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A new upper bound for the Euclidean TSP constant

Julien Yu*and John Gunnar Carlsson’

Abstract
Let X1, Xo,..., X, be n independent and uniformly distributed random points in a compact region R C R?
of area 1. Let TSP(X1,...,X,) denote the length of the optimal Euclidean travelling salesman tour that tra-
verses all these points. The classical Beardwood-Halton-Hammersley theorem proves the existence of a universal
constant B2 such TSP(X1,...,X,)/v/n — B2 almost surely, which satisfies 0.625 < 82 < 0.92117. This paper
presents a computer-aided proof using numerical quadrature and decision trees that S2 < 0.90304. Although our
improvement is still somewhat small, our approach has the advantage that it is primarily limited by computer

hardware, and is thus amenable to further improvements over time.

1 Introduction
The Beardwood-Halton-Hammersley (BHH) theorem is a seminal result in the probabilistic analysis of combinatorial
optimization that characterizes the length of a Euclidean travelling salesman tour [5]. It is stated as follows:

Theorem 1 (BHH theorem). Let {X;} be a sequence of independent random variables uniformly distributed in
the unit square, and let TSP(X1,...,X,,) denote the length of the optimal Euclidean travelling salesman tour of
Xq,...,X,,. There exists a universal constant Bo satisfying 0.625 < 8o < 0.92117, such that

. TSP(Xy,...,X,)
lim
n—o0o \/ﬁ

almost surely. Moreover, when the elements of {X;} are independently sampled from a distribution p with compact

support R C R2, we have

nlggo TSP(Xi/,.ﬁ..,Xn) —>52/R\/md95»

almost surely, where f(x) is the density of the absolutely continuous part of the distribution p.

Even more generally, [5] also proved the existence of absolute constants 8y for every integer d > 2. The value
of S35 is presently unknown, though prior work has given numerical Monte Carlo estimates for 82 [9, 17, 19, 20, 21,
22, 26, 30], B3, and B4 [19, 22]. These approximations were mainly built upon the Held-Karp linear programming
relaxation [15, 16]. The most recent estimates obtained in [2, 3] come from simulating very large instances, and
show with a high degree of confidence that 33 =~ 0.71. However, the original bounds 0.625 < 8y < 0.92117 of [5]
were not improved until over 50 years later, in the papers [13, 27].

The purpose of this paper is to improve the upper bound §2 < 0.92117; we prove the following:
Theorem 2. (35 < 0.90304.

The approach we describe consists of a computer-aided proof that combines computer algebra tools, numerical
quadrature, and decision trees. Although our improvement is still somewhat small, our approach has the advantage

that it is primarily limited by computer hardware, and is thus amenable to further improvements over time.
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1.1 Related work

This paper is devoted to bounding f2 from [5], although the fact that TSP(Xy,...,X,) € O(y/n) was observed
earlier in [8, 29, 32|, together with explicit upper bounds. Theorem 1 has been discussed extensively in the contexts
of both combinatorial optimization and probability theory [2, 6, 10, 14, 25, 31, 35], and it is further known that
similar limiting behaviors are seen in a wide variety of related problems, such as the minimum spanning tree, Steiner
tree, and minimum weight matching problems [23, 24, 35].

The problem of determining bounds for proportionality constants is common in continuous approzimation anal-
ysis of logistics systems [1, 7, 11]. Certain problems are structured so that their proportionality constants have
exact expressions, such as the minimum spanning tree [4] and variations of the location-routing problem [33]. The
paper [12] takes a different perspective, and proves that (s is strictly greater than constants for e.g. the minimum

spanning tree or the Held-Karp relaxation [15, 16].

2 Background

The purpose of this section is to provide a short overview of the progress on bounding fs from above thus far.
The original argument that S, < 0.92117, as put forth in [5] (and concisely summarized in Section 2 of [27]), is as
follows: to begin, we will make our analysis simpler by observing that for independent and uniformly distributed

X1,...,X, in the unit square, we have

E[TSP(X1,...,X,)]
NG

This is helpful to us because we are now free to study the tour length in expectation only, as opposed to the almost

_>/32.

sure sense as in Theorem 1; the heavy lifting has already been done for us.

