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Abstract
We study multistage stochastic optimization problems using sample av-

erage approximation (SAA) and model predictive control (MPC) as solution

approaches. MPC is frequently employed when the size of the problem ren-

ders stochastic dynamic programming intractable, but it is unclear how this

choice affects out-of-sample performance. To compare SAA and MPC out-of-

sample, we formulate and solve an inventory control problem that is driven

by random prices. Analytic and numerical examples are used to show that

MPC can outperform SAA in expectation when the underlying price distribu-
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robustification of the SAA problem with a first-moment based ambiguity set.
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1 Introduction

Multistage stochastic optimization problems are in general very difficult to

solve. Although one can create scenario-tree approximations of such problems

based on samples of the random variables in each stage (called sample average

approximation or SAA), the number of samples required to solve the true

problem to ϵ-accuracy grows exponentially with the number of stages [10, 8]

and the resulting optimization problems are computationally expensive to

solve [3]. Beyond two-stage stochastic programming problems where the

almost sure convergence of SAA has been thoroughly explored (see [9]), the

performance of SAA on multistage problems has received little attention

apart from the aforementioned negative results.

Multistage stochastic optimization problems become easier when the ran-

dom variables are stage-wise independent or follow a Markov process and the

problem can be formulated as a stochastic optimal control problem, where

decisions are controls that affect state variables obeying some dynamics. In

principle, such problems are amenable to solution by stochastic dynamic

programming methods, or some approximate form of these, as long as the

dimension of the state variable is not too large. Of course stochastic dynamic

programming methods must compute expected values and so some discretiza-

tion of the random variables is required to enable this. Here SAA provides a

natural methodology and has the property that the sample expected values

for a sample size N will converge almost surely by the strong law of large

numbers to their true values as N → ∞.

Stochastic optimal control problems do not have to be solved using a dy-

namic programming approach. In many practical settings (e.g., where state

dimension is high and controls and states are subject to complicated con-

straints) model predictive control (MPC) can be used. There has been an

enormous amount of work in control theory exploring the use of model pre-

dictive control in various contexts (see [5, 6]). In our situation we consider

a relatively simple problem in which the state variables are fully observed,

state constraints are simple, and we can find explicit solutions for the infinite

horizon problems that we need. In this case the MPC approach fixes ran-
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dom variables at their expectation and solves a deterministic optimal control

problem. (One can either assume that the expectations are known exactly,

or estimate them from a random sample. We focus on the second case in

this work.) The optimal policy that solves this deterministic problem is ap-

plied in the first stage only and a new deterministic problem is formed from

stage 2 onwards in a rolling horizon manner. There have been comparisons

of SAA and MPC by simulation out-of-sample, and MPC does well in certain

circumstances (see e.g. [4]). However, the reasons for this good performance

have not been fully explored. Although the SAA and MPC solutions coincide

when the certainty equivalence property holds [12, 13], this does not explain

the success of MPC in more general conditions.

Our aim in this paper is to advance our understanding of SAA and MPC

applied to stochastic control problems. To do this we restrict attention to

a specific class of inventory problems with a one-dimensional state variable.

This simple stochastic inventory control problem (SIC) seeks to maximize

the expected reward from selling a fixed inventory of some item at a random

and varying price over an infinite horizon. The price at each stage is assumed

to be independent of other prices and identically distributed. At each stage

the inventory held incurs an inventory cost that we assume is an increasing

strictly convex function. This problem is simple enough to admit a closed-

form optimal policy for any bounded price distribution, but complicated

enough to provide a suitable laboratory to test the performance of SAA and

MPC.

Given the SIC model and some ground-truth price distribution, for any

price samples we can compute an SAA policy and compute its expected

reward under the true price distribution. Similarly, we can compute an MPC

policy based on the sample average of the random prices, and compute its

expected reward under the true price distribution. The expectation of these

two statistics over the sampling distribution gives a measure of out-of-sample

performance of each approach. Our study is motivated by the question:

Under what conditions does Model Predictive Control do better

out of sample than the optimal dynamic programming solution

3



based on Sample Average Approximation?

We observe that the performance of SAA is poor when price distributions

have a long right tail. In this setting the price samples will occasionally

contain a very high price, causing the SAA policy to anticipate high prices

too frequently and pay too much in storage costs in the meantime. MPC

policies attenuate this effect when it occurs and can perform better than

SAA out-of-sample.

The paper is laid out as follows. We begin in Section 2 by formulating

our inventory problem and deriving a formula for its optimal solution as a

function of the price probability distribution. This formula can be used to de-

termine an SAA policy based on the empirical distribution of price samples,

as well as an MPC policy based on the sample-average price. In Section 3

we compare the out-of-sample performance of these two policies under some

simple assumptions on the ground-truth price distribution, and provide con-

ditions on the price samples which ensure that the MPC policy performs at

least as well as the SAA policy. In Section 4 we assume an exponential dis-

tribution for price and show that the expected out-of-sample improvement

from using MPC instead of SAA becomes arbitrarily large as the discount

factor approaches 1. In Section 5 we report some numerical experiments that

support the theoretical results of previous sections. We close the paper in

Section 6 by giving an interpretation of MPC as a distributional robustifica-

tion of SAA that uses a moment-based ambiguity set, providing a different

lens for viewing the performance differences of SAA and MPC.

2 A stochastic inventory control problem

To study the performance of SAA and MPC, we will look at a particular

stochastic inventory control problem that can be formulated as

SIC: max
{u1,u2,...}

E

[
∞∑
t=1

βt−1 (Ptut − C(xt))

]
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where xt and ut satisfy

xt = xt−1 − ut, t = 1, 2, . . .

ut ∈ [0, xt−1] , t = 1, 2, . . . ,

and ut depends only on the price history {P1, P2, . . . , Pt} up to time t (i.e.

the standard non-anticipativity constraints). The value of x0 ≥ 0, the initial

inventory level, is given. Here β ∈ (0, 1) is a discount factor, Pt is a ran-

dom price with finite expectation and C is an increasing strictly convex and

differentiable function with derivative c. Because c is a strictly increasing

continuous function, we may define an inverse function, c−1, on the range of

c. The problem SIC can be interpreted as the problem facing a merchant who

maximizes expected discounted reward by selling at each time t an amount

of stock ut at a realisation of the random price Pt from their current in-

ventory xt−1, while incurring a storage cost C(xt−1 − ut) on their remaining

inventory.

