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1 Introduction

There exists a relatively rich literature on the behavior of the Newton method near singular
solution of smooth nonlinear equations. With no intention to give a comprehensive survey,
we mention only the works [23, 24, 25] most closely related to our development below, but
dealing with equations as smooth as needed (smoothness is not an issue), and with the basic
Newton method. In this setting, these works provide natural conditions ensuring linear local
convergence of the Newton method from an asymptotically dense starlike domain around a
singular solution, and also provide some acceleration techniques bases on the established con-
vergence pattern. Partial extensions of these convergence results to wide classes of methods
that can be interpreted as a perturbed Newton method were developed in [28]. Acceleration
of convergence and a related issue of asymptotic acceptance of the full Newton step by a
linesearch globalization procedure were further investigated in [20, 21], while [19] contains
some extensions of these results to the case of constraint equations.

Having in mind typical equation reformulations of complementarity problems, an im-
portant issue consists of possible extensions of the results mentioned above to equations
with restricted smoothness properties. As one example of this kind, the case of piecewise
smooth equations was addressed in [18]. Different reformulations of complementarity lead to
equations with different smoothness and regularity properties, and as a result, to different
methods for solving complementarity problems, and understanding the relative advantages
and disadvantages of these methods is of much interest and importance.

In this work, we focus on nonlinear equations with operators differentiable near the solu-
tion in question, and with their derivatives being strongly semismooth at this solution, but
when the second derivatives of the operator may not exist. The concept of strong semis-
moothness was introduced in [42]; see, e.g., [33, Section 1.4] for a recent exposition of the
related theory. Local convergence properties of the basic Newton method and some accel-
eration techniques were studied under similar smoothness assumptions in [40]. The main
difference between the results in [40] and our development below is that we deal not only
with the basic Newton method, but with its perturbed version covering, in particular, some
stabilized modifications of the basic Newton scheme, specially intended for tackling singular
(and even nonisolated) solutions. Moreover, we consider not only the local convergence prop-
erties, but also the issue of the asymptotic acceptance of the unit stepsize by the algorithms
equipped with linesearch for globalization of convergence. The latter line of analysis leads to
a new result for the perturbed Newton method, even in the case of arbitrary smoothness.

As it will be discussed below, reformulations of complementarity problems, possessing
the specified smoothness properties, necessarily give rise to singularity of solutions violating
strict complementarity, and hence, serve as a natural source of applications, both in [40] and
below.

The rest of the paper is structured as follows. In Section 2, we provide the needed
preliminaries, and specify the problem setting. Section 3 contains the main result on linear
local convergence of the perturbed Newton method framework to singular solution satisfying
a certain 2-regularity property that may only hold at solutions called critical. In Section 4,
we consider a linesearch globalization procedure for the methods in question, and investigate
the issue of asymptotic acceptance of the full step, playing a key role for the potential success
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of the extrapolation procedure intended for acceleration of convergence to critical solutions.
Finally, Section 5 contains examples of application of the results obtained to smooth equation
reformulations of nonlinear complementarity problems.

Some words about our notation. For any ū, v̄ ∈ Rp, and any given scalars ε > 0 and
δ > 0, define the set

Kε, δ(ū; v̄) := {u ∈ Rp | ‖u− ū‖ ≤ ε, ‖‖v̄‖(u− ū)− ‖u− ū‖v̄‖ ≤ δ‖u− ū‖‖v̄‖}.

For a q × p matrix A, the null space of the corresponding linear operator is kerA := {v ∈
Rp | Av = 0}. For a mapping Φ : Rp → Rq differentiable at ū, we will make use of the
unique decomposition of every u ∈ Rp into the sum u = u1 + u2 with u1 ∈ (ker Φ′(ū))⊥ and
u2 ∈ ker Φ′(ū), where ⊥ stands for the orthogonal complement of a linear subspace.

2 Preliminaries and problem setting

Consider a mapping Φ : Rp → Rq that is differentiable near a point ū ∈ Rp, but not necessarily
twice differentiable, even at ū. The analysis in this paper will rely on the assumption that
the derivative Φ′ : Rp → Rq×p is strongly semismooth at ū. According to [33, Section 1.4.2],
this requirement means that Φ′ is Lipschitz-continuous near ū, directionally differentiable at
ū in every direction, and the estimate

max
J∈∂Φ′(u)

‖Φ′(u)− Φ′(ū)− J(u− ū)‖ = O(‖u− ū‖2) (2.1)

holds as u ∈ Rp tends to ū. Here, ∂Φ(u) stands for Clarke’s generalized Jacobian of Φ′ at
u [6, Definition 2.6.1]. These “smoothness” assumptions can actually be further relaxed: it
would be enough to assume that Φ′ itself is just calm at ū, while ΠΦ′ is semismooth at ū,
with Π being the orthogonal projector onto (im Φ′(ū))⊥ in Rq. We do not pursue this further,
in order to keep the presentation reasonably simple.

Let (Φ′)′(ū; v) stand for the directional derivative of Φ′ at ū in a direction v ∈ Rp. Observe
that (Φ′)′(ū; ·) maps Rp to Rq×p, and is positively homogeneous and Lipschitz-continuous.
Define

r(u) := Φ(u)− Φ(ū)− Φ′(ū)(u− ū)− 1

2
(Φ′)′(ū; u− ū)(u− ū), (2.2)

R(u) := Φ′(u)− Φ′(ū)− (Φ′)′(ū; u− ū). (2.3)

Combining (2.1) with [33, Proposition 1.71 (c)], from (2.3), we readily obtain the estimate

R(u) = O(‖u− ū‖2) (2.4)

as u→ ū. Furthermore, according to (2.2), by the Newton–Leibniz formula we derive

r(u) =

∫ 1

0
(Φ′(τu+ (1− τ)ū)− Φ′(ū))(u− ū) dτ − 1

2
(Φ′)′(ū; u− ū)(u− ū)

=

∫ 1

0
(Φ′(ū+ τ(u− ū))− Φ′(ū)− (Φ′)′(ū; τ(u− ū))(u− ū) dτ

=

∫ 1

0
R(ū+ τ(u− ū))(u− ū) dτ

= O(‖u− ū‖3), (2.5)
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where the second equality employs the fact that (Φ′)′(ū; ·) is positively homogeneous, the
third is by (2.3), while the last one is by (2.4).

The mapping Φ is said to be 2-regular at ū in the direction v if the linear operator B(v) :
ker Φ′(ū) → (im Φ′(ū))⊥ defined as the restriction of Π(Φ′)′(ū; v) to ker Φ′(ū) is surjective;
see the corresponding definitions and their discussion in [30, 31, 40].

Remark 2.1 At this point, we mention that the structure of the set consisting of directions
of 2-regularity of Φ at ū is not arbitrary. For instance, if Φ is twice differentiable at ū, it can
only be 2-regular at ū in every nonzero direction if either rank Φ′(ū) = q, or Φ′(ū) = 0.

