
Compressed Sensing: A Discrete Optimization

Approach

Dimitris Bertsimas1† and Nicholas Johnson2*†

1Sloan School of Management, Massachusetts Institute of Technology,
100 Main Street, Cambridge, 02142, MA, USA.

1Operations Research Center, Massachusetts Institute of Technology, 1
Amherst Street, Cambridge, 02142, MA, USA.

*Corresponding author(s). E-mail(s): nagj@mit.edu;
Contributing authors: dbertsim@mit.edu;

†These authors contributed equally to this work.

Abstract

We study the Compressed Sensing (CS) problem, which is the problem of find-
ing the most sparse vector that satisfies a set of linear measurements up to some
numerical tolerance. CS is a central problem in Statistics, Operations Research
and Machine Learning which arises in applications such as signal processing,
data compression and image reconstruction. We introduce an ℓ2 regularized for-
mulation of CS which we reformulate as a mixed integer second order cone
program. We derive a second order cone relaxation of this problem and show that
under mild conditions on the regularization parameter, the resulting relaxation
is equivalent to the well studied basis pursuit denoising problem. We present a
semidefinite relaxation that strengthens the second order cone relaxation and
develop a custom branch-and-bound algorithm that leverages our second order
cone relaxation to solve instances of CS to certifiable optimality. Our numerical
results show that our approach produces solutions that are on average 6.22%
more sparse than solutions returned by state of the art benchmark methods on
synthetic data in minutes. On real world ECG data, for a given ℓ2 reconstruc-
tion error our approach produces solutions that are on average 9.95% more
sparse than benchmark methods, while for a given sparsity level our approach
produces solutions that have on average 10.77% lower reconstruction error than
benchmark methods in minutes.

Keywords: Sparsity; Sparse Approximation, Compressed Sensing; Convex Relaxation;
Branch-and-bound

1

1 Introduction

The Compressed Sensing (CS) problem seeks to find a most sparse vector x ∈ Rn that
is consistent with a set ofm linear equalities. CS is a fundamental problem in Statistics,
Operations Research and Machine Learning which arises in numerous applications
such as medical resonance imaging [1], holography [2], climate monitoring [3], natural
resource mining [4] and electrocardiogram signal acquisition [5] among many others.
Formally, given a matrix A ∈ Rm×n and a vector b ∈ Rm, CS is given by [6]:

min
x∈Rn

∥x∥0 s.t. Ax = b. (1)

In the presence of noisy measurements, it is necessary to relax the equality constraint
in (1), leading to the following formulation for ϵ > 0:

min
x∈Rn

∥x∥0 s.t. ∥Ax− b∥22 ≤ ϵ. (2)

This problem is sometimes referred to as sparse approximation in the literature [7] and
trivially reduces to (1) for ϵ = 0. CS allows signals to be reconstructed surprisingly well
after sampling at a rate far below the Nyquist sampling rate by leveraging the inherent
sparsity of most signals, either in the signal’s latent space or in an appropriately defined
transform space. For example, natural images tend to have a sparse representation in
the wavelet domain, speech can be represented using a small number of coefficients in
the Fourier transform domain and medical images can be represented sparsely in the
Radon transform domain [8].

In Section 2, we will see that the vast majority of existing approaches to CS either
rely on ℓ1 based convex approximations to (2) or are greedy heuristics whereas the
use of integer optimization techniques has gone relatively unexplored. In this work,
we formulate CS as:

min
x∈Rn

∥x∥0 +
1

γ
∥x∥22 s.t. ∥Ax− b∥22 ≤ ϵ, (3)

where γ > 0 is a regularization parameter that in practice can either take a default
value (e.g.

√
n) or be cross-validated by minimizing a validation metric [see, e.g., 9] to

obtain strong out-of-sample performance [10]. A defining characteristic of the approach
we present in this work is that we leverage techniques from integer optimization to
exploit the inherent discreteness of formulation (3) rather than relying on more com-
monly studied approximate methods. Note that Problem (3) is a special case of the
formulation given by:

min
x∈Rn

∥x∥0 +
1

γ
∥Wx∥22 s.t. ∥Ax− b∥22 ≤ ϵ. (4)

where W ∈ Rn×n is a diagonal matrix with nonnegative diagonal entries that should
be interpreted as coordinate weights on the vector x. Indeed, (4) reduces to (3) when
we take W = I.