In what follows, we analyse the optimal solution of SIC and approxima-

tions of SIC that come from either an empirical distribution using a set of

samples drawn from {Pt} or assuming the price is fixed. To keep this analysis

simple we make following assumptions:

Assumption 1. The random prices Pt are independent and identically dis-

tributed on a bounded interval [pL, pU], having probability distribution P.

Assumption 2. The inventory cost is a continuously differentiable function

C : R+ 7→ R+ with C(0) = 0 and limx→∞ c(x) = ∞.

Under Assumption 1, we drop dependence of the random price Pt on the

index t and for x ≥ 0 define the dynamic programming functional equation

Ṽ (x) = E
[
max
0≤u≤x

{
Pu− C(x− u) + βṼ (x− u)

}]
. (1)

Observe that the mapping (u, p) 7→ pu−C(x−u) is bounded on the compact

set [0, x]× [pL, pU] and β < 1. It follows that SIC has a finite optimal value,

and by Theorem 9.2 of [11] this is equal to Ṽ (x0). In addition, the mapping
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x 7→ pu− C(x− u) is continuous and strictly concave and the feasible region

[0, x] is a convex set. Strict concavity of Ṽ (x) then follows by Theorem 9.8 of

[11]. With Ṽ (x) strictly concave and bounded on bounded sets, it follows that

Ṽ (x) is also continuous and therefore must have a non-empty superdifferential

which we denote by ∂Ṽ (x).

For a given price p and current inventory x the optimum expected dis-

counted reward from this point on is given by

V (x, p) = max
0≤u≤x

{
pu− C(x− u) + βṼ (x− u)

}
, (2)

where the optimal choice of action is given by the maximizing value u.

Denote the projection of y ∈ R onto the closed interval [a, b] by (y)[a,b] =

max{a,min{b, y}}. We write (y)[a,∞) = max{a, y} and (y)+ = max{y, 0}.

Proposition 1. Under Assumptions 1 and 2, the right-hand side of (2) has

optimal solution

u(x, p) = x− c−1
(
(βE[(P − p)+] + βp − p)[c(0),c(x)]

)
.

Proof. Observe that the change of variables w = x− u yields

V (x, p) = max
0≤w≤x

{p(x− w)− C(w) + βṼ (w)}. (3)

Let

φp(w) = p(x− w)− C(w) + βṼ (w).

For any values of x and p the mapping w 7→ φp(w) is strictly concave and

has a nonempty superdifferential ∂φp(w), so for x ≥ 0 the optimization

max0≤w≤x φp(w) has a unique solution w∗(x, p) ∈ [0, x] satisfying

0 ∈ ∂φp(w
∗(x, p)) +N (w∗(x, p)),

whereN (w∗(x, p)) is the normal cone of [0, x] at w∗(x, p). Since the derivative

c(w) is strictly increasing and unbounded above, φp(w) is decreasing for w
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large enough and there will be a unique solution w(p) to maxw≥0 φp(w) which

is equal to w∗(x, p) when projected onto [0, x]. Observe that the function w(p)

is decreasing, and it follows that for any x there exists some critical price

pC(x) such that for p ≥ pC(x) we have w(p) ≤ x and for p ≤ pC(x) we have

w(p) ≥ x.

Denote by ∂Vp(x) the superdifferential of the mapping x 7→ V (x, p).

When p ≥ pC(x), we have w(p) ≤ x, so w∗(x, p) = (w(p))+ and

V (x, p) = p(x− (w(p))+)− C((w(p))+) + βṼ ((w(p))+).

In this case it follows that p ∈ ∂Vp(x).

On the other hand, when p ≤ pC(x) we have w(p) ≥ x, so w∗(x, p) = x

and

V (x, p) = −C(x) + βṼ (x). (4)

For all x > 0, (4) implies that

−c(x) + β∂Ṽ (x) ⊆ ∂Vp(x).

So any g̃ ∈ ∂Ṽ (x) defines a supergradient −c(x) + βg̃ in ∂Vp(x). Let

h(g̃, p) =

{
p, p ≥ pC(x)

−c(x) + βg̃, p < pC(x)
.

By Theorem 7.46 of [9], Ṽ (x) = E[V (x, P )] has directional derivatives at

every x, so

E[h(g̃, P )] ∈ ∂Ṽ (x).

It is easy to see that the mapping T : ∂Ṽ (x) 7→ ∂Ṽ (x) defined by

T (g̃) = (βg̃ − c(x))P[P < pC(x)] + E[P |P ≥ pC(x)]P[P ≥ pC(x)]

is a contraction with Lipschitz constant strictly less than 1, since for any
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g̃, g̃′ ∈ ∂Ṽ (x)

|T (g̃)− T (g̃′)| = |g̃ − g̃′| βP[P < pC(x)] < |g̃ − g̃′| .

As ∂Ṽ (x) is a nonempty closed set, by the Banach fixed point theorem, there

is a unique g̃(x) ∈ ∂Ṽ (x) satisfying T (g̃(x)) = g̃(x). But this implies

g̃(x) = (βg̃(x)− c(x))P[P < pC(x)] + E[P |P ≥ pC(x)]P[P ≥ pC(x)]

so

g̃(x) =
E[P |P ≥ pC(x)]P[P ≥ pC(x)]− c(x)P[P < pC(x)]

1− βP[P < pC(x)]
∈ ∂Ṽ (x). (5)

We now construct an optimal solution w(p) to maxw≥0 φp(w) as follows.