The original upper bound [5] produces a “reasonably good” tour by dividing the square into horizontal strips
of height h/+/n, for some constant h of our choosing, and then connecting the points in each strip horizontally to
form a family of paths, as shown in Figure la. It is routine to show that we can merge these paths together to
form a single tour by adding a total length that is almost surely o(y/n), as shown in Figure 1b. Thus, it suffices to
determine the expected total length of these paths.

Consider a path (X1,Y1),...,(Xk, Yx), where by construction we have X; < --- < Xj. It is easy to see that
Y, = %U , where U is uniform on the interval [0,1]. Furthermore, [5] also shows that the difference between

consecutive xz-coordinates, X;11 — X, follows a scaled exponential distribution as n — oo, i.e. that
hvn(Xi — X3) ~ Z,

where Z is exponentially distributed with mean 1. Therefore, the expected distance between each consecutive pair

(Xi,Y;) and (Xiq1, Yiga) is
Xi— X \|_ 1 g z
Y~ Y1 )| hvn h2(Uy — Un)

where U; and Uy are uniform on the interval [0, 1], and we obtain an upper bound for the length of the total tour

E
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Figure 1: In 1a we divide the square into 6 horizontal strips and traverse them horizontally. The additional length
needed to aggregate these paths into one is shown in 1b with dashed lines, and it is routine to show that their total
contribution is o(y/n) almost surely.

by multiplying the right hand side of the above by n. We therefore have the following, for all h:

()| .
h?(Uy — Uy)
/// e * /22 + Wt (ug — w1)? dug duy dz

3h5/ ( 31222 log(h? )z + /A /22 + 1) + 2% + ( 2)\/h4+22> dz .
0

1
52SEE

It turns out that the above expression is minimized at h = /3, at which point the integral evaluates numerically to
0.92116. In fact, [5] makes a numerical error using Simpson’s rule to obtain the incorrect estimate 0.92037, a fact
not observed (and corrected) until 56 years later in [27].

The paper [27] improves the upper bound by -> 15107 6 by observing that, unsurprisingly, the left-to-right ordering
is not always optimal, and identifies a specific configuration (which they call a zigzag structure) for which an
alternate ordering is preferable. The numerical improvement is obtained by bounding from below the probability
of this configuration occurring, as well as the amount of improvement that is realized. The author notes that the
improvement is small, but emphasizes that the underlying idea is of greater interest than the actual numerical

improvement.

3 An improved upper bound

The central idea to our improved upper bound, which is also alluded to in Section 2.5 of [27], is to replace the
horizontal traversal strategy from Section 2 with a more general sequence. Specifically, we consider the same set of
strips of height h/v/n, but we now select ordered (k + 1)-tuples (X;,Y;),..., (X1, Yitx) for fixed (small) k, and
select the permutation that minimizes the total tour length of those k£ + 1 points, as shown in Figure 2. Note that

it is necessary to restrict ourselves to those permutations that begin with the leftmost endpoint (X;,Y;) and end
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(a) k=1,2 (b) k=3 (c) k=14

Figure 2: A collection of strips as in the original argument (2a), as well as optimal permutations for (k + 1)-tuples

n (2b) and (2¢).

with the rightmost endpoint (X;y, Yi+x), because we have to stitch all of the paths together to form a single path.
The original bound of [5] simply corresponds to the case where k =1 (or k = 2, since the endpoints are fixed). For

example, whereas the original bound (1) is

we can take k = 3 to obtain a tighter bound

. [Crowr o M1 Crot o M+ 1o o) )l

o [Coettn 8 N1 Cre o M+ 1ot o) )l

where (as before) all Z;’s are exponential with mean 1 and all U;’s are uniform on the unit interval. Here the top
expression simply counsists of moving from left to right (i.e. the original upper bound), and the bottom expression

consists of swapping the two middle points. Purely for the sake of exposition, for kK = 4 the bound is

(mwfl_m)) + (h?(Ulz U2>) + (hQ(UQZ U3>) + (h? (Us — UL)
(el o0 W DG 280 M 1 Crel o 41 ol

)
)
( -t ) + (hQ(UQZZ—Ul)) + (hQ%IQJj_—ZI%)) + <h2 U3—U4 )
)
)

B2 < —IE min h2(UO —U) ;
N N N DN 27

(oo 1 Caste 00 M 1Crar™ o )+ 1 Coste

it Ml oo o W I35 01 )

Figure 3 shows an example of a 5-tuple for which the fourth entry of the above expression is the optimal permutation.