Indeed, assuming that rank Φ′(ū) < q, fix any w ∈ (im Φ′(ū))⊥, and consider the p × p
matrix wΦ′′(ū) :=

∑q
i=1wiΦ

′′
i (ū). Then for any v̂ ∈ Rp and v ∈ ker Φ′(ū) it holds that

〈w, B(v̂)v〉 = 〈w, ΠΦ′′(ū)[v̂, v]〉
= 〈Πw, Φ′′(ū)[v̂, v]〉
= 〈w, Φ′′(ū)[v̂, v]〉

=

q∑
i=1

wi〈Φ′′i (ū)v̂, v〉

=

〈
q∑
i=1

wiΦ
′′
i (ū)v̂, v

〉
= 〈wΦ′′(ū)v̂, v〉, (2.6)

where the second equality is due to the symmetry of Π, while the third is because Π acts
as the identity on (im Φ′(ū))⊥. If the matrix wΦ′′(ū) is singular, then there exists v̂ ∈
kerwΦ′′(ū) \ {0}, and substituting it into (2.6), we conclude that w ∈ (imB(v̂))⊥. On the
other hand, if wΦ′′(ū) is nonsingular, and Φ′(ū) 6= 0, then there exists v̂ ∈ Rp such that
wΦ′′(ū)v̂ ∈ (ker Φ′(ū))⊥ \{0}, implying, in particular, that v̂ 6= 0, and again by (2.6) we have
that w ∈ (imB(v̂))⊥.

Therefore, if rank Φ′(ū) < q and Φ′(ū) 6= 0, then for any w ∈ (im Φ′(ū))⊥ we have the
existence of a nonzero v̂ ∈ Rp such that w ∈ (imB(v̂))⊥. In particular, if we take w 6= 0, this
implies that Φ is not 2-regular at ū in the direction v̂.

The case when Φ′(ū) = 0 is of course quite a special instance of singularity on its own.
Moreover, even in this case, from the considerations above it follows that 2-regularity of Φ in
any nonzero direction is only possible if there exists no nonzero w ∈ Rq such that the matrix
wΦ′′(ū) is singular. But the latter property imposes further restrictions on the dimensions p
and q. See, e.g., [1, Theorem 1], implying in particular, that this is not not possible when p
is odd and q ≥ 2. A related observation can be found in [3].

In the rest of the paper, we deal with Newton-type methods for the equation

Φ(u) = 0, (2.7)

and to that end, we assume that p = q. In this case, ū is called a singular solution of
(2.7) if Φ′(ū) is a singular matrix. Observe that every nonisolated solution is necessarily
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singular. Observe further that if ū is nonsingular, Φ is 2-regular at ū in every direction v,
including v = 0. At the same time, Φ may be 2-regular at ū in nonzero directions even
when ū is singular, and even when ū is a nonisolated solution of (2.7), and even in directions
v̄ ∈ ker Φ′(ū), which is specially important here as the existence of such v̄ will serve as a key
assumption for our analysis below.

According to [29, Theorem 2], a solution ū of (2.7) is regarded as critical if and only if it
violates the local Lipschitzian error bound property

dist(u, Φ−1(0)) = O(‖Φ(u)‖) (2.8)

as u ∈ Rp tends to ū. (Non)criticality is related to the concept of (weak) sharp minima
(see [41, Section 5.2.3], and [5]) for the residual function ‖Φ(·)‖. By [29, Theorem 3], every
critical solution is necessarily singular, but generally not the other way round. Moreover, the
discussion in [29, p. 497] demonstrates that for a singular (e.g., nonisolated) solution ū, our
key assumption of the existence of v̄ ∈ ker Φ′(ū) such that Φ is 2-regular at ū in the direction
v̄ may only hold if ū is a critical solution.

3 Local convergence of perturbed Newton methods to critical
solutions

As in [28], define the perturbed Newton method (pNM) framework for equation (2.7) as
follows. For a given iterate uk ∈ Rp, the next iterate is uk+1 = uk +vk, where vk is a solution
of the linear equation

Φ(uk) + (Φ′(uk) + Ω(uk))v = ω(uk), (3.1)

with the mappings Ω : Rp → Rp×p and ω : Rp → Rp are the terms characterizing various
kinds of perturbation, and defining specific methods within the pNM framework.

The following is a generalization of [28, Lemma 1] and [21, Lemma 1] to the case when
the first derivative is strongly semismooth, but the second derivative may not exist.

Lemma 3.1 Let Φ : Rp → Rp be differentiable near ū ∈ Rp, and let the derivative of Φ be
strongly semismooth at ū. Let ū be a solution of the equation (2.7), and assume that Φ is
2-regular at ū in a direction v̄ ∈ Rp. Let Ω : Rp → Rp×p and ω : Rp → Rp satisfy the following
properties: there exists δ > 0 such that

Ω(u) = O(‖u− ū‖), ω(u) = O(‖u− ū‖2) (3.2)

for u ∈ Kε, δ(ū; v̄) as ε→ 0+, and

ΠΩ(u) = o(‖u− ū‖) (3.3)

for u ∈ Kε, δ(ū; v̄) as ε→ 0+ and δ → 0+.
Then there exist ε̄ > 0 and δ̄ > 0 such that, for every u ∈ Kε̄, δ̄(ū; v̄) \ {ū}, the linear

operator B(u− ū) is invertible,

(B(u− ū))−1 = O(‖u− ū‖−1) (3.4)
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as u→ ū, the equation (3.1) with uk = u has the unique solution v, and this solution satisfies

u1 + v1 − ū1 = O(‖u− ū‖‖u1 − ū1‖) +O(‖u− ū‖‖Ω(u)‖) +O(‖ω(u)‖) +O(‖u− ū‖3), (3.5)

u2 + v2 − ū2 =
1

2
(u2 − ū2 + (B(u− ū))−1Π(Φ′)′(ū; u− ū)(u1 − ū1))

+O(‖ΠΩ(u)‖) +O(‖u− ū‖−1‖Πω(u)‖) +O(‖u− ū‖2) (3.6)

as u→ ū.

Proof. The argument below follows the lines of that in [28, Lemma 1], with modifications

needed under the current restricted smoothness assumptions. Without loss of generality
assume that ū = 0.

Multiplying (3.1) by (I − Π) and by Π, and employing (2.2)–(2.3), equation (3.1) with
uk = u ∈ Rp is decomposed into the following two equations:

(Φ′(ū) + (I −Π)(B(u) +R(u) + Ω(u)))v1 = −Φ′(ū)u1

−(I −Π)

(
1

2
(Φ′)′(ū; u)u+ r(u)− ω(u)

)
−(I −Π)((Φ′)′(ū; u) +R(u) + Ω(u)))v2,

(3.7)

and

Π((Φ′)′(ū; u) +R(u) + Ω(u))(v1 + v2) = −Π

(
1

2
(Φ′)′(ū; u)u+ r(u)− ω(u)

)
. (3.8)

Let ε̄ > 0 and δ̄ > 0 be fixed arbitrarily for now, and from this point on, we consider
only those u ∈ Kε̄, δ̄(ū; v̄) \ {0}. Define the linear operator A(u) : (ker Φ′(ū))⊥ → im Φ′(ū) as

the restriction of (Φ′(ū) + (I −Π)((Φ′)′(ū; u) +R(u) + Ω(u))) to (ker Φ′(ū))⊥. Furthermore,
let Â : (ker Φ′(ū))⊥ → im Φ′(ū) be the restriction of Φ′(ū) to (ker Φ′(ū))⊥. Then, taking into
account (2.5), the equality (3.7) can be written as

A(u)v1 = −Âu1 − (I −Π)((Φ′)′(ū; u) +R(u) + Ω(u))v2

−(I −Π)

(
1

2
(Φ′)′(ū; u)u− ω(u)

)
+O(‖u‖3) (3.9)

as u→ 0.
Evidently, Â is invertible, and according to (2.4) and the first condition in (3.2),

A(u) = Â+O(‖u‖).