First observe that β(E[(P − p)+] + p)− p is a strictly decreasing continuous

function of p. If

β(E[(P − p)+] + p)− p > c(0)

for all p ∈ [pL, pU] then set pZ = pU. Otherwise let pZ be the unique solution

to β(E[(P − p)+] + p)− p = c(0). We now define

w(p) =

{
c−1(β(E[(P − p)+] + p)− p), p < pZ

0, p ∈ [pZ, pU]

If p < pZ then we have w(p) > 0 and

w(p) = c−1 (β(E[(P − p)+] + p)− p)

= c−1 (β (E[P |P ≥ p]P[P ≥ p] + pP[P < p])− p) .

We can rearrange this to give

(1− βP[P < p])p+ c(w(p)) = βP[P ≥ p]E[P | P ≥ p]. (6)

8



Thus

(1−βP[P < p])(p+c(w(p))) = −βc(w(p))P[P < p]+βP[P ≥ p]E[P | P ≥ p],

and hence

−p− c(w(p)) + β
−c(w(p))P[P < p] + E[P |P ≥ p]P[P ≥ p]

1− βP[P < p]
= 0. (7)

The definition of pmathrmC implies that p = pC(w(p)), and so (7) implies that

if we define g̃(w(p)) by (5) then

−p− c(w(p)) + βg̃(w(p)) = 0,

and 0 ∈ ∂φp(w
∗(x, p)) showing that w(p) solves maxw≥0 φp(w).

If p = pZ then a similar analysis shows that g̃(0) satisfies

−pZ − c(0) + βg̃(0) = 0

so for p ≥ pZ the right-hand derivative of p(x−w)−C(w) + βE[V (w,P )] at

w = 0 is less than or equal to 0 implying that w(p) = 0 solves maxw≥0 φp(w).

Combining both cases and projecting w(p) onto [0, x] yields

w∗(x, p) = c−1
(
(βE[(P − p)+] + βp− p)[c(0),c(x)]

)
and

u(x, p) = x− c−1
(
(βE[(P − p)+] + βp− p)[c(0),c(x)]

)
.

Proposition 1 shows that SIC has an optimal target inventory level

w∗(x, p) = c−1
(
(β (E[(P − p)+] + p)− p)[c(0),c(x)]

)
at which the marginal cost of storage is as close as possible to the discounted

expected increase in price above p in the next stage. The optimal SIC policy

is then to reduce the current inventory level to w∗(x, p) if it is not already at
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w∗(x, p) by selling surplus stock.

Proposition 1 makes no assumptions about the probability distribution

P, except that it has bounded support. Thus P could have a density f with

bounded support giving the optimal policy

x− c−1

((
β

(∫ pU

p

(q − p)f(q)dq + p

)
− p

)
[c(0),c(x)]

)
,

or could consist of an empirical distribution on N price samples q1, q2, . . . , qN

with P(qi) = 1
N
, giving the SAA policy

uS(x, p) := x− c−1

(β( 1

N

N∑
i=1

(qi − p)+ + p

)
− p

)
[c(0),c(x)]

 . (8)

We can also obtain an MPC policy from the samples q1, q2, . . . , qN by planning

using the sample average q̄ = 1
N

∑N
i=1 qi. In this case Proposition 1 would

use the probability distribution that assigns probability 1 to q̄, giving E[(P −
p)+] = (q̄ − p)+ so

uM(x, p) := x− c−1
(
(β((q̄ − p)+ + p)− p)[c(0),c(x)]

)
. (9)

For an initial inventory level x, the sample-based policies each have a

critical price (that we denote by pS(x) and pM(x) for the SAA and MPC

policies, respectively) which is the minimum price required to be offered to

the vendor for any stock to be sold. The critical price pS(x) is the unique p

that solves β( 1
N

∑N
i=1(qi − p)+ + p)− p = c(x) and a similar definition holds

for pM(x). Depending on the samples q1, q2, . . . , qN , each sample-based policy

will either pay too much in storage costs by selling too little stock, or not be

able to take full advantage of future high prices having sold too much stock.

By Jensen’s inequality, (E[P ] − p)+ ≤ E[(P − p)+], whereby pM(x) ≤ pS(x)

and uM(x, p) ≥ uS(x, p). In this way, the policy uM requires a lower price to

sell stock than the policy uS and sells at least as much. We will explore the

implications of this observation in the next section.
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3 Out-of-sample performance

The assumption that P lies within a bounded interval [pL, pU] is restric-

tive. Assumption 3 allows us to study the out-of-sample performance of the

sample-based policies (derived using Proposition 1 on sample-based distri-

butions that are discrete and therefore bounded) even when the underlying

distribution is unbounded.

Assumption 3. The random prices Pt are independent and identically dis-

tributed, having a probability distribution P with support on R+, a finite mean,

and no atoms.

Suppose we observe N price samples q1, q2, ..., qN and use these to inform

the sample-based policies as in (8) and (9). The value of the SIC problem if

the (possibly sub-optimal) SAA policy is used is

V̄S(x0) :=
∞∑
t=1

βt−1E [PuS(xt−1, P )− C(xt)] (10)

where the values xt are random variables determined by successive prices and

derived from an the initial value x0 using the actions uS. This is well-defined

since the infinite series is easily shown to be convergent: the expectations

at each stage are bounded and they are discounted by β < 1. To show

boundedness, we note xt ≤ x0, C is non-negative and an increasing function,

and uS(xt−1, P ) ≤ xt−1 ≤ x0, and thus

−C(x0) ≤ E [PuS(xt−1, P )− C(xt)] ≤ E [P ]x0.

Having defined V̄S as a function of the initial inventory, we also have V̄S

satisfying the associated functional equation

V̄S(x) = E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄S(x− uS(x, P ))

]
.

Similarly, the value of the SIC problem if the (possibly sub-optimal) MPC
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policy is used is well-defined and has an associated functional equation

V̄M(x) = E
[
PuM(x, P )− C(x− uM(x, P )) + βV̄M(x− uM(x, P ))

]
.

It is convenient to define

B(x) :=
1

1− β
max{C(x),E [P ]x}.

Then the bounds on the individual terms in V̄S and V̄M show that B(x) is an

upper bound on both |V̄S(x)| and |V̄M(x)|.

