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Abstract

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields
such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear
dynamics and imperfect observations, subject to additive noise, with the goal of minimizing a quadratic cost
function for the state and control variables. In this work, we consider a generalization of the discrete-time,
finite-horizon LQG problem, where the noise distributions are unknown and belong to Wasserstein ambiguity
sets centered at nominal (Gaussian) distributions. The objective is to minimize a worst-case cost across all
distributions in the ambiguity set, including non-Gaussian distributions. Despite the added complexity, we prove
that a control policy that is linear in the observations is optimal for this problem, as in the classic LQG problem.
We propose a numerical solution method that efficiently characterizes this optimal control policy. Our method
uses the Frank-Wolfe algorithm to identify the least-favorable distributions within the Wasserstein ambiguity
sets and computes the controller’s optimal policy using Kalman filter estimation under these distributions.

1. Introduction

The Linear Quadratic Regulator (LQR) is a classic control problem that has served as a building block for numerous
applications in engineering and computer science [3, 11], economics [24], or neuroscience [41]. It involves controlling
a system with linear dynamics and imperfect observations affected by additive noise, with the goal of minimizing a
quadratic state and control cost. Under the assumption that noise terms are independent and normally distributed
(a case referred to as Linear-Quadratic-Gaussian, or LQG), it is well known that the optimal control policy depends
linearly on the observations and can be obtained efficiently by using the Kalman filtering procedure and dynamic
programming [7].

Motivated by practical settings where noise distributions may not be readily available or may not be Gaussian,
this paper considers a discrete-time, finite-horizon generalization of the LQG setting where noise distributions are
unknown and are chosen adversarially from ambiguity sets characterized by a Wasserstein distance and centered
around nominal (Gaussian) distributions.

We show that, even under distributional ambiguity, the optimal control policy remains linear in the system’s
observations. Our proof is novel and does not rely on traditional recursive dynamic programming arguments.
Instead, we re-parametrize the control policy in terms of the purified state observations and we derive an upper
bound for the resulting minimax formulation by relaxing the ambiguity set (from a Wasserstein ball into a Gelbrich
ball) while simultaneously restricting the controller to linear dependencies. We then use convex duality to prove
that this upper bound matches a lower bound obtained by restricting the ambiguity set in the dual of the minimax
formulation. This implies the optimality of linear output feedback controllers, thus generalizing the classic results to
a distributionally robust setting.

We also find that the worst-case distribution is actually Gaussian, which leads to a very efficient algorithm for
finding optimal controllers. Specifically, we propose an algorithm based on the Frank-Wolfe first-order method
that at every step solves sub-problems corresponding to classic LQG control problems, using Kalman filtering and
dynamic programming. We show that this algorithm enjoys a sublinear convergence rate and is susceptible to
parallelization. Lastly, we implement the algorithm leveraging PyTorch’s automatic differentiation module and we
find that it yields uniformly lower runtimes than a direct method (based on solving semidefinite programs) across
all problem horizons.
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1.1. Literature Review
Our work is related to the literature on distributionally robust control, which seeks control policies that minimize
expected costs under the worst-case system evolution [10, 27, 28, 35, 44, 45]. Closest to our work are [23, 27]. [27]
proves the optimality of linear state-feedback control policies for a related minimax LQR model with a Wasserstein
distance but with perfect state observations. With perfect observations, the optimal policies in the classic LQR
formulation are independent of the noise distribution and are thus inherently already robust, so considering imperfect
observations is what makes the problem significantly more challenging in our case. [23] studies a minimax formulation
based on the Wasserstein distance with both state and observation noise but without any control policy, and focuses
solely on the problem of estimating the states. Several papers have considered robust formulations with imperfect
observations but for constrained systems [5, 6, 28], which are more challenging; the common approach is to restrict
attention to linear feedback policies for computational tractability, and without proving their optimality.

Also related is the recent literature stream on distributionally robust optimization using the Wasserstein distance
[30]. Within this stream, the closest work is [32, 38], which consider the problem of minimax mean-squared-error
estimation when ambiguity is modeled with a Wasserstein distance from a nominal Gaussian distribution. Our
proof builds on some ideas from these papers (e.g., relying on the Gelbrich distance in the construction of the
upper bound), which it combines with ideas from control theory on purified output-feedback to obtain the overall
construction. Also related is [2], which studies multistage distributionally robust problems with ambiguity sets
given by a nested Wasserstein distance for stochastic processes and identifies computationally tractable cases. For
a broader overview of developments related to optimal transport and Wasserstein distance with an emphasis on
computational tractability and applications in machine learning, we refer to [36].

Lastly, our paper is also related to literature that documents the optimality of linear/affine policies in (distribu-
tionally) robust dynamic optimization models. [9, 25] prove optimality for one-dimensional linear systems affected
by additive noise and with perfect state observations, but with general (convex) state and/or control costs, [22, 43]
provide computationally tractable approaches to quantifying the suboptimality of affine controllers in finite or
infinite-horizon settings, and [8, 17, 20] characterize the performance of affine policies in two-stage (distributionally)
robust dynamic models.

Notation. All random objects are defined on a probability space (Ω,F ,P). Thus, the distribution of any random
vector ξ : Ω→ Rd is given by the pushforward distribution Pξ = P ◦ ξ−1 of P with respect to ξ. The expectation
under P is denoted by EP[·]. For any t ∈ Z+, we set [t] = {0, . . . , t}.

2. Problem Definition

We consider a discrete-time linear dynamical system

xt+1 = Atxt +Btut + wt ∀t ∈ [T − 1] (1)

with states xt ∈ Rn, control inputs ut ∈ Rm, process noise wt ∈ Rn and system matrices At ∈ Rn×n and Bt ∈ Rn×m.
The controller only has access to imperfect state measurements

yt = Ctxt + vt ∀t ∈ [T − 1] (2)

corrupted by observation noise vt ∈ Rp, where Ct ∈ Rp×n and usually p ≤ n (so that observing yt would not
allow reconstructing xt even if there were no observation noise). The control inputs ut are causal, i.e., depend
on the past observations y0, . . . , yt but not on the future observations yt+1, . . . , yT−1. More precisely, the set of
feasible control inputs Uy is the set of random vectors (u0, u1, . . . , uT−1) where for every t there exists a measurable
control policy φt : Rp(t+1) → Rm such that ut = φt(y0, . . . , yt). Controlling the system generates costs that depend
quadratically on the states and the controls:

J =

T−1∑
t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT , (3)

where Qt ∈ Sn+ and Rt ∈ Sm++ represent the state and input cost matrices, respectively. The exogenous random vec-
tors x0, {wt}T−1

t=0 and {vt}T−1
t=0 are mutually independent and follow probability distributions given by Px0

, {Pwt
}T−1
t=0 ,

and {Pvt}T−1
t=0 , respectively. As the control inputs are causal, the system equations (2) imply that xt, ut and yt can

be expressed as measurable functions of the exogenous uncertainties x0 as well as ws and vs, s ∈ [t], for every t.
From now on we may thus assume without loss of generality that Ω = Rn × Rn×T × Rm×(T+1) is the space of
realizations of the exogenous uncertainties, F is the Borel σ-algebra on Ω and P = Px0 × (×T−1

t=0 Pwt)× (×T
t=0Pvt).
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In this context, the classic LQG model assumes that P is known and Gaussian, and seeks u ∈ Uy that minimizes
EP[J ]. Appendix §A reviews the standard approach for computing optimal control inputs by estimating states
through Kalman filtering techniques and using dynamic programming.

