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Abstract

So far, robust optimization have focused on computing solutions resilient
to data uncertainty, given an uncertainty set representing the possible re-
alizations of this uncertainty. Here, instead, we are interested in answering
the following question: once a solution of a problem is given, which is the
largest uncertainty set that this solution can support? We address this
question for a popular uncertainty set used in robust optimization, the
cardinality constrained one, proving that an answer can be provided in
polynomial time.

keywords: robust optimization, cardinality constrained uncertainty, com-
puting the largest uncertainty set.

1 Introduction

Consider the optimization problem DP below, where I and J are the sets of
the indices of constraints and variables, respectively, and N ⊆ J contains the
indices of the variables that are required to be integer.

DP max cTx

Ax ≤ b

xj ∈ Z j ∈ N

Traditionally, a method for solving optimization problem DR assumes that the
problem data, that is, constraint matrix A, right-hand side vector b and ob-
jective coefficients c, are known when the problem is solved and that they are
constant over time. If this is not true, as it is the case in most problems coming
from real-life applications, the computed solution may degrade its performances
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or even become feasible, if some modifications in the problem data occur at some
point. For this reason, methodologies for handling data uncertainty, such as sim-
ulation [1, 2], stochastic programming [3, 4] and robust optimization [5, 6], have
received an increasing attention in the literature and have been massively used
for solving applied problems (see, e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).
These techniques acknowledge the possibility that the problem data may be af-
fected by some level of uncertainty and their aim is to produce a solution that
is resilient to data uncertainty.

Among the available approaches to handle data uncertainty, in the present pa-
per we focus on robust optimization [5]. Under this framework, it is assumed
that there exists a given set of values, or realizations, of the problem data that
are of interest, whereas the others are supposed to be unlikely to happen and
just ignored. The set of the considered realizations is known as the uncertainty
set and several ways to model it have been proposed in the literature, including
both general purpose frameworks [19, 20] and application-driven sets [17, 21].
The real probability distribution is unknown and the aim of robust optimization
methods is to compute the best solution among the ones that are feasible for
any realization of the uncertainty in the given uncertainty set.

We consider here the robust optimization framework defined in [20]. That is:
the uncertainty only affects matrix A; we must use the same solution x, in-
dependently of the realization of the uncertainty; the uncertainty is expressed
using the cardinality constrained model. In the cardinality constrained model,
each uncertain entry aij of matrix A can be regarded as a symmetric bounded
random variable [22], whose probability distribution is unknown, but for which
a nominal value āij and a maximum deviation δij ≥ 0 from the nominal value
are available. Hence, aij takes values in the interval [āij − δij , āij + δij ]. At
most Γi parameters can deviate from the nominal value at the same time in
constraint i ∈ I. In a worst case realization, if parameter aij deviates from the
nominal value, the deviation is the largest possible, that is, either aij = āij +δij
or aij = āij − δij . If a solution is resilient to these worst case realizations, then
it is resilient to any realization in the set. We assume, without loss of generality,
that Γi is integer for any i ∈ I.

Definition 1.1. Let zij be a binary variable that takes value 1 if parameter aij
deviates from the nominal value and 0 otherwise. Any worst case realization of
the uncertainty for constraint i ∈ I corresponds to a vector zi and, therefore,
with a little abuse of notation, we regard Ui(Γi) as the uncertainty set.

Ui(Γi) =

zi ∈ {0, 1}|J| :
∑
j∈J

zij ≤ Γi


Under this framework, computing a robust solution x means solving the opti-
mization problem RP below.

RP max cTx
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∑
j∈J

āijxj + max
zi∈Ui(Γi)

∑
j∈J

δij |xj |zij ≤ bi i ∈ I

xj ∈ Z j ∈ N

The inner max computes the worst case realization in Ui(Γi) for solution x. If
zij = 1 and xj > 0, then the worst value of parameter aij corresponds to the end

of the interval, that is, it takes value aij + δij . If zij = 1 and xj < 0, then the
worst case value is the beginning of the interval, that is, aij−δij . It follows that
the contribution due to the deviation that must be considered for parameter aij
when zij = 1 is δij |xj |.

