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Abstract

Motivated by data-driven approaches to sequential decision-making under uncertainty, we

study maximum likelihood estimation of a distribution over a general measurable space when,

unlike traditional setups, realizations of the underlying uncertainty are not directly observable

but instead are known to lie within observable sets. While extant work studied the special

cases when the observed sets corresponded to intervals in Rn for n = 1, 2, our work provides, to

the best of our knowledge, a first rigorous treatment of the more general estimation problem.

Our results show that maximum likelihood estimates concentrate on a collection of maximal

intersections (CMI) sets, and can be found by solving a convex optimization problem whose size

is linear in the size of the CMI. After studying the efficient computation of the CMI and the

maximum likelihood estimate, we characterize convergence properties of the maximum likelihood

estimate and apply our results to construct ambiguity sets and develop compact formulations

for Distributionally Robust and Greedy and Optimistic Optimization. Our results show how

non-parametric maximum likelihood estimation can be incorporated effectively into data-driven

optimization problems, resulting in tractable formulations that are tested numerically.

1 Introduction

Motivation. We are motivated by settings of sequential decision-making under uncertainty, which

typically model uncertainty as arising from the realization of a sequence of independent and identi-

cally distributed (iid) random elements {cs : s ∈ Z+}, where cs represents the uncertainty affecting

state dynamics during period s ∈ Z+. Traditionally, the literature has assumed that the under-

lying (common) distribution µ0 of cs is known to the decision-maker (DM). However, in the last

decades, settings where such a distribution is initially unknown have attracted considerable atten-

tion [4, 12, 38, 50]. In such work, the DM typically receives some periodic feedback on cs which

allows her to refine her knowledge of µ0 and thus improve the decision-making process. In partic-

ular, in settings where cs is observed upon its realization, maximum likelihood estimation (MLE)

[26, 28, 57] arises as a possible method for parametric/non-parametric inference of µ0.
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Departing from the models above, in this work we study the estimation of µ0 when cs is not

observed directly but is known to lie within a set Cs. Consider, for example, settings of sequential

interdiction where at each period s ∈ Z+ the DM implements an action xs aimed at maximizing (in

expectation) some function that depends, among other things, on an adversarial (random) response

ys, which in turn aims at minimizing some function g(·), so that

ys(ω) ∈ arg min {g(y, x, cs(ω)) : y ∈ Y (x)} .

Depending on the application of interest, the feedback observed in period s might consist, for ex-

ample, only on the response ys, which informs rather indirectly on the realization of cs. In such a

case, upon observing ys the DM infers that cs ∈ Cs := {c : ys ∈ arg min {g(y, xs, c)} : y ∈ Y (xs)},
and thus any estimate of the distribution µ0 must be constructed solely based on the information

contained in the sequence {Cs : s ∈ Z+}. Settings of sequential interdiction under epistemic un-

certainty have been studied recently [18–20, 61], however, they consider deterministic feedback,

ignoring the relevant stochastic alternative.

A case related to the setting above comes from the inverse optimization literature [2]. Consider

a DM that observes a directed network G = (N,A) and seeks to estimate the distribution µ0 of the

cost vector during period s, cs := (csa : a ∈ A), where csa is the unitary cost of moving flow in arc

a ∈ A during period s ∈ Z+. We assume it is known that the vectors {cs : s ∈ Z+} are iid. On each

period s, a user (different from the DM) observes cs and selects the shortest path between some

fixed pair of nodes assuming that the costs are given by cs. Supposing that the DM only observes

some subset of the shortest path ys traversed by the user, then the feedback obtained by the DM

in period s ∈ Z+ informs that cs ∈ Cs := {c ∈ R|A|+ : there exist a shortest path of G that contains

ys}. (If more information is available, for instance, the cost of the shortest path, the sets Cs can

be modified accordingly.) In this setting, the DM must estimate µ0 using only the information

contained in the sequence {Cs : s ∈ Z+}.

Beyond the estimation problem, decision-making under uncertainty when the underlying distri-

bution is not known is often tackled using the robust optimization [7–9, 11, 23, 27, 59] or optimism

in the face of uncertainty [5, 6, 18, 21] paradigms. A common input to these models is an uncer-

tainty or ambiguity set upon which the DM looks for either a worst-case or best-case realization,

for any given decision. In this regard, important questions that arise in these models are how

to compute such ambiguity sets in a manner that is consistent with MLE, and how to solve the

resulting formulations.

Objective and assumptions. Departing from the traditional setups, we study settings where the

DM looks for a non-parametric estimator of µ0 when the sequence {cs : s ∈ Z+} is not observed but

instead a sequence {Cs, s ∈ Z+} is, where it is known that cs ∈ Cs, s ∈ Z+. When the css are not

observed directly, as in our motivating examples, the standard MLE method cannot be (directly)

employed to estimate µ0. However, the techniques behind MLE can be extended in order to handle
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this case. The overall goals of this paper are thus to (i) formally extend the method in order to

estimate an underlying distribution where only sets containing uncertainty realizations are observed

on each period; (ii) analyze the convergence properties of the resulting estimate; and (iii) study

how to incorporate the resulting estimates into data-driven optimization approaches. We make no

specific assumptions about µ0, nor the space where the elements cs, s ∈ Z+, take their values, nor

the forms of the sets Cs (beyond their measurability), s ∈ Z+, and use a non-parametric approach.

The problem discussed in this paper is not entirely new: parametric MLE with censored data is

commonplace in economics, and specific settings of non-parametric MLE with censored data give

rise to specific uncertainty sets in R and R2 [31, 32, 43, 54]. However, to the best of our knowledge,

there is no general and rigorous treatment of this non-parametric estimation problem in general

probability spaces nor of its use in the context of data-driven optimization.

Results and Contribution. Our first contribution amounts to showing that there is a maximum

likelihood probability measure (MLPM) over the σ-algebra generated by the class of sets Ct :=

{Cs : s ∈ [t]}, where [t] := {1, 2, . . . , t} for each t ∈ Z+, and that this measure is concentrated in the

collection of maximal intersections (CMI) generated by the class Ct. While said collection might be

of exponential size in the worst-case, we illustrate its efficient computation in practical instances.

Related to this, we show that the MLPM can be computed by solving a convex optimization

problem whose size is linear in the size of the CMI, and use the local optimality guarantees of

such problem to propose a column generation procedure that avoids computing all elements of the

CMI, whose efficiency we test numerically. We also show how MLPMs can be extended to larger

σ-algebras that contain Ct, using a reference measure.

A second contribution pertains to the analysis of the convergence of the MLPM. In this regard,

we first show that in general the convergence of MLPMs to µ0 cannot be guaranteed under various

standard convergence modes. We then introduce a convergence notion in terms of the Wasserstein

distance [34] between distributions, and extend existing measure concentration results for this case,

under additional assumptions.

Finally, on a more practical side, a third contribution amounts to showing how the theoretical

results for MLPMs can be used to construct ambiguity sets for data-driven optimization problems,

where the DM looks for distributions that maximize the likelihood of the observed sequence of

sets. Leveraging recent results for the case with complete information [27, 29], we design particular

Wasserstein ‘balls’, formulate a Distributionally Robust Optimization (DRO) problem that provides

out-of-sample guarantees (and obtain a convex reformulation of the DRO problem that extends

similar formulations in the literature) and a Greedy and Optimistic Optimization (GOO) problem

used in learning approaches to bilevel optimization [19]. We test the practical performance of the

resulting formulations, as well as the complexity of computing the CMI and MLPM in a series of

numerical experiments.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we review
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the literature and articulate the novelty of our work. In Section 3 and 4 we study the theoretical and

computational aspects of the estimation problem, respectively. In Section 5 we study convergence

issues, and in Section 6 we review applications of our results to data-driven optimization. In

Section 7 we measure the performance of the proposed algorithms through numerical experiments.

Finally, Section 8 presents our conclusions. The proofs that are not in the main body of the paper

are relegated to Appendix A.

Notation and Assumptions. Throughout the manuscript, we consider an underlying probability

space (Ω,F ,P) and assume that the Css belong to some measurable space (Ψ,G), i.e. Cs ∈ G,

s ∈ Z+. Typically, (Ψ,G) = (Rn,Bn) where Bn denotes the Borel σ-algebra of Rn, i.e., the σ-

algebra generated by the usual open sets in Rn (in which case, cs is a random vector, s ∈ Z+).

We define the support of a vector x ∈ Rn as supp(x) := {j ≤ n : xj 6= 0}. Given a measurable

space (Ψ,G) we write µ ∈ (Ψ,G) to indicate that (Ψ,G, µ) is proper probability space. We say a

probability measure µ∗ maximizes the likelihood of (observing) the class Ct if and only if µ∗ is a

solution of the optimization problem

sup
{
L(µ, t) : µ ∈

(
Ψ,G

)}
, where L(µ, t) =

t∏
s=1

µ(Cs), µ ∈
(
Ψ,G

)
. (1)

When it is well-defined, we say that the measure µ∗ is an MLPM over
(
Ψ,G

)
. For a given probability

measure µ, Eµ denotes the expectation operation with respect to such a measure. In addition, if

(Ψ,G) and (Ψ′,G′) are such that Ψ ⊆ Ψ′ and G ⊆ G′, then for any measure µ ∈ (Ψ′,G′), we let µ|G

denote the restriction of µ to G.

For a given pair of collections of sets B and D, we let B \ D denote the collection of sets of the

form B \D where B ∈ B and D ∈ D. Also, we let σ(B) denote the σ-algebra generated by B, and

A(B) denote the class of atoms of B, which are sets with the property that they cannot be ‘divided’

further in terms of other sets of the class (see [48] p. 24), i.e.

A(B) =
{
B ∈ B : B 6= ∅ and if B′ ⊆ B, with B′ ∈ B, then B′ = B

}
.

2 Literature review

MLE is a standard estimation method in statistics [28]. The basic setup involves a sequence of

iid observations from an unknown probability distribution. A parametric approach to MLE assumes

that the functional form of the underlying distribution is known but its parameters are not. In this

case, MLE uses the observations to estimate parameters across a family of parametric probability

distributions; under mild assumptions, MLE is known to recover the underlying true parameters

asymptotically, i.e., the maximum likelihood (ML) estimate is consistent [26, 57]. During the last

decades, these known properties of MLE have been extended to progressively more general settings,

see [35, 42, 51, 58] and the references therein.
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A non-parametric approach to MLE involves explicitly estimating the probability density func-

tion of the underlying distribution, instead of just parameters. In this regard, while there exists

fairly general approaches, such as [58], there are also other computationally-driven methods such

as kernels [41, 49], MLE with penalties [22], the method of sieves [30], stochastic programming [25],

among others, see [1] and references therein. Notably, in this setting, convergence to the true

distribution, i.e., consistency, is not always attained across all methods. In this more general non-

parametric setting, when specific parameters or densities are not of interest, the ML estimate of the

underlying distribution is the empirical distribution associated with the sample. In this case, the

Glivenko-Cantelli Theorem and its generalizations (see e.g., [37] p. 20, [55], and [52] p. 828) show

that the cumulative distribution function (cdf) induced by the empirical distribution converges

uniformly and almost surely (a.s.) to the true cdf.

The work above assumes that the realizations of the random elements are observed with preci-

sion. In cases where there is incomplete information about the observations, non-parametric MLE

can still be carried out. In [24, 36] the authors propose a model for incomplete information that

can be seen as assuming ‘two-layers’ of variability: one due to the random vectors cs, s ∈ Z+, and a

second one due to another sequence of random vectors that depend on the respective realization of

each cs, whose output provides the data that is observed. In this model it is assumed that the con-

ditional information of the observed data given the unobserved data is known. This model is fairly

general and captures many situations arising in practice. For parametric cases, the Expectation-

Maximization (EM) algorithm [24] can be employed to get the ML estimate of the parameters. The

non-parametric case is studied in [36], which derives several properties of the non-parametric ML

estimator, particularly self-consistency ; it also derives an algorithm, based on the EM algorithm,

in order to compute the estimate. The model studied in [24, 36], however, cannot capture settings

where the observed data are sets rather than vectors, as assumed in our work. Moreover, even if

the sets can be reconstructed from observed vectors, the generality of the model obscures many

interesting specific properties that can be derived for our setting and becomes cumbersome to use.