3.1 Derivative of the expected value function

Before making comparisons between V̄S and V̄M we will first calculate their

derivatives with respect to the initial inventory. It will be helpful to use

a result of [9], who give the following result (Theorem 7.44). Suppose that

F : Rn×Ω → R is a random function with expected value f(x) = E[F (x, ω)].

Lemma 2. If the following conditions hold:

(A) The expectation f(x0) is well defined and finite valued at some point

x0 ∈ Rn;

(B) There exists a positive valued random variable L(ω) such that E[L(ω)] <
∞, and for all x1, x2 in a neighbourhood of x0 and almost every ω ∈ Ω,

|F (x1, ω)− F (x2, ω)| ≤ L(ω)∥x1 − x2∥;

(C) For almost every ω the function F (x, ω) is differentiable with respect

to x at x0;

then f(x) is differentiable at x0 and

∇f(x0) = E[∇xF (x0, ω)].

Now we can establish the derivative values. Since V̄M is undefined for x <

0 the derivative d
dx
V̄M(0) does not exist. However, at x = 0 the function V̄M(x)
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does have a right derivative, and for the rest of this paper the expression
d
dx
V̄M(x) implicitly refers to this right derivative when x = 0.

Lemma 3. Under Assumptions 2 and 3, the derivatives d
dx
V̄S(x) and

d
dx
V̄M(x)

exist and are given by

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP[P < pS(x)]

and

d

dx
V̄M(x) =

E[P |P ≥ pM(x)]P[P ≥ pM(x)]− c(x)P[P < pM(x)]

1− βP[P < pM(x)]
.

Proof. The proof proceeds by first showing that the derivatives exist and then

determining their values by a recursion. We begin by considering V̄S(x0). For

a particular realisation ω = {p1, p2, . . .} of the random variables {P1, P2, . . .}
the value function is determined by

VS(x0, ω) =
∞∑
t=1

βt−1(ptuS(xt−1, pt)− C(xt)) (11)

The expectation of this is V̄S(x0) and is well-defined, satisfying condition (A)

of Lemma 2. Consider a realization of (11) with prices {p1, p2, . . .}. Assume

that there is some minimal index, T such that pT ≥ pS(x0), the critical price.

Since P has no atoms, we know that pT > pS(x0) > max{p1, p2, . . . , pT−1}
almost surely. The SAA policy with this price realisation will sell no stock

until period T and the inventory levels are fixed at xt = x0 up to this point.

At time T the SAA policy sells stock uS(xT−1, pT ) for the price pT . The re-

sulting inventory level is xT = c−1
( (

β
(

1
N

∑
i(qi − pT )+ + pT

)
− pT

)
[c(0),∞)

)
which is independent of x0. Thus for all t′ > T the inventory levels xt′ are

also independent of x0. Now, pS(x) is a continuous function of x which means

that pT > pS(x) > max{p1, p2, . . . , pT−1} also holds for x in a neighbourhood

N about x0. This allows us to track the change in VS(x, ω) for different initial
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inventories x in this neighbourhood. If x1 > x2 then

VS(x1, ω)− VS(x2, ω) = pT (x1 − x2)−
T−1∑
t=1

βt−1(C(x1)− C(x2)). (12)

This has an absolute value upper bounded by θ(p1, p2, . . .)|x1 − x2| where

θ(p1, p2, . . .) = pT +
1

1− β
2c(x0)

and we choose N small enough so that for all x ∈ N we have the derivative

c(x) < 2c(x0). In the case that pt < pS(x0) for all t, so that pT is not defined,

we can find a neighbourhood of x0 where (12) is replaced by

VS(x1, ω)− VS(x2, ω) = −
∞∑
t=1

βt−1(C(x1)− C(x2)) (13)

and use a similar argument to show that θ(p1, p2, . . .) is also a Lipschitz

constant for VS(x0, ω) in a neighbourhood about x0 in this case. Now

E[θ(P1, P2, . . .)] ≤ E[P |P > pS(x0)] +
1

1− β
2c(x0) < ∞.

So the existence of the function θ(p1, p2, . . .) verifies condition (B) of Lemma 2.

Moreover, it is easy to see that (12) and (13) imply a well-defined deriva-

tive of VS(x0, ω) for almost all ω, hence satisfying the final condition (C) of

Lemma 2. Thus we can use this result to show that d
dx0

V̄S(x0) exists and is

finite. The proof is entirely similar for d
dx0

V̄M(x0).

Let w̃(p) = c−1
( (

β
(

1
N

∑
i(qi − p)+ + p

)
− p
)
[c(0),∞)

)
. We can define

VS(x, p) =

{
−C(x) + βV̄S(x) p < pS(x)

p(x− w̃(p))− C(w̃(p)) + βV̄S(w̃(p)) p ≥ pS(x)
.

Then VS(x, p) is the expected value from following the SAA policy with initial

inventory x and initial price p. So V̄S(x) = E [VS(x, p)]. We can use the same

approach as above, making use of the fact that d
dx
V̄S(x) is well-defined to
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show that d
dx
V̄S(x) = E

[
d
dx
VS(x, p)

]
. Thus

d

dx
VS(x, p) =

{
−c(x) + β d

dx
V̄S(x) p < pS(x)

p p ≥ pS(x)
.

Taking expectations we derive

d

dx
V̄S(x) =

(
β
d

dx
V̄S(x)− c(x)

)
P[P < pS(x)] + E[P |P ≥ pS(x)]P[P ≥ pS(x)]

and rearranging gives the required expression:

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP [P < pS(x)]
.

The expression for d
dx
V̄M(x) can be derived via identical reasoning.

3.2 Comparing MPC and SAA

Our approach to compare the two different policies is to consider starting

with the MPC policy and then switching to the SAA policy after a certain

number of stages.

Definition 4. Let

D̄1(x) := E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄M(x− uS(x, P ))

]
,

and for t > 1,

D̄t(x) := E
[
PuS(x, P )− C(x− uS(x, P )) + βD̄t−1(x− uS(x, P ))

]
. (14)

The value D̄t(x0) is the value of the SIC problem if the policy uS is used

for t stages and the policy uM is used forevermore. It is clear that D̄t is

bounded in the same way that V̄S and V̄M are bounded, so Theorem 9.2 of

[11] again holds.