The remainder of this paper is devoted to bounding integrals such as (2) from above in a rigorous fashion; the main

problems are that such integrals are high-dimensional, as a (k 4 1)-tuple ends up requiring 2k + 1 variables, and do
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Figure 3: A 5-tuple (5 points and 4 intervals Z;) for which the fourth entry in (2) is the minimum-cost permutation.

not have closed form expressions. We will describe how to simplify them in the next section.

3.1 Analysis of the high-dimensional integral

The next step in our analysis is to change variables back to the original entries X;, i.e. by defining X; = Z;’:l Z
for i € {1,...,k}, and setting Xy = O for notational convenience. The bounds from the previous section are now

easily expressed for any (k + 1)-tuple by writing

k X . y
< 7E min (i) — 7r i—1) 3
52 kh TFEHk: ‘ < hZ(Uﬂ(l .,T P 1) ( )
where IIj, consists of all permutations 7 of {0, ..., k} such that 7(0) = 0 and 7 (k) = k. To evaluate the expectation,
we need to transform it into an integral, which means we require the joint pdf on (Xy,...,X}y). Fortunately, this

turns out to be straightforward:
Lemma 3. The joint density function of (X1,...,Xk) is f(z1,...,25) =€ % for 0 <z <.+ <z

Proof. This is a standard textbook-level exercise when introducing exponential random variables and their proper-
ties, but we include an inductive proof here for completeness. Assume that the statement holds for (Xi,..., Xx_1).
The joint distribution on (X1, ..., Xk—1, Xk) is

J(@e, .o wp—1)g(wp| Xp—1 = 2-1)
where g is the conditional pdf on zj. Since Xy = Xy_1 + Z, we have
g(zh| Xpo1 = xp_1) = e~ @71 for zp > xp

from which the result follows. O

Tr(i) — Lr(i—1)
P2 (tUr (i) = Ur(i—1))

D:{(xlv"'7xk)v(u0»“~auk):nglS"'SxkaOSUigl}a

We can now write (3) as the integral

k

1 .
Bo < — e %k min

d 4
~ kh ﬂEHki vy ( )

=1

where

and the remainder of this paper consists of bounding the integral (4) rigorously from above. For notational conve-
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nience, we define the integrand ¢, = g (z1,..., Tk, o, ..., u1) as
xﬂ(’b — Tr(i—1)
uﬂ'(l) uﬂ(i—l))

Bo < min g, dV
p €L

)

gﬂ': A

so that (4) is equivalent to writing

(note that the term e~** can appear either inside or outside the mincy, expression because we have assumed that
w(k) = k).

To realize an improvement over the original bound from Section 2, suppose we have a box B C D for which some
permutation 7* other than the identity is preferable (note that 7* need not be the optimal permutation everywhere
in B, merely on average). We can use this box to realize a (very small) improvement over the original bound by
writing

B2 < / Inln g dV
D

TE

— / min g, dV + min g, dV
D\B melly p mEll,

S/ gIddV+/gw*dV7
D\B B

where Id denotes the identity permutation. In other words, we use the identity permutation (i.e. left-to-right
traversal) everywhere outside B, and we use 7* inside B. The domain D \ B is cumbersome, but we can obviously

simplify things in the usual way by expressing the integral as the difference of an integral over D and the same

/ gIddV:/gIddV_/gIddV~
D\B D B
—_———

()

integral over B:

Finally, since the original bound from [5] already used the identity permutation in its analysis, we see that the

integral over D marked (%) above is already a known quantity, because

AV =-— [ e ot av
/gld (hQuz—u, 1))
k
/ / [
z=0 21=0 Jur=0 ( hQ(Ui—ui_l) >

=35 / (3h222 log(h?/z 4+ \/h*/22 +1) + 22° 4 (h* — 22%)\/h4 +22) dz
0

dug -+ - dug dzy -+ - dzg

from (1). If we use h = +/3 as in the original bound from [5], then the above procedure is guaranteed to yield a

small improvement by our original assumption that 7* is preferable (on average) in B.