An alternative model for incomplete information, which we adopt here, assumes that the vectors

are not observed directly. Rather, a non-empty set Cs containing the realization of cs, s ∈ Z+, is

observed. This model was, to the best of our knowledge, studied first in [43], where cs ∈ R and

the Css are intervals. There, the authors argue that the non-parametric estimate of the cdf should

be concentrated in certain intersecting points of the intervals. In [54] these findings are expanded

and the authors derive an iterative algorithm to compute the ML estimate. Multivariate extensions

centered in specific applications with censored data are discussed in [32], which explicitly discusses

the idea of maximal intersections in multiple dimensions and derives an explicit formula for the

ML estimate under certain specific assumptions when cs ∈ R2. In [31] the authors study again the

interval model, use the Karush-Kuhn-Tucker (KKT) conditions of a nonlinear optimization problem

to compute the ML estimate, and prove the consistency of the estimator under certain assumptions.

Consistency results for another specific model in R2 are also studied in [60], while [13] uses the

KKT conditions to compute ML estimate in specific applications. In [33] the authors study the
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interval setting and show that the maximal intersections can be computed by finding the maximal

cliques in the intersection graph generated by the intervals. More specific models in R2 involving

ML estimation for censored failure data are studied in [45, 46] and references therein.

Although the work discussed above studies specific instances of the problem under considera-

tion, to the best of our knowledge there is no existing literature studying this problem in general

measurable (or Euclidian) spaces, which is the objective of our work. Moreover, we are not aware

of studies of these ideas beyond purely estimation problems; our work goes further and explores

their use in data-driven optimization approaches.

3 Properties and construction of MLPM

Throughout this section, we consider t ∈ Z+ fixed. After introducing background material, we

define the collection of maximal intersections associated with Ct, and show that MLPMs must neces-

sarily concentrate on such a collection. These results are then leveraged then to compute an MLPM.

Preliminaries. Let (Ψ,G) be a measurable space and consider a sequence of iid random elements

cs : Ω → Ψ, s ∈ Z+, following an unknown probability distribution µ0, (by distribution we mean

that µ0 is defined by µ0(G) = P[cs ∈ G] for any s ∈ Z+ and G ∈ G, see [48] p. 137). Recall that

Ct = {Cs : s ∈ [t]} corresponds to the sets observed by the DM until t; we define the measurable

space
(
Ψt,Gt

)
, as follows

Ψt :=
⋃
s∈[t]

Cs and Gt := σ(Ct).

Note that {
(
Ψt,Gt

)
, t ∈ Z+} is an increasing sequence of measurable spaces (i.e., Ψs ⊆ Ψt and

Gs ⊆ Gt for any s ≤ t) and that all of them are contained in the original one, i.e., Ψt ⊆ Ψ and

Gt ⊆ G for any t ∈ Z+.

We consider a DM who is interested in estimating the distribution µ0 at time t based solely on

the observation of the collection Ct, and the knowledge that cs ∈ Cs for any s ∈ Z+. (Note that the

DM does not observe the css directly.) In particular, we assume that the DM seeks to estimate µ0

by finding a distribution that maximizes the likelihood of observing Ct over
(
Ψt,Gt

)
. An example

of this setting in the context of network interdiction is presented next.

Example 1. Consider an interdictor that observes a smuggler who, at each period s ∈ Z+, traverses

a path between nodes 1 and n of a network G = (N,A), where N denotes the set of nodes, and A

the set of arcs. Let cs ∈ R|A|+ denote the cost vector of the network at time s ∈ Z+, and assume

that the sequence {cs : s ∈ Z+} is iid and follows a (absolutely continuous) distribution µ0. At time

s ∈ Z+, the interdictor blocks travel through a set of arcs Bs ⊆ A, and then the smuggler observes

the vector cs and moves through a shortest path P s between nodes 1 and n in the interdicted

network Gs ≡ (A,N \ Bs). The interdictor does not observe cs directly, but rather observes the

path P s used by the smuggler, for s ∈ [t], and uses this information to estimate the distribution
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µ0. In this case, one has that

Cs =
{
c ∈ R|A|+ : P s ∈ arg min

{∑
a∈P

ca : P is a 1− n path in Gs
}}

, s ∈ Z+.

Remark 1 shows that finding an MLPM is straightforward when the sets in Ct are disjoint, or

when their (overall) intersection is non-empty.

Remark 1. If the Css are mutually disjoint, then any MLPM µ∗ is such that µ∗(Cs) = 1/t for all

s ∈ [t], so that L(µ∗, t) = (1/t)t. In particular, the empirical distribution is an MLPM. At the other

extreme, if
⋂
s∈[t]C

s =: C 6= ∅ then any MLPM µ∗ is such that µ∗(C) = 1, so that L(µ∗, t) = 1.

In general, finding MLPM is not as direct as in Remark 1. In order to characterize their support,

next we introduce the concept of maximal intersections.

3.1 Measures over the collection of maximal intersections (CMI)

For S ⊆ [t], define I(S) :=
⋂
s∈S C

s. Hereafter we refer to these sets as C-intersections. Let mt

be the size of the largest set associated with a non-empty C-intersection, i.e.

mt := max {|S| : S ⊆ [t], I(S) 6= ∅} .

Note that, by definition, I(S) = ∅ for any S such that |S| > mt. For k ≤ mt, define (recursively)

Itk :=
{
S ⊆ [t] : |S| = k, I(S) 6= ∅, S 6⊂ S′, S′ ∈ Itl , l > k

}
, Itm+1 = ∅.

The collection Itk consists of all subsets of periods of size k whose corresponding C-intersections are

non-empty and that are not contained in any other subset of time periods that give a non-empty

C-intersection. We define the collection of maximal intersections (CMI) as follows

Mt :=
{
I(S) : S ∈ Itk, k ≤ mt}. (2)

The ‘maximal’ denomination refers to the fact that if I(S) ∈Mt, then there is no larger set S′ (i.e.

such that S ⊆ S′) such that I(S′) ∈ Mt. Note that Mt can be exponential in t in the worst case

(we study the computation of Mt in Section 4.) However, we show later that in practice not all

elements in Mt may need to be computed to find an MLPM.

The significance of the CMI for MLPMs is, to a large extent, due to the following property:

Lemma 1. If I(S) ∈Mt for S ⊆ [t], then I(S) is an atom of Gt.

Specifically, Lemma 1 allows us to construct well-defined measures over
(
Ψt,Gt

)
using as ingre-

dients a vector of non-negative weights w and the CMI, as shown next in Lemma 2. Moreover, in

the next section, we use Lemmas 1 and 2 to prove that the MLPMs are concentrated on the CMI,

and thus are equivalent up to the measure assigned to the CMI.
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Lemma 2. Let w = (wM : M ∈Mt) be such that
∑

M∈Mt wM = 1 and wM ≥ 0, M ∈Mt. Then,

Pw(G) :=
∑

M⊆G,M∈Mt

wM , G ∈ Gt (3)

is a well-defined probability measure on (Ψt,Gt).

We close this section by noting that that the measures constructed in Lemma 2 are concentrated

on Mt because Pw(Mt) := Pw
(⋃

M∈MtM
)

= 1.

3.2 MLPMs are concentrated on the CMI.

For S ⊆ [t] define X(S) as the set of elements in I(S) that do not belong to any other element

of Ct, i.e.

X(S) := I(S) \
⋃
`6∈S

I(S ∪ {`}) S ⊆ [t],

where null unions are defined as the empty set. We prove the concentration result by showing that

if there is a measure µ(·) that is not concentrated on Mt, then it necessarily assigns a positive

measure to some non-empty set X(S) /∈ Mt. In such a case, one can construct an alternative

measure with a higher likelihood by simply reassigning such a measure to I(S) \X(S).

Theorem 1. Let µ be a probability measure over
(
Ψt,Gt

)
such that µ(∪M∈MtM) < 1, then there

exist another probability measure µ̂ over
(
Ψt,Gt

)
such that L(µ̂, t) > L(µ, t).

Proof. We assume without loss of generality that L(µ, t) > 0 (because, by Lemma (2), one can

always construct a measure µ with L(µ, t) > 0 by assigning equal probability to all elements in

Mt). Note that X(S) = I(S) for all S ⊆ [t] such that I(S) ∈ Mt, thus if µ(∪M∈MtM) < 1, then

it is necessarily the case that µ(X(S′)) > 0 for some S′ ⊆ [t] for which I(S′) /∈Mt and X(S′) 6= ∅.
We consider two distinct cases

Case 1: µ(X(S′)) < µ(I(S′)). Define the (measurable) function f as

f(x) =


1, if x 6∈ I(S′)

0, if x ∈ X(S′)

µ(I(S′))
µ(I(S′))−µ(X(S′)) , if x ∈ I(S′) \X(S′),

and define µ̂(G) ≡
∫
G f dµ for each G ∈ Gt. In other words, µ̂ is given by

µ̂(G) = µ(G \ I(S′)) +
µ(I(S′))

µ(I(S′))− µ(X(S′))
µ(G ∩ (I(S′) \X(S′))), G ∈ Gt.

Note that µ̂(·) reassigns the measure assigned to X(S′) uniformly to I(S′) \X(S′). Observe that
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µ′(·) is well-defined because f is measurable and
∫

Ψt f dµ = 1. A key observation about µ̂(·) is

µ̂(Cs) = µ(Cs), s ∈ [t] s.t. Cs ∩ I(S′) = ∅, and µ̂(Cs) ≥ µ(Cs), s ∈ [t] s.t. Cs ∩ I(S′) 6= ∅,

with strict inequality for at least one s ∈ [t]. This last statement follows because µ(I(S′)) >

µ(X(S′)) implies that µ(I(S′ ∪ {s′})) > 0 for some s′ 6∈ S′ such that Cs
′ ∩ X(S′) = ∅, thus

µ(Cs
′ ∩ (I(S′) \X(S′))) > 0 and therefore

µ̂(Cs
′
) = µ(Cs

′ \ I(S′)) +
µ(I(S′))

µ(I(S′))− µ(X(S′))
µ(Cs

′ ∩ (I(S′) \X(S′)))

> µ(Cs
′ \ I(S′)) + µ(Cs

′ ∩ (I(S′) \X(S′)))

= µ(Cs
′ \ I(S′)) + µ(Cs

′ ∩ I(S′)) = µ(Cs
′
).

Using the above, we have that

L(µ, t) =
t∏

s=1

µ(Cs) <
t∏

s=1

µ̂(Cs) = L(µ̂, t),

where in the above we have used the fact that L(µ, t) > 0 implies that µ(Cs) > 0 for s ∈ [t].

Case 2: µ(X(S′)) = µ(I(S′)). In this case, we have that µ(I(S′) \ X(S′)) = 0, and thus there

exists M ∈Mt such that M ⊂ I(S′) \X(S′) and µ(M) = 0. Consider an alternative measure µ̂(·)
that reassigns the measure assigned to X(S′) to M , i.e.

µ̂(G) = µ(G \ I(S′)) + µ(X(S′))1 {M ⊆ G} , G ∈ Gt.

It is readily verified that µ̂ satisfies the axioms of being a probability measure on (Ψt,Gt). In

addition µ̂(Cs) = µ(Cs) for s ∈ [t] such that Cs ∩ I(S′) = ∅. If Cs ∩ I(S′) 6= ∅, then it must be

the case that M ⊆ Cs and thus µ̂(Cs) ≥ µ(Cs). Particularly, let M = I(Ŝ) and note that S′ ⊂ Ŝ.

Thus, there exist at least one s′ ∈ Ŝ \ S′, such that Cs
′ ∩X(S′) = ∅ and thus µ(Cs

′ ∩ I(S′)) = 0.

This implies that µ̂(Cs
′
) > µ(Cs

′
), and the result follows.

Theorem 1 provides a necessary condition for a measure to be an MLPM over
(
Ψt,Gt

)
: it

needs to be concentrated on the CMI. Although this condition is not sufficient to guarantee that a

measure is an MLPM, it can be exploited to streamline the search for an MLPM, as we show next.

3.3 Finding the weights of the MLPM

We begin reviewing an auxiliary result, which provides a simple formula to compute L(µ, t) for

any measure µ that is concentrated in the CMI. The formula is valid for any measurable space

containing
(
Ψt,Gt

)
.

Lemma 3. Let (Ψ′,G′, µ) be a measure space such that Ψt ⊆ Ψ′ and Gt ⊆ G′. If µ(∪M∈MtM) = 1
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then

µ(Cs) =
∑

M∈Mt,M⊆Cs
µ(M), s ∈ [t].

From the previous section, Theorem 1 implies that in order to find an MLPM, it is sufficient

to search across those measures that concentrate on the CMI. Based on (3) and Lemma 3, the

following result formulates the problem of finding an MLPM.