Proposition 5. limt→∞
∣∣D̄t(x)− V̄S(x)

∣∣ = 0.
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Proof. The values D̄t(x0) and V̄S(x0) both implement the policy uS for the

first t periods when starting with initial inventory x0. So∣∣D̄t(x0)− V̄S(x0)
∣∣ = ∣∣E [βt

(
V̄M(xt)− V̄S(xt)

)]∣∣ ≤ βt2B(x0)

where the expectation is taken with respect to the value xt which is a random

variable under the application of the policy uS. As t → ∞, the bound

βt2B(x0) → 0. Thus, limt→∞
∣∣D̄t(x0)− V̄S(x0)

∣∣ = 0. Replacing x0 with x

concludes the proof.

Lemma 6. If V̄M(x) ≥ D̄1(x) for all x ∈ [0, x0], then V̄M(x0) ≥ V̄S(x0).

Proof. We will first show that D̄t(x) ≥ D̄t+1(x) for all t via induction. Since

x− uS(x, p) ∈ [0, x0] for all x ∈ [0, x0], by the assumption in the statement

of the lemma V̄M(x− uS(x, p)) ≥ D̄1(x− uS(x, p)). Thus

D̄1(x) = E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄M(x− uS(x, P ))

]
≥ E

[
PuS(x, P )− C(x− uS(x, P )) + βD̄1(x− uS(x, P ))

]
= D̄2(x).

(15)

We make the inductive hypothesis: D̄t−1(x) ≥ D̄t(x) for all x ∈ [0, x0].

Of course x− uS(x, p) ∈ [0, x0] still holds, and by the inductive hypothe-

sis D̄t−1(x− uS(x, p)) ≥ D̄t(x− uS(x, p)) for all x ∈ [0, x0], so applying to

(14) a similar line of reasoning as in (15) shows that D̄t(x) ≥ D̄t+1(x), as

required. Setting x = x0 then shows that V̄M(x0) ≥ D̄t(x0) for all t ≥ 1.

Thus, V̄M(x0) ≥ limt→∞ D̄t(x0) = V̄S(x0) where Proposition 5 yields the final

equality.

Proposition 7. Assume P has a density f . Under Assumptions 2 and 3, if

c(x) ≥ β
∫∞
pS(x)

pf(p)dp for all x ∈ [0, x0], then V̄M(x0) ≥ V̄S(x0).

Proof. In the context of the proposition we will first show that d
dx
V̄M(x) ≥ d

dx
D̄1(x)

for all x ∈ [0, x0]. As in Lemma 3

d

dx
V̄M(x) =

(
β
d

dx
V̄M(x)− c(x)

)∫ pM(x)

−∞
f(p)dp+

∫ ∞

pM(x)

pf(p)dp.
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Inspecting D̄1(x) shows that the similar expression

d

dx
D̄1(x) =

(
β
d

dx
V̄M(x)− c(x)

)∫ pS(x)

−∞
f(p)dp+

∫ ∞

pS(x)

pf(p)dp

also holds. Recalling pS(x) ≥ pM(x), it can be seen that

d

dx
V̄M(x)−

d

dx
D̄1(x) = −

(
β
d

dx
V̄M(x)− c(x)

)∫ pS(x)

pM(x)

f(p)dp+

∫ pS(x)

pM(x)

pf(p)dp.

Using Lemma 3, we may write

β
d

dx
V̄M(x)− c(x) = β

∫∞
pM(x)

pf(p)dp− c(x)
∫ pM(x)

−∞ f(p)dp

1− β
∫ pM(x)

−∞ f(p)dp
− c(x)

=
β
∫∞
pM(x)

pf(p)dp− c(x)

1− β
∫ pM(x)

−∞ f(p)dp

so applying the condition in the statement of the proposition yields

β
d

dx
V̄M(x)− c(x) ≤

β
∫ pS(x)

pM(x)
pf(p)dp

1− β
∫ pM(x)

−∞ f(p)dp
. (16)

Now
β
∫ pS(x)

pM(x)
pf(p)dp

1− β
∫ pM(x)

−∞ f(p)dp

∫ pS(x)

pM(x)

f(p)dp ≤
∫ pS(x)

pM(x)

pf(p)dp

since we can cancel
∫ pS(x)

pM(x)
pf(p)dp and then rearrange to give β

∫ pS(x)

−∞ f(p)dp ≤
1. Thus (16) yields(

β
d

dx
V̄M(x)− c(x)

)∫ pS(x)

pM(x)

f(p)dp ≤
∫ pS(x)

pM(x)

pf(p)dp, (17)

whereby
d

dx
V̄M(x) ≥

d

dx
D̄1(x),

as required. This implies that V̄M(x) ≥ D̄1(x) for all x ∈ [0, x0]. Lemma 6

then implies that V̄M(x0) ≥ V̄S(x0), as required.
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Recall the condition of Proposition 7: c(x) ≥ β
∫∞
pS(x)

pf(p)dp for all x ∈
[0, x0]. This requires c(0) > 0. The critical price pS(x) is strictly increasing in

the maximum sampled price qN in S. The term
∫∞
pS(x)

pf(p)dp is then strictly

decreasing in qN and eventually vanishes. When f has infinite support we

will occasionally encounter a qN that is sufficiently large for the inequality

c(x) ≥ β
∫∞
pS(x)

pf(p)dp to hold for all x ∈ [0, x0], as long as
∫∞
pS(x)

pf(p)dp

is not too large. In other words we can expect to encounter samples where

V̄M(x0) > V̄S(x0) when f has a small amount of probability at high prices.

As an example application of Proposition 7, suppose that β = 0.95,

C(x) = 1
2
x2+ 1

2
x, x0 = 1, and P ∼ LogNormal

(
µ = −1

2
, σ2 = 1

)
with proba-

bility density f . Let N = 2 with q1 =
1
2
and q2 = 3. Numerically evaluating

c(x) − β
∫∞
pS(x)

pf(p)dp for x ∈ [0, 1], Figure 1 shows that this difference is

always positive which means that the condition of Proposition 7 is satisfied.