3.2 Separating the integral

We have now established that we can improve the original bound from Section 2 anytime we have a box B for
which the identity permutation is (on average) inferior to some other permutation 7*. Not surprisingly, the net
improvement in the upper bound that we give in this paper comes from aggregating a large disjoint collection of

such boxes and repeatedly performing the steps in the preceding section. In order to achieve guaranteed bounds,
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1
2 we must next show that integration over B is tractable.
3 Suppose as before that 7* is the non-identity permutation that minimizes |, p 9= dV. Expanding terms, and
: using linearity of integration, we can write
6
: / grdV = — [ e e
8 kh (Ur(s) = Ur(i-1))
9
10 / Tr(i) = Tr(i-1) (5)
11 h Z ( 71'(1) ‘n'(i—l))
12
13 so that the integral over B separates into a sum of integrals, each of which involves no more than 5 variables, namely
14 Tky Tr(i)s Tr(i—1)s Un(s), and Ur;_1); when we consider the last summand with ¢ = k, there are only 4 variables
12 since (k) = k. The first k¥ — 1 summands, which do not contain xj, in the || - || expression, can be reduced to the
17 form
18

t1 dso dy ba bl To — T
19 20 daq dy1 dzs dys ds

2

20 to h*(y2 — y1)
21

dy by pdy pby
22 :Cl/ / / / V(@2 — 1)+ (y2 — y1)? day dyy dza dys
23 ch az Jci ai

24

25 where C' is a constant obtained by integrating out the variables that do not appear in the integrand, C’ is further
26 obtained by integrating out the e~* term and eliminating h by a change of variables in y; and yo, and ¢} = h?¢;.
27 Fortunately, it turns out that this integral has a closed form:

28

29 Lemma 4. We have

30

31 do by pdi by by d b

32 / / / / V(@2 — 21)2 + (y2 — y1)? davy dyy daa dys = F($1,y17$27y2)\y2 o

33 2 az a 22y =c; r1=a;

34

35 where

36

37 F(x,y,u,v):////\/(x—u)2+(y—v)2dxdydudv

38

39 =983 (3u + 4uv? + 3uv® — 12032 — Suv?s — 3v3x + 18ux? — 12ux® — 1203y

40

41 —28uv?y + 1202y + 42uvy® — 18vxy? — 28uy® + 12xy°)

42 1

43 —ﬁ(v — 2vy + 2y*)u(v — 2y)vlog 2

44 1 2 2 2 2
45 ol =)™+ (y—v) +uv — vz —uy + wyl(u— 2 +y —v)(u—2)(v - y)log(y/(x — )2 + (y — v)2 — y +v)
46 1

47 12(u—x)(v— 1og‘\/x—u2+(y—v)2—x—y+u+v

48 1 2 2 2 2

49 —goll@—u)" = (y—v)" tuw —ve —uy +ayll(z - )"~ (y - v) —uv + vz +uy — xyly/ (@ —u)? + (y — v)2
50

51 Proof. This can be verified by differentiating the antiderivative function F' with a computer algebra system. We
52 used FriCAS [28] to compute F' directly. O
53

54 The other possibility for the integrals in (5) is when ¢ = k, which does not have a closed-form antiderivative
gg because of the exponential term. However, we can still reduce it to a univariate integral by integrating the other
57 three variables, and the following result is sufficient to this end:

58

59
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Lemma 5. We have

bo do dq by
/ / / / e "2 \/(arg —x1)? + (y2 — y1)% dxy dyy dys dao
bo do dy by
/ </ / / (w2 — 21)? + (y2 — y1)? dwy dyy dy2> dxa

:/' 2 G (y) daa (6)

where
d !
da
G(z2) = F(z1,y1,22,92)|,0—,,
Yyi1=c1 T1=a1
and
F(z,y,u,v) ///\/:z:fu (y —v)2dxdydv
= S a)ylog (Vi —wP + (5 0P +y )
1
+ 6(7 2 2ux + 2?)(u — x)vlog <\/(x—u)2 + (y—v)? nyrv)
1
—4(12u + %) log‘\/x7u2+(y7v)2—x+ufy+v
1
—4(12u + %) log‘\/xfu2+(y7v)2+x7ufy+v‘
1 — )2 — )2 —
+7(2v2_3vy+2y2)vy10g \/(u x) +(y 7.)) U+x
12 ly =l
1
—ﬂ(12u2—y2)y2log‘\/(x7u)z+(y7v)2—x+u+yfv‘
1
+ﬂ(12u2—y2)y2log‘\/(x—u)2+(y—v)2+x—u+y—v‘
1
- ﬂ(l4u2 — 30% — duzx + 222 + 6vy — 3y*) (u — )/ (x — u)2 + (y — v)2
Proof. Again, we used FriCAS [28] to compute the antiderivative F'. O