Theorem 2. Consider the following optimization problem over the variables (wM : M ∈Mt),

max
∑
s∈[t]

ln
( ∑
M⊆Cs,M∈Mt

wM

)
(4a)

s.t
∑

M∈Mt

wM = 1 (4b)

wM ≥ 0, ∀M ∈Mt. (4c)

Then, an optimal solution of (4) exists. Let ŵt = (ŵtM : M ∈ Mt) denote one such an optimal

solution, define µ̂t ≡ P ŵt
as in (3). Then µ̂t is an MLPM over

(
Ψt,Gt

)
.

Proof. The first part follows because the objective function in (4) is concave with respect to w =

(wM : M ∈ Mt), w ≥ 0, therefore Problem (4) is a concave maximization problem over a compact

convex set, which is (polynomially) solvable (up to a precision factor) in the number of elements

of Mt (for example, by using gradient descent). The remaining proof follows from Theorem 1 and

Lemma 3, and from the fact that Problem (4) is equivalent to

max
∏
s∈[t]

( ∑
M⊆Cs,M∈Mt

wM

)
s.t

∑
M∈Mt

wM = 1

wM ≥ 0, M ∈Mt.

This observation concludes the proof.

Formulation (4) considers the maximization of a concave function over the simplex in Mt.

Thus, while a closed-form solution is not available in general, the KKT conditions can be used

to characterize its optimal solution. In particular, the optimal solution of formulation (4) can be

found by finding a feasible solution to the following equations:

∑
s∈[t]

1{M⊆Cs}∑
M ′∈Mt,M ′⊆Cs wM ′

+ λM + λ = 0, M ∈Mt (5a)

∑
M∈Mt

wM = 1 (5b)
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λM wM = 0, M ∈Mt (5c)

wM , λM ≥ 0, M ∈Mt. (5d)

Remark 2. Theorem 2 implies that a measure that solves problem (1) always exist for (Ψ,G) =

(Ψt,Gt). Thus, in this case, we can replace sup by max in (1).

In Section 4, we propose a column generation scheme that attempts to solve for an MLPM

without having to generate all components in the CMI: the potential efficiency of the procedure

rests in the following result; here, we define supp(w) = {M ∈Mt : wM > 0}.

Proposition 1. There always exists a solution w to (4) such that |supp(w)| ≤ t+ 1.

3.4 Extension of MLPMs to larger σ-algebras.

Next, we show that the results shown so far for Gt remain valid over any σ-algebra G′ that

contains Gt, as long as one can construct measures on G′ such that an MLPM over (Ψt,Gt) is

absolutely continuous with respect to the restriction of the measure on Gt (recall that given two

probability measures µ and λ over a measurable space (Ψ,G), λ is absolutely continuous with

respect to µ, written λ << µ, if and only if µ(A) = 0 implies λ(A) = 0, A ∈ G, see [48] pg.

333). This result shows, for instance, that an MLPM can be computed when the random vectors

cs, s ∈ [t], are Borel-measurable (which is a common underlying assumption in many probabilistic

models in practice). Hereafter (Ψ′,G′) denotes a measurable space such that Ψt ⊆ Ψ′ and Gt ⊆ G′

(in particular, Ψ′ and G′ can be the original Ψ and G, respectively); ŵt = (ŵtM : M ∈Mt) denotes

an optimal solution of (4); and µ̂t ≡ P ŵt
is defined over

(
Ψt,Gt

)
.

Lemma 4. Suppose that µ ∈ (Ψ′,G′) is such that µ̂t << µ|Gt. Define µ′ ∈ (Ψ′,G′) as

µ′(G) =
∑

M∈Mt, ŵtM>0

1

µ(M)
ŵtM µ(G ∩M), G ∈ G′. (6)

Then µ′ is a probability measure over
(
Ψ′,G′

)
. Moreover, µ′(M) = µ̂t(M) for all M ∈Mt.

The Lemma above implies that a MLPM can be extended to any σ-algebra G′ containing Gt as

long as one can find a measure µ such that µ̂t is absolutely continuous with respect to µGt . For sim-

plicity, hereafter we assume (G′, µ) satisfies this condition. Whereas Lemma 4 shows that the MLPM

can be extended to G′, it does not necessarily imply that the extension in (6) is an MLPM over

(Ψ′,G′). Next, Theorem 3 gives necessary conditions for a measure to be an MLPM over
(
Ψ′,G′

)
.

This result together with Lemma 4 imply that µ′ constructed in (6) is a MLPM over
(
Ψ′,G′

)
.

Theorem 3. Let µ̂t be a MLPM over
(
Ψt,Gt

)
. If µ ∈

(
Ψ′,G′

)
is a MLPM over

(
Ψ′,G′

)
, then

µ(∪M∈MtM) = 1, L(µ, t) = L(µ̂t, t), and
{
µ(M) : M ∈Mt

}
is an optimal solution of (4).

Proof. Consider µ|Gt ∈
(
Ψt,Gt

)
; because Cs ∈ Gt we have that µ|Gt(C

s) = µ(Cs), for all s ∈ [t],

thus L(µ, t) = L(µ|Gt , t); from the optimality of µ̂t we conclude that L(µ, t) ≤ L(µ̂t, t) . On the
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other hand, because µ maximizes L(·, t) across measures in
(
Ψ′,G′

)
, and µ̂t ∈ (Ψ′,G′) it must be

that L(µ, t) ≥ L(µ̂t, t), and we conclude that L(µ, t) = L(µ̂t, t). This also implies that µ is an

MLPM over Gt and thus, per Theorem 1 it must be that µ(∪M∈MtM) = µ|Gt(∪M∈MtM) = 1.

Finally, Theorem 2 implies that µ is an optimal solution of (4).

Remark 3. Note that in contrast to
(
Ψt,Gt

)
, there might be multiple MLPMs over

(
Ψ′,G′

)
even if

problem (4) has a unique solution. However, note that such multiple solutions are equivalent when

restricted to Gt, in which case they coincide with the solution to (4).

4 Computation of the CMI and MLPMs

From previous sections, we know that finding a MLPM amounts to solving a convex optimization

problem that receives the CMI as input. Thus, we first focus on the problem of finding the CMI.

Because the size of the CMI can be exponential in t, later in this section we develop a column

generation procedure for computing the MLPM that attempts to bypass computing all the sets in

the CMI.

4.1 Exhaustive search for the CMI

We find the elements in the CMI recursively, starting with the elements with the highest car-

dinality, and then using those to find the ones with lower cardinality. For a collection of indices

S ⊆ 2[t], define

V(S) := arg max
{
|S| : S ⊆ [t] , I(S) 6= ∅, S 6⊆ S′, S′ ∈ S

}
. (7)

Algorithm 1 below provides pseudo-code for iteratively finding the CMI. Starting from S = ∅,
at each iteration, the algorithm finds the largest set S ⊆ [t] that is not contained in any element

of S, and such that I(S) 6= ∅; this set is then added into S. The algorithm stops when one can no

longer find such a set. Note that the resulting S is the collection of time indices associated with

the CMI. This is,

Mt = {I(S) : S ∈ S} .

Indeed, by construction, S ∈ S is such that it is not a proper subset of any other element of S, I(S)

is non-empty, and S can not be augmented without resulting in an empty intersection. Conversely,

if S 6∈ S, then it must be the case that either I(S) = ∅ or that S ⊆ S′ for some S′ ∈ S.

The ability to find the CMI using Algorithm 1 depends on (i) the number of elements inMt and

(ii) the efficiency of solving (7), which are both problem dependent. Regarding (i), the ‘maximal’

condition of the elements in S implies that not all subsets of [t] can be simultaneously in S. Indeed,

suppose that t is even; Sperner’s Theorem [3] implies that
∣∣Mt

∣∣ ≤ ( t
t/2

)
. Unfortunately, such a

bound is tight (consider, for example, all subsets of size t/2), thus in the worst case there can be

O(2t/t) elements in Mt. In practice, Mt might be significantly smaller, as shown in Section 7.

Regarding (ii), the complexity of problem (7) depends on the application at hand, and most
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Algorithm 1: Computing the CMI

Input: The collection Ct
Output: The CMI Mt

1: Set S = ∅
2: while V(S) is feasible do
3: Set S = S ∪ V(S)
4: end while
5: return Mt = {I(S) : S ∈ S}

importantly, on the nature of the sets in Ct. In order to illustrate this point, we consider two

examples.

Example 2 (Rectangle Feedback). Suppose Cs are rectangles in Rn+, i.e. Cs = Cs1 × . . .× Csn,

where Csj = [lsj , u
s
j ] with usj ≥ lsj ≥ 0, j ≤ n, s ∈ [t]. Then, one has that

V(S) := arg max
∑
s∈[t]

zs

s.t. us
′
j +K (1− zs′) ≥ lsj z

s, j ∈ [n], s, s′ ∈ [t]∑
s∈[t]\S

zs ≥ 1, S ∈ S

zs ∈ {0, 1} , s ∈ [t].

Here, zs = 1 represents that s belongs to V(S), and zs = 0 otherwise, and K is a ‘big-M ’ constant

(which can be readily computed from the usj and lsj). The first set of constraints checks that the

intersection of the rectangles is not empty by checking that, in each dimension, the largest lower

endpoint of the selected intervals is smaller than the smaller upper endpoint of the same intervals;

the second set of constraints imposes that a new index is chosen outside the set S, so as to avoid

choosing a proper set of S, for each set S ∈ S.

Example 3 (Computing the CMI in the shortest-path interdiction example). Consider

the shortest-path interdiction of Example 1, and recall that for a given s ∈ [t], Bs and P s denote

the set of blocked arcs and the path traversed by the evader, respectively, at time s. We formulate

(7) by maximizing the number of periods on which one can find a common cost vector c which

explains the feedback observed on such periods (i.e. I(S) 6= ∅). Because it is assumed that µ0

is absolutely continuous, we impose that for each pair of periods s, s′ ∈ S, the costs associated

with paths P s and P s
′

(under cost vector c) are not equal, unless said paths coincide: this avoids

situations where I(S) 6= ∅ but I(S) has null Lebesgue measure. With this, we have that

V(S) := max
∑
s∈[t]

zs (8a)

s.t. ρsn − ρs1 = c>ys, s ∈ [t] (8b)

ρsj − ρsi ≤ ci,j + 1− zs, (i, j) ∈ A \Bs, s ∈ [t] (8c)
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∣∣c>ys − c>ys
′∣∣ ≥ ε+ zs + zs

′ − 2 s, s′ ∈ [t] : ys 6= ys
′

(8d)∑
s∈[t]\S

zs ≥ 1, S ∈ S (8e)

∑
a∈A

ca = 1 (8f)

(8g)

Here, ys stands for a vectored representation of path P s, for all s ∈ [t], and ε > 0 stands for a

minimum gap. The formulation above checks that I(S) 6= ∅ by finding a cost vector c that explains

the path taken by the evader in the periods included in S via linear programming (LP) duality

(constraints (8b)-(8c)), using ρs to denote the variables in the dual of the shortest path formulation

in period s ∈ [t]. In addition, constraint (8d) imposes a minimum gap in costs (according to c)

among different paths selected by the evader in the periods in S; while non-linear in principle (as it

imposes a lower bound on an absolute value), it can be linearized by introducing auxiliary binary

variables. Like in the case of rectangular feedback, constraints (8e) ensure the set S is not a proper

set of other set in S. Note that, due to the fact that the evader’s path choice is invariant to scaling

of the cost vector, we impose (w.l.o.g.) that the vector c belongs to the simplex (constraint (8f)).

Note that the formulations presented above are (Mixed) Integer Programs, and as such can be

tackled using state-of-the-art solvers. We close this section by noting that in the special case of rect-

angular feedback and n = 1, the CMI can be computed by finding maximal cliques on the intersec-

tion graph induced by Ct, see [33]. This approach can be generalized to other types of sets as long as

Ct satisfies the Helly property. In general, however, Ct might not satisfy this property, which means

that in general the CMI cannot be found by means of cliques in the intersection graph, see Remark 4.

Remark 4. The collection of sets Ct is said to satisfy the Helly property if and only if any

subcollection of Ct with non-empty pairwise intersections has a non-empty intersection (see [16]

p. 82). For example, intervals in R and balls in either the `1-norm or `∞-norm in R2 satisfy the

Helly property. If Ct satisfies the Helly property, then the subsets in
{
Itk; k ≤ m

}
are the maximal

cliques over the intersection graph induced by Ct (the set of vertices of the intersection graph is [t]

and there is an edge between s and u, s, u ∈ [t], if and only if Cs∩Cu 6= ∅). We note that if Ct does

not satisfy the Helly property then the CMI cannot be computed with maximal cliques, see Figure 1.

4.2 Computation of a MLPM via column generation

In order to find an MLPM one might find the CMI using Algorithm 1 and then solve formula-

tion (4), which has as many variables as there are elements in the CMI. Thus, one would expect

the practical complexity of finding an MLPM to be strongly correlated with the size of the CMI.