2

In this work, we develop strong convex relaxations to (3) and leverage our relax-
ations to develop a custom branch-and-bound algorithm that can solve (3) to certifiable
optimality. We show that compared to state of the art benchmark methods, our branch-
and-bound algorithm produces solutions that are on average 6.22% more sparse on
synthetic data and on average 9.95% more sparse on real world ECG data at the
expense of increased computation time. Thus, for applications where runtime is not of
critical importance, leveraging integer optimization can yield sparser solutions to CS
than existing benchmarks.

1.1 Contributions and Structure

In this paper, we approach CS using mixed integer second order cone optimization.
We derive a second order cone relaxation of this problem and show that under mild
conditions on the regularization parameter, the resulting relaxation is equivalent to
the well studied basis pursuit denoising problem. We present a semidefinite relaxation
that strengthens the second order cone relaxation and develop a custom branch-and-
bound algorithm that leverages our second order cone relaxation to solve instances of
CS to certifiable optimality. Our numerical results show that our approach produces
solutions that are on average 6.22% more sparse than solutions returned by state of
the art benchmark methods on synthetic data in minutes. On real world ECG data,
for a given ℓ2 reconstruction error our approach produces solutions that are on average
9.95% more sparse than benchmark methods, while for a given sparsity level our
approach produces solutions that have on average 10.77% lower reconstruction error
than benchmark methods in minutes.

The rest of the paper is structured as follows. In Section 2, we review existing
formulations and solution methods of the CS problem. In Section 3, we study how
our regularized formulation of CS (3) connects to the commonly used formulation (2).
We reformulate (3) exactly as a mixed integer second order cone problem in Section
4 and present a second order cone relaxation in Section 4.1 and a stronger but more
computationally expensive semidefinite cone relaxation in Section 4.2. We show that
our second order cone relaxation is equivalent to the Basis Pursuit Denoising problem
under mild conditions offering a new interpretation of this well studied method as a
convex relaxation of our mixed integer second order cone reformulation of (3). We
leverage our second order cone relaxation to develop a custom branch-and-bound
algorithm in Section 5 that can solve instances of (3) to certifiable optimality. In
Section 6, we investigate the performance of our branch-and-bound algorithm against
state of the art benchmark methods on synthetic and real world data.

Notation:

We let nonbold face characters such as b denote scalars, lowercase bold faced characters
such as x denote vectors, uppercase bold faced characters such as X denote matrices,
and calligraphic uppercase characters such as Z denote sets. We let [n] denote the
set of running indices {1, . . . , n}. We let e denote a vector of all 1’s, 0n denote an n-
dimensional vector of all 0’s, and I denote the identity matrix. We let Sn denote the
cone of n×n symmetric matrices and Sn+ denote the cone of n×n positive semidefinite
matrices.

3

2 Literature Review

In this section, we review several key approaches from the literature that have been
employed to solve the CS problem. As an exhaustive literature review is outside of the
scope of this paper, we focus our review on a handful of well studied approaches which
will be used as benchmarks in this work. For a more detailed CS literature review, we
refer the reader to [7].

The majority of existing approaches to the CS problem are heuristic in nature
and generally can be classified as either convex approximations or greedy methods
as we will see in this section. For these methods, associated performance guarantees
require making strong statistical assumptions on the underlying problem data. Integer
optimization has been given little attention in the CS literature despite its powerful
modelling capabilities. [11] and [12] explore formulating Problem (2) as a mixed integer
linear program for the case when ϵ = 0. However this approach relies on using the big-
M method which requires estimating reasonable values for M and cannot immediately
generalize to the setting where ϵ > 0.

2.1 Basis Pursuit Denoising

A common class of CS methods rely on solving convex approximations of (2) rather
than attempting to solve (2) directly. A popular approach is to use the ℓ1 norm as a
convex surrogate for the ℓ0 norm [6, 13–16]. This approximation is typically motivated
by the observation that the unit ℓ1 ball given by Bℓ1 = {x ∈ Rn : ∥x∥1 ≤ 1} is the
convex hull of the nonconvex set X = {x ∈ Rn : ∥x∥0 ≤ 1, ∥x∥∞ ≤ 1}. Replacing the
ℓ0 norm by the ℓ1 norm in (2), we obtain:

min
x∈Rn

∥x∥1 s.t. ∥Ax− b∥22 ≤ ϵ. (5)