The fact that the preceding integral does not have a closed form means that numerical methods are required,
which have the potential to introduce approximation error, which would thus render our analysis unreliable. For-

tunately, there is structure that we can exploit to maintain true rigorous upper and lower bounds:

Remark 6. The function G(z2) is convex, as it is obtained by integrating /(z2 — z1)2 + (y2 — y1)2, which is
itself convex. Thus, the integrand e *2G(z2) in (6) is the product of two convex functions. We can bound
fab; ~P2G(x2) dxy from above by bounding the functions e~ *2 and G(z2) from above individually with piecewise
linear functions, namely the trapezoidal rule, and then taking their product, which is merely a piecewise quadratic

function.

Remark 7. When evaluating a box B, we are interested in determining if a given permutation m is preferable to
the identity permutation 7q. To this end, distinct from Remark 6, it is also helpful to determine a lower bound of
f:; e *2(G(x9) dry where we use the identity permutation. That is, if an upper bounding integral obtained from
is superior to a lower bounding integral obtained from w4, then we are guaranteed that 7 is indeed the superior
permutation. We can also bound f;j e~"2G(x2) dzy from below by bounding the functions e=?2 and G(zg) from
below individually with piecewise linear functions, namely tangent lines, and then taking their product, which is

merely a piecewise quadratic function.
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We now conclude this section, as we have all the machinery required to improve the upper bound of 35 via
repeated integration over a large collection of disjoint boxes B. The following section addresses how to determine

these boxes and to address any remaining numerical error.

4 Numerical experiments

Recall that the entirety of our analysis consists of bounding the right-hand side of (4). Section 3 describes how
to bound the integral over D, by accumulating improvements over a large collection of disjoint boxes B. We
furthermore must specify h and k, which for this paper we chose to set h = v/3 as in the original paper [5] and
k = 4, as we found that higher values of k required too much additional computing power. Per Remarks 6 and 7,
when numerical integration was required (albeit in one dimension only!), we chose (somewhat arbitrarily) to use

approximations consisting of 100 piecewise linear components.

4.1 Constructing B with a decision tree
A natural technique for finding many boxes B as in Section 3 is to use a decision tree applied to a Monte Carlo
simulation. More specifically, we draw a large number N of samples from the set

D= {(@1,.ra), (oy o) 0 <@y < oe S, 0 <y < 1)

with independent uniform distributions on the w;’s and the distribution from Lemma 3 for the z;’s. Then, we
determine which of the (k—1)! permutations is optimal for each sample, and label that sample with that permutation
as an outcome. Thus, at the end of the process, we have N points in D, each of which is labelled with one of (k—1)!
categorical outcomes.

Given these N samples, together with their categorical outcomes, we train a decision tree to predict the outcome
as a function of the 2k + 1 coordinates of the N samples. Recall that the leaves of a decision tree are precisely
a disjoint collection of boxes, and are in fact a partition of the search space, and are thus suitable for use as a
collection of boxes for our bounds. After training our decision tree (using cross entropy to determine splitting
thresholds), we obtain a partition of R?*+! induced by the leaves of the tree.

The last step in this process is to note that the leaves of the tree do indeed induce a partition of R#**! into boxes,
but those boxes that intersect the boundary of D are not usable by our procedure since D is not rectangular. For
any box B such that BND and B\ D are non-empty, we can find the largest-volume box B’ such that B’ C BND
via convex optimization (specifically, a logarithmic transform on the product term used to compute the volume of

a box).

4.2 Results

Setting k = 4 and h = /3, we ran 20 instances each for N € {103,10%,10%,105,107}, and a single instance for
N € {3-107,5-107,7.5-107}. Our experiments for the larger instances were conducted on an Intel Xeon E5-2640
v3, 2.60 GHz CPUs with 59 GB memory per node, supported by USC Center for Advanced Research Computing
(CARC). The rest of our experiments were done on a personal computer with Apple M1 chip, 8 cores and 8GB
memory. In order to avoid any possibility of floating point error, we used the Python package mpmath [18], which
uses variable-precision interval arithmetic. Table 1 shows how we achieve better upper bounds of 32 as the sample
size N increases, thus proving Theorem 2. For reproducibility, our source code is available at [34].
new