Value Γi represents the level of robustness of the computed solution with re-
spect to constraint i ∈ I: when Γi increases, the computed solution becomes
more robust, because it is resilient to more realizations of the uncertainty, but
it is also more expensive; when Γi decreases, the solution protects against less
realizations of the uncertainty, but it is cheaper. This is the so-called price of
robustness [20]. Values δij represent, instead, the level of uncertainty of param-
eter aij and the confidence in the nominal value āij : if δij = 0, then parameter
aij is not uncertain, as it always assumes the nominal value āij ; the larger δij ,
the larger the level of uncertainty of aij and the smaller the confidence in nom-
inal value āij . As it is easy to see, the larger Γi and δij , j ∈ J , the larger the
uncertainty set.

While it is known which is the probability that a constraint i ∈ I is violated by
solution x̄ when more than Γi parameters change at the same time [20], no ro-
bust optimization study investigates which is the largest uncertainty set that a
given solution x̄ can handle. This is not only an interesting theoretical question,
but also has some relevance in practical applications of robust optimization. In-
deed, although a solution might have been computed using the best available
approach to handle data uncertainty, no method considers the possibility that
the information used to determine the uncertainty set (or the probability distri-
bution, for stochastic methods) can become, at a certain point, unreliable. In
real-life problems, it may happen that the lifetime of the implemented solution
may be very long, making any estimation outdated after some time, or some
unexpected phenomena can arise, deeply changing the whole system, beyond
any prediction.

Consider, for example, the problem of designing a telecommunication network:
once realized, the network is supposed be used for a very long time (decades),
given the cost and the time effort required to build it. Although sophisticated
prediction methods may have been used to forecast future traffic (uncertainty
set), after some time any prediction becomes naturally obsolete. Moreover,
some technological innovations that could not be predicted when the network
was realized (e.g., smartphones), contribute to delineate a completely different
scenario with respect to the initial assumptions. Similarly, if one has to locate
some health services over a territory, it may happen that these services will no
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longer correspond to the needs of the population of that territory at some point,
because the population may increase, decrease or modify its age structure after
some (long) time. In addition, an unexpected pandemic may occur, chang-
ing the perspective completely, and possibly permanently, on health services
and population needs. As a consequence, there are many systems (solutions)
that either were not planned in a robust way or were planned using predictions
that are now obsolete. Those solutions may not be immediately modifiable and,
then, it would be interesting to know how long they can still be used, despite the
changes that occurred in the meantime, before major modifications are required.

To fill this gap, the focus of this paper is not on how to compute robust solutions,
but on how to find the largest possible uncertainty set that a given solution
can support, that is, on computing the level of robustness and the increase in
the level of uncertainty that a given solution x̄ can handle, without becoming
infeasible. Formally, we want to answer the following questions.

1. If new nominal and/or deviation values replace the old ones (or deviations
are introduced for the first time), which is the maximum level of robustness
that solution x̄ can guarantee?

2. If we want to ensure a given level of robustness, which is the maximum
increase in the uncertainty level (that is, in the deviation values) that we
can accept, before x becoming infeasible?

We will show that it is possible to answer to both questions in polynomial
time. In §2 we address the first question. In §3 the second one is considered.
Conclusions are given in §4.

2 The Maximum Robustness problem

The first question corresponds to the Maximum Robustness (MR) problem be-
low.

Problem 2.1. Given a solution x̄ and values āij and δij for i ∈ I, j ∈ J , the
MR problem consists of determining the largest Γ for which x̄ remains feasible
for any realization of the uncertainty, that is, value Γ∗ = mini∈I{Γ∗i }, where Γ∗i
is the largest value for which constraint i is still satisfied.

Assume that x̄ is feasible for the DR problem, that is, when no parameter
deviates from the nominal value (aij = āij for any j ∈ J). Γ∗i can be computed
solving the problem below.

