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Abstract

This paper investigates computational algorithms for Maximum a Posteriori (MAP) and Max-
imum Likelihood Estimation (MLE) inference of Bayesian Hierarchical Models (BHMs), via a
unified formulation as a nonconvex and nondifferentiable logarithmic integral optimization prob-
lem. Specifically, we explore situations where a BHM comprises density functions with intractable
normalizers, a feature that can present significant computational obstacles, particularly when
combined with nonconvexity and nondifferentiability, which are increasingly prevalent in con-
temporary applications of computational statistics. To deal with these challenges, we propose
an efficient algorithmic approach, termed Adaptive Importance Sampling-based Surrogation, to
simultaneously handle nonconvexity and nondifferentiability while also improving the sampling
approximation of the intractable normalizer through variance reduction. Performance of this al-
gorithm is guaranteed by our analysis which establishes an almost sure subsequential convergence
to a necessary candidate for a local minimizer, referred to as a surrogation stationary point. We
also demonstrate the effectiveness of our algorithm through extensive numerical experiments, ver-
ifying its efficiency and stability in enabling more advanced BHMs where intractable normalizers
arise as a result of enhanced modeling capability.

Key words. Bayesian hierarchical models, intractable normarlizer, logarithmic integral optimiza-
tion, adaptive importance sampling.

1 Introduction

In recent decades, Bayesian Hierarchical Models (BHMs) have emerged as a powerful tool for data
science due to its flexibility in modeling complex data structures, while accounting for prior knowledge
on the underlying data generating mechanism. A BHM achieves this dual benefit by proposing
hierarchies of conditional probability distributions to capture the correlations among (random) data
ỹ and (random) model parameters ξ̃. On one hand, ỹ is connected to ξ̃ via the conditional density
function p(y | ξ), called the likelihood; on the other hand, the prior distribution of ξ̃ has density q(•),
which may include additional dependencies among the components of ξ̃. Given a BHM, a common
approach to estimate the model parameter ξ from observed data y, is to solve the Maximum a
Posteriori (MAP) problem:

maximize
ξ

p(y | ξ)q(ξ) ⇐⇒ minimize
ξ

− log p(y | ξ) − log q(ξ) (1)
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which maximizes the posterior density of ξ̃ and reduces to Maximum Likelihood Estimation (MLE)
when ξ̃ is deterministic. Despite their popularity, MAP and MLE for BHMs with enhanced modeling
capacities are often handicapped by the following computational challenges that are increasingly
prevalent yet under-addressed in modern applications. These challenges provide the motivation for
our study in this paper:

• (Intractable Normalizers) A basic BHM employs a conditional density function, denoted as

a ratio, which in generic notation is given by: π(ζ |χ) =
`(ζ, χ)

L(χ)
where ζ ∈ Ξ; this gives rise to

the normalizer L(χ) ,
∫

Ξ
`(z, χ)dz whose closed form can be unavailable. This issue is pervasive

in many interesting models where an un-normalized `(ζ, χ) is designed to facilitate the modeling
capabilities, albeit at the expense of a resulting normalizer that cannot be evaluated effectively.
Such difficulty becomes a major handicap for MAP and MLE inference on models of this type,
which can be found in a wide span of applications including machine learning [42], graphical models
[3], social networks [23], population genetics [39], epidemiology [28, 33] and image processing [6, 25].

• (Nonconvexity and Nondifferentiability) To capture complex phenomena in realistic set-
tings, BHMs often employ density functions that are nondifferentiable and potentially lead to a
nonconvex problem (1). A common source is the family of indicator functions (see [29]) which
can be approximated by piecewise affine functions (see Section 3). Nonconvexity also typically
arises when prevsiously deterministic parameters are randomized to improve the flexibility of a
benchmark model. An example exibiting such properties is a generalized Markov Random Field
(MRF) with an unknown network topology; see Subsection 2.2.

BHMs with intractable normalizers are also referred to as being doubly intractable in the literature,
a substantial amount of which is dedicated to resolving this issue for Markov Chain Monte Carlo
inference that aims to sample from the posterior distribution of model parameters, see for instance
[17, 34, 35]. In contrast, studies on MAP and MLE under the doubly intractable settings are relatively
limited. Early approaches, including pseudo likelihood [4] and stochastic gradient descent [45] are
not adequate as they lack theoretical guarantees in nonconvex and nondifferentiable cases. While
Sample Average Approximation (SAA) [18, 20, 21] has been shown to be consistent for MLE, it is
not practically an algorithm for such cases as well.

To date there has been an absence of rigorous investigations into computational algorithms for
MAP/MLE of BHMs with intractable normalizers that are additionally nonconvex and nondiffer-
entiable, hindering their utilities in modern data science. In response, the primary purpose of this
paper is to bridge such a gap with the following contributions:

1. Offering a unified treatment for MAP/MLE, we propose a practical algorithmic framework termed
Adpative Importance Sampling (AIS)-based Surrogation to tackle the following Logarithmic In-
tegral Optimization problem:

minimize
x∈X

c(x) + logZ(x) where Z(x) ,
∫

Ξ
r(x, z)dz, (2)

where X and Ξ are given sets in their respective spaces (to be specified later). This algorithm
employs two major techniques. First, we introduce surrogation [11, Chapter 7] to address the
challenge of nonconvexity and nondifferentiability. Second, an adaptive importance sampling
(AIS) scheme is incorporated to allow for improved control over the variances of sampling-based
approximations for intractable Z during the iterations.
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2. As a practical solution to accommodate applications with discrete parameters ξ̃, we present a
systematic approach to approximate the inverse of cumulative distribution functions to the dis-
crete priors and convert an otherwise mixed integer programming formulation of the MAP into a
continuous formulation that can be handled by our proposed algorithm.

3. Via a rigorous SAA consistency analysis on the non-independent and identically distributed (non-
iid) triangular array produced by the iterate-dependent sampling process in the AIS-based surro-
gation method, we present the convergence of our algorithm to a kind of surrogation stationary
point, which serves as a computable candidate for a local minimizer. To further support the
numerical stability and efficiency of the algorithm in practice, we conduct extensive numerical
experiments and compare its performance with related approaches on some realistic BHMs.

By pursuing these endeavors, we anticipate that our research in this paper will not only enhance the
field of computational statistics, but also extend the literature on nonconvex stochastic optimiza-
tion by offering an effective variance reduction algorithm for the logarithmic integral optimization
problem, which is interesting in its own right. Before delving into further details, we would like
to provide a brief overview on previous works that are relevant to our AIS scheme, which in high
level iteratively alternates between sampling approximation of the integral function and updating
the sampling distribution. Emerged from the simulation community, the concept of AIS was initially
proposed as a variance reduction technique for estimating a scalar-valued integral through sampling,
cf. [36] and [7]. Early approaches for stochastic optimization using the AIS scheme that are more
related to ours were introduced in [12] and [26]. These studies focused on decomposition methods
for multistage stochastic programs and were followed up by a few subsequent studies like [38]. While
more recent works have explored AIS in conjunction with stochastic (proximal) gradient descent
[1, 27] and coordinate primal descent (dual ascent) methods [8, 44] on problems with convexity or
smoothness, the utility of AIS for the challenging type of problem (2) we consider here still remains
open, which further motivates the proposal and analysis of our algorithm.

The rest of the paper is organized as follows. In Section 2 we provide some relevant background
and motivating examples for our investigation. Section 3 introduces our approach to handle models
with discrete priors. Our AIS-based surrogation algorithm is formalized in Section 4 and analyzed
in Section 5. Finally, Section 6 reports on the numerical performance of our algorithm.

2 The 3-Layer Bayesian Hierarchical Model

In general, a BHM involves a finite number of uncertainty layers wherein the randomness of a layer
is conditional on that of the lower layers. The treatment of this general model involves significant
notational complications while the methodology can be based on and extended from that of a 3-layer
model, which we present below. Specifically, a 3-level BHM is described by:

level 2 : ỹi | θ̃
ind.∼ p yi (yi | θ̃), i = 1, . . . ,M

level 1 : θ̃ | γ̃ ∼ q(θ | γ̃), γ̃ , (γ̃`)
L
`=1

level 0 : γ̃`
ind.∼ p 0

` (γ`), ` = 1, . . . , L;

(3)

where “ind.” stands for “independently distributed”; the tilde notation denotes a random variable
whose realizations are written without the tilde; the vertical notation denotes conditioning, with
p yi (yi | θ̃), q(θ | γ̃), and p 0

` (γ`) denoting the density functions of the respective random variables; the

random vector ỹi (the data) is m-dimensional, whereas θ̃ (the intermediate) and γ̃` (the prior) have
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support Θ ⊆ Rd and Γ` ⊆ R respectively. Notice that level 2 of the model as stated assumes that
the output {ỹi}Mi=1 are conditionally independent given θ̃ with conditional density p yi (yi | θ̃) and are

related to γ̃ = (γ̃`)
L
`=1, which has independent components, only through the intermediate θ̃.

To determine the unknown parameters θ and γ given observations {yi}Mi=1 for some positive integer
M , the (empirical) MAP problem associated with the BHM (3) maximizes the posterior density of
parameters θ̃ and γ̃. Termed the o-BHOP (for original-Bayesian Hierarchical Optimization Problem),
this problem can formally be stated as:

minimize
θ∈Θ; γ ∈Γ

−
M∑
i=1

log p yi (yi | θ)− log q(θ | γ)−
L∑
`=1

log p 0
` (γ`) where Γ ,

L∏
`=1

Γ`. (4)

The above formulation has a major deficiency when γ̃ is discretely distributed; i.e., when Γ` is a
discrete set for all `. In this case, the last logarithmic term in the objective function is extended valued
whenever γ` is outside this finite set. Thus any approximation/relaxation-based solution methods
can be expected to encounter great difficulty. It turns out that by a well-known transformation as
shown below, the BHM model (3) can be reformulated so that this difficulty vanishes, which can
serve as the basis for the design of a continuous optimization algorithm.

Fact: Let χ be a random variable with cumulative distribution function (cdf) Fχ(t) , P(χ ≤ t)
whose generalized inverse F−1

χ : [0, 1]→ [ inf χ, supχ ] is given by

F−1
χ (s) ,


inf
{
t | Fχ(t) ≥ s

}
if s ∈ (0, 1)

inf χ if s = 0

supχ if s = 1.

so that Y , F−1
χ (U), where U is uniformly distributed in [0, 1], has the same distribution as χ.

Applying the above transformation to each random variable γ̃` and letting Ũ = (ũ`)
L
`=1 be the vector

of associated uniformly distributed random variables ũ` with realizations u`, we may consider, as an
alternative to (3), the uniformly-transformed BHM:

level 2 : ỹi | θ̃
ind.∼ p yi (yi | θ̃), i = 1, . . . ,M

level 1 : θ̃ | Ũ ∼ q̂(θ | Ũ) , q(θ |φ(Ũ)), where φ(U) ,
(
F−1
γ̃`

(u`)
)L
`=1

level 0 : Ũ = ( ũ` )L`=1 : L independent uniform random variables in [0, 1].

(5)

This leads to the uniform-transformed (empirical) MAP problem, which we term the u-BHOP (for
uniform-Bayesian Hierarchical Optimization Problem):

minimize
θ∈Θ; u∈[ 0,1 ]L

−
M∑
i=1

log p yi (yi | θ)− log q̂(θ |u). (6)

Since the density function of Ũ is constant, its associated term is omitted from the objective of (6).

2.1 Exponential families

We focus on a class of BHMs wherein with θ̃ = (θ̃i)
M
i=1, the original conditional distributions ỹi | θ̃

and θ̃ | γ̃ have densities belonging to the exponential family so that:

pyi (yi | θ) = exp
[
g(yi, θi)− a(θi)

]
and q(θ | γ) = exp

[
h(θ, γ)− b(γ)

]
(7)

4



for some bivariate functions g(yi, θi) and h(θ, γ) with a(θi) and b(γ) being the following normalizing
factors that ensure the integration of p yi (yi | θ) and q(θ | γ) equal to unity:

a(θi) = log

∫
Rm

exp(g(y ′, θi)) dy
′, b(γ) = log

∫
Θ

exp(h(θ ′, γ)) dθ ′.