This implies that if ε̄ > 0 is small enough, then A(u) is invertible, and

(A(u))−1 = Â−1 +O(‖u‖) (3.10)
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as u → 0; this follows, e.g., from [33, Lemma A.6]. Therefore, taking also into account the
second condition in (3.2), (3.9) can be written as

v1 = −u1 +M(u)v2 +O(‖u‖2), (3.11)

where M(u) : ker Φ′(ū)→ (ker Φ′(ū))⊥ is defined by

M(u) := −(A(u))−1(I −Π)((Φ′)′(ū; u) +R(u) + Ω(u)) = O(‖u‖) (3.12)

as u→ 0, where the last estimate is again by (2.4) and by the first condition in (3.2).
Substituting (3.11) into (3.8), and taking into account (2.4), we obtain the equation

Π((Φ′)′(ū; u) +R(u) + Ω(u))(I +M(u))v2 = −Π

(
1

2
(Φ′)′(ū; u)u− ω(u)

)
+Π(B(u) + Ω(u))u1 +O(‖u‖3).

(3.13)

Define the linear operator B(u) : ker Φ′(ū)→ (im Φ′(ū))⊥ as the restriction of Π((Φ′)′(ū; u)+
R(u) + Ω(u))(I +M(u)) to ker Φ′(ū). Then (3.13) can be written in the form

B(u)v2 = −1

2
B(u)u2 + Π

((
1

2
(Φ′)′(ū; u) + Ω(u)

)
u1 + ω(u)

)
+O(‖u‖3) (3.14)

as u→ 0.
Observe now that by [33, Lemma A.6], and by continuity of (Φ′)′(ū; ·) at v̄, 2-regularity

of Φ at 0 in the direction v̄ implies the existence of C > 0 such that B(u) is invertible and

‖(B(u))−1‖ ≤ C‖u‖−1 (3.15)

provided δ̄ > 0 is taken small enough. This yields (3.4). According to (2.4), (3.2), and (3.12),
it further holds that

B(u) = B(u) + ΠΩ(u) +O(‖u‖2).

Further reducing ε̄ > 0 and δ̄ > 0 if necessary, by (3.3) and (3.15), and again by [33,
Lemma A.6], we now obtain that B(u) is invertible, and

(B(u))−1 = (B(u))−1 +O(‖u‖−2‖ΠΩ(u)‖) +O(1) = O(‖u‖−1)

as u→ 0. Therefore, (3.14) is uniquely solvable, and its unique solution has the form

v2 = −1

2
u2 +

1

2
(B(u))−1Π(Φ′)′(ū; u)u1 +O(‖ΠΩ(u)‖) +O(‖u‖−1‖Πω(u)‖) +O(‖u‖2)

= O(‖u‖), (3.16)

as u→ 0, where the last estimate is by (3.2) and (3.15).
Substituting (3.16) into (3.9), and employing (2.4) again, we obtain the equation

A(u)v1 = −Âu1 +O(‖u‖‖u1‖) +O(‖u‖‖Ω(u)‖) +O(‖ω(u)‖) +O(‖u‖3)
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and hence, by (3.10),

v1 = −u1 +O(‖u‖‖u1‖) +O(‖u‖‖Ω(u)‖) +O(‖ω(u)‖) +O(‖u‖3) (3.17)

as u→ 0.
From (3.16) and (3.17), and from (3.2), we have the needed estimates (3.5) and (3.6).

The next example demonstrates that even in the case of twice continuous differentiability
of Φ, and even in the absence of perturbations, strong semismoothness of Φ′ is essential for
the conclusion of Lemma 3.1 to be valid.

Example 3.1 Let p = 2, Φ(u) = (u1 + 3u
7/3
2 /7, u2

2/2). Then Φ is everywhere twice con-
tinuously differentiable, and the unique solution of (2.7) is ū = 0. Furthermore, for any
u, v ∈ Rp

Φ′(u) =

(
1 u

4/3
2

0 u2

)
, Φ′(0) =

(
1 0
0 0

)
, Φ′′(0)[v] =

(
0 0
0 v2

)
.

Therefore, Φ is 2-regular at 0 in every nonzero direction in ker Φ′(0) = {0} × R.
Assuming that u2 6= 0, the basic Newton step from uk = u (i.e., the unique solution of

(3.1) with Ω ≡ 0 and ω ≡ 0) is v = (−u1 + u
7/3
2 /14, −u2/2). In particular, (3.6) is valid,

while (3.5) (and even a weaker estimate from [28, Lemma 1]) is not. The reason is violation
of (2.1).

Theorem 3.1 Let Φ : Rp → Rp be differentiable near ū ∈ Rp, and let the derivative of Φ
be strongly semismooth at ū. Let ū be a solution of equation (2.7), and assume that Φ is 2-
regular at ū in a direction v̄ ∈ ker Φ′(ū) \ {0}. Moreover, let Ω : Rp → Rp×p and ω : Rp → Rp
satisfy the following properties: there exists δ > 0 such that, along with (3.2), the estimates

ΠΩ(u) = O(‖u1 − ū1‖) +O(‖u− ū‖2) (3.18)

and
Πω(u) = O(‖u− ū‖‖u1 − ū1‖) +O(‖u− ū‖3) (3.19)

hold for u ∈ Kε, δ(ū; v̄) as ε→ 0+.

Then, for every ε̂ > 0 and δ̂ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that for
any starting point u0 ∈ Kε, δ(ū; v̄) there exists the unique sequence {uk} ⊂ Rp such that for
each k it holds that uk+1 = uk + vk, where vk satisfies (3.1), and for this sequence and for
each k, it holds that uk2 6= ū2, uk ∈ K

ε̂, δ̂
(ū; v̄), {uk} converges to ū, {‖uk − ū‖} converges to

zero monotonically,
‖uk+1

1 − ū1‖
‖uk+1

2 − ū2‖
= O(‖uk − ū‖) (3.20)

as k →∞, and

lim
k→∞

‖uk+1
2 − ū2‖
‖uk2 − ū2‖

=
1

2
. (3.21)
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Proof. Under the assumption (3.2), estimates (3.4)–(3.6) in Lemma 3.1 further imply that

u1 + v1 − ū1 = O(‖u− ū‖2), (3.22)

u2 + v2 − ū2 =
1

2
(u2 − ū2) +O(‖u1 − ū1‖)

+O(‖ΠΩ(u)‖) +O(‖u− ū‖−1‖Πω(u)‖) +O(‖u− ū‖2) (3.23)

as u ∈ Kε̄, δ̄(ū; v̄)\{ū} tends to ū, where ε̄ > 0 and δ̄ > 0 are defined according to Lemma 3.1.
Assuming further that there exists δ > 0 such that (3.18), (3.19) hold for u ∈ Kε, δ(ū; v̄)

as ε→ 0+, the estimate (3.23) is further simplified to

u2 + v2 − ū2 =
1

2
(u2 − ū2) +O(‖u1 − ū1‖) +O(‖u− ū‖2) (3.24)

as u → ū, and the subsequent analysis in the proof of [28, Theorem 1] goes through, as it
does not further rely on any smoothness assumptions but only on the estimates (3.22) and
(3.24). This yields the needed result.