Figure 1: The difference c(x)− β
∫∞
pS(x)

pf(p)dp over x ∈ [0, 1].

It follows that the MPC policy performs at least as well as the SAA policy

does for the sampled prices q1 =
1
2
and q2 = 3 for the initial inventory level

x0 = 1. The SAA and MPC policies in question are included in Figure 2,

and they differ for certain values of the sales price p.
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Figure 2: Stock sold by the SAA and MPC policies from the initial inventory
level x0 = 1 over p ∈ [0, 3]. Note that the stock sold is constrained to be less
than 1 which causes the policies to coincide at p ≈ 1.8 rather than p = q2 = 3.

If c(0) = 0, then the premise of Proposition 7 is not true. Despite this

we present examples below which show that V̄M(x0) > V̄S(x0) can still occur

when c(0) = 0. These examples all involve densities having a small amount

of probability at high prices.

4 Exponentially distributed prices

In this section we compare the expected out-of-sample rewards of the sample-

based policies when C(x) = 1
2
x2 (so c(x) = x) and P has an exponential

density with mean 1. Here c(0) = 0, so Proposition 7 does not apply.

For N ≥ 2, let S be a sample of size N drawn from the exponential

distribution. First we consider the SAA solution to SIC using sample S when

x0 = 1. The result below shows that the SAA solution performs very poorly.

In fact the expected out of sample value approaches −∞ as β approaches 1.

We will then compare this with the result if the MPC policy is used, instead

of SAA.

Proposition 8. When S = {q1, q2, . . . , qN} is a sample of size N ≥ 2 drawn

from the exponential distribution, then E[V̄S(1)] → −∞ as β → 1, where the

expectation is taken with respect to the sample S.
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Proof. We begin by considering fixed q1, q2, . . . , qN−1. Without loss of gen-

erality, it may be assumed that q1 ≤ q2 . . . ≤ qN−1. Consider first those

samples where qN > N
β
+ qN−1(

N
β
− (N − 1)). This gives a policy that, on

observing price p, aims for inventory target wS(p). If p > qN−1, then from

(8), wS(p) = β
(qN−p)+

N
− (1− β)p. Now the critical value pS(x) occurs when

wS(p) = x and so pS(x) = qNβ−Nx
N+β−Nβ

. We are considering values of qN large

enough so that pS(x) ∈ (qN−1, qN ] since x ∈ [0, 1].

From Lemma 3,

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP[P < pS(x)]

=

∫∞
pS(x)

pe−pdp− x(1− e−pS(x))

1− β(1− e−pS(x))

=
e−pS(x)(pS(x) + 1)− x(1− e−pS(x))

1− β(1− e−pS(x))

=
pS(x) + x+ 1− xepS(x)

(1− β)epS(x) + β
.

Since V̄S(1) = 0 we deduce

V̄S(1) = V̄S(1)
+ − V̄S(1)

−,

where

V̄S(1)
+ =

∫ 1

0

pS(x) + x+ 1

(1− β)epS(x) + β
dx > 0

and

V̄S(1)
− =

∫ 1

0

xepS(x)

(1− β)epS(x) + β
dx > 0.

We will show that

lim
β→1

∫ ∞

N
β
+qN−1(

N
β
−(N−1))

V̄S(1)e
−qNdqN = −∞. (18)

First we show that V̄S(1)
+ is bounded for all β ∈ (0.5, 1). We have pS(x) ∈

[qN−1, qN ], so pS(x) + x+ 1 is bounded. If β > 0.5, then (1− β)epS(x) + β is

bounded away from 0, which shows that V̄S(1)
+ is bounded for all β ∈ (0.5, 1).
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Thus the component of the integral in (18) from V̄S(1)
+ is bounded.

Now assume that there is some M such that for all β ∈ (0.5, 1) we have∫ ∞

N
β
+qN−1(

N
β
−(N−1))

V̄S(1)
−e−qNdqN < M , (19)

and seek a contradiction. We write∫ ∞

N
β
+qN−1(

N
β
−(N−1))

V̄S(1)
−e−qNdqN

=

∫ ∞

N
β
+qN−1(

N
β
−(N−1))

∫ 1

0

xepS(x)e−qN

(1− β)epS(x) + β
dxdqN

Observe first that both the numerator and denominator of the integrand are

positive, and if β ∈ (0.5, 1) then

(1− β)epS(x) + β ≤ (1− β)eqN + β.

Since

pS(x) =
qNβ −Nx

N + β −Nβ

the numerator is

xepS(x)e−qN = xe
qNβ−Nx

N+β−Nβ e−qN

= xe−N
qN (1−β)+x

N+β−Nβ

= e−N
qN (1−β)

N+β−Nβ xe−
Nx

N+β−Nβ .

Now for any β ∈ (0, 1), since N + β −Nβ > 1, we have∫ 1

0

xe−
Nx

N+β−Nβ dx ≥
∫ 1

0

xe−Nxdx

=
1

N2

(
1− (N + 1)e−N

)
,
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so ∫ ∞

N
β
+qN−1(

N
β
−(N−1))

∫ 1

0

e−qNxepS(x)

(1− β)epS(x) + β
dxdqN

≥ 1

N2

(
1− (N + 1)e−N

) ∫ ∞

N
β
+qN−1(

N
β
−(N−1))

e−N
qN (1−β)

N+β−Nβ

(1− β)eqN + β
dqN

For all q > 0 we have

∂

∂q

(
e−N

q(1−β)
N+β−Nβ

(1− β)eq + β

)
= −e−Nq

(1−β)
N+β−Nβ

1− β

(N + β −Nβ) (β + eq − βeq)2
(Nβ + βeq + 2Neq(1− β))

which is negative, so the integrand is decreasing. Moreover for any q >

N
β
+ qN−1(

N
β
− (N − 1)), limβ→1

e
−N

q(1−β)
N+β−Nβ

(1−β)eq+β
= 1, so there is some β < 1 with

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
>

1

2
.