Thus, under the framework of the exponential families (7), we obtain the associated u-BHOP (6) as:

minimize
θ∈Θ; u∈ [ 0,1 ]L

−
M∑
i=1

g(yi, θi) +
M∑
i=1

log

∫
Rm

exp
(
g(y ′, θi)

)
dy ′

−h
(
θ, φ(u)

)
+ log

∫
Θ

exp
(
h(θ ′, φ(u))

)
dθ ′.

(8)

We summarize the computational challenges of this problem as follows:

• Intractability of the logarithmic integral function(s): there are two of these in general; neverthe-
less, in the case where p yi (yi | θ) is the density function of a multivariate normal distribution with
mean θi and covariance matrix V :

p yi (yi | θ) =
1

(2π)d/2
√

detV
exp

[
−1

2 ( yi − θi )>V −1( yi − θi )
]
,

the function a(θi) is the constant log
(

(2π)d/2
√

detV
)

that can removed from (8); yet the other

integral function remains. While being intractable, the logarithmic function turns out to play an
important role in the proposed solution method for the problem (8).

•Nonconvexity of the functions g(yi, θi) and h(θ, γ): often, these functions are products of functions
of their arguments; for example, h(θ, γ) = γ>v(θ), for some v : Θ→ RL, in the application to Markov
Random Fields (MRFs); see the next subsection.

• Nondifferentiability of the functions g(yi, θi) and h(θ, γ): when they involve distance functions
as measures of deviation/similarity, as in the MRFs; see the next subsection.

• Discontinuity of the transformation function φ(u): when γ̃ is a discrete random variable, the
inverse cdf F−1

γ̃`
is a step function; see Section 3. The approximation of such a discontinuous function

by continuous functions easily leads to another source that renders (8) a nonconvex nondifferentiable
optimization problem; added to the challenge is the fact that these two “non”-properties are coupled
and embedded in the integral function.

2.2 A source application: Markov random fields with unknown topologies

In what follows, we use a graphical model of generalized Markov Random Fields (MRFs) to illustrate
how BHM can easily give rise to the computational challenges we just introduced. Specifically,
consider a MRF [3, 5] defined on an undirected graph with node set V, where each node i ∈ V carries
an m-dimensional random vector θ̃i whose components represent the features of an object of interest
(e.g., pixels of an image) at this location. Thus here we have M = |V| and d = M ×m using the
previous notations. Conventionally, with a given edge set E ⊆ V × V and fixed nonnegative weights
{γ̄ij}(i,j)∈E , an MRF represents our beliefs that features on pairs of nodes incident to a common edge
should be similar, which are modeled through the following density function q:

q(θ) , exp
[
h(θ)− β

]
,

where h(θ) , −
∑

(i,j)∈E

γ̄ij hij(θi, θj) and β , log

∫
Θ

exp
(
h(θ ′)

)
dθ ′,

(9)
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and hij(θi, θj) is a metric measuring the “similarity” between θi and θj , e.g., hij(θi, θj) = ‖θi− θj‖2,

whose “strength” is encoded in γ̄ij . Thus through (9), the probability distribution of {θ̃i}i∈V is more

concentrated if θ̃i and θ̃j take similar values when (i, j) ∈ E . Based on (9), we have the following

benchmark model which intends to recover the underlying θ̃ from observation {yi}i∈V

level 1 : ỹi | θ̃
ind.∼ p yi ( yi | θ̃ ), for i ∈ V

level 0 : θ̃ ∼ q(θ), as defined in (9)
(10)

Models of type (10) have broad applications in domains including image processing [6, 19] and
disease mapping [28, 33]. However, the graph topology E and weights {γ̄ij}(i,j)∈E in (10) can easily
be misspecified if they are heuristically prescribed from data {yi}i∈V . This can lead to an unreliable
recovery of θ̃, especially when {yi}i∈V are considered as the noisy version of θ̃.

In light of this issue, a more reasonable approach is to incorporate E and {γ̄ij}(i,j)∈E as part of
inference via the proposal of the following generalized MRF using the notations in (7),

q(θ | γ) = exp
[
h(θ, γ)− b(γ)

]
, with h(θ, γ) = −

∑
i<j

γij hij(θi, θj), (11)

which gives us the following generalizations of the benchmark model (10):

• MRF with unknown edges

level 2 ỹi | θ̃
ind.∼ p yi (yi | θ̃), for i ∈ V

level 1 θ̃ | γ̃ ∼ q(θ | γ̃), as defined in (11)

level 0 γ̃ij
ind.∼ Bernoulli(pij), where pij ∈ [0, 1] are fixed for i < j.

(12)

• MRF with unknown weights

level 2 ỹi | θ̃
ind.∼ p yi (yi | θ̃), for i ∈ V

level 1 θ̃ | γ̃ ∼ q(θ | γ̃), as defined in (11)

level 0 γ̃ij
ind.∼ Uniform

([
γ
ij
, γij

])
, where

(
γ
ij
, γij

)
∈ R2

+ are fixed for i < j.

(13)

Model (12) makes the assumption that the occurrence of an edge between (i, j) has probability pij ,
while (13) assumes that the “strength” of connection between (i, j) is unknown and to be estimated.
These frameworks indeed generalize (10), e.g., if γ̄ij = 1 for all (i, j) ∈ E in (10), then model
(12) is apparently more flexible by allowing us to learn the appearance of edges E from solving
the corresponding o-BHOP. However, despite their enhanced modeling capability, the generalized
MRF models (12) and (13) clearly introduce additional nonconvexity (from h(θ, γ) in (11)) and
intractability (from b(γ) in (11)) to the original o-BHOP associated with (10). Additionally, the o-
BHOP associated with (12) will be a mixed zero-one program since γ̃ij therein is binary valued. When
coupled together, these challenges call for advanced computational methods for their resolution.

3 Discrete Priors

Motivated by and generalizing a Bernoulli random variable for γ̃ij in the generalized MRF model
(12) with unknown edges, we describe the transformation function φ(u) in (5) when each γ̃` is a
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discrete random variable whose range { γk` }
K`
k=1 satisfies

0 , γ0
` ≤ γ1

` < γ2
` < · · · < γK``︸ ︷︷ ︸

values of the random variable γ̃`

(14)

and the associated probabilities { pk` }
K`
k=1 are positive and sum up to unity. The cdf of γ̃` is given by:

Fγ̃`(t) =
∑

k : γk`≤t

pk` , t ∈ (−∞,∞ ). (15)

Moreover, we have

F−1
γ̃`

(s) = γ1
` +

K∑̀
k=2

γ̂ k` 1(0,∞)(s− p̂ k−1
` ), for s ∈ [0, 1], (16)

where 1(0,∞)(•) is the indicator function of (0,∞) and

γ̂ k` , γk` − γ
k−1
` ≥ 0 by (14) and p̂ k` ,

k∑
i=1

pi` for k ∈ [K`].

Note that F−1
γ̃`

(•) is lower semicontinuous (i.e., left-continuous), nondecreasing, piecewise constant
on (0, 1), and by definition, right-continuous and left-continuous at the left and right end point of the
interval, respectively. Following the schemes in the two references [9, 10], we approximate F−1

γ̃`
(s) by

continuous piecewise function employing

• a convex function ϕ̂cvx : R→ R and a concave function ϕ̂cve : R→ R satisfying

ϕ̂cvx(0) = 0 = ϕ̂cve(0) and ϕ̂cvx(1) = 1 = ϕ̂cve(1),

and with both (continuous) functions being increasing in the interval [0, 1] and nondecreasing outside.

Truncating these two functions to the range [ 0, 1 ], we obtain the upper and lower bounds of the two
indicator functions 1[ 0,∞ )(t) and 1( 0,∞ )(t) as follows: for any (t, δ) ∈ R × R++,

ϕub(t, δ) , min

max

(
ϕ̂cvx

(
1 +

t

δ

)
, 0

)
, 1


≥ 1[ 0,∞ )(t) ≥ 1( 0,∞ )(t)

≥ max

min

(
ϕ̂cve

(
t

δ

)
, 1

)
, 0

 , ϕlb(t, δ).

(17)

we have the following result stated and proved in [9, Proposition 2].

Proposition 1. The bivariate functions ϕub and ϕlb defined above have the following properties:

(a) For any t ∈ R, ϕub(t, δ) is a nondecreasing function in γ on R++ and ϕlb(t, δ) is a nonincreasing
function in γ on R++. Both functions ϕub and ϕlb are Lipschitz continuous on every compact set
T ×∆ ⊆ R× R++.

(b) The following equalities hold:

1[ 0,∞ )(t) = infimum
δ>0

ϕub(t, δ) = lim
δ↓0

ϕub(t, δ), ∀ t ∈ R

and 1( 0,∞ )(t) = supremum
δ>0

ϕlb(t, γ) = lim
δ↓0

ϕlb(t, δ), ∀ t ∈ R.
(18)
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Applying ϕub and ϕlb as the basic ingredients, we obtain the following approximations:

F−1
γ̃`

(u`) = γ 1
` +

K∑̀
k=2

γ̂ k` 1( 0,∞ )(u` − p̂ k−1
` )

≥ γ 1
` +

K∑̀
k=2

γ̂ k` ϕlb

(
u` − p̂ k−1

` , δ
)
, ϕ̂lb(u`, δ)

and

F−1
γ̃`

(u`) ≤ γ 1
` +

K∑̀
k=2

γ̂ k` ϕub

(
u` − p̂ k−1

` , δ
)
, ϕ̂ub(u`, δ).

Therefore, for a function: h(θ, γ) = γ>χ(θ) =
L∑
`=1

γ`v`(θ) where each v` is a nonpositive function (cf.

(11)), it follows that its uniform-transformation h(θ, φ(u)) (as in (5) and (8)) satisfies

L∑
`=1

ϕ̂ub(u`, δ) v`(θ)︸ ︷︷ ︸
denoted hlb(θ, u)

≤ h(θ, φ(u)) =

L∑
`=1

F−1
γ̃`

(u`) v`(θ) ≤
L∑
`=1

ϕ̂lb(u`, δ) v`(θ)︸ ︷︷ ︸
denoted hub(θ, u)

More generally, provided that the function h(θ, •) is isotone in the second argument (cf. e.g. (11)),

γ ≤ γ′ ⇒ h(θ, γ) ≤ h(θ, γ′)

we can bound the discontinuous function h(θ, φ(u)) by continuous functions. In the rest of the
paper, we assume that such continuous bounding functions hlb(θ, u) and hub(θ, u) have been derived
for h(θ, φ(u)); needless to say, if the latter function is already continuous (for instance, if the cdf of
each γ̃` has a continuous inverse), then there is no need for such bounds.