MRi
x̄ min Γi∑

j∈J
āij x̄j + max

zi∈Ui(Γi+1)

∑
j∈J

δij |x̄j |zij > bi

Γi ∈ Z+
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Recall that x̄ is given, the only variable of the outer problem is Γi, while in the
inner max, when both Γi and x̄ are constant, the variables are represented by
vector zi. Problem MRi

x̄ computes the smallest value Γi for which x̄ satisfies
constraint i for any realization in uncertainty set Ui(Γi), while this is no longer
true for Ui(Γi + 1). MRi

x̄ always admits feasible solution Γi = 0, since x̄ is a
feasible solution of DR.

We show below that Γ∗i can be computed in polynomial time by finding the
minimum cardinality cover of a binary knapsack. Denote by di the amount
bi −

∑
j∈J āij x̄j and let wi

j be equal to δij |x̄j |.

Theorem 2.1. Solving MRi
x̄ amounts to compute a minimum cardinality cover

of the knapsack below.

K =

zi ∈ {0, 1}|J| :
∑
j∈J

wi
jz

i
j ≤ di


Proof. Recall that zi is the incident vector of a set of parameters that deviate
from the nominal value at the same time. The vectors corresponding to devia-
tions supported by x̄, that is, to deviations that do not lead to the violation of
constraint i, correspond to the following set.zi ∈ {0, 1}|J| :

∑
j∈J

āij x̄j +
∑
j∈J

δij |x̄j |zij ≤ bi


Using di and wi defined above, it becomes set K. Note that, since we as-
sumed that x̄ is feasible when all the parameters are at the nominal value,
then

∑
j∈J āij x̄j ≤ bi and, hence, di ≥ 0. Moreover, since δij ≥ 0, then

wi
j = δij |x̄j | ≥ 0 for any j ∈ J . A cover of K is a set C ⊆ J such that∑
i∈C w

i
j > di. It corresponds to a set of variables zij that cannot take value

1 at the same time, without violating the considered inequality, that is, to a
vector zi not supported by x̄. Let C∗ be a minimum cardinality cover of K,
that is, C∗ ∈ arg min{|C| : C is a cover of K}. Since C∗ is a cover of K, then
Γ∗i ≤ |C∗| − 1, as C∗ represents a vector zi not supported by x̄. Since C∗ is
a minimum cardinality cover, then no set with less than |C∗| elements violates
constraint i. It follows that Γ∗i = |C∗| − 1.

A polynomial time algorithm for computing a minimum cardinality cover of K
is illustrated below.

Theorem 2.2. A minimum cardinality cover of K can be computed in polyno-
mial time in O(|J | log |J |).

Proof. Order the variables zij , j ∈ J in non decreasing order with respect to

values wi, with ties broken arbitrarily. Ordering vector wi can be done in
O(|J | log |J |). Start adding to set C, initially empty, an index j at a time,
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according to the order, and stop as soon as
∑

j∈C w
i
j > di or C = J . Assume

that, when the algorithm terminates, C ⊂ J . Then, C is a minimum cardinality
cover of K. In fact, by construction, no D ⊂ C is a cover. Moreover, for any
j ∈ C and h /∈ C, wi

j ≥ wi
h and, hence, we cannot reduce the number of elements

in C by replacing them with the ones outside. If C = J , then no cover exists
and, hence, x̄ supports any realization of the uncertainty in Ui(|J |).

3 The Maximum Uncertainty Level problem

The second question corresponds to the Maximum Level of Uncertainty (MUL)
problem that follows. Given to modified external conditions, deviation values δ
could become no longer reliable, because the level of uncertainty in the system
could increase. Since the real probability distribution is unknown, we assume
here that, if the uncertainty in the system increases, all the parameters are
affected in the same way, that is, the increasing in the deviation values is the
same for all of them.