Considering this, here we explore the possibility of finding an MLPM without knowing all the ele-

ments of the CMI. A key observation in this regard is that (5) provides a check for local optimality,

and thus can be used to design a column generation scheme, which we do next.
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3

Figure 1: Consider the sequence of three sets of R2 in the left. The intersection graph is in the
right. Clearly the maximal clique is the graph itself, but I({1, 2, 3}) = ∅.

Suppose that we have access to a collection S ⊆ 2[t] such that (i) for each s ∈ [t] there exists a

set S ∈ S such that s ∈ S; and (ii) such that I(S) ∈Mt for all S ∈ S. Note that one can construct

such a set so that |S| ≤ t (see, for example, Algorithm 3 below). Consider the formulation

max
∑
s∈[t]

ln
( ∑
S∈S, s∈S

wS

)
(9a)

s.t
∑
S∈S

wS = 1 (9b)

wS ≥ 0, S ∈ S, (9c)

let w̃ = {w̃S ; S ∈ S} denote its optimal solution (condition (i) above ensures such a solution exists),

and define

qs := (
∑

S∈S,s∈S
w̃S)−1, s ∈ [t].

Note that qs > 0 for all s ∈ [t]. Using this definition, select (arbitrarily) Ŝ ∈ S such that w̃Ŝ > 0,

and define λ̃ as follows

λ̃ :=
∑
s∈[t]

qs 1{s ∈ Ŝ}.

From (5), note that λ̃ does not depend on the choice of Ŝ. We use this definition to check the

optimality of w̃ (modulo proper augmentation) for formulation (4). Define

λ̃∗(S) := max

{∑
s∈S

qs : S ⊆ [t], I(S) 6= ∅, S 6⊆ S′, S′ ∈ S

}
, (10)

and let Ṽ (S) denote an optimal solution. We consider two cases, depending on the value of λ̃∗(S)

relative to λ̃.

Case 1: λ̃ ≥ λ̃∗(S). In this case, we can augment w̃ and construct a solution (5), thus checking
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the optimality of the augmented solution. Specifically, for each M ∈Mt define

wM :=

w̃S if S ∈ S and I(S) = M

0 ∼
, λM = λ̃−

∑
s∈[t]:M∩Cs 6=∅

qs. (11)

Because λ̃ ≥ λ̃∗(S) we have that λM ≥ 0 for all M ∈ Mt and thus (λ̃, {λM} , {wM}) satisfy (5),

which in turn implies that µ = Pw(·) is an MLPM.

Case 2: λ̃ < λ̃∗(S). Note that M∗ ≡ I(Ṽ (S)) ∈ Mt (this follows from the definition of (11),

because qs > 0 for all s ∈ [t]). However, because λ̃ < λ̃∗(S), the construction above is such that

λM∗ < 0, thus (5) does not hold.

The above suggests the following column generation procedure: starting from an initial set S,

we solve (10) and add Ṽ (S) to S until we have that λ̃ ≥ λ̃∗(S), at which point we have found an

MLPM. This procedure is depicted in an algorithmic form in Algorithm 2.

Algorithm 2: Column Generation for MLPM

Input: The collection Ct, a collection S such ∪S∈SS = [t]
Output: An MLPM µ

1: Set EXIT = false
2: while EXIT do
3: Solve (9), find w̃, compute {qs : s ∈ [t]} and λ̃
4: Solve (10) and find Ṽ (S) and λ̃∗(S)
5: if λ̃ ≥ λ̃∗(S) then
6: Compute w as in (11) and set EXIT=true
7: else
8: Set S = S ∪ Ṽ (S)
9: end if

10: end while
11: return µ = Pw

Note that the complexity of Algorithm 2 stems from solving formulations (9) and (10). In this

regard, the later formulation is solved quite efficiently in practice (see the results in Section 7),

and the former formulation is equivalent to (7) - except for a modification in the coefficients in

the objective function which prioritizes finding sets that ‘cover’ periods that have been assigned

with a lower likelihood, according to w̃. Note that, in the worst case, all elements in the CMI are

generated, in which case it is necessarily the case that λ̃ = λ̃∗(S), and correctness of the algorithm

follows. In practice, as in most column-generation procedures, one would expect that an optimal

solution is found after a relatively small number of iterations; this is supported in part by the

evidence generated in our numerical experiments, where we observe that MLPM concentrates on a

small number of elements in the CMI.

Finding an initial set S. Note that Algorithm 1 can be modified to find an initial feasible set

within at most t iterations: for example, one possibility is to restrict the search for new elements
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of the CMI that ‘cover’ time periods not included by the incumbent collection. Note that this is

possible because all s ∈ [t] must be included in at least one M ∈ Mt (otherwise µ(Cs) = 0 for all

MLPM µ and L(µ, t) = 0, which contradicts the fact that µ is an MLPM). Algorithm 3 describes

such a procedure.

Algorithm 3: Finding an initial solution S.

Input: The collection Ct
Output: The initial set S

1: Set S = ∅
2: while ∪S∈SS ⊂ [t] do
3: Set V := arg max {|S| : S ⊆ [t] , I(S) 6= ∅, S \ ∪S′∈SS′ 6= ∅}
4: end while
5: return S

5 Convergence properties of MLPMs

In this section, we consider the case
(
Ψ,G

)
= (Rn,Bn), equipped with the usual topology

induced by the Euclidean distance. We are interested in analyzing the behavior of MLPMs over(
Rn,Bn) as t grows to infinity. It is known that when Cs = {cs} for all s ∈ Z+, the MLPM is given

by the empirical distribution. In this case, the cumulative distribution function (cdf) induced by

the empirical distribution converges uniformly and a.s. to the cdf induced by the original measure

µ0 (this is a consequence of Glivenko-Cantelli Theorem and its generalizations, see Theorem 1 on

Chapter 26 of [52]). Other results can be derived under other convergence notions. For instance,

the empirical distribution converges to the true distribution in total variation a.s. [51] and the

Wasserstein distance between µ0 and the empirical distribution is also shown to go to zero in

probability, under some conditions, as t grows [29].

For the setting of our study, under certain specific assumptions and convergence modes, it has

been shown that MLPMs converge to µ0. For instance, [31] shows that the MLPM converges to

µ0 in the topology of weak convergence assuming that n = 1 and that the Cs, s ∈ Z+, are specific

types of intervals. A similar result for n = 2 is discussed in [60]. In Section 5.1 we show that, in

general, convergence results such as the ones listed above do not hold, even in the case when there

is a unique solution to (4). In fact, proving statistical guarantees that hold for general classes of

problems is a complex task as there are many factors that might play a role in proving convergence.

For instance, convergence in settings with sets that have the same geometry might depend on subtle

differences in their arrangement in the space, see Example 5. These observations emphasize that

convergence analyses should be carried out on a case-by-case basis.

Whereas statistical guarantees might not be available for arbitrary cases, in Section 5.2 we

leverage recent results on Wasserstein distances to provide a framework that can serve to derive

guarantees for particular cases. More precisely, we define a notion of convergence in terms of the

Wasserstein distance between µ0 and the set of MLPMs and show that a sufficient condition for
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this distance to go to zero is that the Wasserstein distance between the empirical distribution and

the set of MLPMs goes to zero. We then discuss three approaches that can be used to bound such

distance. In Section 5.3, one of such approaches is used to provide statistical guarantees in a setting

where µ0 is a discrete distribution.

5.1 General statistical guarantees: counterexamples

Next, consider the following two examples that show some of the issues with providing general

convergence guarantees. The first one presents a setting based on the interdiction problem in

Example 1 where standard notions of convergence do not hold but where there is convergence

under the notion we introduce in this section. The second example shows that having convergence

goes beyond the geometry of the sets in Ct; that is, even with the same sets there might be changes

in convergence depending on how the sets are arranged in the space.

Example 4. Consider a network whose arc cost vector at each period s ∈ [t] is drawn at random

from a measure µ0. Assume that on each period a DM only observes the cost of a shortest-path

between a fixed pair of nodes on the network, and tries to infer the probability µ0 from these

observations. Specifically, consider the network depicted in Figure 2, the source-sink node pair

(1,4), and assume that the DM knows that the cost of each arc belongs to [0,100]. In addition,

1

2

3

4

Figure 2: Network used in Example 4. The interval [0,100] above each arc means that it is known
that the cost of the arc is a number between 0 and 100.

suppose that the measure µ0 is degenerate and assigns the value 25 to the cost of each arc with

probability 1. Then, the length of the shortest path between 1 and 4 is 50 for each period. Moreover,

in each period we have that

Cs ≡ C :={c : min {c12 + c24, c13 + c34} = 50}, s ∈ Z+.

For each t, consider the measure µ̂t that assigns probability 1 to the point ĉ = (25, 25, 100, 100).

One can show that µ̂t maximizes the likelihood (note that Mt = {C}, ĉ ∈ C, and L(µ̂t, t) = 1).

However, the cdf induced by µ̂t is not that induced by µ0. Moreover, the total variation between

µ0 and µ̂t is one, which implies that µ̂t 6→ µ0 almost surely for the total variation metric, the

Wasserstein metric, or the KL divergence (the last two follow from the dual representations of the

Wasserstein metric [56] and by Pinsker’s inequality [44]). Similarly, µ̂t does not converge weakly

to µ0 for any given ω ∈ Ω as it would require the integrals of any bounded continuous function to
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eventually coincide (see, e.g., the Portmanteau theorem [48] p. 264).

Whereas in this setting we do not have convergence based on standard notions, it is readily

seen from results to be introduced later in this section that the Wasserstein distance between µ0

and the set of MLPMs is zero.

Example 5. Consider n = 1, assume that µ0 is a discrete distribution in {1, 2, . . . , J} for some

J ≥ 2; and that the sets Cs are closed intervals of length 2/3. Consider two settings: in the first,

each cs is the leftmost endpoint of Cs, whereas, in the second, cs is the leftmost endpoint if s

is odd and is the rightmost endpoint if s is even. In the first setting, it can be shown that the

Wasserstein distance between µ0 and the set of MLPMs is zero, whereas in the second there is no

such convergence as it can be shown that, eventually, the elements of the CMI do not contain the

support of µ0.

5.2 Convergence using Wasserstein distances

Fix t and let ŵt be a solution of (4). Consider the set of MLPMs

Dt :=
{
µ ∈

(
Rn,Bn) : µ(M) = ŵtM , M ∈Mt

}
,

and the (possibly unobservable) empirical distribution

µ̃t(B,ω) :=
1

t

∑
s∈[t]

1{cs(ω)∈B} B ∈ Bn, ω ∈ Ω.

(In what follows we remove the ω dependency of µ̃t; any statement or equation where ω does not

appear is implicitly assumed to hold a.s. in ω ∈ Ω.) For any µ, µ′ ∈
(
Rn,Bn) let d(µ, µ′) denote

the 1-th Wasserstein distance between µ and µ′ [34] and, abusing some notation, let denote by

d(Dt, µ) the Wasserstein distance between µ ∈
(
Rn,Bn) and the set of MLPMs, i.e. d(Dt, µ) :=

inf{d(µ′, µ) : µ′ ∈ Dt}. Define δt ≡ d(Dt, µ̃t): for a given ε ≥ 0 consider the following ambiguity

set, which represents a ‘ball’ of radius ε+ δt around Dt

U tε :=
{
µ ∈

(
Rn,Bn) : d(Dt, µ) ≤ ε+ δt

}
.

We have the following measure concentration result, which bounds the probability that µ0 is far

away from U tε .

Proposition 2. Assume that there exist a > 1 such that Eµ0 [exp(||c||a)] < ∞ and let ε > 0 be

given. Then,

P
[
d(Dt, µ0) ≥ ε+ δt

]
≤

κ1 exp
{
−κ2tε

max{n,2}}, if ε ≤ 1

κ1 exp{−κ2tε
a}, if ε > 1

for any t ≥ 1, n 6= 21, where κ1 and κ2 are positive constants that depend on n, a, and Eµ0 [exp(||c||a)].
1While the case of n = 2 admits a similar bound, we omit it here so as to avoid introducing additional notation:
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From Proposition 2, we conclude that the Wasserstein distance between Dt and µ0 converges to

zero in probability as long as δt converges to zero. Motivated by this, hereafter we say that there is

convergence (from Dt to µ0) if δt → 0 as t → ∞. Whereas in general such convergence cannot be

assured (see the second setting in Example 5), next we discuss three approaches that can be used

in general settings to upper-bound δt and potentially prove convergence.