Summarizing the above discussion, and assuming that a(θi) in (7) is a constant for notational sim-
plicity, we obtain the following two problems that provide upper and lower bounds for (8):

minimum
θ∈Θ; u∈ [ 0,1 ]L

−
M∑
i=1

g(yi, θi)− hub(θ, u) + log

∫
Θ

exp
(
hlb(θ ′, u)

)
dθ ′

≤ minimum
θ∈Θ; u∈ [ 0,1 ]L

−
M∑
i=1

g(yi, θi)− h(θ, φ(u)) + log

∫
Θ

exp
(
h(θ ′, φ(u)

)
dθ ′ (problem (8))

≤ minimum
θ∈Θ; u∈ [ 0,1 ]L

−
N∑
i=1

g(yi, θi)− hlb(θ, u) + log

∫
Θ

exp
(
hub(θ ′, u)

)
dθ ′

The above inequalities are in terms of the global minimum objective values of the respective problems.
Yet, the two bounding problems remain (highly) nonconvex and (often) nondifferentiable; moreover,
they still contain the practically intractable logarithmic integral functions. To address the former
“non”-features, we settle for a practically computable solution that satisfies a stationarity condition
of some sort (to be defined in the next section). This modest goal is the general principle of our
modern point of view of nonconvex nondifferentiable optimization detailed in the recent monograph
[11]; that is, instead of the impossible task of computing global minimizers, we emphasize practical
computability along with the validation of some stationarity conditions (i.e., necessary conditions
for local optimality) satisfied by the computed solutions.
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4 The Logarithmic Integral Optimiation Problem

As a unification of the upper and lower bounding minimization problems of (8), we consider the
following nonconvex nondifferentiable optimization problem whose objective contains an intractable
logarithmic integral function, which is the vanilla problem (2) with r(x, z) = exp(H(x, z)) to highlight
its connection to exponential families, although our methods in this section apply to general r:

minimize
x∈X

c(x) + logZ(x), where Z(x) ,
∫

Ξ
exp(H(x, z))dz. (19)

We impose the following blanket assumptions on (19):

1. (Sets) X ⊆ Rn is compact and convex; Ξ ⊆ Rd is compact.

2. (Continuity) Both c : O → R and H : O×Z → R are continuous functions, where O and Z are
open sets containing X and Ξ. Hence H(x, z) is Borel measurable in z ∈ Ξ for all x ∈ X.

3. (B-differentiability) Functions c and H(•, z) (for all z ∈ Ξ) are Bouligand differentiable (B-
differentiable); that is, they are locally Lipschitz continuous on O and their directional derivatives

c ′(x; dx) , lim
τ↓0

c(x+ τdx)− c(x)

τ
and H(•, z) ′(x; dx) , lim

τ↓0

H(x+ τdx, z)−H(x, z)

τ

exist for all (x, dx) ∈ O×Rn. Lastly, we assume that a function LipH : Z → R++ exists satisfying

|H(x, z)−H(x ′, z) | ≤ LipH(z) ‖x− x ′ ‖, ∀x, x ′ ∈ O and z ∈ Z

and

∫
Ξ

LipH(z) dz <∞.

By the Dominated Convergence Theorem and Theorem 7.44 of [43], we obtain the following basic
properties on function Z:

• Z is continuous on X and Z(x) <∞ for all x ∈ X.

• Z, hence logZ, is B-differentiable on X.

In terms of the directional derivative, we recall that a local minimizer of (19) must be directionally
stationary; that is, if x̄ is such a minimizer, then

c ′(x̄;x− x̄) + ( logZ ) ′(x̄;x− x̄) ≥ 0, ∀x ∈ X

In the absence of a practical way to provably compute a local minimizer of a nonconvex nondif-
ferentiable optimization problem, the practical goal of “solving” such a problem is to settle for the
computation of a directional stationary solution. Even this less demanding task is not easy in general
(see [11, Chapter 7]), and for (19) in particular. This task is complicated by the taunting, if not
impossible, evaluation of Z(x). As a necessary step to alleviate the latter, we propose a combination
of the methods of surrogation [11, Chapter 7] and adaptive importance sampling [41]. The former
substitutes the nonconvex functions c and H(•, z) at an arbitrary reference vector x̄ by respective
convex majoring functions that are the basis for the development of effective algorithms; the latter
replaces the integral function by an equivalent expectation function which is then discretized into a
finite sum via sampling from a judiciously chosen density function, and this is adaptively employed
to control the variance of such discretization at each iteration. The end result of this fusion of
deterministic surrogation and stochastic sampling allows us to design a practically implementable
algorithm for computing a “stationary solution” of (19) of a certain kind.

9



4.1 Surrogation and stationarity

We assume that for every (x̄, z) ∈ X × Ξ , there exist convex ĉ(•; x̄) and Ĥ(•, z; x̄) such that

1. (Majorization) c(x) ≤ ĉ(x; x̄) and H(x, z) ≤ Ĥ(x, z; x̄) for all x ∈ X;

2. (Touching) c(x̄) = ĉ(x̄; x̄) and H(x̄, z) = Ĥ(x̄, z; x̄);

3. (Upper semicontinuity) ĉ(•, •) and Ĥ(•, z; •) are upper semicontinuous on O ×O;

4. (Continuity) Ĥ(x, •; x̄) is continuous hence Borel measurable on Z for all (x, x̄) ∈ O ×O;

Denote Ẑ(x; x̄) ,
∫

Ξ
exp(Ĥ(x, z; x̄)) dz, then under the assumptions stated above, we can deduce

the following properties of ĉ and Ẑ by Fatou’s Lemma and Theorem 7.44 of [43]:

• Ẑ is upper semicontinuous on X ×X and Ẑ(x; x̄) <∞ for all (x, x̄) ∈ X ×X.

• The following inequalities hold true for any dx ∈ Rn:

ĉ(•; x̄) ′(x̄; dx) ≥ c ′(x̄; dx) and ( log Ẑ(•; x̄) ) ′(x̄; dx) ≥ ( logZ ) ′(x̄; dx), (20)

The inequalities (20) pertain to directional derivative majorization of the surrogation functions.
If equalities hold in (20), then the majoring functions ĉ(•; x̄) and Ĥ(•, z; x̄) are said to be directional
derivative consistent at x̄.

With the convex surrogation functions ĉ(•; x̄) and Ĥ(•, z; x̄), we may consider the surrogate opti-
mization problem, for a given x̄ ∈ X and ρ > 0:

P̂ρ(x̄) : minimize
x∈X

ĉ(x; x̄) + log

∫
Ξ

exp(Ĥ(x, z; x̄))dz +
1

2ρ
‖x− x̄‖22 (21)

The lemma below asserts that this is a convex program. For later purposes, we also include the same
convexity of an empirical-average-version of the integral function. We omit the proof as it is a simple
consequence of the renowned Jensen’s inequality.

Lemma 2. Suppose that the bivariate function e : X × Ξ→ R is such that e(•, z) is convex for all
z ∈ Ξ and e(x, •) is integrable on Ξ. Then the two functions

log

∫
Ξ

exp(e(•, z))dz and log

 1

N

N∑
s=1

exp(e(•, ζs))


are convex for all ζN , {ζs}Ns=1. �

The problem (21) allows us to define an important solution concept for the problem (19). Let M̂ρ(x̄)

denote the optimal solution set of problem P̂ρ(x̄),

Definition 3. For given bivariate surrogation functions ĉ(•; x̄) and Ĥ(•, z; x̄) of c(•) and H(•, z), re-
spectively, satisfying the majorizaiton and touching conditions, a vector x̄ ∈ X is a (ĉ, Ĥ)-surrogation

stationary point of (19) if x̄ ∈ M̂ρ(x̄) for some ρ > 0. �
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Equivalently, the inclusion x̄ ∈ M̂ρ(x̄) states that x̄ is a fixed point of the “surrogation stationarity
map”:

M̂ρ : x̄ ∈ X → argmin P̂ρ(x̄) ⊆ X.

The role of the surrogation stationarity concept is that it is a necessary condition for a local min-
imizer of (19) as asserted by the following simple result; the condition is sufficient for directional
stationarity if the surrogation is directional derivative consistent. Being an immediate consequence
of the directional derivative majorization (20), the result does not require a proof.

Proposition 4. Let x̄ be a local minimizer of (19), then x̄ is a (ĉ, Ĥ)-surrogation stationary point
of (19) for any pair of bivariate functions (ĉ(•; x̄), Ĥ(•, z; x̄)) that majorizes and touches (c,H(•, z))
at x̄ for all z ∈ Ξ. Conversely, if the pair of surrogation functions (ĉ(•; x̄), Ĥ(•, z; x̄)) are directional
derivative consistent at x̄ for all z ∈ Ξ, and if x̄ is a (ĉ, Ĥ)-surrogation stationary point of (19), then
x̄ is a directional stationary point of (19). �

While (21) is a convex program, its practical solution remains daunting, if not intractable, because
of the challenging task of evaluating the multi-dimensional integral function. Thus it is necessary to
approximate the latter function; as mentioned before, this is accomplished by the statistical technique
of importance sampling to discretize the integration.

4.2 AIS-based surrogation method

For any bivariate function e : O × Z → R that is (Lebesgue) integrable in z ∈ Z for all x ∈ O, and
d-dimensional random vector ζ̃ with support Ξ and positive probability density function π, we have

Ze(x) ,
∫

Ξ
exp(e(x, z)) dz =

∫
Ξ
π(z)

exp(e(x, z))

π(z)
dz = E

ζ̃∼π

[
exp(e(x, ζ̃))

π(ζ̃)

]
. (22)

For a given x and a batch ζN , {ζs}Ns=1 of size N of iid samples drawn from distribution π, written

as ζN
iid∼ π, the Sample Average Approximation (SAA) of Ze(x) is given by

Ze(x) ≈ Zπe (x, ζN ) ,
1

N

N∑
s=1

exp(e(x, ζs))

π(x, ζs)
. (23)

Applying the importance sampling (IS) reformulation (22) to function Z in (19) turns it into a
stochastic program albeit of nonconvex and nondifferentiable type, which can either be näıvely
approximated by SAA as shown in (23) or more rigorously handled by algorithms that combine
surrogation and incremental SAA (see for instance [30] and Section 10.2 of [11]). It is worth noting
that such treatments will achieve their respective convergence results for any arbitrary positive
density π. A natural question arises as to what density π to choose if we desire a more efficient
approximation from sampling. It turns out that this question can be answered based on the principle
of importance sampling, which suggests to minimize the variance of the SAA. This minimizer is given
by the following lemma.

Lemma 5. [41, Theorem 3.12] Let f : Ξ→ R be a (Lebesgue) integrable function with |f | > 0. Let∫
Ξ
f(z) dz

SAA
≈≈ I(π, ζN ) ,

1

N

N∑
s=1

f(ζs)

π(ζs)

11



where ζN , {ζs}Ns=1
iid∼ π and π is a positive density function. Then for all N

πfIS ,
| f |∫

Ξ
| f(z) | dz

∈ argmin
π

Var
ζ̃∼π

[
f(ζ̃)

π(ζ̃)

]
= argmin

π
VarζN∼π

[
I(π; ζN )

]
,

where “Var
ζ̃∼π” and “VarζN∼π” denote the variance when the random variables follow π. Moreover,

if f is positive, then Var
ζ̃∼πfIS

[
f(ζ̃)

πfIS(ζ̃)

]
= 0; thus

∫
Ξ
f(z) dz = I(πfIS, ζ

N ) almost surely. �

The lemma above, when applied to function f(•) = expH(x̄, •) at a given x̄ ∈ X, indicates that
the density achieving the minimal variance of estimating Z at x̄ actually depends on the reference
point x̄. Thus, as far as variance reduction is concerned, the probability distribution in the stochastic
programming reformulation (22) of (19) is implicitly decision dependent, as there exists the following
density family parametrized by x̄ ∈ X

π
H(x̄,•)
IS (z) ,

exp(H(x̄, z))∫
Ξ

exp(H(x̄, z ′))dz ′
=

exp(H(x̄, z))

Z(x̄)
. (24)

whose associated SAA of type (23) equals to Z at x̄. In other words, by explicitly controlling the
variance, sampling from (24) and constructing (23) will yield a good approximation of the function
Z locally around x̄ with moderate sample size. To demonstrate this, suppose we approximate the

function Z(x) =

∫ 1

−1
exp{−z sin(x)}dz with SAA of type (23), and we compare the variance of SAA

from a π that is uniform on [−1, 1] with π = π
H(x̄,•)
IS under a particular choice of x̄. The variance is

exemplified by 50 independent replications of SAA under the aforementioned two choices of π. As
indicated by Figure 1a, when we apply the uniform π, the variance around a local maximizer of Z
(the blue dot) is large even when the sample size N is 1, 000. On the contrary, from Figure 1b, we
can obtain a better recovery of the landscape around the local maximizer (the blue dot in Figure 1b)

with smaller variance if we adopt π = π
H(x̄,•)
IS with a x̄ (e.g., the green dot in Figure 1b) that is near

the local maximizer, and we are able to achieve this with fewer samples, e.g., N = 100.