In contrast, we assume that P is only known to belong to an ambiguity setW , and we formulate a distributionally
robust LQG problem that seeks u ∈ Uy to minimize the worst-case expected cost:

max
P∈W

EP

[
T−1∑
t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT

]
. (4)

We construct the ambiguity setW as a ball based on the Wasserstein distance. Specifically, we assume that a nominal
Gaussian distribution P̂ = P̂x0

× (×T−1
t=0 P̂wt

) × (×T
t=0P̂vt) is available so that P̂x0

= N (0, X̂0), P̂wt
= N (0, Ŵt),

and P̂vt = N (0, V̂t) for all t ∈ [T − 1], and W is given by:

W =Wx0 × (×T−1
t=0 Wwt)× (×T−1

t=0 Wvt),

where

Wx0
= {Px0

∈ P(Rn) :W(P̂x0
,Px0

) ≤ ρx0
, EPx0

[x0] = 0}

Wwt = {Pwt ∈ P(Rn) :W(P̂wt ,Pwt) ≤ ρwt , EPwt
[wt] = 0}

Wvt = {Pvt ∈ P(Rm) :W(P̂vt ,Pvt) ≤ ρvt , EPvt
[vt] = 0},

and W is the 2-Wasserstein distance.

Definition 1 (2-Wasserstein distance). The 2-Wasserstein distance between two distributions P1 and P2 on Rd with
finite second moments is given by

W(P1,P2) =

(
inf

π∈Π(P1,P2)

∫
Rd×Rd

∥ξ1 − ξ2∥22 π(dξ1, dξ2)
) 1

2

,

where Π(P1,P2) denotes the set of all couplings, that is, all joint distributions of the random variables ξ1 and ξ2
with marginal distributions P1 and P2, respectively.

Our model strictly generalizes the classic LQG setting,1 which can be recovered by choosing ρx0 = ρwt = ρvt = 0.
The parameters ρ thus allow quantifying the uncertainty about the nominal model and building robustness to
mis-specification. We emphasize that the Wasserstein ambiguity set W contains many non-Gaussian distributions
and it is not readily obvious that the worst-case distribution in (4) is in fact Gaussian. However, the set W is also
non-convex, as it contains only distributions under which the exogenous uncertainties are independent, which makes
the distributionally robust LQG problem potentially difficult to solve.

3. Nash Equilibrium and Optimality of Linear Output Feedback Con-
trollers

We henceforth view the distributionally robust LQG problem as a zero-sum game between the controller, who
chooses causal control inputs, and nature, who chooses a distribution P ∈ W . In this section we show that this game
admits a Nash equilibrium, where nature’s Nash strategy is a Gaussian distribution P⋆ ∈ W and the controller’s
Nash strategy is a linear output feedback policy based on the Kalman filter evaluated under P⋆.

Purified Observations. Before outlining our proof strategy, we first simplify the problem formulation by re-
parametrizing the control inputs in a more convenient form (following [5, 6, 22]). Note that the control inputs in
the LQG formulation are subject to cyclic dependencies, as ut depends on yt, while yt depends on xt through (2),
and xt depends again on ut through (1), etc. Because these dependencies make the problem hard to analyze, it is
preferable to instead consider the controls as functions of a new set of so-called purified observations instead of the
actual observations yt.

1Our assumption that noise terms are zero-mean is consistent with the standard LQG model [7]. Requiring EPx0
[x0] = 0 is assumed

for clarity and without loss of generality.
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Specifically, we first introduce a fictitious noise-free system

x̂t+1 = Atx̂t +Btut ∀t ∈ [T − 1] and ŷt = Ctx̂t ∀t ∈ [T − 1]

with states x̂t ∈ Rn and outputs ŷt ∈ Rp, which is initialized by x̂0 = 0 and controlled by the same inputs ut as the
original system (2). We then define the purified observation at time t as ηt = yt − ŷt and we use η = (η0, . . . , ηT−1)
to denote the trajectory of all purified observations.

As the inputs ut are causal, the controller can compute the fictitious state x̂t and output ŷt from the observa-
tions y0, . . . , yt. Thus, ηt is representable as a function of y0, . . . , yt. Conversely, one can show by induction that yt
can also be represented as a function of η0, . . . , ηt. Moreover, any measurable function of y0, . . . , yt can be expressed
as a measurable function of η0, . . . , ηt and vice-versa [22, Proposition II.1]. So if we define Uη as the set of all
control inputs (u0, u1, . . . , uT−1) so that ut = ψt(η0, . . . , ηt) for some measurable function ψt : Rp(t+1) → Rm for
every t ∈ [T − 1], the above reasoning implies that Uη = Uy.

In view of this, we can rewrite the distributionally robust LQG problem equivalently as

p⋆ =

{
min
x,u,y

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uy, x = Hu+Gw, y = Cx+ v

=

{
min
x,u

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw,

(5)

where x = (x0, . . . , xT ), u = (u0, . . . , uT−1), y = (y0, . . . , yT−1), w = (x0, w0, . . . , wT−1), v = (v0, . . . , vT−1),
η = (η0, . . . , ηT−1), and R, Q, H, G and C are suitable block matrices (see Appendix §B for their precise definitions).
The latter reformulation involving the purified observations η is useful because these are independent of the inputs.
Indeed, by recursively combining the equations of the original and the noise-free systems, one can show that
η = Dw+ v for some block triangular matrix D (see Appendix §B for its construction). This shows that the purified
observations depend (linearly) on the exogenous uncertainties but not on the control inputs. Hence, the cyclic
dependencies complicating the original system are eliminated in (5).

Subsequently, we also study the dual of (5), defined as

d⋆ =

{
max
P∈W

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw.

(6)

The classic minimax inequality implies that p⋆ ≥ d⋆. If we can prove that p⋆ = d⋆, that (5) has a solution u⋆ and
that (6) has a solution P⋆, then (u⋆,P⋆) must be a Nash equilibrium of the zero-sum game at hand [37, Theorem 2].
However, because Uη is an infinite-dimensional function space and W is an infinite-dimensional, non-convex set of
non-parametric distributions, the existence of a Nash equilibrium (in pure strategies) is not at all evident. Instead,
our proof strategy will rely on constructing an upper bound for p⋆ and a lower bound for d⋆, and showing that
these match.

Upper Bound for p⋆. We obtain an upper bound for p⋆ by suitably enlarging the ambiguity setW and restricting
the controllers ut to linear dependencies. We enlarge W by ignoring all information about the distributions in W
except for their covariance matrices, and by replacing the Wasserstein distance with the Gelbrich distance. To that
end, we first define the Gelbrich distance on the space of covariance matrices.

Definition 2 (Gelbrich distance). The Gelbrich distance between the two covariance matrices Σ1,Σ2 ∈ Sd+ is given
by

G(Σ1,Σ2) =

√
Tr

(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
.

We are interested in the Gelbrich distance because of its close connection to the 2-Wasserstein distance. Indeed,
it is known that the 2-Wasserstein distance between two distributions with zero means is bounded below by the
Gelbrich distance between the respective covariance matrices.