Remark 3.1 The flexibility of the assumption on perturbation terms Ω(·) and ω(·) allows
for applications of Theorem 3.1 to various specific Newton-type methods, including those
equipped with stabilizing features intended specially for finding singular and even nonisolated
solutions. To begin with, taking Ω(·) ≡ 0 and ω(·) ≡ 0 recovers the classical Newton method
for equation (2.7), with the subproblem

Φ(uk) + Φ′(uk)v = 0. (3.25)

Furthermore, consider the Levenberg–Marquardt method [36, 37] (see also [39, Chap-
ter 10.2]) with the subproblem of the form

minimize
1

2
‖Φ(uk) + Φ′(uk)v‖2 +

1

2
σ(uk)‖v‖2, v ∈ Rp, (3.26)

where σ : Rp → R+ defines the regularization parameter. For modern local quadratic conver-
gence theories for this method under the local Lipschitzian error bound condition (2.8) (i.e.,
noncriticality of the solution in question), and including the associated rules to control the
regularization parameter, see [9, 12, 13, 15, 16, 22, 44].

Passing to the case of a critical solution, observe that the subproblem (3.26) employing
the Euclidean norm is equivalent to the linear equation

(Φ′(uk))>Φ(uk) + ((Φ′(uk))>Φ′(uk) + σ(uk)I)v = 0. (3.27)

and the constructions in [28, Section 3.1] allow to interpret this equation as the subproblem
(3.1) with Ω(·) and ω(·) possessing the needed properties when σ(·) := ‖Φ(·)‖τ , with τ ≥ 2.
This yields a counterpart of [28, Corollary 1], saying essentially that under the smoothness
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and 2-regularity assumptions in Theorem 3.1, the conclusion of this theorem is valid for the
Levenberg–Marquardt method.

Another relevant algorithm in this context is the LP-Newton method introduced in [10],
with the iteration subproblem of the form

minimize γ
subject to ‖Φ(uk) + Φ′(uk)v‖ ≤ γ‖Φ(uk)‖2,

‖v‖ ≤ γ‖Φ(uk)‖,
(v, γ) ∈ Rp × R.

(3.28)

As demonstrated in [9, 10] (see also [16]), local convergence properties of this method near
noncritical solutions are the same as for the Levenberg–Marquardt method. Yet again, think-
ing of critical solutions, and following the development in [28, Section 3.2], one can embed the
LP-Newton method into the pNM framework above, and obtain counterpart of [28, Corol-
lary 2], saying that under the smoothness and 2-regularity assumptions in Theorem 3.1, for
every ε̂ > 0 and δ̂ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that for any start-
ing point u0 ∈ Kε, δ(ū; v̄) there exists a sequence {uk} ⊂ Rp such that for each k the pair
(uk+1 − uk, γk+1) with some γk+1 solves (3.28), and for any such sequence and for each k,
it holds that uk2 6= ū2, uk ∈ K

ε̂, δ̂
(ū; v̄), {uk} converges to ū, {‖uk − ū‖} converges to zero

monotonically, and (3.20) and (3.21) hold. (Observe that uniqueness of {uk} is not claimed
in this case, and indeed, (3.28) may have nonunique solutions.)

We finally mention the stabilized Newton–Lagrange (sequential quadratic programming)
method for equality-constrained optimization problems [14, 26, 32, 43]; see also [33, Chap-
ter 7]. It can also be covered by Theorem 3.1, thus relaxing the smoothness hypothesis in
[28, Section 3.3], thus generalizing [28, Corollary 3]. We do not go into more detail regarding
this issue as this would require an extensive discussion, including introducing terminology
not needed in this paper otherwise.

Remark 3.2 An extension of [28, Theorem 1] to the case of a constrained equation as in
[19, Theorem 3.1] is also possible under the smoothness hypothesis of this work. Consider
the problem

Φ(u) = 0, u ∈ P, (3.29)

where P ⊂ Rp is a given closed convex set. Then the analysis in [19, Section 3] allows to
conclude that under the assumptions of Theorem 3.1, with the additional requirement that
v̄ belongs to the interior of the radial cone to P at ū, the iterates uk in that theorem can be
additionally claimed to stay feasible (i.e., to belong to P for all k). This allows to cover the
constrained Gauss–Newton method with the subproblem

minimize
1

2
‖Φ(uk) + Φ′(uk)v‖2 subject to uk + v ∈ P ;

the constrained Levenberg–Marquardt method [4, 11, 35, 45] with the subproblem

minimize
1

2
‖Φ(uk) + Φ′(uk)v‖2 +

1

2
σ(uk)‖v‖2 subject to uk + v ∈ P

9



(cf. (3.26)); the version of the LP-Newton method with the additional constraint [10], with
the subproblem

minimize γ
subject to ‖Φ(uk) + Φ′(uk)v‖ ≤ γ‖Φ(uk)‖2,

‖v‖ ≤ γ‖Φ(uk)‖,
uk + v ∈ P

(cf. (3.28)); as well as projected version of these methods; see [19, Sections 1.1, 3] for details.

Remark 3.3 According to [28, Remark 2], the estimates (3.20)–(3.21) in Theorem 3.1 imply
that

lim
k→∞

‖uk+1 − ū‖
‖uk − ū‖

=
1

2
,

i.e., {uk} converges to ū linearly, with an asymptotic ratio exactly equal to 1/2.
This convergence pattern serves as a basis for convergence acceleration techniques [23, 25],

one of them being the so-called extrapolation. The simplest variant of it consists of generating
an auxiliary sequence {ûk} by doubling the Newtonian step: for each k, set

ûk+1 = uk + 2vk. (3.30)

According to [25, Theorem 4.1], one may expect {ûk} to converge linearly with the asymptotic
ratio of 1/4, instead of 1/2 for {uk}, at least for the basic Newton method with the subproblem
(3.25). Observe that this procedure can be easily incorporated into any implementations of
the algorithms discussed above: (3.30) does not affect the main iteration sequence {uk},
and is not concerned with any computational overhead except for one extra evaluation of Φ
needed to assess the quality of the obtained ûk+1. The specified extrapolation procedure will
be employed in Section 5.

4 Asymptotic acceptance of the full step

We will deal with the issue specified in the title of this section for the following prototype
algorithm combining the local perturbed Newton method framework with a linesearch glob-
alization technique.

Algorithm 4.1 Choose u0 ∈ Rp, σ ∈ (0, 1), θ ∈ (0, 1), and set k = 0.

1. If Φ(uk) = 0, stop.

2. Compute vk ∈ Rp as a solution of (3.1).

3. Set α = 1. If the inequality

‖Φ(uk + αvk)‖ ≤ (1− σα)‖Φ(uk)‖ (4.1)

is satisfied, set αk = α. Otherwise, replace α by θα, check the inequality (4.1) again,
etc., until (4.1) becomes valid.
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4. Set uk+1 = uk + αkv
k.