(a) uniform π, N = 1, 000 (b) π = π
H(x̄,•)
IS , N = 100

Figure 1: Effectiveness of sampling from π
H(x̄,•)
IS with a fixed x̄ ∈ X

This observation provides the following hints for designing an algorithm for (19) that iteratively
solves subproblems which depends on IS-based SAA (23) of Z. Namely, instead of restricting to one
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IS distribution for SAA throughout, in each iteration t we should make such distribution adapted

to our current iterate xt; more specifically, sampling from π
H(xt,•)
IS so that we can benefit from its

reduced variance. Combining such an adaptive IS scheme with the previously defined surrogation Ĥ
results in the following surrogated sampling approximation of logZ at a reference point x̄ ∈ X:

logZ(x)
IS
= log

E
ζ̃∼πH(x̄,•)

IS

[
exp(H(x, ζ̃))

π
H(x̄,•)
IS (ζ̃)

]

≤ log

E
ζ̃∼πH(x̄,•)

IS

[
exp(Ĥ(x, ζ̃; x̄))

π
H(x̄,•)
IS (ζ̃)

] , surrogation of H(•, ζ̃) by Ĥ(•, ζ̃; x̄)

SAA
≈≈ log

 1

N

N∑
s=1

exp(Ĥ(x, ζs; x̄))

π
H(x̄,•)
IS (ζs)

 , draw ζN , {ζs}Ns=1
iid∼ π

H(x̄,•)
IS

= log

 1

N

N∑
s=1

exp(Ĥ(x, ζs; x̄))

exp(H(x̄, ζs))

+ logZ(x̄)︸ ︷︷ ︸
constant given x̄

,
substituting out π

H(x̄,•)
IS (ζ̃)

in the denominator.

With the above constructions, we obtain the following approximation of problem (19), regularized
by a proximal term with coefficient ρ > 0 to ensure its strict convexity hence uniqueness of solution

P̂N
ρ (x̄; ζN ) : minimize

x∈X
ĉ(x; x̄) + log

 1

N

N∑
s=1

exp(Ĥ(x, ζs; x̄))

π
H(x̄,•)
IS (ζs)

+
1

2ρ
‖x− x̄ ‖22. (25)

Problem (25) is the computational workhorse in the iterative algorithm described below. At each
iteration, we employ the most recent iterate to define the reference vector x̄; thus both the IS

density π
H(x̄,•)
IS and surrogation are iterate dependent. The overall procedure is the promised AIS-

based surrogation scheme that aims to compute a surrogation stationary solution of the original
logarithmic integral optimization problem (19) corresponding to a given pair (ĉ, Ĥ) of surrogation

functions; such a solution is a x∞ ∈ X such that x∞ ∈ M̂γ(x∞).

Algorithm for (19): AIS-based Surrogation Method

Initialization. Let x0 ∈ X, ρ > 0, and a sequence of (positive) increasing integers {Nt}∞t=0 be given.
Set t = 0.

General Step. Given xt ∈ X and sample batch ζ t , {ζst}Nts=1 with ζst |xt iid∼ π
H(xt,•)
IS . Let xt+1 be

the unique optimal solution of the problem P̂Nt
ρ (xt; ζ t), which is equivalent to

minimize
x∈X

ĉ(x;xt) + log

 1

Nt

Nt∑
s=1

exp(Ĥ(x, ζst;xt))

exp(H(xt, ζst))


︸ ︷︷ ︸

convex in x given xt

+
1

2ρ
‖x− xt ‖22.

(26)

Stop if a prescribed termination criterion is satisfied; otherwise, return to the general step with t
replaced by t+ 1. �
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5 Analysis of the AIS-based Surrogation Algorithm

In this section, we present an analysis of the AIS-based surrogation algorithm which eventually
establishes its almost sure subsequential convergence to a surrogation stationary point. While our
adaptive choice of the IS density has the advantage of minimizing the (conditional) SAA variance at
xt for each iteration, it jeopardizes much of the typical analysis of SAA-based surrogation method
(cf. [11, Theorem 10.2.1]), which relies critically on a uniform law of large numbers (ULLN) for iid
samples. Since our iterate-dependent sampling process easily leads to a special triangular array of
non-iid samples, our first order of business is to extend such laws, which are then applied to prove the
convergence of our algorithm via two key steps, namely showing sufficient descent and asymptotic
fixed point stationarity. Before further details, we summarize the notations that will be used in the

analysis. For a given distribution with density π and samples ζs
iid∼ π for all s = 1, · · · , N , define

SAA of Z: Z̄Nπ (x) ,
1

N

N∑
s=1

exp(H(x, ζs))

π(ζs)

Surrogation of Z given x̄: Ẑ(x; x̄) ,
∫

Ξ
exp(Ĥ(x, z; x̄))dz = Eζ∼π

exp(Ĥ(x, ζ; x̄))

π(ζ)

Sampled surrogation of Z given x̄: ẐNπ (x; x̄) ,
1

N

N∑
s=1

exp(Ĥ(x, ζs; x̄))

π(ζs)
.

Additionally we write π∗(x̄) as a shorthand for π
H(x̄,•)
IS when it appears in the subscripts.

5.1 A Digression: ULLN for triangular arrays

In this section, we extend ULLN to a special triangular array that generalizes our AIS scheme, which
can be understood as the following data generating mechanism written in generic notations.

Definition 6. (AIS triangular array) For a subset Y ⊆ Rn and a compact set K ⊂ Rm, let
{η(•, y) : K → R++}y∈Y be a parametric family of probability density functions. We generate an
array {zt}t≥1 of samples according to the following process:

Step 1 =⇒ fix an arbitrary y0 ∈ Y

Step t ≥ 1 =⇒ given yt ∈ Y sample zt , {zst}Nts=1 with zst | yt iid∼ η(•, yt),

and set yt+1 = ξt(zt, yt) ∈ Y

(27)

where ξt : KNt ×Y → Y is measurable and {Nt}t≥1 is a prescribed sequence of positive integers.

Note that samples {zt}t≥1 are obviously not iid, instead {zst}Nts=1 are conditionally independent given
yt with conditional distribution η(•, yt). In what follows, we establish several asymptotic results for
such a triangular array. The first result is a strong LLN for the array {ϕ(zst) : s ∈ [Nt], t ≥ 1}
when ϕ is some function with a bounded range. We then generalize this result to a strong ULLN
for triangular array of random functions. Finally, this strong ULLN is applied to prove a customized
strong “one-sided” ULLN for a triangular array of random functions defined by our surrogate Ĥ.

Lemma 7. Let the following be given:

• an array {zt}t≥1 and sequence {yt}t≥1 as generated in Definition 6;

• a measurable function ϕ : K → R such that sup
z∈K
|ϕ(z) | <∞; and
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• a sequence of positive integers {Nt}t≥1 satisfying for some scalar κ > 0 and integer Tκ the condition
that Nt ≥ κt for all t ≥ Tκ.

It then holds that

lim
t→∞

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt) ϕ(ζ)

∣∣∣∣∣∣ = 0, almost surely. (28)

Proof. Denote Mϕ , sup
z∈K

ϕ(z)− inf
z∈K

ϕ(z) <∞, then for arbitrary ȳ ∈ Y and ε > 0 we have

P

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ ≥ ε
∣∣∣∣∣ yt = ȳ

 ≤ 2 exp

{
−2Ntε

2

M2
ϕ

}
(29)

holds due to the conditional independence among {zst}Nts=1, the fact that for all s = 1, . . . , Nt we have
E(ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ) | yt = ȳ) = 0, and virtually the same argument of proving the conventional

Hoeffding’s inequality. For all t ≥ 1, denote St , {z1, . . . ,zt, y1, . . . , yt} and Ft as the σ-algebra
generated by St with F0 , {∅,Ω} where Ω is the underlying set of possible outcomes. By our data
generating process and the definition of conditional probability distribution, from (29) the following
holds true almost surely

P

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ ≥ ε
∣∣∣∣∣ Ft−1


= P

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ ≥ ε
∣∣∣∣∣ yt

 ≤ 2 exp

{
−2Ntε

2

M2
ϕ

} (30)

By the second Borel-Cantelli Theorem [14, Theorem 4.3.4], and our assumptions on Nt

0 = P

 ∞∑
t=1

P

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ ≥ ε
∣∣∣∣∣ Ft−1

 =∞


= P

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ ≥ ε i.o.


where “i.o.” stands for infinitely often. Note that this is sufficient to show that∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ϕ(zst)− Eζ∼η(•,yt)ϕ(ζ)

∣∣∣∣∣∣ −→ 0

almost surely.

With Lemma 7, we can follow the same line of proof of [43, Theorem 7.48], i.e., ULLN of SAA, and
obtain the following result for the {zt}t≥1 of our interests. Details of the proof are omitted.
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Proposition 8. In addition to the settings of Lemma 7, let X be a compact set in an Euclidean
space and function ψ : X × K → R so that ψ(χ, •) is measurable for all χ ∈ X and there exists
Mψ <∞ with |ψ(χ, z)| < Mψ for all (χ, z) ∈ X ×K. Then

lim
t→∞

sup
χ∈X

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ψ(χ, zst)− Eζ∼η(•,yt)ψ(χ, ζ)

∣∣∣∣∣∣ = 0, almost surely.

By [43, Theorem 7.48], for a given xt, we can easily obtain error sup
x∈X

∣∣∣ẐNtπ∗(xt)(x, x
t)− Ẑ(x, xt)

∣∣∣→ 0

almost surely as Nt →∞. However, as we will see in the analysis of AIS method in the subsequent
sections, we need the rate for such convergence to be uniform in xt, and the following proposition
provides a “one-sided” version of this type of result.

Proposition 9. Let {xt}∞t=0 be as generated in the AIS-based surrogation algorithm and further
assume that {Nt}t≥0 is a sequence of positive integers satisfying for some scalar κ > 0 and integer
Tκ the condition that Nt ≥ κt for all t ≥ Tκ. Then almost surely we can find a subsequence {xt}t∈T
so that xt(t ∈ T )→ x∞ ∈ X and that for all x ∈ X

lim sup
t(∈T )→∞

ẐNtπ∗(xt)(x;xt) ≤ Ẑ(x;x∞)

Proof. See Appendix A.1 for details.

5.2 Convergence of deterministic surrogation algorithm

To make our discussion self-contained, we present the following convergence result for the determin-
istic surrogation method as a reference for the intuition behind the formal analysis of AIS-based
surrogation. The main idea is that our method can be treated as a combination of deterministic
surrogation and some stochastic error subjected to our sampling scheme. While the convergence of
deterministic surrogation method can be straightforwardly established as below, what remains to be
shown is that the accumulated stochastic error will diminish asymptotically.

Proposition 10. Let x0 ∈ X, ρ > 0 be arbitrary and for all t ≥ 0 let xt+1 ∈ M̂ρ(x
t). Then the

sequence {xt}t≥0 has an accumulation point x∞ ∈ X such that x∞ ∈ M̂ρ(x
∞).

Proof. Step 1 (sufficient descent) By the majorization and touching properties of (ĉ, Ĥ), and the

optimality of xt+1 to the problem associated with M̂ρ(x
t), we obtain

c(xt+1) + logZ(xt+1) +
1

2ρ
‖xt+1 − xt‖22 ≤ c(xt) + logZ(xt) (31)

By c and logZ being bounded from below, we can easily deduce that lim
t→∞
‖xt+1 − xt‖2 = 0.