It follows that for any such q we can find β < 1 so that

∫ q

N
β
+qN−1(

N
β
−(N−1))

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
dqN >

1

2
(q − (

N

β
+ qN−1(

N

β
− (N − 1)))).

By choosing q large enough we can make

1

N2

(
1− (N + 1)e−N

) ∫ ∞

N
β
+qN−1(

N
β
−(N−1))

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
dqN > M

contradicting (19).

Now for all qN in the range [0, N
β
+qN−1(

N
β
−(N−1))] it is easy to show that

V̄S(1) is bounded for all β ∈ (0, 1). It follows for every fixed q1, q2, . . . , qN−1

that ∫ ∞

0

V̄S(1)e
−qNdqN
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is unbounded below as β → 1.

This statement is true independent of the values of q1, q2, . . . , qN−1. So if

we take an expectation with respect to the (joint exponential) sampling dis-

tribution on q1, q2, . . . , qN−1 then this will also be unbounded below as β → 1.

Thus the out-of-sample losses incurred by the sample average approximation

solution uS are unbounded as β → 1, regardless of the choice of N .

In contrast to the SAA result, the expected value of the out-of-sample

cost for the MPC policy is bounded as β → 1. For simplicity we demonstrate

this in the case N = 2, although it can be shown to hold in general. The

expected value of the out-of-sample cost for the MPC policy is∫ ∞

0

(∫ ∞

0

V̄M(1)e
−q2dq2

)
e−q1dq1. (20)

where Lemma 3 gives

V̄M(1) =

∫ 1

0

pM(x) + x+ 1− xepM(x)

(1− β)epM(x) + β
dx.

The negative part of V̄M(1) is

V̄M(1)
− =

∫ 1

0

xepM(x)

(1− β)epM(x) + β
dx.

Let q = 1
2
(q1 + q2). Recall that pM(x) = (βq − x)+, so

V̄M(1)
− =

∫ min{βq,1}

0

xeβq−x

(1− β)eβq−x + β
dx+

∫ 1

min{βq,1}
xdx

≤
∫ min{βq,1}

0

xeβq−x

β
dx+

∫ 1

0

xdx

≤ eq

eβ
+

1

2
.
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Therefore∫ ∞

0

(∫ ∞

0

V̄M(1)
−e−q2dq2

)
e−q1dq1 ≤ 1

eβ

∫ ∞

0

(∫ ∞

0

e
1
2
(q1+q2)e−q2dq2

)
e−q1dq1 +

1

2

=
4

eβ
+

1

2
.

Thus, as long as β ∈ (0, 1) is bounded away from 0, we have∫ ∞

0

(∫ ∞

0

V̄M(1)
−e−q2dq2

)
e−q1dq1 < ∞

so ∫ ∞

0

(∫ ∞

0

V̄M(1)e
−q2dq2

)
e−q1dq1 > −∞.

Moreover, identical reasoning as in the SAA case shows that (20) has a

finite-valued positive part. Thus, when N = 2, the expected out-of-sample

loss incurred under the MPC policy is bounded as β → 1.

5 Numerical studies

In this section we use numerical simulation to study the performance of the

two sample-based policies (SAA and MPC) on different price distributions.

In Section 4 we showed that MPC is far better then SAA with an exponential

distribution. But this is an exception—we do not usually find this extreme

behaviour with the two expected out-of-sample values differing by an amount

that is unbounded as β → 1. However this case does suggest that the amount

of skew in the underlying distribution is important, and we will explore this

in this section.

To compute the expected out-of-sample performance of the sample-based

policies under the sampling distribution of q1, q2, . . . , qN , we use a simulation

coded in the Julia programming language [2]. Although the true problem

has an infinite number of stages, simulation with a finite number of stages

(say T ) will give a realistic estimate as long as it is sufficiently large. We set

T = 1000 and efficiently simulate the repeated sales process by terminating

any instances as soon as the inventory level reaches 0. Setting β = 0.95,
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x0 = 1 and C(x) = 1
2
x2, for each policy we:

1. Sample N random prices from P to construct q1, q2, . . . , qN which then

determines the sample-based policy u (either SAA or MPC).

2. Sample a random price pt from P, accrue reward βt−1(ptu(xt−1, pt) −
C(xt−1 − u(xt−1, pt))) and set xt = xt−1 − u(xt−1, pt).

3. Repeat Step 2 from stage t = 1 to T − 1 and sell any remaining stock

at stage T to generate
∑T

t=1 β
t−1(ptu(xt−1, pt)−C(xt−1 − u(xt−1, pt))).

We repeat Steps 1 through 3 to generate realisations for use as an estimate of

the expected value of the SIC problem when a policy u is used out-of-sample.

In our experiments we used 50000 realisations to generate the estimate of the

expected value and found that this was sufficient to achieve accurate values.

In Figures 3-5 and 7 the standard error ranges are smaller than the markers

and so are not shown. Also note that for N = 1 the two sample-based policies

coincide.

5.1 Triangularly distributed prices

Suppose P ∼ Triangular(a,m, b), with lower limit a, mode m, and upper

limit b. This is not a particularly realistic distribution but serves to illustrate

the effect of skew on the performance of SAA and MPC. In what follows we

select a, m, and b such that E[P ] = 1 and Var[P ] = 1
8
; the intention being to

confine differences between SAA and MPC to the sampling effects of skew

only and compare them on different distributions as fairly as possible.
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Figure 3: Expected out-of-sample reward of SAA and MPC for
P ∼ Triangular(0, 3

2
, 3
2
), a left-skewed distribution.

Figure 4: Expected out-of-sample reward of SAA and MPC for
P ∼ Triangular(1− 1

2

√
3, 1, 1 + 1

2

√
3), a symmetric distribution.

Figure 3 shows SAA outperforming MPC for all N on a price distribution

that is triangular and left-skewed. This is in contrast to Figure 4, which

shows MPC outperforming SAA for N ≤ 5 on a price distribution that

is triangular and symmetric. Replacing the left-skewed price distribution

that yields Figure 3 with a symmetric distribution increases the value of b.