Proposition 3.1 (Gelbrich bound [19, Theorem 2.1]). For any two distributions P1 and P2 on Rd with zero means
and covariance matrices Σ1,Σ2 ∈ Sd+, respectively, we have W(P1,P2) ≥ G(Σ1,Σ2).
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Recalling that X̂0, Ŵ t and V̂ t respectively denote the covariance matrices for x0, wt and vt under the nominal
distribution P̂, we can then define the following Gelbrich ambiguity set for the exogenous uncertainties:

G = Gx0 × (×T−1
t=0 Gwt)× (×T−1

t=0 Gvt),

where

Gx0
= {Px0

∈ P(Rn) : EPx0
[x0] = 0, EP[x0x

⊤
0 ] = X0, G(X0, X̂0) ≤ ρx0

}

Gwt
= {Pwt

∈ P(Rn) : EPwt
[wt] = 0, EP[wtw

⊤
t ] =Wt, G(Wt, Ŵt) ≤ ρwt

}

Gvt = {Pvt ∈ P(Rm) : EPvt
[vt] = 0, EP[vtv

⊤
t ] = Vt, G(Vt, V̂t) ≤ ρvt

}.

By construction, the random vectors x0, {wt}T−1
t=0 and {vt}T−1

t=0 are thus mutually independent under any P ∈ G. In
addition and as a direct consequence of Proposition 3.1, G constitutes an outer approximation for the Wasserstein
ambiguity set W, as summarized in the next result.

Corollary 1 (Gelbrich hull). We have W ⊆ G.

Because G coversW , we henceforth refer to it as the Gelbrich hull of the Wasserstein ambiguity setW . To finalize
our construction of the upper bound on p⋆, we focus on linear policies2 of the form u = q + Uη = q + U(Dw + v),
where q = (q0, . . . , qT−1), and U is a block lower triangular matrix

U =


U0,0

U1,0 U1,1

...
. . .

UT−1,0 . . . . . . UT−1,T−1

 . (7)

The block lower triangularity of U ensures that the corresponding controller is causal, which in turn ensures
that u ∈ Uη. In the following, we denote by U the set of all block lower triangular matrices of the form (7). An
upper bound on problem (5) can now be obtained by restricting the controller’s feasible set to causal controllers
that are linear in the purified observations η and by relaxing nature’s feasible set to the Gelbrich hull G of W. The
resulting bounding problem is given by

p⋆ =

{
min

U,q,x,u
max
P∈G

EP
[
u⊤Ru+ x⊤Qx

]
s.t. U ∈ U , u = q + U(Dw + v), x = Hu+Gw.

(8)

As we obtained (8) by restricting the feasible set of the outer minimization problem and relaxing the feasible set of
the inner maximization problem in (5), it is clear that p⋆ ≥ p⋆. Recall also that problem (5) constitutes an infinite-
dimensional zero-sum game, where the agents optimize over measurable policies and non-parametric distributions,
respectively. In contrast, the next proposition shows that problem (8) is equivalent to a finite-dimensional zero-sum
game.

Proposition 3.2. Problem (8) is equivalent to the optimization problem

p⋆ =

{
min
q∈RpT

U∈U

max
W∈GW
V ∈GV

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(9)

where

GW =

{
W ∈ Sn(T+1)

+ :
W = diag(X0,W0, . . . ,WT−1), X0 ∈ Sn+, Wt ∈ Sn+ ∀t ∈ [T − 1]

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt)
2 ≤ ρ2wt

∀t ∈ [T − 1]

}
GV =

{
V ∈ SpT+ : V = diag(V0, . . . , VT−1), Vt ∈ Sp+, G(Vt, V̂t)2 ≤ ρ2vt ∀t ∈ [T − 1]

}
.

We emphasize that Proposition 3.2 remains valid even if the nominal distribution P̂ fails to be normal. Note also
that, while nature’s feasible set in (8) is non-convex due to the independence conditions, the sets GW and GV are
convex and even semidefinite representable thanks to the properties of the squared Gelbrich distance.3 By dualizing

2Technically, the policies are affine because they include a constant term, but we retain the more common terminology that focuses
on the dependencies.

3Note that the ambiguity sets GW and GV appearing in (9) involve the squared Gelbrich distance, G(Σ1,Σ2)2. The reason is
that G(Σ1,Σ2)2 is known to be jointly convex in Σ1,Σ2 and semidefinite representable [32, Proposition 2.3], unlike the Gelbrich
distance G(Σ1,Σ2) itself, which is generally non-convex.
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the inner maximization problem, one can therefore reformulate the minimax problem (9) as a convex semidefinite
program (SDP). Even though this SDP is computationally tractable in theory, it involves O(T (mp + n2 + p2))
decision variables. For practically interesting problem dimensions, it thus quickly exceeds the capabilities of existing
solvers.

Lower Bound for d⋆. To derive a tractable lower bound on d⋆, we restrict nature’s feasible set to the family WN
of all normal distributions in the Wasserstein ambiguity set W. The resulting bounding problem is thus given by

d⋆ =

{
max
P∈WN

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw.

(10)

As we obtained (10) by restricting the feasible set of the outer maximization problem in (6), it is clear that d⋆ ≤ d⋆.
Next, we show that (10) can be recast as a finite-dimensional zero-sum game. This result critically relies on the
following known fact regarding the 2-Wasserstein distance between two normal distributions, which coincides with
the Gelbrich distance between their covariance matrices.

Proposition 3.3 (Tightness for normal distributions [21, Proposition 7]). For any two normal distributions
P1 = N (0,Σ1) and P2 = N (0,Σ2) with zero means we have W(P1,P2) = G(Σ1,Σ2).

With this, we can provide a finite-dimensional reformulation, as summarized in the next result.

Proposition 3.4. Problem (10) is equivalent to the optimization problem

d⋆ =

{
max

W∈GW
V ∈GV

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(11)

where GW and GV are defined exactly as in Proposition 3.2.

Proposition 3.4 relies on Proposition 3.3 and thus fails to hold unless P̂ is normal. Also, one can again
reformulate (11) as a tractable SDP by dualizing the inner minimization problem.

Conclusions. Propositions 3.2 and 3.4 reveal that problems (9) and (11) are dual to each other, that is, they can
be transformed into one another by interchanging minimization and maximization. The following main theorem
shows that strong duality holds irrespective of the problem data.

Theorem 3.5 (Strong duality of (9) and (11)). We have p⋆ = d⋆.

Theorem 3.5 follows immediately from Sion’s classic minimax theorem [39], which applies because GW and GV
are convex as well as compact thanks to [32, Lemma A.6].

By weak duality and the construction of the bounding problems (9) and (11), we trivially have d⋆ ≤ d⋆ ≤ p⋆ ≤ p⋆.
Theorem 3.5 reveals that all of these inequalities are in fact equalities, each of which gives rise to a non-trivial
insight. The first key insight is that (5) and (6) are strong duals.

Corollary 2 (Strong duality of (5) and (6)). We have p⋆ = d⋆.

We stress that, unlike Theorem 3.5, Corollary 2 establishes strong duality between two infinite-dimensional
zero-sum games. The second key implication of Theorem 3.5 is that the distributionally robust LQG problem (5) is
solved by a linear output-feedback controller.

Corollary 3 (The controller’s Nash strategy is linear in the observations). There exist U⋆ ∈ U and q⋆ ∈ Rm such
that the distributionally robust LQG problem (5) is solved by u⋆ = q⋆ + U⋆y.

The identity p⋆ = p⋆ readily implies that (5) is solved by a causal controller that is linear in the purified
observations. However, any causal controller that is linear in the purified observations η can be reformulated exactly
as a causal controller that is linear in the original observations y and vice-versa [6, Proposition 3]. Thus, Corollary 3
follows. The third key implication of Theorem 3.5 is that the dual distributionally robust LQG problem is solved by
a normal distribution.