Bounds using the definition of Wasserstein distance. Consider the following Lemma whose

proof follows directly from the definition of δt and from the fact that a distribution that assigns

weight ŵtM to c̃M , M ∈ Mt, is an element of Dt. This result shows, for instance, that there is

convergence in Example 4 and in the first setting of Example 5.

Lemma 5. Let N(c) be the (random) number of times that vector c has been observed up until

period t. Then

δt ≤ inf
{∑
s∈[t]

∑
M∈Mt

λsM ||cs − c̃M || :
∑
s∈[t]

λsM = ŵtM ,
∑

M∈Mt

λsM =
N(cs)

t
,

λsM ≥ 0, c̃M ∈M, M ∈Mt, s ∈ [t]
}
. (12)

Besides providing a theoretical upper bound for δt, Equation (12) also provides a fast method

to compute such bounds. This method first finds elements cM ∈ M for each M ∈ Mt; then

fixes c̃M = cM for all M ∈ Mt; and then solves the resulting LP problem over the λs. This

method is employed in the numerical experiments of Section 7 to quickly compute upper bounds

of δt. (Clearly, the best possible such bound is found by determining the best possible cM for each

M ∈Mt; that is, by solving (12) over λ and all cM s. however, the resulting optimization problem

is non-convex and therefore does not scale.)

Bounds in terms of frequencies. The next result upper-bounds the probabilities that MLPMs

assign to the CMI in terms of the number of sets that define each element ofMt (see equation (2)).

Proposition 3. Let µ ∈ Dt be an MLPM. Then,

µ(M) ≤ 1

mt
|{s ∈ [t] : M ∩ Cs 6= ∅}| , M ∈Mt.

The bound in Proposition 3 implies that the sets inMt that do not happen infinitely often, have

probability zero under an MLPM as t → ∞. This result might explain the convergent behavior

observed in some of our numerical experiments in Section 7.

Convergence using KKT conditions. A final approach to proving convergence is to show that

there exist MLPMs that can be made arbitrarily close, as t grows, to a solution of the KKT condi-

tions in (5). We illustrate this approach next under the assumption that µ0 is a discrete distribution.

see [29] for details
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5.3 Convergence for discrete distributions

Throughout this section we assume that µ0 has a finite support, i.e. P {cs ∈ {d1, . . . ,dJ}} = 1,

where dj ∈ Rn for all j ∈ [J ] and J < ∞. We also assume, w.l.o.g., that µ0({dj}) > 0 for all

j ∈ [J ]. (Note we do not make any assumption about whether the DM knows the values of dj ,

j ∈ [J ], or not). For j ∈ [J ] define

Uj :=
⋂

s∈[t],dj∈Cs
Cs, (13)

thus Uj is the intersection of all sets in the sequence that contain dj . The next proposition gives

sufficient conditions on the collection Ct for the empirical distribution to be an MLPM.

Proposition 4. Suppose that {Uj : j ∈ [J ]} ⊆ Mt and that each Cs contains exactly one dj, s ∈ [t],

j ∈ [J ]. Then µ̃t ∈ Dt and thus δt = 0.

In general, the conditions of Proposition 4 are too strict. However, if we assume that the size

of the elements in Ct decrease over time, we can obtain a similar result without imposing these

conditions to hold, as shown next.

Proposition 5. Suppose that limt→∞ ||Ct|| = 0 a.s., where ||Ct|| := sup{||c − c′|| : c, c′ ∈ Ct}.
Then, limt→∞ δ

t = 0 a.s.

We remark that the proof of Proposition 5 does not necessarily need that the size of the elements

in Ct go to zero as t grows. Even if the sizes of the sets do not go to zero, the proof holds true as

the sets in Ct remain sufficiently small to guarantee that there exists a t0 ≥ 0 such that Uj ∈ Mt

for all t ≥ t0 and j ∈ [J ], and for which each Cs, s ≥ t0, only contains one dj , j ∈ [J ].

6 Data-driven stochastic optimization and MLPMs

In this section, we consider two opposite applications of MLPM to data-driven optimization,

where MLPMs are used to define uncertainty sets, first in the context of robust optimization

(where a DM edges against worst-case realizations of uncertainty), and second in the context of

sequential decision-making under uncertainty (where a DM follows a principle of optimism in the

face of uncertainty). In both settings, we assume that the DM seeks to optimize a function f(x, c),

which is measurable and lower semi-continuous for each x ∈ X, where X ⊆ Rl is known and

denotes the set of possible values of the decision variables. The function depends of the random

vector c, thus (Ψ,G) = (Rn,Bn), and the DM does not know the distribution µ0 and considers all

distributions in an uncertainty set simultaneously, finding worst/best-case realizations, depending

on the application.

There are several methods to construct ambiguity sets; see for example [23, 47, 59]. Following

existing approaches [27], we assume that the ambiguity set is given by a Wasserstein ‘ball’ around
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the set of MLPMs. This is, we consider the ambiguity set

U tε :=
{
µ ∈

(
Rn,Bn) : d(Dt, µ) ≤ ε+ δt

}
,

for some ε > 0 given.2 The choice of this ambiguity set is justified by the following out-of-sample

guarantee, which is a direct consequence of Proposition 2, and an adaptation of Theorem 3.5 of [27]

to this setting (and thus is stated without proof).

Proposition 6. Suppose that the assumptions of Proposition 2 hold, and let f : Rl × Rn → R be

measurable and x : Ω→ Rl be a random vector (n 6= 2). Then, for any β ∈ (0, 1)

P
[{
ω ∈ Ω: Eµ

0
[f(x(ω), c)] ≤ sup

{
Eµ[f(x(ω), c)] : µ ∈ U tεt(β)(ω)

}}]
≥ 1− β, (14)

where εt(β) is given by

εt(β) =


(

log(κ1β−1)
κ2t

)1/max{n,2}
if t ≥ log(κ1β

−1)/κ2(
log(κ1β−1)

κ2t

)1/a
∼,

where κ1 and κ2 are the same constants as in Proposition 2.

The out-of-sample guarantee in Proposition 6 states that for any decision x that depends on

the observed data up the time t, the unknown expectation Eµ
0
[f(x, c)] can be upper-bounded with

high probability by the best/worst-case expectation of f(x, c) over all the distributions in U tεt(β).

Observe that the sup in (14) is interpreted as a worst-case whenever f is a loss function (i.e.,

the distribution in U tεt(β) that gives the largest expected loss); whereas the sup is interpreted as a

best-case whenever f is a revenue function (i.e., the distribution in U tεt(β) that gives the highest

expected revenue).

6.1 Distributionally Robust Optimization

Following the distributionally robust optimization (DRO) paradigm, we assume that f(x, c) is

a loss function `(x, c) and that the DM optimizes under the assumption that µ0 takes a worst-case

realization within the ambiguity set U tε for some ε > 0. That is, the DM solves the DRO problem

DRO: zt := inf
{

sup
{
Eµ[`(x, c)] : µ ∈ U tε

}
: x ∈ X

}
. (15)

From Proposition 6 we have that, with high probability, the value of the DRO problem upper-

bounds the value of the original (unknown) optimization problem infx∈X E
µ0 [`(x, c)]. Within the

context of DRO, the bound in Proposition 6 is more conservative than the bound in Theorem

2Implicitly, we consider the space
(
Rn,Bn) equipped with the topology induced by the Wasserstein metric. In the

resulting space, referred to as the Wasserstein space [40], we can define continuity and compactness notions in terms
of the Wasserstein distance.
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3.5 of [27] because the radius of the Wasserstein ball is larger by δt and because the Wasserstein

ball is constructed around a set rather than a single distribution. Such over-conservativeness can

be interpreted as the ‘price’ to pay (in this approach) for not having complete information about

the realizations of the random vectors cs, s ∈ Z+. Note, however, that Proposition 6 generalizes

Theorem 3.5 of [27] in the sense that if Cs = {cs} and thus Ds = {µ̃s} for all s ∈ Z+, then both

upper-bounds coincide.

While DRO is in principle a bilevel problem, we show that, under certain conditions, it can be

formulated as a single-level convex optimization problem. For a given x ∈ X, λ ≥ 0, µ ∈
(
Rn,Bn),

and c ∈ Rn, define

¯̀(x, λ, c) := sup
y∈Rn

{
`(x, y)− λ||c− y||

}
and Ē(x, λ, µ) := Eµ[¯̀(x, λ, c)],

where in the definition of Ē(x, λ, µ) the expectation is taken with respect to the random vector c,

which is distributed according to µ. We note that ¯̀(x, λ, ·) is measurable from any x and λ, see [14].

Theorem 4. Suppose that each M ∈Mt is a compact set of Rn, that `(x, ·) is lsc for each x ∈ X,

and let ε > 0 be given. Then for each x ∈ X we have that

sup
{
Eµ[`(x, c)] : µ ∈ U tε

}
= inf

{
λ(ε+ δt) +

∑
M∈Mt

ŵtM sup{¯̀(x, λ, c) : c ∈M} : λ ≥ 0
}
. (16)

Proof. For a given µ′ ∈ Dt, let Hµ′ denote the worst-case expectation of `(x, c) across all probability

measures that are at a Wasserstein distance of at most ε+ δt of µ′, i.e.

Hµ′ := sup
{
Eµ[`(x, c)] : µ ∈

(
Rn,Bn), d(µ, µ′) ≤ ε+ δt

}
.

Then, by Theorem 1 of [14],

Hµ′ = inf
{
λ(ε+ δt) + Ē(x, λ, µ′) : λ ≥ 0

}
.

On the other hand, note that

sup
{
Eµ[`(x, c)] : µ ∈ U tε

}
= sup{Hµ′ : µ

′ ∈ Dt}

= sup
{

inf
{
λ(ε+ δt) + Ē(x, λ, µ′)] : λ ≥ 0

}
: µ′ ∈ Dt

}
.

Now, for any λ ≥ 0 and µ′ ∈
(
Rn,Bn), define H̃(λ, µ′) := λ(ε+ δt) + Ē(x, λ, µ′). Lemmas 6 and 7,

which can be found in the appendix, imply that H̃ is lsc and convex with respect to λ (for each µ′)

and upper-semicontinuous and concave with respect to µ′ (for each λ). Moreover, Dt is a compact

set from Lemma 7 (the fact that each M , M ∈Mt is compact, implies that
⋃
M∈MtM is compact).
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Therefore, the minimax Theorem (Corollary 3.3 of [53]) implies that

sup
{
Eµ[`(x, c)] : µ ∈ U tε

}
= inf

{
sup
{
λ(ε+ δt) + Ē(x, λ, µ′) : µ′ ∈ Dt

}
: λ ≥ 0

}
.

The desired result then follows from Proposition 8 (see appendix) as ¯̀ is lsc over c for each x ∈ X
and λ ≥ 0 and each M ∈Mt is compact.

Theorem 4 implies that the DRO problem (15) can be formulated as

inf λ(ε+ δt) +
∑

M∈Mt

ŵtM yM (17a)

s.t. yM ≥ `(x, c)− λ inf{||c− c′|| : c′ ∈M}, c ∈ Rn,M ∈Mt (17b)

λ ≥ 0, x ∈ X, yM ∈ R, M ∈Mt. (17c)

Problem (17) is a semi-infinite convex optimization problem as long as `(x, c) is convex in x,

which can be further reformulated as a finite convex optimization problem by following a similar

procedure to the one in [27]. Alternatively, formulation (17) can be solved by a decomposition

delayed constraint generation algorithm [15]. These types of approaches are typically faster in

practice than solving the finite reformulation directly (see for example [10, 39] in the context of

convex robust optimization) and are suitable in more general settings where the X and/or the CMI

are non-convex (e.g., mixed-integer), see [17]. Finally, note that if Cs = {cs}, and thus Ds = {µ̃s}
for all s ∈ [t], then formulation (17) becomes Formulation (11) of [27].

A compact reformulation of DRO for certain piece-wise linear loss functions. Here, we

consider the special case when

`(x, c) ≡ min
{
c>y : y ∈ Y (x)

}
, (18)

with Y (x) ⊆ Rn compact and non-empty for any x ∈ X. That is, `(x, c) is the value of an

optimization problem with a linear objective function, where the cost vector of the objective is c

and the variables in x potentially modify the feasible region of the problem. (Note that the form

in (18) generalizes linear functions because if Y (x) = x for all x then `(x, c) = c>x.)

We assume that the elements ofMt and X consist of non-negative vectors, and that || · || stands

for the `2-norm in Rn. Under these assumptions, we derive a simpler reformulation of problem (17)

that is more amenable to standard optimization solvers. First, consider the following auxiliary

result, for which we define C(x) ≡ {c′ ∈ Rn : `(x, c′) ≥ 0, ||c′|| = 1}.