5. Increase k by 1 and go to Step 1.

The fact that Algorithm 4.1 (equipped with some further safeguards for the cases when
Step 2 fails or produces a direction “of poor quality” [20]) is well-defined and possesses rea-
sonable global convergence properties is supposed to be established for the specific instances
of (3.1) at Step 2. The role of the perturbed Newton method framework is only local, which
conforms with the local nature of our analysis, and in principle, those global issues are not
the subject of this work, but we will give some related comments in Remark 4.1 below.

Theorem 4.1 Under the assumptions of Theorem 3.1, let the estimates (3.18) and (3.19)
hold with removed Π, i.e.,

Ω(u) = O(‖u1 − ū1‖) +O(‖u− ū‖2) (4.2)

and
ω(u) = O(‖u− ū‖‖u1 − ū1‖) +O(‖u− ū‖3) (4.3)

for u ∈ Kε, δ(ū; v̄) as ε→ 0+.

Then, for every ε̂ > 0 and δ̂ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that
for any starting point u0 ∈ Kε, δ(ū; v̄) Algorithm 4.1 with σ ∈ (0, 3/4) uniquely defines the
sequence {uk}, uk ∈ K

ε̂, δ̂
(ū, v̄) for all k, and αk = 1 holds for all k large enough.

Observe that conditions (4.2) and (4.3) imply both (3.2) and (3.3), and of course cover
the case when Ω(·) ≡ 0 and ω(·) ≡ 0, and (3.1) turns into the basic (unperturbed) Newton
scheme (3.25), while Algorithm 4.1 turns into its instance considered in [21, Algorithm 1].
Therefore, Theorem 4.1 generalizes [21, Proposition 3], both in a sense of weaker smoothness
assumptions, and of allowed perturbations of the basic Newton scheme.

Proof. As in Lemma 3.1, let ū = 0, and let ε̄ > 0 and δ̄ ∈ (0, 1) be chosen according to that

lemma. Then for u ∈ Kε̄, δ̄(ū; v̄) \ {ū}, there exists the unique solution v of (3.1). Moreover,
by the argument in the proof of [28, Theorem 1] we then have

‖u1‖ ≤ δ̄‖u‖ ≤
δ̄

1− δ̄
‖u2‖, (4.4)

and hence, estimates (3.22), (3.24) yield

u+ v =
1

2
u2 +O(‖u1‖) +O(‖u‖2) =

1

2
u2 +O(δ̄‖u2‖) +O(‖u2‖2), (4.5)

1

2
u+ v = O(‖u1‖) +O(‖u‖2) = O(δ̄‖u2‖) +O(‖u2‖2) (4.6)

as u→ 0 and δ̄ → 0+.
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According to (2.2) and (2.5),

Φ(u) = Φ′(ū)u+
1

2
(Φ′)′(ū; u)u+O(‖u‖3)

= Φ′(ū)u1 +
1

2
(Φ′)′(ū; u2)u2 +O(‖u1‖2) +O(‖u1‖‖u2‖) +O(‖u‖3)

= Φ′(ū)u1 +
1

2
(Φ′)′(ū; u2)u2 +O(δ̄‖u2‖2) +O(‖u2‖3) (4.7)

as u → 0 and δ̄ → 0+, where the second equality is by Lipschitz continuity of (Φ′)′(ū; ·),
while the last one is by (4.4). Furthermore, by the same reasoning, but also employing (4.5),
we obtain that

Φ(u+ v) = Φ′(ū)(u+ v) +
1

2
(Φ′)′(ū; u+ v)(u+ v) +O(‖u+ v‖3)

= Φ′(ū)(u+ v) +
1

8
(Φ′)′(ū; u2)u2 +O(δ̄‖u2‖2) +O(‖u2‖3) (4.8)

as u→ 0 and δ̄ → 0+.
Since v is a solution of (3.1), by (2.2)–(2.5) and (4.2)–(4.3), we conclude that

0 = −Φ(u)− Φ′(u)v − Ω(u)v + ω(u)

= −Φ′(ū)u− 1

2
(Φ′)′(ū; u)u− Φ′(ū)v − (Φ′)′(ū; u)v +O(‖u‖3) +O(‖u‖2‖v‖)

+O(‖u1‖‖v‖) +O(‖u‖‖u1‖),

which by (4.4), (4.6) implies that

Φ′(ū)(u+ v) = −(Φ′)′(ū; u)

(
1

2
u+ v

)
+O(‖u3‖) +O(‖u‖2‖v‖) +O(‖u1‖‖v‖) +O(‖u‖‖u1‖)

= O(δ̄‖u2‖2) +O(‖u2‖3).

Substituting the latter into (4.8) yields

Φ(u+ v) =
1

8
(Φ′)′(ū; u2)u2 +O(δ̄‖u2‖2) +O(‖u2‖3) (4.9)

as u→ 0 and δ̄ → 0+.
Estimates (4.7) and (4.9) comprise what is needed for the analysis leading to [21, Propo-

sition 3] to go through. when combined with the following additional facts none of which re-
quires stronger smoothness assumptions. First, 2-regularity of Φ in a direction v̄ ∈ ker Φ′(ū)\
{0} implies that Π(Φ′)′(ū; v̄)v̄ = B(v̄)v̄ 6= 0, and then it can be seen that δ̄ > 0 can be chosen
in such a way that there exists γ > 0 such that

‖(Φ′)′(ū; u2)u2‖ ≥ ‖Π(Φ′)′(ū; u2)u2‖ ≥ γ‖u2‖2.

Second, (3.5), (3.24), and (4.4) imply the estimates

u1 + v1 = O(‖u‖‖u1‖) +O(‖u‖3) = O(δ̄‖u2‖2) +O(‖u2‖3), (4.10)
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u2 + v2 =
1

2
u2 +O(‖u1‖) +O(‖u‖2) =

1

2
u2 +O(δ̄‖u2‖) +O(‖u2‖2) (4.11)

as u→ 0 and δ̄ → 0+.
Observe that unlike for the local convergence result in Theorem 3.1, the estimate (4.10)

(that is sharper than (3.22)) is essential here, as together with (4.11), it allows to conclude
that for every γ̄ > 0, one can chose ε̄ > 0 and δ̄ > 0 in such a way that

‖u1 + v1‖ ≤ γ̄‖u2 + v2‖2,

yielding another key ingredient of this analysis.

Remark 4.1 Algorithm 4.1 makes perfect sense when used with the basic Newton scheme
(3.25) at Step 2 (i.e., with Ω(·) ≡ 0 and ω(·) ≡ 0 in (3.1)), and with Euclidean norm in
(4.1) at Step 3; see the related comments in [21]. This remains true for the Levenberg–
Marquardt method with the iteration system (3.27) as well, since the function ϕ : Rp → R+,
ϕ(u) := ‖Φ(u)‖, defined using the Euclidian norm, is differentiable at any point uk such that
Φ(uk) 6= 0 (cf. Step 1 of Algorithm 4.1), and

ϕ′(uk) = (Φ′(uk))>Φ(uk)/‖Φ(uk)‖,

and hence, for the solution vk of (3.27) it holds that

〈ϕ′(uk), vk〉 = −〈((Φ′(uk))>Φ′(uk) + σ(uk)I)vk, vk〉/‖Φ(uk)‖ < 0.

Therefore, vk is a direction of descent for ϕ at uk, justifying the stepsize test (4.1), even when
far from solutions.