Corollary 4 (Nature’s Nash strategy is a normal distribution). The dual distributionally robust LQG problem (6)
is solved by a distribution P⋆ ∈ WN .

Corollary 4 is a direct consequence of the identity d⋆ = d⋆. Note that the optimal normal distribution P⋆ is
uniquely determined by the covariance matrices W ⋆ and V ⋆ of the exogenous uncertain parameters, which can be
computed by solving problem (11). That the worst-case distribution is actually Gaussian is not a-priori expected
and is surprising given that the Wasserstein ball contains many non-Gaussian distributions.
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4. Efficient Numerical Solution of Distributionally Robust LQG Problems

Having proven these structural results, we next turn attention to the problem of finding the optimal strategies. Our
next result shows that, under a mild regularity condition, the optimal controller u⋆ of the distributionally robust
LQG problem (5) can be computed efficiently from P⋆.

Proposition 4.1 (Optimality of Kalman filter-based feedback controllers). If V̂t ≻ 0 for all t ∈ [T − 1], then
problem (6) is solved by a Gaussian distribution P⋆ under which vt has a covariance matrix V ⋆

t ≻ 0 for every t ∈ [T−1],
and (5) is solved by the optimal LQG controller corresponding to P⋆. Additionally, the optimal value of problem (9)
and its strong dual (11) does not change if we restrict GW and GV to G+W and G+V , respectively, where

G+W =
{
W ∈ GW : X0 ⪰ λmin(X̂0)I, Wt ⪰ λmin(Ŵt)I ∀t ∈ [T − 1]

}
,

G+V =
{
V ∈ GV : Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1]

}
.

This implies that the optimal controller can be computed by solving a classic LQG problem corresponding to
nature’s optimal strategy P⋆, which can be done very efficiently through Kalman filtering and dynamic programming
(see Appendix §A for details). It thus suffices to design an efficient algorithm for computing P⋆, which is uniquely
determined by the covariance matrices (W ⋆, V ⋆) that solve problem (11). To this end, we first reformulate (11) as

max
W∈G+

W ,V ∈G+
V

f(W,V ), (12)

where we restrict GW and GV to G+W and G+V , respectively, due to Proposition 4.1, and where f(W,V ) denotes the
optimal value function of the inner minimization problem in (11). As (11) is a reformulation of (10) and as the family
of all causal purified output-feedback controllers matches the family of causal output-feedback controllers, f(W,V )
can also be viewed as the optimal value of the classic LQG problem corresponding to the normal distribution P
determined by the covariance matrices W and V . These insights lead to the following structural result.

Proposition 4.2. f(W,V ) is concave and β-smooth in (W,V ) ∈ G+W × G
+
V for some β > 0.

By Proposition 4.2, it is possible to address problem (12) with a Frank-Wolfe algorithm [12, 14, 15, 16, 18, 29].
Each iteration of this algorithm solves a direction-finding subproblem, that is, a variant of problem (12) that
maximizes the first-order Taylor expansion of f(W,V ) around the current iterates.

max
LW∈G+

W ,LV ∈G+
V

⟨∇W f(W,V ), LW −W ⟩+ ⟨∇V f(W,V ), LV − V ⟩ (13)

The next iterates are then obtained by moving towards a maximizer (L⋆
W , L⋆

V ) of (13), i.e., we update

(W,V )← (W,V ) + α · (L⋆
W −W,L⋆

v − V ),

where α is an appropriate step size. The proposed Frank-Wolfe algorithm enjoys a very low per-iteration complexity
because problem (13) is separable. To see this, we reformulate (13) as

max
LW ,LV

⟨∇X0f(W,V ), LX0−X0⟩+
T−1∑
t=0

⟨∇Wtf(W,V ), LWt−Wt⟩+ ⟨∇Vtf(W,V ), LVt − Vt⟩

s.t. G(LX0
, X̂0)

2 ≤ ρ2x0
, G(LWt

, Ŵt)
2 ≤ ρ2wt

, G(LVt
, V̂t)

2 ≤ ρ2vt
∀t ∈ [T − 1]

LX0
⪰ λmin(X̂0)I, LWt

⪰ λmin(Ŵt)I, LVt
⪰ λmin(V̂t)I ∀t ∈ [T − 1].

Hence, (13) decomposes into 2T + 1 separate subproblems that can be solved in parallel. That is, for any matrix
Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} we solve a separate subproblem of the form

max
LZ⪰λmin(Ẑ)

{
⟨∇Zf(W,V ), LZ − Z⟩ : G(LZ , Ẑ)

2 ≤ ρ2z
}
. (14)

These subproblems can be reformulated as tractable SDPs and are thus amenable to efficient off-the-shelf solvers.
By [32, Theorem 6.2], however, one can exploit the structure of the Gelbrich distance in order to reduce (14) to
a univariate algebraic equation that can be solved to any desired accuracy δ > 0 by a highly efficient bisection
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algorithm. We say that Lδ
Z is a δ-approximate solution of problem (14) for some δ ∈ (0, 1) if Lδ

Z is feasible in (14)
and if

⟨∇Zf(W,V ), Lδ
Z − Z⟩ ≥ δ⟨∇Zf(W,V ), L⋆

Z − Z⟩,

where L⋆
Z is an exact maximizer of (14). Note that, by the concavity of f(W,V ), the inner product on the right-hand

side is nonnegative and vanishes if and only if Z maximizes f(W,V ) over the feasible set of (14). For further details
we refer to Appendix §E.

Remark 1 (Automatic differentiation). Recall that f(W,V ) coincides with the optimal value of the LQG problem
corresponding to the normal distribution P determined by the covariance matrices W and V . By using the
underlying dynamic programming equations, f(W,V ) can thus be expressed in closed form as a serial composition of
O(T ) rational functions (see Appendix §A for details). Hence, ∇Zf(W,V ) can be calculated symbolically for any
Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} by repeatedly applying the chain and product rules. However, the resulting
formulas are lengthy and cumbersome. We thus compute the gradients numerically using backpropagation. The cost
of evaluating ∇Zf(W,V ) is then of the same order of magnitude as the cost of evaluating f(W,V ).

A detailed description of the proposed Frank-Wolfe method is given in Algorithm 1 below.

Algorithm 1 Frank-Wolfe algorithm for solving (12)

Input: initial iterates W , V , nominal covariance matrices Ŵ , V̂ , oracle precision δ ∈ (0, 1)

1: set initial iteration counter k = 0
2: while stopping criterion is not met do
3: for Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} do in parallel
4: compute ∇Zf(W,V )
5: find a δ-approximate solution Lδ

Z of (14)
6: end
7: g ← ⟨∇W f(W,V ), Lδ

W −W ⟩+ ⟨∇V f(W,V ), Lδ
V − V ⟩

8: (W,V )← (W,V ) + 2/(2 + k) · (Lδ
W −W,Lδ

V − V )
9: end while

10: Output: W and V

By [26, Theorem 1 and Lemma 7], which applies thanks to the structural properties of f(W,V ) established in
Proposition 4.2, Algorithm 1 attains a suboptimality gap of ϵ within O(1/ϵ) iterations.