Proposition 7. Let x ∈ X ⊆ Rn+ and c ∈ Rn+ be given. Suppose that `(x, c) is defined by (18),

that the elements of Y (x) and M are non-negative for all x ∈ X and M ∈ Mt, and that distances

are measured using the metric induced by the `2-norm. If λ > sup{`(x, c′) : c′ ∈ C(x)}, then
¯̀(x, λ, c) = `(x, c).
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We use the result above to reformulate the DRO.

Theorem 5. Suppose that `(x, c) is defined by (18), that the elements of Y (x) and M are non-

negative for all x ∈ X and M ∈ Mt, and that distances are measured using the metric induced by

the `2-norm. Then,

sup
{

Eµ[`(x, c)] : µ ∈ U tε
}

= sup
{
`(x, c) : ||c|| ≤ 1

}
(ε+ δt) +

∑
M∈Mt

ŵtM sup{`(x, c) : c ∈M}.

Proof. From Lemma 8 (in the appendix) and Proposition 7 we see that the optimization problem

in (16) is unbounded if λ < sup{`(x, c′) : c′ ∈ C(x)}, while it is bounded if λ ≥ sup{`(x, c′) : c′ ∈
C(x)} and in this case sup{¯̀(x, λ, c) : c ∈ M} = sup{`(x, c) : c ∈ M} for each M ∈ Mt. Con-

sequently, Theorem 5 follows after noting that sup{`(x, c′) : c′ ∈ C(x)} = sup{`(x, c′) : ||c′|| ≤ 1}
because of the non-negativity assumptions on Y (x) and M , M ∈ Mt (i.e., the sup cannot be

attained a c′ such that `(x, c′) < 0 because there exists c′ with ||c′|| = 1 such that `(x, c′) ≥ 0).

Theorem 5 is used in Section 7 to formulate data-driven problems involving worst-case distri-

butions. Indeed, a direct application of this result to formulation (15) results in

DRO : zt = inf
{

sup
{
`(x, c) : ||c|| ≤ 1

}
(ε+ δt) +

∑
M∈Mt

ŵtM sup{`(x, c) : c ∈M} : x ∈ X
}
.

An advantage of this formulation relative to the previous one there is no constraint tying cost vector

selections across the CMI, as in (17b). Thus, for a fixed x ∈ X, evaluation of the objective function

amounts to maximizing the loss function across the elements of the CMI, individually. This feature

can be used to design algorithmic approaches to solving the DRO.

Remark 5. Theorem 5 can be employed the reformulate the ‘full information’ special case when

Cs = {cs} for all s ∈ [t] [27]. In this case the DRO reduces to

zt = inf
{

sup
{
`(x, c) : ||c|| ≤ 1

}
(ε+ δt) +

1

t

∑
s∈[t]

`(x, cs) : x ∈ X
}
.

6.2 Greedy and optimistic solutions for shortest-path interdiction

Following the optimism in the face of uncertainty principle, we assume that the DM optimizes

under the assumption that µ0 takes a best-case realization within the ambiguity set U tε for some

ε > 0. Such a principle has been applied recently in the context of interdiction problems with in-

complete information [18–20, 61]. In the optimistic case, the function f(x, c) is given by a revenue

function r(x, c). Following (18) suppose that

r(x, c) ≡ min
{
c>y : y ∈ Y (x)

}
,
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with Y (x) ⊆ RN compact and non-empty for any x ∈ X. In this approach, the DM solves the

greedy and optimistic optimization (GOO) problem

GOO : wt ≡ sup
{

sup
{
Eµ[r(x, c)] : µ ∈ U tε

}
: x ∈ X

}
= sup

{
sup
{
r(x, c) : ||c|| ≤ 1

}
(ε+ δt) +

∑
M∈Mt

ŵtM sup{r(x, c) : c ∈M} : x ∈ X
}
,

where the last equation comes from applying Theorem 5 with r(·) instead of `(·). Note that this

accommodates the network interdiction setting in Example 1 when the DM is interested in maxi-

mizing the length of the path selected by an evader. Indeed, in such a setting r(x, c) corresponds

to the cost of the shortest 1-n path in the interdicted network, x are the interdicted arcs, and c

the cost vector, i.e.

r(x, c) = min
{
c>y : B y = b, ya ≥ 0, ya + xa ≤ 1, a ∈ A

}
,

where B denotes the node-arc adjacency matrix of G and b is such that b1 = −1, bn = 1,

and bi = 0 otherwise, and x := (xa : a ∈ A) is encoded so that xa = 1 if the arc a is in-

terdicted, and xa = 0 otherwise. Note that this function has the form in (18). We consider

X :=
{
x ∈ {0, 1}|A| :

∑
a∈A xa ≤ Λ

}
, where Λ ∈ Z+ represents a budget parameter.

Let S denote the collection of sets defining the elements of CMI with positive probability in

the MLPM (which is obtained a sub-product of Algorithm 2), and {wS : S ∈ S} as the solution to

formulation (9). Additionally, define S0 := S ∪ {0} and w0 := (ε + δt). We can use LP duality to

formulate GOO as follows.

GOO : max
∑
S∈S0

wS
(
ρSn − ρS1

)
s.t. ρSj − ρSi ≤ cSi,j + 1− xi,j , (i, j) ∈ A, S ∈ S0

ρ̂s,Sn − ρ̂
s,S
1 = (cS)>ys, s ∈ S, S ∈ S

ρ̂s,Sj − ρ̂
s,S
i ≤ cSi,j , (i, j) ∈ A \Bs, s ∈ S, S ∈ S

‖cS‖ = 1 S ∈ S0∑
a∈A

xa ≤ Λ

ρ, ρ̂, c ≥ 0 xa ∈ {0, 1} .

Here, ys stands for a vectored representation of path P s and Bs for the set of arcs blocked during

period s, for s ∈ [t]. Note that variable cS ∈ I(S) is a cost vector that explains the evader

responses during the periods in S, for S ∈ S0 (here, we understand that I(∅) = R|A|+ .) Note that

GOO corresponds to the problem of a DM that faces |S| evaders simultaneously, each of whom

responds to a different cost vector (chosen by the DM), and whose responses are weighted differently

in the DM’s objective function.
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7 Numerical experiments

We present numerical experiments to illustrate the convergence of the MLPMs to µ0; how the

conservativeness of the proposed DRO evolves over time; how effective is the proposed column

generating approach; and how the size of the CMI evolves over time. In our experiments we

generate the sequence Ct based on the rectangular feedback example (Example 2) and the shortest-

path interdiction example (Example 1).

7.1 Convergence of MLPM to the empirical distribution and DRO

Robust Linear Assignment. In this section, we illustrate the convergence of MLPMs to the

empirical distribution, as a function of t, and study how the value of the DRO in Section 6.1

converges to the optimization problem based on the expected value over the empirical distribution.

For this, we consider a DM who solves a linear assignment problem; more specifically, the loss

function `(x, c) is given by

`(x, c) =
∑
i∈[n1]

∑
j∈[n2]

cij xij

for given n1, n2 ≥ 1, and the set of feasible decisions is

X =
{
x ∈ [0, 1]n1×n2 :

∑
j∈[n2]

xij = 1, i ∈ [n1],
∑
i∈[n1]

xij = 1, j ∈ [n2]
}
. (19)

We assume that the actual unknown distribution µ0 is given by the discrete model introduced in

Section 5.3 (i.e. we assume that cs ∈ {dj : j ∈ [J ]} a.s.), and that the elements in Ct are given in the

form of rectangles in Rn1×n2 , as in Example 2. Specifically, for s ∈ Z+, we generate Cs as follows:

first, we sample cs (independently) at random from {dj : j ∈ [J ]}; then, for each (i, j) ∈ [n1]× [n2]

we sample U si,j ∼ U [0, 1] (independently across time and components), and set

lsi,j := csi,j − U si,j ∆s, usi,j := csi,j + ∆s(1− U si,j),

and Cs =
{
c ∈ Rn1×n2 : ci,j ∈ [lsi,j , u

s
i,j ], i ∈ [n1], j ∈ [n2]

}
for a given side length parameter ∆s.

Instance generation. We consider n1 = n2 = 3, J = 20, and generate each dj by sampling

each of its components (independently) from a U [0, 1] distribution. We also consider a side length

parameter ∆s = 0.5/sγ , and generate instances using three alternative choices for γ: 0, 0.2 and

0.5. Note that in the last two cases, the sizes of the Cs go to zero as s grows.

For each t ∈ {10, 20, . . . , 100} we use Ct to find the CMI, and then to solve for the MLPM, which

in turn we use to formulate and solve DRO; for this, we considered ε = 0.01 and, because δt is hard

to compute, we use the bound arising from solving the LP formulation in Lemma 5 in its place.3

Results and analysis. We consider 30 instances generated according to the procedure described

3Note that this is equivalent to using the correct distance δt but increasing ε by U tw − δt, where U tw is the upper
bound in Lemma 5.

27



above and report mean values across said instances. All instances were run in a machine with a

3.2Ghz 8-Core Intel Xeon W processor, with 32Gb RAM.

Figure 3 reports the evolution – as a function of t – of the mean across instances of four

performance measures: (i) the upper bound U tw in Lemma 5, (ii) the size
∣∣Mt

∣∣ of the CMI, (iii)

the number of elements nz(ŵt) in the CMI that receive a positive value in the MLPM4; and (iv)

the value zt of the solution of the DRO problem.

We observe that independent on the rectangle sizes, the (average) value of U tw, and thus of δt,

goes to zero as t increases, and the convergence rate to zero is faster as a function of the rate at

which the length size parameter decreases. When ∆s = 0.50/s0.2 or ∆s = 0.50/s0.5, such behavior

can be explained by Proposition 5, as the size of the elements in Ct decrease. For the case where ∆s

does not depend on s no such result applies; however, this convergent behavior might be explained

in part by Proposition 3. That is, most of the elements of Mt are intersections of a small number

of elements of Ct, whereas the elements ofMt that contain the {dj , j ∈ [J ]} involve the intersection

of a number of sets that grows infinitely often over time.
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Figure 3: Behavior of U tW , |M t|, nz(ŵt), and zt as t grows

4Because of numerical precision, we report nz(ŵt) ≈
∣∣M ∈Mt : ŵtM ≥ 10−5

∣∣.
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Figure 3 also shows that the size of the CMIs, |Mt|, grow linearly and sublinearly with time thus,

at least in this model, we do not observe an exponential growth (in time) of the CMI. Importantly,

the number of non-zeros of the MLPM weight vector ŵt grows even slower across all cases, and

there are less than 20 nonzeros across all cases at any given time, which is remarkable as the original

distribution’s range consists of 20 elements. Finally, Figure 3 also shows how the over-conservatism

of the DRO approach is reduced as more information is available. Indeed, as t grows, the value of

the DROs decreases and converges to the value of the expectation optimization problem that uses

the empirical distribution to compute the expectation.

7.2 Computation of CMI via Column Generation and GOO

Shortest-path Interdiction. In this section we illustrate the efficient computation of a MLPM

via the column generation procedure in Section 4.2. In particular, we compare the size of the partial

set of CMI used for computing MLPM via column generation versus the full size of the CMI. The

results of this section are based on a DM that observes the sets in Ct as in the shortest-path

interdiction setting of Example 1. In addition, given the Ct, we consider that the DM periodically

solves the GOO problem as described in Section 6.2.

Instance Generation. We consider a layered graph topology with 3 layers and 3 nodes per layer:

in each layer (except for the last one) each node has an arc directed toward each node on the

next layer; node 1 is connected to each node in the first layer, and each node in the last layer is

connected to node n. Thus, in this instance, we have that |N | = 11 and |A| = 24. On each period

s, we generate cs by drawing each component csa from a U [0, 1] distribution, a ∈ A, and select a

set Bs ⊆ A of size Λ by sampling arcs at random from A, Λ = 1 times without replacement.

For each t ∈ {10, 20, . . . , 90, 100} we use Ct to find the CMI via Algorithm 1, and solve formu-

lation (9) to compute the MLPM. Additionally, we also use Algorithm 2 to compute the MLPM

and keep track of the partial subset of the CMI found. In both cases, we use formulation (8) to

solve for V imposing a minimum optimality gap of 10−3. In the case of Algorithm 2, we modify

the objective function in formulation (8), as described in Section 4.2, and use Algorithm 3 to find

an initial set S. We use the MLPM to formulate and solve GOO; for this we consider ε = 0.01

and, because δt is hard to compute, we use the bound arising from solving the LP formulation in

Lemma 5 in its place.