Observe that the result on asymptotic acceptance of the full step for the Levenberg–
Marquardt method with σ(·) := ‖Φ(·)‖τ , τ ≥ 2, in cases of convergence to (critical) solutions
with the needed 2-regularity property, following from Theorem 4.1 and considerations in [28,
Section 3.1] (recall also Remark 3.1), is new even in the case of twice differentiable Φ.

As for the LP-Newton method, the natural choice of the norm in the subproblem (3.28)
is the infinity-norm, as it makes (3.28) a linear programming problem. In any case, the
globalization procedure proposed in [17, Algorithm 1] employs the stepsize test of the form

‖Φ(uk + αvk)‖ ≤ (1− σα)‖Φ(uk)‖+ σαγk+1‖Φ(uk)‖2

with the same norm as the one appearing in (3.28). This test is evidently weaker than
(4.1) (with the same norm), and hence, accepts the unit stepsize once (4.1) does. Therefore,
Theorem 4.1 and considerations in [28, Section 3.2] (recall also Remark 3.1 again) yield the
result on asymptotic acceptance of the full step for the LP-Newton method, under the needed
assumptions.

In completion of this section we note that, unlike in [21], under the current smoothness
assumptions one cannot expect the set of excluded directions for starlike domains of conver-
gence and asymptotic acceptance of the full step to be thin, even for the basic (unperturbed)
Newton method; see Examples 5.1–5.3 below.
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5 Applications to smooth reformulation of nonlinear comple-
mentarity problems and numerical results

Consider the nonlinear complementarity problem (NCP)

u ≥ 0, F (u) ≥ 0, 〈u, F (u)〉 = 0, (5.1)

where F : Rp → Rp is a given smooth mapping. Using a complementarity function ψ :
R× R→ R,

ψ(a, b) := 2ab− (min{0, a+ b})2 (5.2)

(originally introduced in [8]), NCP (5.1) is equivalently reformulated as (2.7) with

Φ(u) := ψ(u, F (u)), (5.3)

where ψ is applied componentwise. Function ψ in (5.2) is one of known smooth comple-
mentarity functions [34, 38]: assuming that F is differentiable at u ∈ Rp, the corresponding
mapping defined in (5.3) is also differentiable at u, with the Jacobian Φ′(u) having the rows

Φ′i(u) = 2uiF
′
i (u) + 2Fi(u)ei − 2 min{0, ui + Fi(u)}(F ′i (u) + ei), i = 1, . . . , p, (5.4)

where e1, . . . , ep is the standard basis in Rp. From [33, Proposition 1.75] it then follows that
if F ′ is strongly semismooth at ū ∈ Rp (in particular, if it is twice differentiable near ū, with
its second derivative being Lipschitz-continuous near ū), then Φ′ is strongly semismooth at
ū.

If ū is a solution of NCP (5.1), then the disjoint index sets

I0(ū) := {i = 1, . . . , p | ūi = Fi(ū) = 0},
I1(ū) := {i = 1, . . . , p | ūi > 0, Fi(ū) = 0},
I2(ū) := {i = 1, . . . , p | ūi = 0, Fi(ū) > 0},

provide a partition of {1, . . . , p}, and from (5.4) we have

Φ′i(ū) =


0 if i ∈ I0(ū),
2ūiF

′
i (ū) if i ∈ I1(ū),

2Fi(ū)ei if i ∈ I2(ū).
(5.5)

This implies that if I0(ū) 6= ∅, meaning violation of the strict complementarity condition at
ū, then ū is necessarily a singular solution of equation (2.7).

From (5.4) one can easily obtain that for any v ∈ Rp and i ∈ I0(ū)

(Φ′i)
′(ū; v) = 2(vi −min{0, vi + 〈F ′i (ū), v〉})F ′i (ū)

+2(〈F ′i (ū), v〉 −min{0, vi + 〈F ′i (ū), v〉})ei

= 2 max{vi, −〈F ′i (ū), v〉}F ′i (ū)− 2 min{vi, −〈F ′i (ū), v〉}ei.
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Then from (5.5) we derive that the key assumption of 2-regularity of Φ at ū in some direction
v̄ ∈ ker Φ′(ū) automatically holds with any v̄ ∈ Rp such that

〈F ′i (ū), v̄〉 = 0, i ∈ I1(ū), v̄i = 0, i ∈ I2(ū), (5.6)

and the matrix with the rows

max{v̄i, −〈F ′i (ū), v̄〉}F ′i (ū)−min{v̄i, −〈F ′i (ū), v̄〉})ei, i ∈ I0(ū),

F ′i (ū), i ∈ I1(ū),

ei, i ∈ I2(ū),

(5.7)

is nonsingular. The latter sufficient condition for 2-regularity of Φ at ū in a direction v̄
evidently implies that

F ′i (ū), i ∈ I1(ū), ei, i ∈ I2(ū), are linearly independent, (5.8)

and moreover, this sufficient condition also becomes necessary under (5.8). The general
characterization of 2-regularity in the current context, not assuming (5.8), can be found in
[40]. For easier understanding of the essence of the properties in question, here we restrict
ourselves to the case when singularity is imposed in a natural way, i.e., only by violation of
strict complementarity at ū, or, in other words, when (5.8) holds. That said, see Example 5.3
below, demonstrating the case when the key assumption holds in the absence of (5.8).

Example 5.1 ([18, Example 1]) Let p = 1, F (u) = u2. Then NCP (5.1) has the unique
solution ū = 0, with I1(ū) = I2(ū) = ∅, F ′(ū) = 0, and the first line in (5.7) is positive if
v̄ < 0, and equals 0 otherwise. Therefore, the key assumption holds with any v̄ < 0, but not
with v̄ ≥ 0.

Being initialized at u0 < 0, Algorithm 4.1 employing the basic Newton method, and with
σ < 3/4, converges to ū by full steps (from some iteration on), and the rate of convergence
is linear with the asymptotic ratio 1/2. For σ ≥ 3/4, the full step is never accepted (the
ultimate stepsize value is α = 0.5 for σ = 3/4, and approaches 0 as σ approaches 1), and the
linear convergence rate is lower (with the asymptotic ratio 3/4 for σ = 3/4, and approaching
1 as σ approaches 1).

The case when u0 > 0 is not covered by the theory above, and the method ultimately
accepts the unit stepsize for sufficiently small values of σ (only for those smaller than some
threshold σ̄ ∈ (0, 3/4)), but in such cases the rate of convergence is linear with the asymptotic
ratio 2/3. This specific rate is explained by the fact that for u > 0, it holds that Φ(u) = 2u3,
and the Newton iteration at uk > 0 produces uk+1 = 2uk/3. This also agrees with the theory
developed in [24] for arbitrarily smooth equations and for the basic Newton method, allowing
for higher-order regularity when Φ′′(ū) = 0 (as it essentially happens in this case).

Example 5.2 (test problem affknot1 in [40]) Let p = 2, F (u) = (u2 − 1, u1). Then NCP
(5.1) has the solution set {0}× [1, +∞) (thick line in Figure 1, where thin lines are contours
of ‖Φ(·)‖), with ū = (0, 1) (thick dot in Figure 1) being the unique critical solution, and
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(a) Domain of attraction to critical solution

-1 -0.5 0 0.5 1
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1
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2

(b) Iterative sequences

Figure 1: Example 5.2: the Newton method.