Step 2 (asymptotic fixed-point stationarity) Fix an arbitrary x ∈ X, we have

c(xt+1) + logZ(xt+1) +
1

2ρ
‖xt+1 − xt‖22 ≤ ĉ(x; xt) + log Ẑ(x; xt) +

1

2ρ
‖x− xt‖22 (32)

from majorization and optimality of xt+1. By compactness of X, we can restrict to a subsequence
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indexed by T so that xt → x∞ ∈ X when t(∈ T )→∞ and

ĉ(x∞; x∞) + log Ẑ(x∞; x∞) +
1

2ρ
‖x∞ − x∞‖22

= c(x∞) + logZ(x∞) ←− by touching

≤ ĉ(x; x∞) + log Ẑ(x; x∞) +
1

2ρ
‖x− x∞‖22 ←− by upper semicontinuity

if we take “limsup” for t(∈ T )→∞ on both sides of (32), which gives us x∞ ∈ M̂ρ(x
∞).

5.3 Sufficient descent with stochastic error

Similar to the analysis of the deterministic surrogation method, the detailed convergence analysis
of the AIS-based surrogation method consists of two main steps, the first of which is the sufficient
descent property that aims to show ‖xt+1 − xt‖2 → 0 almost surely. Note that we can obtain the
following inequality similar to (31), but with the SAA of the function Z instead:

c(xt+1) + log Z̄Ntπ∗(xt)(x
t+1) +

1

2ρ
‖xt+1 − xt‖22 ≤ c(xt) + log Z̄Ntπ∗(xt)(x

t) (33)

Define et , log Z̄Ntπ∗(xt)(x
t) − log Z̄

Nt−1

π∗(xt−1)
(xt) and note that Z̄Ntπ∗(xt)(x

t) = Z(xt) by the AIS scheme

and Lemma 5; thus et ≤ e′t−1 , sup
x∈X

∣∣∣logZ(x)− log Z̄
Nt−1

π∗(xt−1)
(x)
∣∣∣. For all t ≥ 1 we get:

c(xt+1) + log Z̄Ntπ∗(xt)(x
t+1) +

1

2ρ
‖xt+1 − xt‖22 ≤ c(xt) + log Z̄

Nt−1

π∗(xt−1)
(xt) + e′t−1 (34)

As for the case when t = 0, we can let log Z̄
N−1

π∗(x−1)
(x0) as logZ(x0) and e′−1 , 0. In this way, the

last inequality (34) holds for all t.

To obtain ‖xt+1 − xt‖2 → 0 from (34), we essentially need error e′t−1 → 0 fast enough in some
appropriate notion of convergence. This can be ensured by the following conditions on {Nt}t≥0,

which we assume to be valid for the remaining analysis:

∞∑
t=0

1

Nα
t

<∞ for a fixed α ∈
(

0,
1

2

)
. To

show this, the following result is useful in providing a uniform (in x̄ ∈ X) non-asymptotic rate for
the convergence of log Z̄Nπ∗(x̄) to logZ on X when N →∞.

Lemma 11. For any α ∈
(

0,
1

2

)
there exists Cα > 0 such that for all integer N ≥ 0,

E

(
sup
x∈X

∣∣∣log Z̄Nπ∗(x̄)(x)− logZ(x)
∣∣∣) ≤ 2Cα

Nα
, for all x̄ ∈ X (35)

where the expectation is understood as the data in Z̄Nπ∗(x̄) having density π
H(x̄,•)
IS .

Proof. See Appendix A.2 for details.
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Denote by Dt the σ-algebra generated by ∪tτ=0 ∪
Nτ
sτ=1 {ζsτ τ} for all t ≥ 0, namely all the samples

generated until step t, and define D−1 , {∅,Ω}. Then the following holds for all t ≥ 0 from (34):

E
(
c(xt+1) + log Z̄Ntπ∗(xt)(x

t+1)
∣∣∣ Dt−1

)
+

1

2γ
E
(
‖xt+1 − xt‖22

∣∣∣ Dt−1
)

≤ c(xt) + log Z̄
Nt−1

π∗(xt−1)
(xt) + e′t−1

(36)

Furthermore,

∞∑
τ=−1

e′τ <∞ almost surely, otherwise P

 ∞∑
τ=−1

e′τ =∞

 > 0 hence E

 ∞∑
τ=−1

e′τ

 =∞;

this contradicts the followings under our previous assumptions on {Nt}t≥0:

E

 ∞∑
τ=0

e′τ

 =
∞∑
τ=0

E(e′τ ) =
∞∑
τ=0

E
(
E(e′τ |Dτ−1)

)
≤

∞∑
τ=0

2Cα
Nα
τ

< ∞ (37)

The first equality of (37) is by e′τ ≥ 0 and applying Theorem 2.15 in [16]. The second equality of
(37) is by the law of total expectation. The first inequality of (37) is by x0 being fixed, the fact
that E(e′0|D−1) = E(e′0), E(e′τ |Dτ−1) = E(e′τ |xτ ) for all τ ≥ 1 and Lemma 11 whose applicability

is established by our definition of the conditional distribution ζsτ |xτ iid∼ π∗(•, xτ ) = π
H(xτ ,•)
IS for all

s ∈ [Nτ ]. The second inequality of (37) is by our assumptions on {Nτ}τ≥0. In sum, we almost surely

have
∞∑

τ=−1

e′τ <∞ holds.

Finally, by c(xt) + log Z̄
Nt−1

π∗(xt−1)
(xt) being uniformly bounded from below, we can without loss of

generality combine the result that
∞∑

τ=−1

e′τ <∞ almost surely with (36) and apply the Robbins-

Siegmund nonnegative almost supermartingale convergence theorem [40, Theorem 1] to conclude
that the following holds almost surely

∞∑
t=0

E
(
‖xt+1 − xt‖22

∣∣∣ Dt−1
)

< ∞

This in turns gives us ‖xt+1−xt‖2 → 0 almost surely by a straightforward application of conditional
Markov inequality and the second Borel-Cantelli lemma [14, Theorem 5.3.2].

5.4 Asymptotic fixed-point stationarity

Similar to Step 2 in the analysis of Proposition 10, we can fix an arbitrary x ∈ X and get:

c(xt+1) + log Z̄Ntπ∗(xt)(x
t+1)︸ ︷︷ ︸

Term I

+
1

2ρ
‖xt+1 − xt‖22 ≤ ĉ(x;xt) + log ẐNtπ∗(xt)(x;xt)︸ ︷︷ ︸

Term II

+
1

2ρ
‖x− xt‖22 (38)

The key intuition is that restricted to a subsequence T such that xt → x∞ ∈ X, when t(∈ T )→∞
(due to the compactness of X), Term I in (38) should converge to logZ(x∞) = log Ẑ(x∞;x∞) and
the limit of Term II in (38) should be upper bounded by log Ẑ(x;x∞). More precisely, since Term I
and II can be understood as the SAA of their respective conditional expectation, when Nt →∞ as
we let t(∈ T ) → ∞, the law of large number that dominates the convergence of these SAAs should
be uniform in xt. In what follows, Term I and II will be analyzed under such overarching goals.
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Term I Denote ψ(x̄, y, z) , Z(y) exp{H(x̄, z)−H(y, z)} so that

Z̄Ntπ∗(xt)(x
t+1) =

1

Nt

Nt∑
s=1

ψ(xt+1, xt, ζst), Z(xt+1) = Eζ∼π∗(xt)

(
ψ(xt+1, xt, ζ)

)
Note that by our assumptions on {Nt}t≥0, Proposition 8 is applicable to ψ hence for almost every
ω ∈ Ω (Ω being the set of possible outcomes) we can restrict to a subsequence indexed by T (ω) so
that x∞(ω) , lim

t(∈T (ω))→∞
xt(ω) ∈ X and the followings hold:

lim
t(∈T (ω))→∞

sup
(x̄,y)∈X×X

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ψ(x̄, y, ζst(ω))− Eζ∼π∗(xt(ω))

(
ψ(x̄, y, ζ)

)∣∣∣∣∣∣ = 0 (39)

Also note that after some simple operations:∣∣∣ Z̄Ntπ∗(xt(ω))(x
t+1(ω))− Z(x∞(ω))

∣∣∣
≤ sup

(x̄,y)∈X×X

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

ψ(x̄, y, ζst(ω))− Eζ∼π∗(xt(ω))

(
ψ(x̄, y, ζ)

) ∣∣∣∣∣∣︸ ︷︷ ︸
Term I.1

+
∣∣∣Z(xt+1(ω))− Z(x∞(ω))

∣∣∣︸ ︷︷ ︸
Term I.2

When we take t(∈ T (ω)) → ∞, Term I.1 of this inequality goes to zero by (39) and Term I.2 also
goes to zero by an application of Dominated Convergence Theorem. Thus

lim
t(∈T (ω))→∞

Z̄Ntπ∗(xt(ω))(x
t+1(ω)) = Z(x∞(ω))

In sum if we take t(∈ T (ω))→∞, the left hand side of (38) goes to

c(x∞(ω)) + logZ(x∞(ω)) = ĉ(x∞(ω);x∞(ω)) + log Ẑ(x∞(ω);x∞(ω))

since from the sufficient descent analysis ‖xt+1(ω)− xt(ω)‖2 → 0 as t(∈ T (ω))→∞.

Term II By our assumptions we can treat logarithm as Lipschitz continuous with constant L̃ hence

log ẐNtπ∗(xt(ω))(x;xt(ω)) ≤ L̃
(
ẐNtπ∗(xt(ω))(x;xt(ω))− Ẑ(x;x∞(ω))

)
+ log Ẑ(x;x∞(ω)) (40)

Given the assumptions on {Nt}t≥0, Proposition 9 is applicable so that without loss of generality

lim sup
t(∈T (ω))→∞

ẐNtπ∗(xt(ω))(x;xt(ω))− Ẑ(x;x∞(ω)) ≤ 0

If we apply this to (40) and subsequntly to the right hand side of (38) we can obtain:

ĉ(x∞(ω);x∞(ω)) + log Ẑ(x∞(ω);x∞(ω)) +
1

2ρ
‖x∞(ω)− x∞(ω)‖22

≤ ĉ(x;x∞(ω)) + log Ẑ(x;x∞(ω)) +
1

2ρ
‖x− x∞(ω)‖22

namely, x∞(ω) ∈ argmin
x̄∈X

ĉ(x̄;x∞(ω)) + log Ẑ(x̄;x∞(ω)) +
1

2ρ
‖x̄− x∞(ω)‖22 = M̂ρ(x

∞(ω)).
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5.5 The main theorem with discussion

Combining the analysis presented in Section 5.3 and 5.4, we formalize the following conclusion which
guarantees an almost sure subsequential convergence of the AIS-based surrogation method to a
surrogation stationary point of the logarithmic integral optimization problem (19).

Theorem 12. Let the following be given:

• A pair (ĉ, Ĥ) of surrogate functions satisfying the conditions in Section 4.1;

• A sequence of positive integers {Nt}t≥0 such that
∞∑
t=0

1

Nα
t

<∞ for some α ∈
(

0,
1

2

)
.

Then with probability one, the sequence {xt}t≥0 produced by the AIS-based surrogation method has

an accumulation point x∞ ∈ X such that x∞ is a (ĉ, Ĥ)-surrogation stationary point of (19).

Remark 13. We have the following comments pertaining to Theorem 12:

1. By Proposition 4, the accumulation point x∞ will be a directional stationary point of (19) if the
selected surrogation (ĉ, Ĥ) satisfies the condition that (ĉ(•;x), Ĥ(•, z;x)) is directional derivative
consistent at x for all (x, z) ∈ X × Ξ, namely, ĉ(•;x) ′(x; dx) = c ′(x; dx) and Ĥ(•, z;x) ′(x; dx) =
H ′(x, z; dx), which ensures (log Ẑ(•; x̄)) ′(x̄; dx) = (logZ) ′(x̄; dx), for any dx ∈ Rn.