Results and Analysis. We consider 30 instances generated according to the procedure described

above and report mean values across said instances. All instances were run in a machine with a

3.2Ghz 8-Core Intel Xeon W processor, with 32Gb RAM.

In Figure 4 (panel on the left) we observe the evolution in time of the mean number of elements

of the CMI as found by Algorithm 1 (noted by CMI), the mean partial number of CMI elements

as found by Algorithm 2 upon termination (noted by Partial CMI), and the mean number of

elements in the CMI that are assigned a positive weight in the MLPM (noted by Optimal CMI).

We observe that whereas there is an exponential increase in the size of the CMI, the number of
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Figure 4: Behavior of set sizes, bounds and running times as t grows.

Optimal CMI sets is linear in t, as suggested by Proposition 1; this fact suggests that there is room

from improving the column generation procedure, which we observe produces less elements than

the full CMI collection, nonetheless, the increase on its own size also seems exponential in t.

The right panel in Figure 4 (bottom) shows the total running time to compute the CMI by

applying Algorithm 1, the MLPM, and solving the GRO; we observe that running times for com-

puting the MLPM and solving the GRO are negligible compared to that required to compute their

input, the CMI. In this regard, we observe that (i) the bottleneck in computing the CMI is the

number of sets that need to be found; and (ii) running time for solving formulation (8) remains

quite constant, although a small increase is observed towards the largest values of t. Finally, the

right panel in Figure 4 (top) shows the upper bound in Lemma 5, which we observe decreases

modestly with time.

8 Conclusions

In this work, we have studied the problem of non-parametric MLE estimation when, unlike

the traditional setting, random elements drawn from an unknown distribution are not directly

observable but instead are known to lie within observable sets. We provide a formal treatment of

the estimation problem, first identifying structural properties of the ML estimate, namely that its

range lies in a collection of maximal intersections, and then providing a characterization in the form

of KKT conditions. We show that while convergence results available in traditional settings are not

available in general, it still occurs when adapting the notions of convergence to this new setting.

More importantly from a decision-making perspective, our work shows how to compute uncertainty

sets, in the context of distributionally robust optimization and greedy and optimistic optimization,
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in a manner that is consistent with MLE. In future research, we expect to enhance the proposed

column generation algorithm for it to be closer to the number of non-zeros observed in the optimal

solutions, and to analyze convergence properties in more depth for interdiction problems under

various feedback modes and assumptions on µ0.
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A Proofs of Selected and Auxiliary Results

Proof of Lemma 1. First, note that because Ct is a finite collection, there is an explicit repre-

sentation of Gt, i.e.

Gt :=
{
G : G = ∪j≤kGj , Gj = I(Sj) ∩ Ic(S′j), Sj , S′j ⊆ [t], Sj ∩ S′j = ∅, k ∈ Z+

}
,

where Ic(S) :=
⋂
s∈S Φt \ Cs, s ⊆ [t], and the {Gj} are mutually disjoint and finite.

Now, suppose that the result does not hold, and thus that there is G ∈ Gt such that G ⊂ I(S)

and G 6= ∅. This implies that I(S) ∩ G 6= ∅. We can write (w.l.o.g.) G = ∪j≤kGj , with Gj =

I(Sj) ∩ Ic(S′j) disjoint. This implies that

I(S) ∩G =
∑
j≤k

I(S) ∩ I(Sj) ∩ Ic(S′j) =
∑
j≤k

I(S ∪ Sj) \ I(S′j).

(Here the sum of sets stands for disjoint union.) However, note that I(S∪Sj) = ∅ unless Sj ⊆ S, by

the maximality of S. Because I(S)∩G 6= ∅ we need only to consider j ≤ k such that I(S∪Sj) = I(S).

Suppose j ≤ k is such that I(S) \ I(S′j) 6= ∅: because of the maximality of S, it must be that

S ∩ S′j = ∅, in which case I(S) \ I(S′j) = I(S). Summarizing, I(S) ∩G 6= ∅ implies that

I(S) ∩G =
∑

j:Sj⊆S ∩S∩S′j=∅

I(S) \ I(S′j) +
∑

j:Sj⊆S ∩S∩S′j 6=∅

I(S) \ I(S′j) +
∑

j:Sj 6⊆S
I(S ∩ Sj) \ I(S′j)

=
∑

j:Sj⊆S ∩S∩S′j=∅

I(S) =

I(S) ∃ j ≤ k, Sj ⊆ S, S′j ∩ S = ∅

∅ ∼ .

Note that, if I(S) ∩ G 6= ∅ implies that I(S) ∩ G = I(S), implying that G = I(S), contradicting

our assumption that G ⊂ I(S). This observation proves the result.

Proof of Lemma 2. The fact that Pw is non-negative and at most one is immediate. Consider

G1, G2 ∈ Gt, disjoint. Because G1 ∩G2 = ∅ and the fact that elements of the CMI are atoms, one

has that Mt ∩ (G1 ∪G2) =Mt ∩G1 +Mt ∩G2, (here sum stands for disjoint union), thus

Pw(G1 ∪G2) =
∑

M⊆G1∪G2:M∈Mt

wM

=
∑

M⊆G1:M∈Mt

wM +
∑

M⊆G1:M∈Mt

wM = Pw(G1) + Pw(G2).

We conclude that Pw is additive, and thus σ-additive, because Gt is finite.

Proof of Lemma 3. Note that the elements in Mt are disjoint, and define M̄ := ∪M∈MtM . We
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have that

µ(Cs) =
∑

M∈Mt

µ(Cs ∩M) + µ(Cs ∩ M̄ c)

=
∑

M∈Mt:M⊆Cs
µ(Cs ∩M) =

∑
M∈Mt:M⊆Cs

µ(M) =
∑

M∈Mt:M⊆Cs
wM

where the first equation follows as µ(Cs ∩ M̄ c) ≤ µ(M̄ c) = 0 and the elements in Mt are mutually

disjoint, the second because the elements of Mt are either completely contained in Cs or disjoint

with Cs, and the last one because Cs ∩M = M if M ⊆ Cs.

Proof of Proposition 1. For any feasible solution w to (4) define q(w) := (qs(w) : s ∈ [t]), where

qs(w) :=
∑

M∈Mt:M⊆Cs
wM , s ∈ [t].

With this, the KKT conditions (5) can be written as

∑
s∈[t]:M⊆Cs

1

qs(w)
+ λM + λ = 0, M ∈Mt

λM wM = 0, M ∈Mt∑
M∈Mt

wM = 1 wM , λM ≥ 0, M ∈Mt.

Let (w′, λ, (λM : M ∈ Mt)) be a solution to the KKT conditions above, and suppose that

|supp(w′)| > t + 1 (otherwise, the result holds true). A key observation is that any non-negative

vector w such that
∑

M∈Mt wM = 1, q(w) = q(w′) and w′M = 0⇒ wM = 0, M ∈Mt is such that

(w, λ, (λM , M ∈ Mt)) also solves the KKT conditions. Thus, the result follows if we find such a

vector w with the property that |supp(w)| ≤ t+ 1.

Let supp(w′) ≡ {M1, . . . ,MJ}, where Mj ∈ Mt for some finite J > t + 1. For j ≤ J define

zj :=
(
zjs : s ∈ [t]

)
∈ Rt, where zjs := 1 {Mj ⊆ Cs}, s ∈ [t], and define the matrix Z :=

(
z1 · · · zJ

)
.

Consider the (non-negative) polyhedron P defined by

P =
{
w ∈ RJ+ : Zw = q(w′),1>w = 1

}
(A-2)

and note that w′ ∈ P. Define r := rank(
(
Z
1>

)
) ≤ t+ 1: from the theory of linear programming, we

know there exists a basic feasible solution w ∈ P such that |supp(w)| ≤ r ≤ t+ 1. This concludes

the proof.

Proof of Lemma 4. The fact that µ′ is non-negative and one over Ψ′ is immediate. Consider

σ-additivity. Let {Gi : i ∈ Z+} a sequence of pairwise disjoint elements of G′. We need to prove

2



that

µ′(∪iGi) =
∑
i

µ′(Gi).

This will follow from the finiteness of Mt. Indeed, note that by absolute continuity µ(M) > 0 for

all M ∈Mt such that ŵtM > 0. Thus, we have that

µ′(∪iGi) =
∑

M∈Mt: ŵtM>0

1

µ(M)
ŵtM µ(∪iGi ∩M)

=
∑

M∈Mt: ŵtM>0

∑
i

1

µ(M)
ŵtMµ(Gi ∩M)

=
∑
i

∑
M∈Mt: ŵtM>0

1

µ(M)
ŵtMµ(Gi ∩M) =

∑
i

µ′(Gi),

where the third equality follows from monotone convergence. Finally, the fact that µ′ and µ̂t

coincide over Mt follows from the definition.

Proof of Proposition 2. For the sake of clarity, let Dt(ω) denote the realization of Dt under

ω ∈ Ω, and let µ(ω) be the element of Dt(ω) that attains the inf in (or that is arbitrarily close to)

d(Dt(ω), µ̃t). Note that

{
ω ∈ Ω: d(Dt(ω), µ0) ≥ε+ δt(ω)

}
⊆
{
ω ∈ Ωt : d(µ(ω), µ0) ≥ ε+ δt(ω)

}
⊆
{
ω ∈ Ω: d(µ(ω), µ̃t(ω)) + d(µ̃t(ω), µ0) ≥ ε+ δt(ω)

}
⊆
{
ω ∈ Ω: d(µ̃t(ω), µ0) ≥ ε},

where the first equation follows because d(µ(ω), µ0) ≥ d(Dt(ω), µ0), the second from the triangle

inequality, i.e., d(µ(ω), µ̃(ω)) + d(µ̃(ω), µ0) ≥ d(µ(ω), µ0), and the last one from the definition of

δt(ω) and µ. Therefore, we conclude that

P t
[
d(Dt, µ0) ≥ ε+ δt

]
≤ P t

[
d(µ̃t, µ0) ≥ ε

]
,

and the result follows from Theorem 2 of [29].

Proof of Proposition 3. Let ŵt be a solution of (4) and recall that µ(M) = ŵtM for any µ ∈ Dt

and M ∈ Mt. Let S ⊆ [t] be such that I(S) ∈ Mt and |S| = mt. Suppose that wM > 0, as

otherwise the proposition holds trivially. From the KKT conditions (5) and Lemma 3 we have that

|s ∈ [t] : M ∩ Cs 6= ∅| 1

µ(M)
≥

∑
s∈[t]:M∩Cs 6=∅

1

µ(Cs)
≥
∑
s∈S

1

µ(Cs)
≥ m, (A-4)

where the first inequality comes from noting that µ(M) ≤ µ(Cs) for all s ∈ [t] such that M∩Cs 6= ∅
(M is an atom), the second from (5), and the third from the fact that µ(Cs) ≤ 1 for all s ∈ [t].

The result follows from rearranging the terms above.
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Proof of Proposition 4. Note that Uj ⊆ Cs if and only if dj ∈ Cs, and that the assumption that

Cs contains exactly one dj implies that dj ∈ Cs if and only if cs = dj . Therefore, we can conclude

that {Uj ⊆ Cs} = {cs = dj}. Define

wUj :=
1

t
|s ∈ [t] : cs = dj | , j ∈ [J ],

and w :=
(
wM : M ∈Mt

)
. Note that w is non-negative, and adds up to one. In addition, for

j ∈ [J ] and s ∈ [t] such that cs = dj we have that∑
M∈Mt:M∩Cs 6=∅

wM = wUj .

This implies that, for any j ∈ [J ],

∑
s∈[t]

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅wM

=
∑

s∈[t]:cs=dj

1

wUj
= t.

Thus, we have that w, λ = t, and λM = 0 for all M ∈Mt fulfill the KKT conditions (5), and thus

we conclude that Pw is an MLPM. The result follows from noting that µ̃t|Gt coincides with Pw,

and thus is in Dt.

Proof of Proposition 5. Since limt→∞ ||Ct|| = 0 then there exists a t0 ≥ 0 such that Uj ∈ Mt

for all t ≥ t0 and j ∈ [J ], and for which each Cs, s ≥ t0, only contains one dj , j ∈ [J ]. For t ≥ t0

define

wtM :=

1
t |s ∈ [t] : cs = dj | if M = Uj for some j ∈ [J ],

0 ∼ .

For j ∈ [J ] and s ∈ [t], if Uj ⊆ Cs then for t ≥ t0 one has that∑
M∈Mt:M∩Cs 6=∅

wtM ≥ wUj .