I0(ū) = {1}, I1(ū) = {2}, I2(ū) = ∅, F ′1(ū) = e2, F ′2(ū) = e1. Condition (5.6) yields v̄1 = 0,
while the matrix with rows given by (5.7) takes the form(

0 −v̄2

1 0

)
when v̄2 < 0, and (

v̄2 0
1 0

)
otherwise. Therefore, the key assumption holds with v̄ = (0, v̄2) for any v̄2 < 0, but does not
hold for v̄2 ≥ 0.

Figure 1a demonstrates the starting points from which convergence of Algorithm 4.1
employing the basic Newton method, with σ = 1/2, to the critical solution ū was detected,
while Figure 1b shows some typical iterative sequences. The observed pattern of convergence
to ū agrees with the developed theory, and the full step is ultimately accepted.

Example 5.3 ([2, Example 3.3]) Let p = 2, F (u) = ((u1−1)u2, (u1−1)2). Then NCP (5.1)
has the solution set (R+ × {0}) ∪ ({1} × R+, with (0, 0) and (0, 1) being the only critical
solutions. Figures 2–3 provide the same kind of information as Figure 1 above.

For ū = (0, 0) we have I0(ū) = {1}, I1(ū) = ∅, I2(ū) = {2}, F ′1(ū) = −e2, F ′2(ū) = 2e1.
Condition (5.6) yields v̄2 = 0, while the matrix with rows given by (5.7) takes the form(

−v̄1 0
0 1

)
when v̄1 < 0, and (

0 −v̄1

0 1

)
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(a) Domain of attraction to critical solution (0, 0)
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Figure 2: Example 5.3: the Newton method.

(a) Domain of attraction to critical solution (1, 0)
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(b) Iterative sequences

Figure 3: Example 5.3: the Newton method.

otherwise. Therefore, the key assumption holds with v̄ = (v̄1, 0) for any v̄1 < 0, but does not
hold for v̄1 ≥ 0.

Figure 2a demonstrates the starting points from which convergence of Algorithm 4.1
employing the basic Newton method, with σ = 1/2, to the critical solution ū = (0, 0) was
detected, while Figure 2b shows some typical iterative sequences. The observed pattern of
convergence to ū agrees with the developed theory, and the full step is ultimately accepted.

For ū = (1, 0) we have I0(ū) = {2}, I1(ū) = {1}, I2(ū) = ∅, F ′1(ū) = F ′2(ū) = (0, 0),
implying, in particular, that (5.8) does not hold. Nevertheless, it can be seen that the key
assumption holds with any v̄ such that v̄2 < 0.

Figure 3 is intended to emphasize the role of the critical solution ū = (1, 0).
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(a) Domain of attraction to critical solution (0, 0)

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1
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Figure 4: Example 5.4: the Newton method.

(a) Domain of attraction to critical solution (0, 0)
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(b) Iterative sequences

Figure 5: Example 5.4: the Levenberg–Marquardt method.

Example 5.4 ([2, Example 3.2]) Let p = 2, F (u) = (0, −u1 + u2 + 1). Then NCP (5.1)
has the solution set ([0, 1]× {0}) ∪ {(t+ 1, t) | t ≥ 0}, with (0, 0) and (1, 0) being the only
critical solutions. Figures 4–6 provide the same kind of information as Figures 1–3 above,
though Figures 5–6 are for the Levenberg–Marquardt method rather than the basic Newton
method.

For ū = (0, 0) as in the previous examples one can check that the key assumption holds
with v̄ = (v̄1, 0) for any v̄1 < 0, and Figures 4–5 reflect this fact.

Furthermore, one can see that Φ′1(u) = −2 min{0, u1}e1 = 0 for all u ∈ R2 with u1 ≥ 0,
implying that Φ′(u) is singular for all such u, and in particular, it is singular in a neighborhood
of ū = (1, 0). Therefore, the key assumption cannot hold at this ū, and the Newton method
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(a) Domain of attraction to critical solution (1, 0)
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Figure 6: Example 5.4: the Levenberg–Marquardt method.

is not well-defined near this solution. At the same time, the Levenberg–Marquardt method
behaves nicely near this solution, and does not exhibit any tendency of convergence to it; see
Figure 6. In particular, the sparse set in Figure 6a is actually a result of using an approximate
test on closeness of the iterate at termination to ū, with rather rough tolerance 10−3.

(a) Domain of attraction to critical solution (0, 1)
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(b) Iterative sequences

Figure 7: Example 5.5: the Levenberg–Marquardt method.

Example 5.5 (test problem quadknot in [40]) Let p = 2, F (u) = (u2 − 1, u2
1). Then NCP

(5.1) has the solution set {0}× [1, +∞), with ū = (0, 1) being the only critical solution. See
Figure 7.
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(a) Domain of attraction to critical solution (1, 0)
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Figure 8: Example 5.6: the Levenberg–Marquardt method.

Example 5.6 ([2, Example 3.4]) Let p = 2, F (u) = ((u1 − 1)2 + (u1 − 1)u2, (u1 − 1)2).
Then apart from a strictly complementary solution (0, 0), NCP (5.1) has the solution set
({1} × R+, with ū = (1, 0) being the only critical solution. See Figure 8.

We complete the paper with numerical results for a collection of small NCPs taken from
[40], and for some other examples of NCP with solutions violating strict complementarity,
taken from various sources. The algorithms being tested were applied to (2.7) with Φ defined
according to (5.2)–(5.3).

Table 1 presents the results for Algorithm 4.1 employing the basic Newton method with
the subproblem (3.25), and with σ = 0.01 and θ = 1/2 (abbreviated below as “NM”), as
well as for the version of the method supplied with the simplest extrapolation procedure
(3.30) (abbreviated as “NM-EP”). Successful termination was declared when the Euclidean
residual of (2.7) at the main or extrapolated iterate was getting smaller or equal to 10−11,
within 50 iterations. The identifiers of test problems with the key assumption satisfied at the
singular solution in question are boldfaced. Some of the test problems have two solutions of
interests, and then their identifiers have additional attributes 1 or 2. For each test problem, we
performed a single run from the “recommended” staring point (when available; abbreviated
as “rec”), and also 1000 runs from randomly generated starting points distributed uniformly
in the cubic neighborhood of the solution in question, with a half-edge equal to 1 (abbreviated
as “rand”). For the former case, we report only the iteration count, while for the latter we
report the average iteration count over successful runs (rounded up to the nearest integer),
and additionally the percentage of successful runs and the average distance to the solution
of interest over cases when this distance at successful termination was no greater than 10−3

(in parenthesis, separated by commas). The cases when there were no successful runs are
marked by “–”.

