ∆y (UD
i )

s.t. A1∆x+B1∆y ≤ 0

A2∆x+B2∆y ≤ 0

B⊤
2 ∆λ ≥ 0

0 ≤ ∆x,∆y,∆λ ≤ 1

∆λ ∈ D∆
i

where D∆
i ensures that once active, the lower-level dual constraint i remains active

along the direction (∆x,∆y,∆λ):

D∆
i = {∆λ : ∆λi = 0}, for i ∈ {1, ..., n2}

D∆
i+n2

= {∆λ : (B⊤
2 ∆λ)i = 0}, for i ∈ {1, ..., ny}

The problems (Ui) and (UD
i ), along with Lemma 1, allow us to strengthen the

previous sufficient conditions for bilevel boundedness in Theorem 4.
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Theorem 5. Assume (B) is feasible. If ∃i ∈ {1, . . . , n2 + ny} : (ξi = 0) and (ξDi = 0),
then (B) is bounded.

Proof. Assume (B) is feasible. We prove this result by proving its contrapositive: If (B)
is unbounded, then ∀i ∈ {1, . . . , n2 + ny} : (ξi < 0) or (ξDi < 0).

Assuming (B) is unbounded, then there exists (x, y, λ) a bilevel feasible point and
(∆x,∆y,∆λ) a direction of unboundedness at (x, y, λ).

Given Lemma 1, we know there exists ω ∈ {1, 2}n2+ny , such that (x, y, λ) ∈ Pω, and
(∆x,∆y,∆λ) is a direction along Pω. This is:

(∆x,∆y) ∈ H∆
i ∀i : ωi = 1

(∆λ) ∈ D∆
i ∀i : ωi = 2

Assume without loss of generality that (∆x,∆y,∆λ) ≤ 1.
Let k ∈ {1, . . . , n2+ny}. If ωk = 1, then (∆x,∆y) is a feasible solution of (Uk) with

a negative objective value. Therefore, ξk < 0. If ωk = 2, then (∆x,∆y,∆λ) is a feasible
solution of (UD

k ) with a negative objective value. Therefore, ξDk < 0.
Hence, either (Uk) or (UD

k ) have a strictly negative objective. By arbitrariness of
the choice of k, we conclude that ∀i ∈ {1, . . . , n2 + ny} : (ξi < 0) or (ξDi < 0).

The worst-case scenario for this theorem involves solving 2(n2+ny) linear problems,
which is worse than the worse-case scenario in Theorem 4 requiring the solution of
(n2+ny) linear problems. However, provided the correct constraint index i, Theorem 5
allows us to guarantee bilevel boundedness by solving only two linear optimization
problems. While in Theorem 4 we have to check every constraint index, in Theorem 5
we merely need to find one that verifies the assumptions.

Finally, note that the converse of Theorem 5 does not hold in general, as we illustrate
in Example 7.

Example 7 (Counterexample for Converse of Theorem 5). Consider the linear bilevel
problem in Case 3 of Example 5 illustrated in Figure 7. In that example, the constraint
(∆λ ∈ D∆

i ) of (UD
i ) is ∆λ = 0 for both indexes i ∈ {1, 2}. Furthermore, (∆x,∆y,∆λ) =

(0, 1, 0) is a feasible solution of (UD
i ) for i ∈ {1, 2}, and it has a strictly negative objective

value.
Therefore, (UD

i ) has a strictly negative optimal value for i ∈ {1, 2}, representing the
dual constraints (λ ≥ −1) and (λ ≥ 0). Consequently, the assumption of Theorem 5
does not hold. However, (B) is bounded as FB = {(x, y) = (2, 0)}.

6 Conclusion

In this paper, we investigated linear bilevel problems and, in particular, their feasible
set in order to better understand when bilevel problems are unbounded or infeasible,
especially those with unbounded relaxations.
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We began by showing that the HPR+DF relaxation with lower-level dual constraints
helps to detect when a bilevel is infeasible due to its lower-level problem being un-
bounded. In fact, we showed that the lower-level value function is well-defined for every
feasible point of (HPR+DF).

Moreover, we studied bilevel problems whose relaxations are unbounded, since these
problems can be finite optimal, unbounded, or infeasible. In this context, we derived
ways to conclude about the optimality status of a bilevel when its relaxation is un-
bounded. Namely, we designed a mechanism to determine whether a bilevel problem
with bounded lower-level variables is unbounded. For the general case when neither
upper- nor lower-level variables are known to be bounded, we derived two sets of suf-
ficient conditions for bilevel boundedness. These conditions use information about the
structure of the inducible region and the importance of lower-level faces in its represen-
tation and require solving linear models.

Finally, we also highlighted a key difference between redundancy in the single-level
and the bilevel settings. We concluded that constraints implied by others are not always
redundant for the bilevel problem. In other words, removing such constraints can alter
the inducible region and even the optimality status of the bilevel problem.

Future research could focus on determining the complexity of deciding whether a
linear bilevel problem admits a direction of unboundedness. Additionally, it would be
interesting to investigate ways to refine the subset I of lower-level faces containing the
inducible region (see Theorem 2). Reducing this subset would strengthen the sufficient
conditions for bilevel boundedness presented in Theorem 4. Another possible next step
is to further study lower-level redundant constraints, which cannot be implied only by
lower-level constraints and have properties that might make them bilevel-redundant.
Lastly, when bilevel boundedness has been guaranteed, the next step should be to de-
velop mechanisms to generate cuts that bound the feasible set of the relaxation without
excluding bilevel-feasible solutions.
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[10] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl, On the Use of Intersection
Cuts for Bilevel Optimization, Mathematical Programming, 172 (2018), pp. 77–103.

[11] R. G. Jeroslow, The Polynomial Hierarchy and a Simple Model for Competitive
Analysis, Mathematical Programming, 32 (1985), pp. 146–164.
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