As an aside, Figure 4 illustrates how the selection of different h would affect 81%. Fixing k = 4 and N = 107,
we ran 10 instances each for h? = 2,2.25,2.5,2.75, 3, 3.25, 3.5, 3.75, 4, 4.25,4.5. Computational results show that the
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N Upper bound of 35
103 0.921042
10* 0.91995
10° 0.9169
106 0.91172
107 0.90577
3-107 0.90387
5-107 0.90317
[7.5-107 0.90304

Table 1: The best upper bounds of 85 obtained by our method, for increasing values of N. The best upper bound
6 < 0.90304 is highlighted.

original selection h = /3 still gives us the best upper bound under our current scheme of selecting boxes B, which

we find surprising, though it does not eliminate the potential of choosing alternative h.

0.94 T T T T

0.93

0.92

Upper bound of 5,

0.91

09 | | |
h2

Figure 4: New upper bounds as h changes, for k = 4 and N = 107.

5 Conclusions and future work

We have proven that 83 < 0.90304, although it is clear that the bound can be improved by additional computing
power. Our approach also suggests extensions to improve estimates for the corresponding constants 5, for TSPs
having higher dimension d > 2, although these constants appear less frequently in the literature. Our approach is
also applicable (with much simpler antiderivative expressions) to bound constants for, say, the Manhattan metric,
though these also do not appear to be the subject of much interest.

As a final future direction, we note that [13] improved the lower bound of S partially based on the arguments
put forth in [27]. We also suggest an alternative direction for improving the lower bound, although it appears
computationally intractable at present.

We first let Li be a random variable representing the length of a TSP tour of k£ points uniformly distributed in

the unit square, but with the additional feature that all distance traversed along the boundary is free (thus, Ly is

10
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a lower bound of the true TSP tour). We can write

by :=EL = / / min d(Zr(i), Tr(jy) AV,
0 WEHk 1

where d(z;, ;) denotes the shortest distance between z; and x;, possibly utilizing the boundary. The integral is the
minimum of convex functions, and can therefore be bounded below by taking a (very large) collection of tangent
planes. One could also apply the same techniques as in our paper and find boxes in which certain permutations are
known to be optimal everywhere, and then apply Lemma 4.

To see how this helps us, now assume that n points 2 = {Xj, ..., X,,} are independently and uniformly sampled
in the unit square, and divide the square into n/k square cells C;. A lower bound of the TSP tour length of all n
points is the rooted dual [25], also known as the boundary functional [35], which consists of modifying the distance
matrix between points X; so that there is no cost incurred when travelling along the boundary of any of the square

cells (as opposed to the boundary of the unit square as we just did). We write this as TSPg, so that we have

n/k
TSP(27) > ) TSPo(2 NC;).

i=1

However, we note that if we have |.2" N C;| = k, then the entries TSP (2 N C;) follow the same distribution as the
Ly’s, scaled by a factor of \/k/n. Furthermore, for large n, the number of points in each cell C; follows a Poisson

distribution with mean k, and hence

n/k 7
52>%EZTSPO%HO —n kZ\[Pr Z =1) fzk.

where Z is a Poisson random variable with mean k. We can therefore improve estimates of S by lower bounding
as many terms ¢; as computing power permits, and using simpler analytic lower bounds such as nearest-neighbor

distances for ¢ — oo.

Simulated lower bound of Beta2 (N = 10000)

0.64

- o e e e e e e A e

0.62 S

simulated lower bound
° °
w o
© o

\

\
\

\

>4
w
o
\,

0.54 1 / ===~ Lower bound of Beta2 (Square)
/ Lower bound of Beta2 (Hexagon)
/
/ -=-- Beardwood et al. (1959)
0.52 —=- Gaudio and Jaillet (2020)
T T T T T T T T
5 10 15 20 25 30 35 40

k

Figure 5: Simulated lower bound of (5
Figure 5 demonstrates how different Poisson means k would affect the expected lower bound of S5, which we

denote as 337 (these are not true lower bounds, merely Monte Carlo estimates). We ran 10000 instances each for

5 < k < 39 and computed sample averages to estimate the ¢;’s. Computational results show that when k increases,

11



oNOYTULT D WN =

Page 12 of 14

sim

217 also increases as would be expected. The yellow region represents the 95% confidence interval of the average
lower bound of 82, which shows that it takes around k = 29 to surpass the best known lower bound from [13]. This

is likely beyond the reach of current computing limits, but we include it for posterity.
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