2. From Theorem 12, a sequence of Nt that grows faster than t2 should be sufficient to guarantee
our convergence result. However, as indicated by our numerical results, such estimation of sample
complexity can be too conservative in practice. In Appendix B, we present a modified version of
our scheme which suggests a Nt that increases linearly in t. This alternative scheme requires ρ to
be small enough instead of any arbitrary positive value, and uses ‖x− xt‖2 for the regularization
term instead of its square in subproblem (26). However, this modification should be regarded as
a theoretical insight into improving sample complexity at the cost of a sacrificed practical utility,
due to the restricted “step-size” ρ and the use of nondifferentiable subproblems which are more
challenging to solve. Therefore, in the subsequent experiments, we opt to implement only the
original AIS-based surrogation scheme, as its practical effectiveness requires a more manageable
sample size than what the theoretical results suggest, as we just mentioned.

6 Numerical Experiments

In this section, we test the numerical performance of our AIS-based surrogation method (abbreviated
as “AIS” from now on) with two driving goals. First, we aim to demonstrate the advantage of AIS
when compared with the following two approaches for (19):

• Sample Average Approximation (SAA): We substitute the integral term in (19) by the SAA
of type (23) under a prescribed density πSAA and sample size S, and the remaining problem

minimize
x∈X

c(x) + log

 1

S

S∑
s=1

exp
(
H(x, ζs)

)
πSAA(ζs)

 = c(x) + log
(
Z̄ S
πSAA

(x)
)

(41)

is handled by a surrogation method which iteratively solves (with a fixed x0 ∈ X, ρ > 0)

xt+1 ∈ M̂ SAA
ρ (xt;S) , argmin

x∈X
ĉ(x;xt) + log

(
Ẑ S
πSAA

(x;xt)
)

+
1

2ρ
‖x− xt‖22
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and produces a sequence {xt}t≥0 with an accumulation point xSAA satisfying xSAA ∈ M̂ SAA
ρ (xSAA;S).

The proof is virtually the same as Proposition 10 hence omitted here.

• Stochastic Majorization Minimization (SMM): With a prescribed continuous density func-
tion πSMM throughout the procedure, we have the following two implementations of SMM:

— Non-incremental SMM: this is essentially the same as AIS method except for now we sample
non-adaptively from πSMM in each step t with sample size Nt identical to that of AIS.

— Incremental SMM: in each step we still draw Nt iid samples from πSMM but now we apply
all the samples up to step t to construct subproblem (26). Convergence result of SMM under this
setting can be found in Theorem 10.2.1. of [11], where the same subsequential convergence as in
Theorem 12 can be established if sequence Nt satisfies the followings

∞∑
t=1

Nt −Nt−1

NtNα
t−1

<∞, for some α ∈
(

0,
1

2

)
.

Through the applications of AIS, SMM and SAA on the same set of generic problems under various
configurations, we verify that AIS outperforms the other methods in terms of computing time,
objective value at termination, and stability, namely the variance in solutions, near convergence.

Our second goal is to show that AIS, as a suitable method for MAP inference of BHMs with in-
tractable normalizers, enables the practical benefits of such models that are otherwise handicapped
by näıve treatments of the intractable normalizers, e.g., model (9) as a simplificaiton of (11). Finally,
all the numerical experiments are conducted on a Mac OS X personal computer with 2.3 GHz Intel
Core i7 and 8 GB RAM. The reported times are in seconds on this computer.

6.1 Comparisons with SMM and SAA

This section compares the performance of AIS, SMM and SAA by applying them to randomly
generated instances of the o-BHOP (4) for model (13) under the following specifications:

• Both yi and θ̃i are scalar valued, i.e., m = 1, hence vectors y and θ̃ are both |V| = M -dimensional,
and p yi (yi | θ̃) in (13) is Gaussian with mean θ̃i and a known variance σ2

i > 0.

• Density q(θ | γ̃) in (13) is specified with hij(θi, θj) = |θi − θj |.
The o-BHOP (4) under these settings is formulated as:

minimize
θ,γ

M∑
i=1

1

2σ2
i

(yi − θi)2 +
∑
i<j

γij |θi − θj |+ log

(∫
Θ

exp

−∑
i<j

γij |θ ′i − θ ′j |

 dθ ′

︸ ︷︷ ︸
, Z(γ)

)

subject to θ ∈ Θ = [0, 1]M , γ
ij
≤ γij ≤ γij , ∀i < j.

(42)

We set M to be 10 and 20, resulting in D = 55 and D = 210 total variables in (42), respectively.
Data y is generated from model (13), with σi = 0.1 for all i ∈ V, and γ

ij
= 0 and γ̄ij = 0.01 for all

i < j, except for two randomly chosen pairs whose upper bound γ̄ij is set to be 100.

When we implement AIS, we adopt sample size Nt = min{t1.2, N̄} where N̄ is a predetermined
positive integer. Given the current γt, we apply Metropolis-Hastings method [41] to draw condi-

tionally independent samples {zst}Nts=1 from density function (in z):
1

Z(γt)
exp

−∑
i<j

γtij |zi − zj |

,

and then construct AIS subproblem (26) whose formulation is specified as (46) in Appendix C.1.

21



On the other hand, the sampling distribution πSMM for both incremental and non-incremental SMM
are fixed as uniform over set Θ. In each step t, given iid samples from πSMM, we solve subproblems
whose formulations under the two SMM schemes can be found in (46) of Appendix C.1. Finally, for
SAA we set πSAA as uniform over Θ and for a fixed sample size S we solve (41) with the surrogation
method we introduced in the beginning of this section.

Throughout our experiments, we test AIS, SMM and SAA with ρ = 100, N̄ ∈ {10, 20, 50, 100} and
S ∈ {100, 1000, 10000}, and the detailed configurations are summarized in Table 1.

Methods Configurations

AIS under a (M, N̄) 3 instances × 5 initializations

SMM under a (M, N̄) 3 instances × 5 initializations

SAA under a (M,S) 3 instances × 5 initializations × 3 replications

Table 1: Experiment configurations

For SAA, we refer to distinct batches of S samples from πSAA as “replications”. For each M , we use
“3 instances” to denote three randomly generated problems that are shared by different methods
under varying arrangements, including different choices of N̄ and S, as well as different initializations
and replications. All the statistics shown in Table 2 are averaged over the total number of runs under
a particular pair of (M, N̄) or (M,S): 15 for AIS and SMM, 45 for SAA. Finally, all the methods
are terminated when two stopping criteria are met, namely when the relative difference between two
consecutive solutions are small enough (we use notation x to represent (θ, γ) in what follows):

‖xt − xt−1‖
‖xt−1‖

< εsol, values of εsol :

 N̄ = 10 N̄ = 20 N̄ = 50 N̄ = 100

M = 10 7e-5 2e-5 2e-5 2e-5

M = 20 1e-4 1e-4 1e-4 1e-4


and the changes in objective are relatively small among the three most recent steps:

1

3

t∑
τ=t−2

∣∣∣f̂(xτ )− f̂(xτ−1)
∣∣∣∣∣∣f̂(xτ−1)

∣∣∣ < εobj, values of εobj :

 N̄ = 10 N̄ = 20 N̄ = 50 N̄ = 100

M = 10 2e-5 1e-5 1e-5 1e-5

M = 20 2e-5 1e-5 1e-5 1e-5


where f̂ is the objective of (42) with Z(γ) approximated by 105 predetermined iid uniform samples
on Θ. Additionally, we terminate if these two stopping rules are not satisfied at step 100.

All the test results are summarized in Table 2, in which “Tot. Time” stands for how long it takes
for the algorithms to terminate, “Samp. Time” and “Sol. Time” represents the time that is purely
spent on sampling and solving the subproblems, “Obj.” is the approximated objective f̂ value at
termination, and “Steps” records the number of subproblems we solve before we stop. Incremental
and non-incremental SMM are referred to as “SMM (inc.)” and “SMM (non-inc.)” in the table.

First, from Table 2, the final objective attained by AIS is generally better than the two SMM schemes.
While a larger N̄ does not significantly affect the objective value at termination, it does increase
computing time. Additionally, both AIS and incremental SMM can be stopped within 100 steps but
the former requires less steps to terminate and it is apparently faster than the latter, e.g., twice as
fast when M = 20, N̄ = 10. On the other hand, for all sizes of N̄ , non-incremental SMM is not
capable of meeting the stopping criteria within 100 iterations. In fact, as demonstrated by the curves
of approximated objective f̂ vs. steps from AIS and the two SMM schemes when they are applied
to a typical case with M = 20, N̄ = 10 for 100 steps (see Figure 2), non-incremental SMM oscillates
too significantly for us to conclude its convergence while AIS has the most stable performance. It
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is worth noting that AIS achieves all the aforementioned properties despite spending a substantially
longer time on sampling, as the distribution we sampled from are more complex than simple uniform
law. However, a further decrease in AIS sampling time can be expected if we adopt a more adequate
sampling method than the current näıve implementation of Metropolis Hastings.

M = 10, D = 55

Methods Tot. Time Samp. Time Sol. Time Obj. Steps

SAA

S = 100 12.99 0.01 12.98 -4.627 26

S = 1000 12.33 0.02 12.31 -4.633 15

S = 10000 75.57 0.12 75.45 -4.635 15

AIS

N̄ = 10 7.87 2.50 5.37 -4.635 12

N̄ = 20 11.76 4.59 7.17 -4.636 16

N̄ = 50 13.04 5.79 7.25 -4.636 17

N̄ = 100 16.31 7.48 8.83 -4.636 20

SMM

(inc.)

N̄ = 10 11.60 0.01 11.59 -4.632 23

N̄ = 20 18.36 0.01 18.35 -4.633 34

N̄ = 50 20.03 0.02 20.02 -4.634 33

N̄ = 100 28.15 0.03 28.12 -4.635 41

SMM

(non-inc.)

N̄ = 10 41.39 0.02 41.37 -4.637 100

N̄ = 20 43.22 0.03 43.19 -4.637 100

N̄ = 50 44.39 0.06 44.33 -4.636 100

N̄ = 100 45.97 0.10 45.68 -4.636 100

Table 2: Comparison of AIS, SMM and SAA

M = 20, D = 210

Methods Tot. Time Samp. Time Sol. Time Obj. Steps

SAA

S = 100 31.11 0.01 31.11 -6.228 29

S = 1000 68.97 0.02 68.95 -6.251 26

S = 10000 635.19 0.11 635.08 -6.262 30

AIS

N̄ = 10 24.51 5.23 19.28 -6.263 23

N̄ = 20 33.10 9.41 23.69 -6.264 27

N̄ = 50 39.45 13.84 25.62 -6.264 30

N̄ = 100 43.91 15.98 27.94 -6.264 31

SMM

(inc.)

N̄ = 10 41.37 0.01 41.36 -6.241 34

N̄ = 20 120.51 0.02 120.49 -6.253 63

N̄ = 50 165.91 0.03 165.88 -6.258 58

N̄ = 100 316.44 0.06 316.38 -6.258 68

SMM

(non-inc.)

N̄ = 10 89.03 0.02 89.00 -6.256 100

N̄ = 20 87.19 0.04 87.16 -6.257 100

N̄ = 50 92.55 0.06 92.49 -6.257 100

N̄ = 100 100.05 0.11 99.94 -6.258 100

Table 2: Comparison of AIS, SMM and SAA (continued)

The advantage of AIS over both SMM schemes is endowed by its adaptive sampling scheme, which
provides accurate approximations of the objective with smaller variance (at least locally around the
current (θt, γt)), even with a small sample size such as N̄ = 10. This is particularly crucial as
most computations in all methods are spent on solving their respective subproblems, whose expenses
heavily depend on the sample size. Thus, AIS achieves a lighter computation than incremental SMM,
by requiring fewer samples to retain an effective approximation in each step. On the other hand,
non-incremental SMM, which applies the same sample size as AIS without accumulation, suffers from
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Figure 2: AIS vs. SMM

Methods
N̄ = 10 N̄ = 20

Var. Obj. Var. Sol. Var. Obj. Var. Sol.