5. Numerical Experiments

All experiments are run on an Intel i7-8700 CPU (3.2 GHz) machine with 16GB RAM. All linear SDP problems
are modeled in Python 3.8.6 using CVXPY [1, 13] and solved with MOSEK [31]. The gradients of f(W,V ) are
computed via Pymanopt [42] with PyTorch’s automated differentiation module [33, 34].

Consider a class of distributionally robust LQG problems with n = m = p = 10. We set At = A to have
ones on the main diagonal and the superdiagonal and zeroes everywhere else (Ai,j = 1 if i = j or i = j − 1
and Ai,j = 0 otherwise), and the other matrices to Bt = Ct = Qt = Rt = Id. The Wasserstein radii are set to
ρx0

= ρwt
= ρvt = 10−1. The nominal covariance matrices of the exogenous uncertainties are constructed randomly

and with eigenvalues in the interval [1, 2] (so as to ensure they are positive definite). The code is publicly available
in the Github repository https://github.com/RAO-EPFL/DR-Control.

The optimal value of the distributionally robust LQG problem (5) can be computed by directly solving the
SDP reformulation of (11) with MOSEK or by solving the nonlinear SDP (12) with our Frank-Wolfe method
detailed in Algorithm 1. We next compare these two approaches in 10 independent simulation runs, where we set a
stopping criterion corresponding to an optimality gap below 10−3 and we run the Frank-Wolfe method with δ = 0.95.
Figure 1a illustrates the execution time for both approaches as a function of the planning horizon T ; runs where
MOSEK exceeds 100s are not reported. Figure 1b visualizes the empirical convergence behavior of the Frank-Wolfe
algorithm. The results highlight that the Frank-Wolfe algorithm achieves running times that are uniformly lower
than MOSEK across all problem horizons and is able to find highly accurate solutions already after a small number
of iterations (50 iterations for problem instances of time horizon T = 10).
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Figure 1: (a) Execution time for MOSEK and Frank-Wolfe algorithm over 10 simulation runs as a function of the
horizon T (solid lines show the mean and the shaded areas correspond to 1 standard deviation). (b) Convergence of
optimality gap for Frank-Wolfe algorithm with horizon T = 10.

6. Concluding Remarks

In view of the popularity of LQG models, the results in this work carry important theoretical and practical
implications. Despite considering a generalization of the classic LQG setting where the noise affecting the system
dynamics and the observations follows unknown (and potentially non-Gaussian) distributions, our findings suggest
that certain classic structural results continue to hold and that highly efficient methods can be adapted to tackle this
more realistic (and more challenging) problem. Specifically, that control policies depending linearly on observations
continue to be optimal and that the worst-case distribution turns out to be Gaussian is surprising from a theoretical
angle and also has direct practical implications, because it allows leveraging the highly efficient Kalman filter in
conjunction with dynamic programming and a Frank-Wolfe method to design an efficient computational procedure
for solving the problem.

The results also raise several important questions that warrant future exploration. First, it would be highly
relevant to consider extensions where the system matrices are also affected by uncertainty, as this captures many
applications of practical interest in, e.g., reinforcement learning or revenue management. Second, it would be
worth exploring an infinite horizon setting or relaxing the assumption that the nominal distribution is Gaussian, as
both assumptions may be limiting the practical appeal of the framework. Third, one could also attempt to prove
structural optimality results or design novel algorithms for generating high-quality suboptimal solutions for the
more general setting involving constraints on states and/or control inputs. Lastly, one could improve the present
algorithmic proposal by exploiting topological properties of the objective so as to guarantee linear convergence rates
in the Frank-Wolfe procedure.

Acknowledgements. This research was supported by the Swiss National Science Foundation under the NCCR
Automation, grant agreement 51NF40_180545. Dan A. Iancu would like to acknowledge INSEAD for financial
support during the duration of the project.
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Appendix

The appendix is structured as follows. Appendix §A presents the well-known solution to the classic LQG problem
using dynamic programming and Kalman Filter estimation. Appendix §B provides the definitions of the stacked
system matrices utilized in the compact formulation (5) of the distributionally robust LQG problem. Appendix §C
contains the proofs of the formal statements in the main text and provides additional technical results. Appendix §D
derives the SDP reformulation of the dual problem (11). Appendix §E, finally, elaborates on the bisection algorithm
used for solving the linearization oracle of the Frank-Wolfe algorithm.

A. Solution of the LQG Problem

If x0 ∼ N (0, X0), wt ∼ N (0,Wt) and vt ∼ N (0, Vt) for all t ∈ [T − 1], then the classic LQG problem can be solved
efficiently via dynamic programming; see, e.g., [7]. That is, the unique optimal control inputs satisfy u⋆t = Ktx̂t
for every t ∈ [T − 1], where Kt ∈ Rn×n is the optimal feedback gain matrix, and x̂t = EP[xt|y0, . . . , yt] is the
minimum mean-squared-error estimator of xt given the observation history up to time t. Thanks to the celebrated
separation principle, Kt can be computed by pretending that the system is deterministic and allows for perfect
state observations, and x̂t can be computed while ignoring the control problem.

To compute Kt, one first solves the deterministic LQR problem corresponding to the LQG problem at hand. Its
value function x⊤t Ptxt at time t is quadratic in xt, and Pt obeys the backward recursion

Pt = A⊤
t Pt+1At +Qt −A⊤

t Pt+1Bt(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1] (A.15a)

initialized by PT = QT . The optimal feedback gain matrix Kt can then be computed from Pt+1 as

Kt = −(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1]. (A.15b)

Since xt and (y0, . . . , yt) are jointly normally distributed, the minimum mean-squared-error estimator x̂t can be
calculated directly using the formula for the mean of a conditional normal distribution. Alternatively, however,
one can use the Kalman filter to compute x̂t recursively, which is significantly more insightful and efficient. The
Kalman filter also recursively computes the covariance matrix Σt of xt conditional on y0, . . . , yt and the covariance
matrix Σt+1|t of xt+1 conditional on y0, . . . , yt evaluated under P. Specifically, these covariance matrices obey the
forward recursion

Σt = Σt|t−1 − Σt|t−1C
⊤
t (CtΣt|t−1C

⊤
t + Vt)

−1CtΣt|t−1

Σt+1|t = AtΣtA
⊤
t +Wt

}
∀t ∈ [T − 1] (A.16)

initialized by Σ0|−1 = X0. Using Σt, we then define the Kalman filter gain as

Lt = ΣtC
⊤
t V

−1
t ∀t ∈ [T − 1]

which allows us to compute the minimum mean-squared-error estimator via the forward recursion

x̂t+1 = Atx̂t +Btut + Lt+1 (yt+1 − Ct+1(Atx̂t +Btut)) ∀t ∈ [T − 1]

initialized by x̂0 = L0y0. One can also show that the optimal value of the LQG problem amounts to

T−1∑
t=0

Tr((Qt − Pt)Σt) +

T∑
t=1

Tr(Pt(At−1Σt−1A
⊤
t−1 +Wt−1)) + Tr(P0X0). (A.17)

B. Definitions of Stacked System Matrices

The stacked system matrices appearing in the distributionally robust LQG problem (5) are defined as follows. First,
the stacked state and input cost matrices Q ∈ Sn(T+1) and R ∈ SmT are set to

Q =


Q0

Q1

. . .
QT

 and R =


R0

R1

. . .
RT−1

 ,
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respectively. Similarly, the stacked matrices appearing in the linear dynamics and the measurement equations
C ∈ RpT×n(T+1), G ∈ Rn(T+1)×n(T+1) and H ∈ Rn(T+1)×mT are defined as

C =


C0 0

C1 0
. . . . . .