Using the above, for a given j ∈ [J ], we have that

∑
s∈[t]

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅w

t
M

≤ 1

wtUj

∑
s∈[t]

1{Uj⊆Cs} (A-5)

≤ t

|s ∈ [t] : cs = dj |
∑
s∈[t]

1{Uj⊆Cs} (A-6)

≤ t

|s ∈ [t] : cs = dj |

(
t0 + |s ≥ t0 : cs = dj |

)
(A-7)

≤ t
(

1 +
t0

|s ∈ [t] : cs = dj |

)
, (A-8)

where the second to last inequality follows because if s ≥ t0 then cs = dj if and only if Uj ⊆ Cs. On
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the other hand, let s ≥ t0 and j ∈ Uj . Then Uj ⊆ Cs if and only if cs = dj ; similarly, M ∩ Cs 6= ∅
if and only if M = Uj . Therefore,

∑
s∈[t]

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅wM

≥
∑

s∈[t],s≥t0

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅w

t
M

(A-9)

≥ 1

wtUj

∑
s∈[t],s≥t0

1{cs=dj} (A-10)

≥ t

|s ∈ [t] : cs = dj |
|s ≥ t0 : cs = dj | (A-11)

≥ t
(

1− t0
|s ∈ [t] : cs = dj |

)
. (A-12)

We conclude that for any j ∈ [J ], if t ≥ t0, then(
1− t0
|s ∈ [t] : cs = dj |

)
≤ 1

t

∑
s∈[t]

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅w

t
M

≤
(

1 +
t0

|s ∈ [t] : cs = dj |

)
.

Because µ0(dj) > 0 for all j ∈ [J ], the converse Borel-Cantelli Lemma implies that

lim
t→∞

t0
|s ∈ [t] : cs = dj |

= 0, a.s. j ∈ [J ].

We can conclude that

lim
t→∞

1

t

∑
s∈[t]

1{Uj⊆Cs}∑
M∈Mt:M∩Cs 6=∅wM

= 1, a.s. j ∈ [J ].

The above results imply that defining w = wt, λ = −t and λM = 0, M ∈ Mt can be arbitrarily

close to a solution of (5) as t grows. These observations give the desired result.

Proposition 8. Let φ : Rn → R be a measurable function over
(
Rn,Bn) such that sup{φ(c) : c ∈

M} < ∞ for any M bounded, and such that the supreme is attained by an element of M , for all

M ∈Mt. Then,

sup
{

Eµ[φ(c)] : µ ∈ Dt
}

=
∑

M∈Mt

ŵtM sup{φ(c) : c ∈M}.

Proof of Proposition 8. Note that for any µ ∈ Dt it holds that:

Eµ[φ(c)] =
∑

M∈Mt

∫
M
φ(c) dµ(c) ≤

∑
M∈Mt

ŵtM sup{φ(c) : c ∈M}. (A-13)

Let cM ∈ arg max{φ(c) : c ∈M} and let µ∗ be defined by µ∗({cM}) = ŵtM for all M ∈ Mt. Then

clearly µ∗ ∈ Dt. Moreover, µ∗ attains the upper-bound in the right-hand side of Equation (A-13),

and the result follows.

Lemma 6. Let x ∈ X and µ ∈ P
(
Rn,Bn) be given. Then
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1. ¯̀(x, λ, c) is lower semi-continuous (lsc), convex, and non-increasing with respect to λ, for any

c ∈ Rn.

2. Ē(x, λ, µ) is lsc and convex with respect to λ.

Proof of Lemma 6. Regarding the first part of the lemma, convexity follows from the definition

after using the fact that the supremum over a sum is less than or equal to the sum of the suprema.

On the other hand, for a fixed y it is clear that `(x, y) − λ||c − y|| is continuous over λ. Lower

semi-continuity follows as the supremum over continuous functions is lsc. The fact that ¯̀ is non-

decreasing follows from

¯̀(x, λ, c)− ¯̀(x, λ′, c) ≤ sup
y∈Rn
{(λ′ − λ)||c− y||}.

If λ′ < λ then the above supremum is zero (attained when y = c), and therefore ¯̀(x, λ, c) ≤
¯̀(x, λ′, c), as desired. With regard to the second part of the lemma, the convexity of Ē follows

directly from the convexity of ¯̀. In order to prove that Ē is lsc in λ, let λn, n ≥ 1, be an increasing

sequence of numbers such that limn→∞ λn = λ. We have that

lim
n→∞

Ē(x, λn, µ) = lim
n→∞

Eµ[¯̀(x, λn, c)] = Eµ[ lim
n→∞

¯̀(x, λn, c)] = Eµ[¯̀(x, λ, c)] = Ē(x, λ, µ),

where the second equation follows from monotone convergence, as ¯̀(x, λn, c) is a non-increasing

sequence in n, and the third equation follows from the fact that ¯̀ is lsc in λ. The result follows

because the increasing sequence λn is arbitrary.

Lemma 7. Let x ∈ X and λ ≥ 0 be given. Then

1. Dt is convex. Moreover, if
⋃
M∈MtM is compact in Rn, then Dt is compact in

(
Rn,Bn).

2. Ē(x, λ, µ) is concave and continuous in µ.

Proof of Lemma 7. Regarding the first part of the lemma, we have that convexity is immediate

from the definition. Compactness follows because Dt is a tight set of measures, by the assumption

that
⋃
M∈Mt A is compact, and by repeating the arguments of Proposition 2.2.3 and Corollary

2.2.5 of [40]. With regard to the second part of the lemma, the concavity of Ē(x, λ, µ) follows as

Ē(x, λ, αµ+ (1−α)ν) = αĒ(x, λ, µ) + (1−α)G(x, λ, ν). For continuity, note that if c, c′ ∈ Rn then

¯̀(x, λ, c)− ¯̀(x, λ, c′) ≤ sup
y∈Rn
{λ(‖c− y‖ − ‖c′ − y‖)} ≤ λ(|c− c′‖),

and therefore u(x, λ, c) := ¯̀(x, λ, c)/λ is Lipschitz continuous with constant 1. Consequently, by

the dual representation of the Wasserstein distance (see Theorem 1.14 in [56]),∫
u(x, λ, c)(dµ(c)− dµ′(c)) ≤ d(µ, µ′)
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for any µ, µ′ ∈ P
(
Rn,Bn). In other words,

Ē(x, λ, µ)− Ē(x, λ, µ′) ≤ λd(µ, µ′),

which implies that Ē(x, λ, µ) is continuous over µ, as desired.

Proof of Proposition 7. Because the suprema in Theorem 4 are taken over elements of M , we

assume hereafter that c ∈ M for some M ∈ Mt. Observe that the sup in the definition of ¯̀ can

discard elements such that `(x, c) < 0. Indeed, c′ = c is a feasible solution that has a non-negative

value in the objective of the sup (by the non-negativity assumptions on Y (x) and M), whereas

any c′ with `(x, c′) < 0 gives a strictly negative value in the objective. We can further note that,

because `(x, α c) = α `(x, c) for α ∈ R+, we have that

¯̀(x, λ, c) = sup{α `(x, c′)− λ||c− α c′|| : ||c′|| = 1, `(x, c′) ≥ 0, c′ ∈ Rn, α ∈ R+}. (A-14)

On the other hand, for any c′ ∈ Rn with `(x, c′) ≥ 0, define c′′ = c′/||c′|| and α = ||c′||. Then

(c′′, α) is feasible in (A-14) and attains the same objective function as c′. Using these facts, we can

write the rhs of (A-14) as a nested optimization problem:

¯̀(x, λ, c) = sup
{

sup
{
α `(x, c′)− λ||c− α c′|| : α ∈ R+

}
: ||c′|| = 1, `(x, c′) ≥ 0, c′ ∈ Rn

}
. (A-15)

Fix x ∈ X, c ∈ Rn, λ > 0, and c′ ∈ C(x) := {c′′ ∈ Rn : `(x, c′′) ≥ 0, ||c′′|| = 1}, and define

f(α) = α `(x, c′)− λ||c− α c′||, s ∈ R. (A-16)

Note that f(α) is a concave and differentiable function in α. Lemma 8 shows that if there exist

c′ ∈ C(x) such that λ < `(x, c′) then ¯̀(x, λ, c) =∞.

Suppose that there x ∈ X is such that there is no c ∈ C(x) such that λ < `(x, c) and let

α∗(c′) be such that it attains the inner supremum in (A-15) for c′ given (Lemma 8 provides a

characterization.) From Lemma 8 and the concavity of f , if α∗(c′) ≤ 0 then it must be the case

that sup{f(α) : α ∈ R+} = f(0) = −λ||c|| < 0. On the other hand, if α∗(c′) > 0, then

sup{f(α) : α ∈ R+} = `(x, c)(c>c′)−
√

(||c||2 − (c>c′)2)(λ2 − `(x, c′)2).

Note that setting c′ = c/||c|| (which belongs to C(x)) implies that sup{f(α) : α ≥ 0} ≥ 0, thus

c′ ∈ C(x) such that α∗ < 0 cannot attain the optimal in ¯̀. Therefore, we have that

¯̀(x, λ, c) = sup
{
`(x, c′)(c>c′)−

√
(||c||2 − (c>c′)2)(λ2 − `(x, c′)2) : c′ ∈ C(x), α∗(c′) > 0

}
.

(A-17)

We claim that the sup in (A-17) is attained at ĉ′ = c/||c||. Indeed, ĉ′ ∈ C(x) and α∗(ĉ′) > 0.

Moreover, ĉ′ attains the maximum in both terms of the objective in (A-17); particularly, for the
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first term `(x, ĉ′)(̂c>c′) = `(x, c). Whereas for the second term, the optimality is clear, for the

first, assume that c′ ∈ C(x). Then, for any y ∈ Y (x), `(x, c′) ≤ c
′>y and

`(x, c′)(c
′>c) ≤ c

′>yc
′>c ≤ c>y.

The last inequality can be proven by using the necessary KKT conditions on the quadratic opti-

mization problem max{c′>y c>c′ : ||c′|| ≤ 1, c′ ∈ Rn} and using the fact that yc> is a rank one

matrix whose only non-zero eigenvalue is c>t. Because `(x, c′)(c>c′) ≤ c>y for any y ∈ Y (x) and

any c′ ∈ C(x), it must be the case that `(x, c′)(c>c′) ≤ min{c>y : y ∈ Y (x)} = `(x, c) for any

c′ ∈ C(x).

Note that if λ = sup{`(x, c′) : c′ ∈ C(x)}, then the stationary point does not exist: in such a

case, from Lemma 8 and the concavity and continuity of f , it is readily seen that sup{f(α) : α ∈
R+} = `(x, c′)(c>c′). Therefore, in such a case ¯̀(x, λ, c) = sup{`(x, c′)(c>c′) : c′ ∈ C(x)} and,

from above, we know that this sup is precisely `(x, c). Therefore, if λ = sup{`(x, c′) : c′ ∈ C(x)}
then ¯̀(x, λ, c) = `(x, c).

Lemma 8. Let f be defined by (A-16). Then

lim
α→∞

f(α) =

∞, if λ < `(x, c′)

−∞, if λ > `(x, c′).

In addition, if λ > `(x, c′), then a stationary point of f exists and it is given by

α∗ := c>c′ +

√
||c||2 − (c>c′)2

λ2 − `(x, c′)2
. (A-18)

Moreover,

f(α∗) = `(x, c′)(c>c′)−
√

(||c||2 − (c>c′)2)(λ2 − `(x, c′)2).

Proof of Lemma 8. Define yc := y>c and observe that

lim
α→∞

f(α) = lim
α→∞

(α`(x, y)− λ||c− αy||)(α`(x, y) + λ||c− αy||)
α`(x, y) + λ||c− αy||

= lim
α→∞

α2`(x, y)2 − λ2(||c||2 − 2αyc + α2)

α`(x, y) + λ
√
||c||2 − 2αyc + α2)

= lim
α→∞

α`(x, y)2 − λ2(||c||2/α− 2yc + α)

`(x, y) + λ
√
||c||2/α2 − 2yc/α+ 1)

= lim
α→∞

α(`(x, y)2 − λ2)− λ2(||c||2/α− 2yc)

`(x, y) + λ
√
||c||2/α2 − 2yc/α+ 1)

.

Note that the last limit goes to ∞ if λ < `(x, y); it goes to −∞ if λ > `(x, y). Note that if

λ = `(x, y) then the limit is `(x, y)yc. Suppose now that λ > `(x, c′): the expression for α∗ follows
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after deriving and setting the derivative equal to zero. The second part follows after replacing α∗

in the equation for f(α).

Note that the numerator in (A-18) is always non-negative: one can check that ||c|| ≥ c>c′ for

any c′ ∈ C(x). Also, note that the stationary point can be negative because in general c>c′ can be

negative.
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