AIS 2.2e-4 9.3e-4 1.5e-4 1.1e-3

SMM (inc.) 2.4e-3 4.2e-3 2.4e-4 5.7e-3

SMM (non-inc.) 1.0e-3 1.2e-2 1.2e-3 3.6e-3

Methods
N̄ = 50 N̄ = 100

Var. Obj. Var. Sol. Var. Obj. Var. Sol.

AIS 1.3e-4 6.3e-4 1.2e-4 9.7e-4

SMM (inc.) 1.9e-3 4.8e-3 1.5e-3 4.9e-3

SMM (non-inc.) 7.6e-4 2.8e-3 5.0e-4 2.2e-3

Table 3: Stability of AIS over SMM

a larger variance at each step. This is the key reason behind the smoother and more stable behavior
of AIS compared to non-incremental SMM, as seen in Figure 2. Another interesting observation
from Figure 2 is that the approximated objective curve of AIS is nearly non-increasing. It is known
that the deterministic surrogation method as described in Proposition 10, has the property of non-
increasing objective along the iterations. Therefore, if we view AIS as an inexact surrogation method,
the near monotonicity of the AIS curve further supports its approximation accuracy.

Table 3 presents some additional quantifications for the stability comparison between AIS and SMM,
where 10 repetitions are conducted for each pair of initialization and random instance (M = 10).
Standard deviation of the final objectives and the norm of final solutions among the 10 repetitions
are averaged over all the instances and initializations, and reported as “Std. Obj.” and “Std.
Sol.” respectively. Based on the table, AIS can effectively control the variance from the intermediate
sampling hence the variability in the solutions computed, which is favorable in practice. For instance,
when N̄ = 10, AIS achieves one-fifth (resp. one-tenth) standard deviation in objective (resp. norm
of solution) compared to the non-incremetal SMM.

The advantage of AIS over SAA is also significant from Table 2. Overall, AIS outperforms SAA
in terms of efficiency and final objective value. The performance of SAA primarily relies on the
sample size S, meaning that an inaccurate SAA from a small sample size like S = 100 will lead to an
unreliable solution despite being easier to compute. As S grows larger, the quality of SAA solutions
approaches those obtained by AIS, as indicated by the objective value at termination. Interestingly,
even when N̄ = 10, AIS can still achieve a comparable objective as SAA under S = 10000, but with
a computing speed that is at least five times faster.

6.2 Applications in BHM inference

In this part, AIS is applied to the following approximation of MRF with unknown edges (12)

level 2 ỹi | θ̃
ind.∼ p yi (yi | θ̃), for all i ∈ V,

level 1 θ̃ | ũ ∼ 1

Zedge(ũ)
exp

−∑
i<j

ϕij(ũij)hij(θi, θj)

,
level 0 ũij

iid∼ Uniform([0, 1]), for all i < j.

(43)
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where Zedge(ũ) ,
∫

Θ
exp

−∑
i<j

ϕij(ũij)hij(zi, zj)

 dz. This model is attained by first applying the

uniform transformation as in (5), i.e., substituting γ̃ij in (12) by F−1
γ̃ij

(ũij) with ũij being uniformly

distributed on [0, 1] and F−1
γ̃ij

(s) = 1(0,∞)(s − pij) being the generalized inverse of Bernoulli cdf.

Then we employ the treatment in Section 3 to approximate F−1
γ̃ij

by a nonconvex piecewise affine

ϕij , derived from ϕub in (17), whose formulation is listed in Appendix C.2. Additionally, p yi (yi | θ̃)
is univariate Gaussian with mean θ̃i and fixed variance σ2

i > 0 for all i ∈ V.

The MAP associated with (43) is typically nonconvex and nondifferentiable with intractable integral
term Zedge, making it computationally challenging. For a simplification, we can resort to the näıve
benchmark modeling (10), by setting ũij in (43) to be deterministic so that the intractable Zedge will
vanish. For example, if we let ũij to be some known ūij ∈ [0, 1] in (43) when hij(θi, θj) = Aij(θi−θj)2

with fixed Aij > 0, then the simplified MAP becomes

minimize
θ∈Θ

M∑
i=1

1

2σ2
i

(yi − θi)2 +
∑
i<j

ϕij(ūij)Aij(θi − θj)2 (44)

whose objective is quadratic with a special Stieltjes structure, making its global optimal solution
computable in strongly polynomial time when Θ is defined by box constraint; [37]. For more advanced
discussion when θ is additionally sparse in [22, 24]. However, as discussed in Section 2.2, such
simplifications are not always reliable, as the prescribed ūij might be misspecified if näıvely estimated
from noisy data y. In this sense, model (43) can benefit us with its flexibility in allowing both network
topology ũij and ground truth θ̃ to be recovered simultaneously.

To emphasize such advantages, comparisons between the more generalized model (43) and its sim-
plification are made within the context of signal and image recovery tasks. Through the following
experiments, we highlight the value of AIS as an effective method to enable the utility of model (43)
which summarizes the underlying data generating process more faithfully.

Smooth signal recovery

Suppose we discretize function sin(t) for t ∈ [0, 4π] by sampling it at equidistant points with a spacing
of 0.05 (except for t = 4π), resulting in M , |V| = 253. We define Θ = [−1, 1]M and construct
noisy signal y by adding iid Gaussian noises with mean 0 and variance σ2 to each point sampled,
where σ2 is 0.09 (resp. 0.25) to represent small (resp. large) noises. Model (43) is applied with
hij(θi, θj) = Aij(θi − θj)2 where Aij = 50. Intuitively, the ideal value ũ∗ in (43) should reflect the
smoothness of the underlying signal, namely ϕij(ũ

∗
ij) = 1 if i + 1 = j and ϕij(ũ

∗
ij) = 0 otherwise.

To simplify our computation, we only estimate the similarities around the four peaks of sine signal
between 0 and 4π. More specifically, with edge setN ,

{
(kπ + l − 1, kπ + l) : k = 1...4, l = −5...5

}
,

we fix ũij in (43) to be the ideal values ũ∗ij given that (i, j) 6∈ N . When our AIS method is applied
to the MAP of (43) whose formulation can be found as (49) in Appendix C.2, subproblem (26) is
formulated as (50) and solved by MOSEK [2]. Finally, AIS is terminated when the relative difference
of solutions (in `2 norm) between the two most recent steps is less than 5× 10−5.

To facilitate comparison, we simplify model (43) for (i, j) ∈ N by setting ũij to be ūij = 1 heuristically

if |yi−yj | < ȳ and ũij to be ūij = 0 otherwise, where the threshold is ȳ ,
1

m− 1

m−1∑
i=1

|yi+1 − yi|+ κν

with κ ∈ {−1,−0.5, 0, 0.5, 1} and ν being the standard deviation among {|yi+1−yi| : i = 1...M −1}.
The resulting simplified MAP is (44) and solved by method introduced in [37].
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(a) o.g. (b) noisy (c) generalized MRF (d) s. MRF (κ = −1)

(e) s. MRF (κ = −0.5) (f) s. MRF (κ = 0) (g) s. MRF (κ = 0.5) (h) s. MRF (κ = 1)

Figure 3: Comparison of MRF models for signal recovery (σ2 = 0.25)

(a) o.g. (b) noisy (c) generalized MRF (d) s. MRF (κ = −1)

(e) s. MRF (κ = −0.5) (f) s. MRF (κ = 0) (g) s. MRF (κ = 0.5) (h) s. MRF (κ = 1)

Figure 4: Comparison of MRF models for signal recovery (σ2 = 0.09)

Figures 3 and 4 depict the signals recovered from model (43) (referred to as “generalized MRF”) and
its simplifications (referred to as “s. MRF”) at various κ for threshold ȳ. For reference, we also plot
the noisy signal (labelled as “noisy”) and the ground truth (labelled as “o.g.”).

As demonstrated by the figures, the signals computed using model (43) are overall smooth around
the peaks and closely resemble the ground truth signal. In other words, the solutions obtained by AIS
are capable of capturing the ideal similarity structure ũ∗. Conversely, the signals recovered from the
simplified model exhibit some undesired spikes around the peaks, even when the noise is relatively
small (σ2 = 0.09), see for instance Figure 4d. This indicates that while the simplified model benefits
from faster inference, the quality of its solution may be compromised by an unreliable specification
of hyperparameters ūij from noisy data.
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Image recovery

AIS is also tested on the two image recovery tasks. In case 1, the original image, denoted as “o.g.”
in Figure 5a, is an 8-by-8 black and white image (M = 64) with the 16 pixels in the middle taking
value 25.5 while the background pixels being 153. We set Θ = [0, 255]M and contaminate each pixel
with iid Gaussian noise with zero mean and variance σ2 = 25. The resulting observation y is further
trimmed to take value in [0, 255], see Figure 5b. The observation for case 2 is similarly generated
except for the original image being block diagonal as shown in Figure 6a.

(a) o.g. (b) noisy (c) generalized MRF (d) s. MRF κ = −1

(e) s. MRF κ = −0.5 (f) s. MRF κ = 0 (g) s. MRF κ = 0.5 (h) s. MRF κ = 1

Figure 5: Comparison of MRF models for image recovery (case 1)

(a) o.g. (b) noisy (c) generalized MRF (d) s. MRF κ = −1

(e) s. MRF κ = −0.5 (f) s. MRF κ = 0 (g) s. MRF κ = 0.5 (h) s. MRF κ = 1

Figure 6: Comparison of MRF models for image recovery (case 2)

To recover the original image as well as the pairwise similarities between pixels, we consider (43)
with hij(θi, θj) = Aij |θi − θj | and Aij = 50. The associated MAP and its corresponding AIS
subproblem (26) are similar to (49) and (50) in Appendix C.2 respectively, thus are omitted here.
AIS is terminated when we reach a 5× 10−4 relative difference in the norm of solutions between the
most recent two steps. The image we recovered from (43) is shown in Figure 5c. Similar to signal
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recovery, we also implement the simplification of (43) by fixing ũij to be ūij = 1 if |yi − yj | < ȳ

and ũij to be ūij = 0 otherwise, where the threshold is ȳ ,
2

m(m− 1)

∑
i<j

|yi − yj |+ κν with κ ∈

{−1,−0.5, 0, 0.5, 1} and ν is the standard deviation among {|yi − yj | : i < j}. The figures showing
the images recovered by solving the simplified MAPs under different κ are presented in Figure 5d to
5h and Figure 6d to 6h, labelled as “s. MRF”.

The solutions obtained by AIS from model (43), as shown in Figure 5 and 6, are able to accurately
capture the dark pixels in the original image. This indicates that the model has effectively identified
the relevant similarities between pixels that distinguish the dark blocks from the background. It is
worth noting that such similarity structure is challenging to specify a priori, especially under the
added noise. Consequently, the simplified MRF approaches considered with various κ values are
unable to recover the original image, as they lack the generality of model (43).

Acknowledgment. The authors are grateful to Professor Enlu Zhou of Georgia Institute of Tech-
nology who suggested that the problem (4) is an instance of a Bayesian hierarchical model.
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A Proof of Some Intermediate Results

In what follows, we complete the proof of two results that are useful for our analysis, namely Propo-
sition 9 and Lemma 11.