CT−1 0

 , G =


A0

0

A1
0 A1

1
...

. . .
AT

0 AT
1 . . . AT

T


and

H =



0
A1

1B0 0
A2

1B0 A2
2B1 0

...
. . .

... 0
AT

1 B0 AT
2 B1 . . . . . . AT

TBT−1


,

respectively, where At
s =

∏t−1
k=sAk for every s < t and At

s = In for s = t.
Using the stacked system matrices, we can now express the purified observation process η as a linear function of

the exogenous uncertainties w and v that is not impacted by u; see also [5, 40]

Lemma B.1. We have η = Dw + v, where D = CG.

Proof of Lemma B.1. The purified observation process is defined as η = y − ŷ. Recall now that the observations of
the original system satisfy y = Cx+ v. Similarly, one readily verifies that the observations of the fictitious noise-free
system satisfy ŷ = Cx̂. Thus, we have η = C(x− x̂) + v. Next, recall that the state of the original system satisfies
x = Hu+Gw, and note that the state of the fictitious noise-free system satisfies x̂ = Hu. Combining all of these
linear equations finally shows that u cancels out and that η = CGw + v = Dw + v.

C. Proofs

C.1. Additional Technical Results
It is well known that every causal controller that is linear in the original observations y can be reformulated as a
causal controller that is linear in the purified observations η and vice versa [5, 40]. Perhaps surprisingly, however,
the one-to-one transformation between the respective coefficients of y and η is not linear. To keep this paper
self-contained, we review these insights in the next lemma.

Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then u = U ′y + q′ for U ′ = (I + UCH)−1U
and q′ = (I + UCH)−1q. Conversely, if u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT , then u = Uη + q for
U = (I − U ′CH)−1 and q = (I − U ′CH)−1q′.

Proof of Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then we have

u = Uη + q = U(y − ŷ) + q = Uy − UCx̂+ q = Uy − UCHu+ q,

where the second equality follows from the definition of η, the third equality holds because y = Cx+ v, and the
last equality exploits our earlier insight that ŷ = Cx̂. The last expression depends only on y and u. Solving for u
yields u = U ′y+ q′, where U ′ = (I +UCH)−1U and q′ = (I +UCH)−1q. Note that (I +UCH) is indeed invertible
because I + UCH is a lower triangular matrix with all diagonal entries equal to one, ensuring a determinant of one.

Similarly, if u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT , then we have

u = U ′y + q′ = U ′(η + ŷ) + q′ = U ′η + U ′Cx̂+ q′ = U ′η + U ′CHu+ q′.

Solving for u yields u = Uη+ q, where U = (I −U ′CH)−1U ′ and q = (I −U ′CH)−1q′. Note again that (I −U ′CH)
is indeed invertible because (I − U ′CH) is a lower triangular matrix with all diagonal entries equal to one.
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C.2. Proofs of Section 3
Proof of Proposition 3.2. In problem (8), both u and x are linear in w and v, i.e., u = q + UDw + Uv and
x = Hu+Gw = Hq+HUDw+HUv+Gw. By substituting the linear representations of u and x into the objective
function of problem (8), we obtain the following equivalent reformulation.

min
q∈RpT

U∈U

max
P∈G

EP
[
w⊤ (

D⊤U⊤(R+H⊤QH)UD + 2D⊤U⊤H⊤QG+G⊤QG
)
w
]

+ EP
[
v⊤

(
U⊤(R+H⊤QH)U

)
v
]
+ q⊤(R+H⊤QH)q

For any fixed P ∈ G, we can express the expectation in the objective function of the above problem in terms of the
covariance matrices W = EP[ww

⊤] and V = EP[vv
⊤]. Thus, the problem becomes

min
q∈RpT

U∈U

max
W,V,P

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ G, W = EP[ww
⊤], V = EP[vv

⊤].

(A.18)

Recall now the definition of G, and note that the requirementsG(X0, X̂0) ≤ ρx0
, G(Wt, Ŵt) ≤ ρwt

andG(Vt, V̂t) ≤ ρvt
are equivalent to the convex constraints G(X0, X̂0)

2 ≤ ρ2x0
, G(Wt, Ŵt)

2 ≤ ρ2wt
and G(Vt, V̂t)2 ≤ ρ2vt , respectively,

for all t ∈ [T − 1]. The definition of G also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).

Problem (A.18) thus constitutes a relaxation of problem (9). Indeed, the feasible set of the inner maximization
problem in (A.18) is a subset of the feasible set of the inner maximization problem in (9). Moreover, for any W and
V feasible in the inner maximization problem in (9), the distribution P = Px0

× (×T−1
t=0 Pwt

) × (×T
t=0Pvt) defined

through Px0
= N (0, X0), Pwt

= N (0,Wt) and Pvt = N (0, Vt), t ∈ [T − 1], is feasible in the inner maximization
problem in (A.18) with the same objective value. The relaxation is thus exact, and the optimal values of (8), (9)
and (A.18) coincide.

Proof of Proposition 3.4. Recall that the space Uy of all causal output-feedback controllers coincides with the
space Uη of all causal purified output-feedback controllers. We can thus replace the feasible set Uη of the inner
minimization problem in (10) with Uy. Hence, for any fixed P ∈ WN , the inner minimization problem in (10)
constitutes a classic LQG problem. By standard LQG theory [7], it is solved by a linear output-feedback controller
of the form u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT ; see also Appendix §A. Lemma C.1 shows, however, that
any linear output-feedback controller can be equivalently expressed as a linear purified-output feedback controller
of the form u = Uη + q for some U ∈ U and q ∈ RpT . In summary, the above reasoning shows that the feasible
set of the inner minimization problem in (10) can be reduced to the family of all linear purified-output feedback
controllers without sacrificing optimality. Thus, problem (10) is equivalent to

max
P∈WN

min
q,U,x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. U ∈ U , u = q + Uη, x = Hu+Gw.

Using a similar reasoning as in the proof of Proposition 3.2, we can now substitute the linear representations of u
and x into the objective function and reformulate the above problem as

max
W,V,P

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ WN , W = EP[ww
⊤], V = EP[vv

⊤].

As WN contains only normal distributions, Proposition 3.3 implies that W(Px0
, P̂x0

) = G(X0, X̂0), W(Pwt
, P̂wt

) =

G(Wt, Ŵt) and W(Pvt , P̂vt) = G(Vt, V̂t) for all t ∈ [T − 1]. We may thus replace the requirement W(Px0
, P̂x0

) ≤ ρx0

in the definition of WN by G(X0, X̂0) ≤ ρx0
, which is equivalent to the convex constraint G(X0, X̂0)

2 ≤ ρ2x0
. The

conditions on the marginal distributions of wt and vt, t ∈ [T − 1], admit similar reformulations. The definition of
WN also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).
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Thus, the feasible set of the outer maximization problem in (11) constitutes a relaxation of that in (10). One readily
verifies that the relaxation is exact by using similar arguments as in the proof of Proposition 3.2. Thus, the claim
follows.

Proof of Theorem 3.5. By Proposition 3.2, p̄⋆ coincides with the minimum of (9). Similarly, by Proposition 3.4 d⋆

coincides with the maximum of (11). Note that problems (9) and (11) only differ by the order of minimization
and maximization. Note also that U is convex and closed, GW and GV are convex and compact by virtue of [32,
Lemma A.6], and the (identical) trace terms in (9) and (11) are bilinear in (W,V ) and (U, q). The claim thus follows
from Sion’s minimax theorem [39].