Problem 3.1. Given x̄ and values Γi > 0, āij and δij for i ∈ I, j ∈ J (δ = 0 if
x̄ was computed without considering any uncertainty), the MUL problem consists
of determining the largest increase λ for values δij, such that x̄ remains feasible
for any realization, that is, value λ∗ = mini∈I{λ∗i }, where λ∗i is the maximum
increase in the deviation values for constraint i ∈ I.

Assume that x̄ is a feasible solution of RP for the given ā, δ and Γi, although
it is not necessarily optimal for the considered Γi. Value λ∗i corresponds to the
optimal solution of the problem below.

MULi
x̄ maxλi∑

j∈J
āij x̄j + max

zi∈Ui(Γi)

∑
j∈J

(δij + λi)|x̄j |zij ≤ bi

λi ≥ 0

Recall that Γi is a constant value here. The only variable of the outer problem
is λi, while in the inner max, where also λi is regarded as a constant, the
variables are represented by vector zi. MULi

x̄ always admits feasible solution
λi = 0, since x̄ is a feasible solution of RP for the given ā, δ and Γi. Recall
that di = bi +

∑
j∈J āij x̄j ≥ 0 and wi

j = δij |x̄i|. We show below how to obtain
a problem without the inner max by linear duality.

Theorem 3.1. The MULi
x̄ problem can be solved by solving the problem below.

MULslix̄ maxλi

Γiαi +
∑
j∈J

βi
j ≤ di

αi + βi
j − |x̄j |λi ≥ wi

j j ∈ J
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λi ≥ 0, αi ≥ 0

βi
j ≥ 0 j ∈ J

Proof. Following what done in [20], we can exploit linear duality to deal with
the inner max of problem MULi

x̄. The inner problem and its dual are reported
below.

P max
∑
j∈J

(δij + λi)|x̄j |zij D min Γiαi +
∑
j∈J

βi
j

(αi)
∑
j∈J

zij ≤ Γi (zij) αi + βi
j ≤ (δij + λi)|x̄j | j ∈ J

(βi
j) 0 ≤ zij ≤ 1 j ∈ J αi ≥ 0,βi ∈ R|J|+

By strong duality, since the primal problem P is feasible and bounded for any
λi, so is the dual and the two problems produce the same optimal value. Hence,
one can replace the primal by the dual in formulation MULi

x̄. While the max
is not redundant if we use P , the min is redundant if we use D, since we have
a less than or equal to constraint. Therefore, the min can be eliminated and,
setting di = bi−

∑
j∈J āij |x̄i| and wi

j = δij |x̄i|, we obtain problem MULslix̄.

Given the above transformation, we can prove that the problem of computing
the maximum increase λ∗i of uncertainty that x̄ can handle is polynomially
solvable.

Theorem 3.2. Value λ∗i can be computed in polynomial time.

Proof. Value λ∗i is the optimal value of the compact linear programming for-
mulation MULslix̄ and linear programming problems are polynomially solvable
[23].

It is easy to see that we can use the same arguments to prove that the above
results also holds when: δ > 0 and the deviations change from δij to (1+λi)δij ;
the deviations are independent from one another and they change from δij to
δij+τij and λi =

∑
j∈J τij ; δ > 0, the deviations are independent of one another

and they change from δij to (1− τij)δij and λi = minj∈J{τij}.

4 Conclusions

Differently from the traditional robust optimization perspective, here we were
not interested in computing a robust solution, but the focus is on determining
the largest uncertainty set that a given solution can handle. We considered the
cardinality constrained uncertainty set, which is characterized by two parame-
ters: the deviations of the uncertain parameters from their nominal values, that
measure the level of uncertainty in the system; the number of parameters that
can deviate from the nominal value at the same time, that gives a measure of
the desired robustness. The larger the values of these parameters, the larger
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the uncertainty set. We proved that, for a given solution, the corresponding ro-
bustness and the maximum increase in the uncertainty level, that is, the largest
uncertainty set that it can support, can be computed in polynomial time.
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