A.1 Proof of Proposition 9

Denote φ(χ, x̄, z) ,
exp Ĥ(χ, z; x̄)

expH(x̄, z)
Z(x̄), then by Proposition 8 and our assumptions, we have

lim
t→∞

sup
(χ,x̄)∈X×X

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

φ(χ, x̄, ζst)− Eζ∼π∗(xt)φ(χ, x̄, ζ)

∣∣∣∣∣∣ = 0.
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Note that for an arbitrary x ∈ X

∣∣∣ẐNtπ∗(xt)(x;xt)− Ẑ(x;xt)
∣∣∣ =

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

φ(x, xt, ζst)− Eζ∼π∗(xt)φ(x, xt, ζ)

∣∣∣∣∣∣
≤ sup

(χ,x̄)∈X×X

∣∣∣∣∣∣ 1

Nt

Nt∑
s=1

φ(χ, x̄, ζst)− Eζ∼π∗(xt)φ(χ, x̄, ζ)

∣∣∣∣∣∣.
Thus we can obtain

lim
t→∞

∣∣∣ẐNtπ∗(xt)(x;xt)− Ẑ(x;xt)
∣∣∣ = 0,

which implies that lim sup
t→∞

ẐNtπ∗(xt)(x;xt)− Ẑ(x;xt) ≤ 0. Then for any convergent subsequence {xt}t∈T
with the limit point x∞ ∈ X, we have

lim sup
t(∈T )→∞

ẐNtπ∗(xt)(x;xt) ≤ lim sup
t(∈T )→∞

Ẑ(x;xt) ≤ Ẑ(x;x∞)

where the last inequality is obtained by the upper semicontinuity of Ĥ(x; •) and Fatou’s Lemma.

A.2 Proof of Lemma 11

By our assumptions, we can without loss of generality treat logarithm as Lipschitz continuous with

constant L̃, and there exists MH > 0 such that sup
(x,z)∈X×Ξ

exp(H(x, z))

π∗(z, x̄)
< MH for all x̄ ∈ X and

there exists LH > 0 such that
exp(H(x, z))

π∗(z, x̄)
is Lipschitz continuous in x ∈ X with constant LH for

all (x̄, z) ∈ X × Ξ. By an application of Theorem 3.5 in [15], these conditions are enough to ensure

(35) holds with Cα , L̃
√
n

(
LHD +

MH√
(1− 2α)e

)
where D is the diameter of compact X.

B On an Alternative AIS Scheme with Better Sample Complexity

As we discussed in Section 5.5, we can obtain an improved Nt if we make a slight adjustment to our
AIS-based surrogation method and require ρ > 0 to be small enough. More specifically, if ‖x− xt‖2
is used for the regularizer instead of ‖x− xt‖22 as in the original algorithm, then we can achieve the
following result that is similar to Theorem 12 but only requires Nt to increases linearly in t.

Proposition 14. Let the followings be given:

• The regularization term in the AIS-based surrogation method is changed to
1

2ρ
‖x− xt‖2;

• A sequence of positive integers {Nt}t≥0 satisfying for some κ > 0 and integer Tκ the condition that
Nt ≥ κt for all t ≥ Tκ.

Then there exists a ρ̄ > 0 such that if we fix ρ < ρ̄ then with probability one, the sequence {xt}t≥0

produced by the alternative algorithm will attain an accumulation point x∞ ∈ X that satisfies

x∞ ∈ argmin
x∈X

ĉ(x;x∞) + log Ẑ(x;x∞) +
1

2ρ
‖x− x∞‖2
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Proof. First note that if ‖xt+1 − xt‖2 → 0 (almost surely) is given, then the analysis of asymptotic
fixed point stationarity, i.e., Section 5.4 after we substitute ‖ • ‖22 with ‖ • ‖2, only requires Nt to
grow linearly in t. Thus it amounts to show that ‖xt+1 − xt‖2 → 0 almost surely if we additionally
restrict ρ > 0 to be small enough.

Indeed, note that after some simple rearrangements, (33) gives:

1

2ρ
‖xt+1 − xt‖2 ≤

∣∣c(xt)− c(xt+1)
∣∣+ 2

∣∣∣logZ(xt)− log Z̄
Nt−1

π∗(xt−1)
(xt)

∣∣∣
+
∣∣logZ(xt)− logZ(xt+1)

∣∣+
∣∣∣logZ(xt+1)− log Z̄Ntπ∗(xt)(x

t+1)
∣∣∣

≤
∣∣c(xt)− c(xt+1)

∣∣+ L̃


∣∣Z(xt+1 − Z(xt)

∣∣+ 2
∣∣∣Z(xt)− Z̄Nt−1

π∗(xt−1)
(xt)

∣∣∣
+
∣∣∣Z(xt+1)− Z̄Ntπ∗(xt)(x

t+1)
∣∣∣


(45)

where the second inequality is by our assumptions so that logarithm can be treated as Lipschitz
continuous with constant L̃. Furthermore, by the identity that

Z(xt) =
1

Nt−1

Nt−1∑
s=1

exp
(
H(xt, ζs(t−1))

)
π
H(xt,•)
IS (ζs(t−1))

there exists constant LH > 0 so that the followings hold:

∣∣∣Z(xt)− Z̄Nt−1

π∗(xt−1)
(xt)

∣∣∣ ≤ 1

Nt−1

Nt−1∑
s=1

exp
(
H(xt, ζs(t−1))

) ∣∣∣∣∣∣∣
exp

(
−H(xt, ζs(t−1))

)
Z(xt)

− exp
(
−H(xt−1, ζs(t−1))

)
Z(xt−1)

∣∣∣∣∣∣∣
≤ LH‖xt − xt−1‖2

where the second inequality is by H,Z being continuous on compact set hence there exists MH <∞
such that exp(H(x, z)) < MH for all (x, z) ∈ X × Ξ, and Z(x) exp

(
−H(x, z)

)
can be treated as

jointly Lipschitz continuous in x and z. For the same reason we have:∣∣∣Z(xt+1)− Z̄Ntπ∗(xt)(x
t+1)

∣∣∣ ≤ LH‖xt+1 − xt‖2

Furthermore, by c and Z being continuous on compact X hence Lipschitz continuous with constant
Lc and LZ respectively, we can eventually derive the followings from (45):

1

2ρ
‖xt+1 − xt‖2 ≤ (Lc + L̃LZ + L̃LH)

∥∥xt+1 − xt
∥∥

2
+ 2L̃LH

∥∥xt − xt−1
∥∥

2

If we take ρ to be small enough so that β ,
2L̃LH

1
2ρ − (Lc + L̃LZ + L̃LH)

∈ (0, 1) , then

‖xt+1 − xt‖2 ≤ β
∥∥xt − xt−1

∥∥
2

for any t ≥ 1, which means ‖xt+1 − xt‖2 → 0 by X being compact.

Remark 15. Intuitively, restricting ρ > 0 to be small enough in exchange for a better complexity
on Nt is necessary if we interpret ρ as the step size for our algorithm. The main idea of AIS-based
surrogation is that by making both surrogation and SAA adaptive to our current progress xt, we
intend to obtain a more accurate approximation of function Z(x) in (19) with fewer samples. However
by Lemma 2 this is only effective when we are locally around xt, hence in this sense we cannot afford
a step size ρ that is too large if we intend to control Nt.
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C Some Details for Numerical Experiments

Below we provide the formulations for the subproblems in Section 6.1 and the piecwise affine ap-
proximation of indicator function which we employed in Section 6.2.

C.1 Subproblems for the experiments in Section 6.1

Given θt, γt from the most recent iteration, we can construct the following subproblem

minimize
θ,γ

M∑
i=1

1

2σ2
i

(yi − θi)2 +
∑
i<j



1

2

(
γij + |θi − θj |

)2
−


1

2
(γtij)

2 + γtij(γij − γtij) +
1

2
(θti − θtj)2

+ (θti − θtj)
(
θi − θti − (θj − θtj)

)



+ log

(
Zt(γ)

)
+

1

2ρ

(
‖γ − γt‖22 + ‖θ − θt‖22

)
subject to θ ∈ Θ, γ

ij
≤ γij ≤ γij , ∀i < j.

(46)

where Zt(γ) is specified as follows for AIS-based surrogation and SMM methods:

AIS-based surrogation


iid {zst}Nts=1 drawn from density

1

Z(γt)
exp

−∑
i<j

γtij |zi − zj |


Zt(γ) =

Nt∑
s=1

exp

−∑
i<j

(γij − γtij)
∣∣∣zsti − zstj ∣∣∣



non-incremental SMM


iid {zst}Nts=1 drawn from uniform distribution over Θ

Zt(γ) =

Nt∑
s=1

exp

−∑
i<j

γij

∣∣∣zsti − zstj ∣∣∣


incremental SMM


iid {zst}Nts=1 drawn from uniform distribution over Θ

Zt(γ) =
t∑

τ=1

Nτ∑
s=1

exp

−∑
i<j

γij

∣∣∣zsτi − zsτj ∣∣∣


Note that by Lemma 2 problem (46) is convex and handled by MOSEK [2] in our experiments.

C.2 Piecewise affine approximation of indicator function

Suppose γ̃ij is Bernoulli with parameter pij > 0, then the generalized inverse of its cumulative
distribution function is F−1

γ̃ij
(s) = 1(0,∞)(s − pij) for s ∈ [0, 1]. We can apply the ϕ̂ub treatment in

(17) with ϕ̃cvx(s) = s and result in the following nonconvex piecewise affine approximation of F−1
γ̃ij

ϕij(s) , min

max

(
1 +

s− pij
δij

, 0

)
, 1

 (47)
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where δij > 0 is a fixed hyperparameter controlling the approximation and as δij ↓ 0 we have
ϕij → F−1

γ̃ij
pointwise. Visualization of such approximation can be found in Figure 7

(a) indicator function F−1
γ̃ij (b) piecewise affine ϕij

Figure 7: Piecewise affine ϕij approximation of indicator F−1
γ̃ij

Note that ϕij in (47) can be reformulated as the following difference-of-convex (DC) function

ϕij(s) = max
(
αijs+ βij , 0

)︸ ︷︷ ︸
,ϕ+

ij(s)

− max
(
αijs+ βij − 1, 0

)︸ ︷︷ ︸
,ϕ−

ij(s)

(48)

where αij ,
1

δij
and βij , 1− pij

δij
. The MAP associated with model (43) in Section 6.2 is

minimize
θ, u

M∑
i=1

1

2σ2
i

(yi − θi)2 +
∑
i<j

ϕij(uij)Aij(θi − θj)2 + log
(
Zedge(u)

)
subject to θ ∈ Θ, uij ∈ [0, 1] for i < j.

(49)

where hij(θi, θj) is substituted by Aij(θi − θj)2 with fixed Aij > 0. In the context of AIS method,
given ut and θt from the previous step, we draw conditionally independent samples {zst}Nts=1 from

density
1

Zedge(ut)
exp

−∑
i<j

ϕij(u
t
ij)Aij(zi − zj)2

 and construct the following formulation for AIS

subproblem (26)

minimize
θ, u

M∑
i=1

1

2σ2
i

(yi − θi)2 +
∑
i<j

Ĝ t
ij(u, θ) +

1

2ρ

(
‖θ − θt‖22 + ‖u− ut‖22

)

+ log

 1

Nt

Nt∑
s=1

exp

−∑
i<j

Aij

(
ϕ̂ tij
(
uij
)
− ϕij(utij)

)(
zsti − zstj

)2




subject to θ ∈ Θ, uij ∈ [0, 1] for i < j.

(50)
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where

Ĝ t
ij(u, θ) ,



Aij(θi − θj)2 if αiju
t
ij + βij ≥ 1

1

2

(
ϕ+
ij(uij) +Aij(θi − θj)2

)2
− ξ tij(uij − utij)

− 2A2
ij(θ

t
i − θtj)3

(
(θi − θti)− (θj − θtj)

)
− 1

2
A2
ij(θ

t
i − θtj)4 − 1

2

(
ϕ+
ij(u

t
ij)
)2

otherwise

ξ tij , max

{
αij

(
αiju

t
ij + βij

)
, 0

}

ϕ̂tij(uij) ,

 min
{
αijuij + βij , 1

}
if αiju

t
ij + βij ≥ 0

0 otherwise
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