C.3. Proofs of Section 4
Note that Proposition 4.1 is consistent with Corollary 3 because the optimal LQG controller corresponding to P⋆ is
linear in the past observations.

Proof of Proposition 4.1. By [32, Lemma A.3], the inner problem in (9) admits a maximizer (W ⋆, V ⋆) with X⋆
0 ⪰

λmin(X̂0) as well as W ⋆
t ⪰ λmin(Ŵt) and V ⋆

t ⪰ λmin(V̂t) for all t ∈ [T − 1]. Thus, the optimal value of problem (9)
and its strong dual (11) does not change if we restrict GW and GV to G+W and G+V , respectively. We may thus conclude
that problem (11) has a maximizer (W ⋆, V ⋆) with V ⋆

t ⪰ λmin(V̂t) ≻ 0 for all t ∈ [T − 1]. This in turn implies that
problem (6) is solved by a normal distribution P⋆ under which the covariance matrix of the observation noise vt
satisfies V ⋆

t ≻ 0 for every t ∈ [T − 1]. As (5) and (6) are strong duals, the optimal solution u⋆ of problem (5) forms
a Nash equilibrium with P⋆, i.e., u⋆ is a best response to P⋆ and thus solves the classic LQG problem corresponding
to P⋆. As Rt ≻ 0 for every t ∈ [T − 1], this best response u⋆ is unique, and as V ⋆

T ≻ 0 for every t ∈ [T − 1], u⋆ is in
fact the Kalman filter-based optimal output-feedback strategy corresponding to P⋆ (which can be obtained using
the techniques highlighted in Appendix §A).

Before proving Proposition 4.2, recall that f(W,V ) is called β-smooth for some β > 0 if

|∇f(W,V )−∇f(W ′, V ′)| ≤ β
(
∥W −W ′∥2F + ∥V − V ′∥2F

) 1
2 ∀W,W ′ ∈ G+W , V, V ′ ∈ G+V ,

where ∥ · ∥F denotes the Frobenius norm.

Proof of Proposition 4.2. The function f(W,V ) is concave because the objective function of the inner minimization
problem in (11) is linear (and hence concave) in W and V and because concavity is preserved under minimization.
To prove that f(W,V ) is β-smooth, we first recall from Proposition 3.3 that it coincides with the optimal value of
the inner minimization problem in (10). As Uη = Uy, f(W,V ) can thus be viewed as the optimal value of the classic
LQG problem corresponding to the normal distribution P determined by the covariance matrices W and V . Hence,
f(W,V ) coincides with (A.17), where Σt, for t ∈ [T − 1], is a function of (W,V ) defined recursively through the
Kalman filter equations (A.16). Note that all inverse matrices in (A.16) are well-defined because any V ∈ G+V is
strictly positive definite. Therefore, Σt constitutes a proper rational function (that is, a ratio of two polyonmials
with the polynomial in the denominator being strictly positive) for every t ∈ [T − 1]. Thus, f(W,V ) is infinitely
often continuously differentiable on a neighborhood of G+W × G

+
V .

As f(W,V ) is concave and (at least) twice continuously differentiable, it is β-smooth on G+W × G
+
V if and only

if the largest eigenvalue of the Hessian matrix of −f(W,V ) is bounded above by β throughout G+W × G
+
V . Also,

the largest eigenvalue of the positive semidefinite Hessian matrix ∇2(−f(W,V )) coincides with the spectral norm
of ∇2f(W,V ). We may thus set

β = sup
W∈G+

W ,V ∈G+
V

∥∇2f(W,V )∥2, (A.19)

where ∥ · ∥2 denotes the spectral norm. The supremum in the above maximization problem is finite and attained
thanks to Weierstrass’ theorem, which applies because f(W,V ) is twice continuously differentiable and the spectral
norm is continuous, while the sets G+W and G+V are compact by virtue of [32, Lemma A.6]. This observation completes
the proof.
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D. SDP Reformulation of the Dual Problem (11)

Instead of solving the dual problem (11) with the customized Frank-Wolfe algorithm of Section 4, it can be
reformulated as an SDP amenable to off-the-shelf solvers. This reformulation is obtained by dualizing the inner
minimization problem and by exploiting the following preliminary lemma.

Lemma D.1. For any Ẑ ∈ Sd+ and ρz ≥ 0, the set GZ = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz} coincides with{
Z ∈ Sd+ : ∃Ez ∈ Sd+ with Tr(Z + Ẑ − 2Ez) ≤ ρ2z,

[
Ẑ

1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0

}
.

Proof of Lemma D.1. By Definition 2, we have

GZ = {Z ∈ Sd+ : Tr(Z + Ẑ − 2(Ẑ
1
2ZẐ

1
2 )

1
2 ) ≤ ρ2z}.

Next, introduce an auxiliary variable Ez ∈ Sd+ subject to the matrix inequality E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ). By [4, Theorem 1],

this inequality can be recast as Ez ⪯ (Ẑ
1
2ZẐ

1
2 )

1
2 . Hence, we can reformulate the nonlinear matrix inequality in the

above representation of GZ as Tr(Z + Ẑ − 2Ez) ≤ ρ2z. A standard Schur complement argument reveals that the
inequality E2

z ⪯ (Ẑ
1
2ZẐ

1
2 ) is also equivalent to[

Ẑ
1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0.

The claim then follows by combining all of these insights.

We are now ready to derive the desired SDP reformulation of problem (11).

Proposition D.2. If V̂ ≻ 0, then problem (11) is equivalent to the SDP

max Tr(G⊤QGW )− Tr(F (R+H⊤QH)−1)

s.t. W ∈ Sn(T+1)
+ , V ∈ SpT+ , M ∈M, F ∈ STm

+

Ex0
∈ Sn+, Ewt

∈ Sn+, Evt ∈ Sp+ ∀t ∈ [T − 1]

Tr(W0 + X̂0 − 2Ex0
) ≤ ρ2x0

,

Tr(Wt+1 + Ŵt − 2Ewt
) ≤ ρ2wt

, Tr(Vt + V̂t − 2Evt) ≤ ρ2vt ∀t ∈ [T − 1][
X̂

1
2
0 X0X̂

1
2
0 Ex0

Ex0
In

]
⪰0,[

Ŵ
1
2
t Wt+1Ŵ

1
2
t Ewt

Ewt
In

]
⪰0,

[
V̂

1
2
t VtV̂

1
2
t Evt

Evt Ip

]
⪰0 ∀t ∈ [T−1][

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

W0 ⪰ λmin(X̂0)I, Wt+1 ⪰ λmin(Ŵt)I, Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].

(A.20)

Here, M denotes the set of all strictly upper block triangular matrices of the form
0 M1,2 M1,3 . . . M1,T

0 M2,3 M2,T

. . .
...

0 MT−1,T

0

 ∈ RTm×Tp,

where Mt,s ∈ Rm×p for every t, s ∈ Z with 1 ≤ t < s ≤ T .

Proof of Proposition D.2. The proof relies on dualizing the inner minimization problem in (11). Note that strong
duality holds because the primal problem is trivially feasible and involves only equality constraints, which implies
that any feasible point is in fact a Slater point. In the following we use M ∈M to denote the Lagrange multiplier of
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the constraint U ∈ U , which requires all blocks of the matrix U above the main diagonal to vanish. The Lagrangian
function of the inner minimization problem in (11) can therefore be represented as

L(q, U,M) = Tr
((
D⊤U⊤(R+H⊤QH)UD +G⊤QG

)
W

)
+ 2Tr(G⊤QHUDW )

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+ q⊤(R+H⊤QH)q +Tr(UM⊤).