Table 2 reports the same kind of information as Table 1 for Algorithm 4.1 with the same
parameter values, but employing the Levenberg–Marquardt method with the subproblem
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Test problems NM NM-EP

rec rand rec rand

quarp 15 18 (100%, 5.1e-4) 14 16 (100%, 6.7e-4)

DIS61 19 17 (100%, 1.7e-6) 10 9 (100%, 1.2e-6)

quarquad, 1 16 20 (100%, 6.7e-7) 8 13 (100%, 4.0e-7)

quarquad, 2 18 20 (97%, 5.6e-4) 17 17 (97%, 6.2e-4)

affknot1 20 11 (100%, 4.9e-6) 2 5 (100%, 2.8e-7)

affknot2 18 19 (100%, 4.5e-6) 1 9 (100%, 5.7e-13)

quadknot 18 19 (100%, 2.1e-6) 9 9 (100%, 1.3e-6)

munson4 19 19 (100%, 1.7e-6) 10 9 (100%, 1.5e-6)

DIS64 – 19 (100%, 1.7e-6) – 1 (100%, 1.2e-16)

ne-hard 25 22 (100%, 2.1e-6) 16 15 (100%, 2.7e-7)

doubleknot 21 19 (88%, 2.6e-6) 11 10 (88%, 6.6e-13)

quad1 15 19 (100%, 7.2e-5) 5 13 (100%, 7.0e-5)

quad2 20 19 (100%, 6.3e-5) 9 12 (100%, 7.0e-5)

quarn 15 19 (100%, 1.0e-4) 14 18 (100%, 7.3e-4)

[2, Example 3.1] – – – –

[2, Example 3.2] 18 18 (50%, 2.3e-6) 9 8 (51%, 8.4e-13)

[2, Example 3.3], 1 20 10 (100%, 2.8e-6) 11 4 (100%, 3.4e-7)

[2, Example 3.3], 2 19 5 (100%, 2.3e-6) 5 2 (100%, 3.0e-5)

[2, Example 3.4] 20 17 (100%, 7.0e-5) 11 11 (100%, 6.0e-5)

[7, Example 6] 19 19 (100%, 1.9e-6) 1 1 (100%, 2.2e-16)

[7, Example 7] 19 18 (100%, 2.8e-6) 1 1 (100%, 2.7e-16)

[7, Example 8] 20 17 (100%, 1.9e-6) 11 8 (100%, 1.3e-6)

[7, Example 9] 19 19 (100%, 2.1e-6) 1 1 (100%, 6.0e-16)

[18, Example 1] 19 19 (100%, 7.2e-5) 8 12 (100%, 7.0e-5)

[18, Example 3], 1 21 19 (100%, 6.9e-5) 16 13 (100%, 3.8e-9)

[18, Example 3], 2 19 19 (100%, 6.9e-5) 10 13 (100%, 6.2e-5)

[19, Example 4.2] 19 18 (100%, 2.1e-6) 1 1 (100%, 1.4e-16)

[19, Example 4.3] 19 19 (100%, 1.6e-6) 9 8 (100%, 1.3e-10)

[27, Example 3.4] 19 18 (100%, 1.6e-6) 1 1 (100%, 6.3e-18)

[27, Example 3.5] 20 19 (100%, 1.6e-6) 1 1 (100%, 8.4e-16)

[30, Example 1] 19 19 (100%, 1.7e-6) 7 9 (100%, 1.2e-6)

[30, Example 2] 19 18 (100%, 2.0e-6) 1 1 (100%, 7.2e-16)

Table 1: Numerical results for NCPs: the Newton method

(3.27) making use of the regularization parameter σ(·) := ‖Φ(·)‖2 (abbreviated as LMM, and
as LMM-EP for a version supplied with extrapolation).

The asymptotic acceptance of the full step was encountered in all runs of these experi-
ments. Moreover, the full step was accepted almost always, except for some rare cases when
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Test problems NM NM-EP

rec rand rec rand

quarp 15 18 (100%, 9.5e-4) 14 16 (100%, 5.3e-4)

DIS61 19 18 (100%, 3.8e-6) 10 10 (100%, 1.2e-6)

quarquad, 1 17 21 (100%, 1.3e-6) 8 14 (100%, 4.1e-7)

quarquad, 2 16 20 (100%, 6.4e-4) 15 17 (100%, 6.8e-4)

affknot1 20 13 (100%, 2.3e-6) 11 7 (100%, 5.6e-7)

affknot2 18 19 (100%, 2.2e-6) 7 9 (100%, 2.3e-8)

quadknot 19 17 (100%, 4.3e-6) 9 9 (100%, 1.4e-6)

munson4 20 19 (100%, 3.6e-6) 11 10 (100%, 1.5e-6)

DIS64 28 19 (100%, 3.9e-6) 16 7 (100%, 1.2e-6)

ne-hard – 22 (29%, 1.3e-6) 43 14 (28%, 8.7e-7)

doubleknot 21 20 (100%, 5.4e-6) 12 10 (100%, 6.5e-8)

quad1 16 20 (100%, 1.4e-4) 5 13 (100%, 7.0e-5)

quad2 20 20 (100%, 1.4e-4) 9 13 (100%, 7.2e-5)

quarn 15 19 (100%, 3.5e-4) 14 18 (100%, 6.3e-4)

[2, Example 3.1] 20 11 (100%, 2.1e-6) 7 5 (100%, 1.1e-6)

[2, Example 3.2] 19 12 (99%, 3.0e-6) 10 8 (99%, 3.3e-7)

[2, Example 3.3], 1 20 11 (100%, 3.4e-6) 11 7 (100%, 2.8e-07)

[2, Example 3.3], 2 19 8 (100%, 2.3e-6) 7 5 (100%, 1.0e-5)

[2, Example 3.4] 20 14 (100%, 8.0e-5) 11 10 (100%, 6.7e-5)

[7, Example 6] 20 19 (100%, 1.7e-3) 8 7 (100%, 1.1e-6)

[7, Example 7] 19 18 (100%, 2.4e-6) 8 7 (100%, 1.6e-6)

[7, Example 8] 21 18 (100%, 2.0e-6) 11 9 (100%, 1.3e-6)

[7, Example 9] 20 19 (100%, 1.9e-6) 9 7 (100%, 1.3e-6)

[18, Example 1] 20 19 (100%, 7.1e-5) 9 12 (100%, 7.1e-5)

[18, Example 3], 1 21 19 (100%, 1.4e-6) 16 14 (100%, 3.8e-9)

[18, Example 3], 2 20 19 (100%, 5.8e-5) 10 14 (100%, 7.1e-5)

[19, Example 4.2] 20 17 (100%, 2.2e-6) 11 7 (100%, 4.5e-6)

[19, Example 4.3] 20 19 (100%, 1.6e-6) 10 9 (100%, 7.9e-9)

[27, Example 3.4] 19 18 (100%, 1.6e-6) 7 6 (100%, 9.9e-7)

[27, Example 3.5] 20 19 (100%, 3.1e-6) 8 8 (100%, 1.9e-6)

[30, Example 1] 19 19 (100%, 1.8e-6) 9 9 (100%, 1.3e-6)

[30, Example 2] 19 19 (100%, 2.0e-6) 7 7 (100%, 1.2e-6)

Table 2: Numerical results for NCPs: the Levenverg–Marquardt method

it was not accepted on some early iteration (usually once per run, if at all). Moreover, for
LMM, the iterations where the full step was not accepted were systematically encountered
for DIS61 and quarquad, 2, only. These observations confirm the conclusions of Theorem 4.1:
despite convergence to singular solutions, the full step is asymptotically accepted.
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Furthermore, the results reported in Tables 1 and 2 clearly demonstrate the accelerating
effect of the extrapolation procedure for problems satisfying the key assumption, both for
the Newton and the Levenberg–Marquardt methods. This can be considered as an indirect
evidence of the convergence pattern established in Theorem 3.1.
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