Samples with high prices then cause the SAA policy to under-sell and pay too

much in storage costs. The MPC policy attenuates this effect since uM ≥ uS.
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Figure 5: Expected out-of-sample reward of SAA and MPC for
P ∼ Triangular(1

2
, 1
2
, 2), a right-skewed distribution.

Further increasing c to 2 increases the range where MPC outperforms

SAA, as can be seen in Figure 5, which shows MPC outperforming SAA for

N ≤ 6 on a price distribution that is triangular and right-skewed.

5.2 Log-normally distributed prices

Suppose P ∼ LogNormal (µ, σ2), with mean µ and variance σ2. Log-Normal

distributions are often used to model prices in financial applications and have

a significant right-skew (see e.g. Figure 6).
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Figure 6: Probability density of p ∈ [0, 3] for P ∼ LogNormal
(
−1

2
, 1
)
.

Figure 7: Expected out-of-sample reward of SAA and MPC for
P ∼ LogNormal

(
−1

2
, 1
)
. Note E[P ] = 1.

Figure 7 shows MPC outperforming SAA for all N less than about 50, a

significantly larger range than that in Figure 5. The significant right-skew

of the Log-Normal distribution increases the propensity for a single very

large price sample to be included in q1, q2, . . . , qN which degrades the quality

of the approximate price distribution informing the SAA policy. Figure 8

demonstrates this explicitly in the case where N = 2; typical price samples

result in the SAA policy outperforming the MPC policy, but for a small
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proportion of more extreme samples, where one of the samples is very large,

the reverse occurs and the MPC policy significantly outperforms the SAA

policy.

Figure 8: Expected out-of-sample reward of SAA minus that of MPC as a
function of q1 and q2 over [0, 3] × [0, 3] for P ∼ LogNormal

(
−1

2
, 1
)
. Darker

contours indicate regions where the MPC policy outperforms the SAA policy
and vice versa. The contour that the right diagonal lies in is at elevation 0
since the SAA and MPC policies are identical when q1 = q2.

6 A distributionally robust interpretation of

MPC

Proposition 7 and the examples in Sections 4 and 5 show that the lower

target inventory of the MPC policy can be beneficial as it reduces sensitivity

to large price samples. In the following section we show that this effect can

be seen as an example of distributional robustness.

Distributionally robust optimisation (DRO) is an approach to stochastic

optimization that intends to protect decision-makers from ambiguity in the

specification of the underlying probability distributions. DRO problems op-

timise against the worst case element of an ambiguity set, in which the true

distribution is believed to lie. By considering the worst cases, distribution-
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ally robust estimates are usually less sensitive to outliers and in some cases

give better out-of-sample expected performance [1].

The seminal work [7] specified an ambiguity set by requiring its elements

have certain first and second moments. We will show that the MPC optimiza-

tion problem is equivalent to a multistage DRO problem with an ambiguity

set specified by the first moment of the empirical price distribution.

Let P(R) denote the set of possible probability distributions on the real

line for a random variable P . For some probability distribution µ, define

M1(µ) := {ν ∈ P(R) : Eν [P ] = Eµ[P ]}, this being the set of probability dis-

tributions having the same first moment as µ. Now define the distributionally

robust functional equation

VR(x, p) := sup
0≤u≤x

{
pu− C (x− u) + β inf

ν∈M1(µ)
Eν [VR(x− u, P )]

}
. (21)

(We defer showing that a function satisfying (21) actually exists until the

proof of Proposition 9.) The distributionally robust functional equation (21)

selects the worst-case distribution in M1(µ) for each candidate policy u.

This process propagates through the definition of the functional equation,

such that the resulting optimal policy is protected against the worst case

distribution in the current stage and the worst case distributions in all fu-

ture stages, simultaneously. Although this is inconsistent with the modeling

assumption that the price distribution at each stage is independent and iden-

tically distributed, in this case the worst case distribution is unique, and we

have the following result.

Proposition 9. The solution VM(x, p) to the MPC recursion

VM(x, p) = max
0≤u≤x

{pu− C (x− u) + βVM(x− u,Eµ[P ])} (22)

is the unique solution to (21).
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Proof. For any VR satisfying (21) and any ν ∈ M1(µ) it follows that

Eν [VR(x, P )]

= Eν

[
sup

0≤u≤x

{
Pu− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

}]
≥ sup

0≤u≤x

{
Eν

[
Pu− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

]}
= sup

0≤u≤x

{
Eµ[P ]u− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

}
= VR(x,Eµ[P ]).

where the second equality follows since Eν [P ] = Eµ[P ].

But the probability distribution with all of its mass at Eµ[P ] is in M1(µ),

which means that infν∈M1(µ) Eν [VR(x, P )] = VR(x,Eµ[P ]), and so

β inf
ν∈M1(µ)

Eν [VR(x− u, P )] = βVR(x− u,Eµ[P ]).

This shows that (21) is equivalent to the recursion

VR(x, p) = sup
0≤u≤x

{pu− C(x− u) + βVR(x− u,Eµ[P ])}

which has solution VM(x, p). Lastly, we know that VM exists by Theorem 9.2

of [11], concluding the proof.

When µ is the empirical distribution on the samples qi, q2, . . . , qN , Propo-

sition 9 shows that the MPC policy uM is distributionally robust. This can

be helpful as a lens for understanding MPC: when viewed as distribution-

ally robust we expect to see a a shrinkage effect, which occurs here because

uM ≥ uS. This can yield an improvement in out-of-sample expected reward

when variance reduction outweighs any increase in bias.
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7 Conclusions

We studied the performance of SAA and MPC on a multistage stochastic

inventory control problem, finding that MPC can outperform SAA when the

underlying price distribution is right-skewed and N is not too large. In the

case where the underlying price distribution is exponential, MPC can outper-

form SAA regardless of the size of N . The good performance of MPC can be

explained by viewing it through the lens of a distributional robustification,

challenging the assumption that stochastic dynamic programming is always

the right solution approach.
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