Recall now that R ≻ 0 and Q ⪰ 0, and thus R+H⊤QH ≻ 0. Consequently, L is minimized by q⋆ = 0 for any fixed
U and M . In addition, the partial gradient of L with respect U is given by

∂L
∂U

= 2(R+H⊤QH)UDWD⊤ + 2(R+H⊤QH)UV + 2H⊤QGWD⊤ +M.

Recall also that V ∈ G+V is strictly positive, which implies that DWD⊤ + V ≻ 0 is invertible. As we already know
that R+H⊤QH ≻ 0 is invertible, as well, L is minimized by

U⋆ = −(R+H⊤QH)−1
(
H⊤QGWD⊤ +M/2

)
(DWD⊤ + V )−1

for any fixed M . Substituting both q⋆ and U⋆ into L yields the dual objective function

g(M) = L(q⋆, U⋆,M) = Tr(G⊤QGW )

− Tr
(
(R+H⊤QH)−1(H⊤QGWD⊤ +M/2)(DWD⊤ + V )−1(H⊤QGWD⊤+M/2)⊤

)
.

The dual of the inner minimization problem in (11) is thus given by maxM∈M g(M). To linearize the dual
objective function, we next introduce an auxiliary variable F ∈ SmT

+ subject to the matrix inequality F ⪰
(H⊤QGWD⊤+M/2)(DWD⊤+V )−1(H⊤QGWD⊤+M/2)⊤. By using a standard Schur complement reformulation,
we can then rewrite the dual problem as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+[

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0.

(A.21)

Next, by replacing the inner problem in (11) with its strong dual (A.21), we can reformulate (11) as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+ , W ∈ Sn(T+1)

+ , V ∈ SpT+[
F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt) ≤ ρ2wt
, G(Vt, V̂t) ≤ ρ2vt ∀t ∈ [T − 1].

(A.22)

By Proposition 4.1, the inclusion of the constraints X0 ⪰ λmin(X̂0)I, Wt ⪰ λmin(Ŵt)I and Vt ⪰ λmin(V̂t)I for all
t ∈ [T − 1] has no effect on the solution to problem (A.22). In addition, by Lemma D.1, each (non-linear) Gelbrich
constraint in (A.22) can be reformulated as an equivalent (linear) SDP constraint. Thus, problem (A.22) reduces
to (A.20), and the claim follows.

E. Bisection Algorithm for the Linearization Oracle

We now show that the direction-finding subproblem (14) can be solved efficiently via bisection. To this end, we first
establish that (14) can be reduced to the solution of a univariate algebraic equation.

Proposition E.1 ([32, Proposition A.4 (iii)]). If Ẑ ∈ Sd++, ΓZ ∈ Sd+, ΓZ ̸= 0 and ρz ∈ R++, then

max ⟨ΓZ , L− Z⟩
s.t. G(L, Ẑ) ≤ ρz

L ⪰ λmin(Ẑ)I

(A.23)

is uniquely solved by L⋆ = (γ⋆)2(γ⋆I − ΓZ)
−1Ẑ(γ⋆I − ΓZ)

−1, where γ⋆ is the unique solution of

ρ2z − ⟨Ẑ, (I − γ⋆(γ⋆I − ΓZ)
−1)2⟩ = 0 (A.24)

in the interval (λmax(ΓZ),∞).
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In practice, we need to solve the algebraic equation (A.24) numerically. The numerical error in approximating γ⋆
should be contained to ensure that L⋆ approximates the exact maximizer of problem (A.23). The next proposition
shows that, for any tolerance δ ∈ (0, 1), a δ-approximate solution of (A.23) can be computed with an efficient
bisection algorithm.

Proposition E.2 ([32, Theorem 6.4]). For any fixed ρz ∈ R++, Ẑ ∈ Sd++ and ΓZ ∈ Sd+,ΓZ ̸= 0, define G+Z = {Z ∈
Sd+ : G(Z, Ẑ) ≤ ρz, Z ⪰ λmin(Ẑ)} as the feasible set of problem (A.23), and let Z ∈ G+Z be any reference covariance
matrix. Additionally, let δ ∈ (0, 1) be the desired oracle precision, and define φ(γ) = γ(ρ2+ ⟨γ(γI − ΓZ)

−1− I, Ẑ⟩)−
⟨Z,ΓZ⟩ for any γ > λmax(ΓZ). Then, Algorithm A.2 returns in finite time a matrix Lδ

Z ∈ Sd+ with the following
properties. (i) Feasibility: Lδ

Z ∈ G
+
Z (ii) δ-Suboptimality: ⟨Lδ

Z − Z,ΓZ⟩ ≥ δmaxL∈G+
Z
⟨ΓZ , L− Z⟩.

Algorithm A.2 Bisection algorithm to compute Lδ
Z

Input: nominal covariance matrix Ẑ ∈ Sd++, radius ρ ∈ R++,
reference covariance matrix Z ∈ G+Z ,
gradient matrix ΓZ ∈ Sd+, ΓZ ̸= 0, precision δ ∈ (0, 1),
dual objective function ϕ(γ) defined in Proposition E.2

1: set λ1 ← λmax(ΓZ), and let p1 be an eigenvector for λ1
2: set γ ← λ1(1 + (p⊤1 Ẑp1)

1
2 /ρ) and γ ← λ1(1 + Tr(Ẑ)

1
2 /ρ)

3: repeat
4: set γ ← (γ + γ)/2 and L← (γ)2(γI − ΓZ)

−1Ẑ(γI − ΓZ)
−1

5: if dϕ
dγ (γ) < 0 then set γ ← γ else γ ← γ endif

6: until dϕ
dγ (γ) > 0 and ⟨L− Z,ΓZ⟩ ≥ δϕ(γ)

Output: L

In summary, for any Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1}, Algorithm A.2 computes a δ-approximate solutions
to the direction-finding subproblem (14) with ΓZ = ∇Zf(W,V ).

F. Additional Information on Experiments

Generation of Nominal Covariance Matrices. The nominal covariance matrices of the exogenous uncertainties
are constructed using the following procedure. For each exogenous uncertainty z ∈ {x0, w0, . . . , wT−1, v0, . . . , vT−1},
we denote the dimension of z by d and sample a matrix MZ ∈ Rd×d from the uniform distribution on the hypercube
[0, 1]d×d. Next, we define ΞZ ∈ Rd×d as the orthogonal matrix whose columns represent the orthonormal eigenvectors
of the symmetric matrix MZ +M⊤

Z . Finally, we set Ẑ = ΞZΛZΞ
⊤
Z , where ΛZ is a diagonal matrix whose main

diagonal is sampled uniformly from the interval [1, 2]d. The rationale for adopting this cumbersome procedure is to
ensure that the covariance matrix Ẑ is positive definite.
Optimality Gap. The optimality gap of the Frank-Wolfe algorithm visualized in Figure 1b is calculated as the
sum of the surrogate optimality gaps ⟨Lδ

Z − Z,∇Zf(W,V )⟩ across all Z ∈ {X0,W0 . . . ,WT−1, V0, . . . , VT−1}. For
more information on the surrogate optimality gaps see [26].
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