Problem (5) is referred to as Basis Pursuit Denoising and is a quadratically constrained
convex optimization problem which can be solved efficiently using one of several off the
shelf optimization packages. Basis Pursuit Denoising produces an approximate solution
to Problem (2) by either directly returning the solution of (5) or by post-processing the
solution of (5) to further sparsify the result. One such post-processing technique is a
greedy rounding mechanism where columns of the matrix A are iteratively selected in
the order corresponding to decreasing magnitude of the entries of the optimal solution
of (5) until the selected column set of A is sufficiently large to produce a feasible
solution to (2). Basis Pursuit Denoising is very closely related to the Lasso problem
which is given by:

min
x∈Rn

∥Ax− b∥22 + λ∥x∥1, (6)

where λ > 0 is a tunable hyperparameter. Lasso is a statistical estimator commonly
used for sparse regression as empirically, the optimal solution of Problem (6) tends to
be sparse [17]. More recently, strong connections between Lasso and robust optimiza-
tion have been established [18]. Basis Pursuit Denoising and Lasso are equivalent in
that Lasso is obtained by relaxing the hard constraint in (5) and instead introducing
a penalty term in the objective function. It is straightforward to show that for given

4

input data A, b and ϵ in (5), there exists a value λ⋆ > 0 such that there exists a solu-
tion x⋆ that is both optimal for (5) and (6) when the tunable parameter takes value
λ = λ⋆.

Note that by taking ϵ = 0, Problem (5) reduces to the well studied Basis Pursuit
problem where the equality constraintAx = b is enforced. A large body of work studies
conditions under which the optimal solution of the Basis Pursuit problem is also an
optimal solution of (1). For example, see [19], [20], [21], and [22]. One of the most
well studied conditions under which this equivalence holds is when the input matrix
A satisfies the Restricted Isometry Property (RIP). Formally, a matrix A ∈ Rm×n is
said to satisfy RIP of order s and parameter δs ∈ (0, 1) if for every vector x ∈ Rn

such that ∥x∥0 ≤ s, we have

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22.

It has been established that if A satisfies RIP or order 2s and parameter δ2s < 1/3,
then the optimal solution of the Basis Pursuit problem is also an optimal solution of (1)
where s denotes the cardinality of this optimal solution [23]. While it has been shown
that certain random matrices satisfy this desired RIP property with high probability
[24, 25], RIP in general is not tractable to verify on arbitrary real world data.

2.2 Iterative Reweighted L1

Iterative Reweighted ℓ1 minimization is an iterative method that can generate an
approximate solution to (2) by solving a sequence of convex optimization problems
that are very closely related to the Basis Pursuit Denoising problem given by (5) [26–
28]. This approach falls in the class of convex approximation based methods for solving
CS. The approach considers the weighted ℓ1 minimization problem given by:

min
x∈Rn

∥Wx∥1

s.t. ∥Ax− b∥22 ≤ ϵ,
(7)

where W ∈ Rn×n is a diagonal matrix with nonnegative diagonal entries. Each diag-
onal entry Wii = wi of W can be interpreted as a weighting of the ith coordinate of
the vector x. Interpreting the ℓ1 norm as a convex surrogate for the ℓ0 norm, Problem
(7) can be viewed as a relaxation of the nonconvex problem given by

min
x∈Rn

∥Wx∥0

s.t. ∥Ax− b∥22 ≤ ϵ.
(8)

It is trivial to verify that when W = αI, where α > 0 and I is the n-by-n identity
matrix, (8) and (7) reduce exactly to (2) and (5) respectively. Assuming the weights
never vanish, the nonconvex Problems (2) and (8) have the same optimal solution,
yet their convex relaxations (5) and (7) will generally have very different solutions. In
this regard, the weights can be regarded as parameters that if chosen correctly can

5

produce a better solution than (5). Iterative Reweighted ℓ1 minimization proceeds as
follows [26]:

1. Initialize the iteration count t←− 0 and the weights w
(0)
i ←− 1.

2. Solve (7) with W = W (t). Let x(t) denote the optimal solution.

3. Update the weights as w
(t+1)
i ←− 1

|x(t)
i |+δ

where δ > 0 is a fixed parameter for

numerical stability.
4. Terminate if t reaches a maximum number of iterations or if the iterates x(t) have

converged. Otherwise, increment t and return to Step 2.

[26] show empirically that in many settings the solution returned by Iterated
Reweighted ℓ1 minimization outperforms the solution returned by Basis Pursuit
Denoising by recovering the true underlying signal while requiring fewer measurements
to be taken. We note that this approach is an instance of a broader class of sparsifying
iterative reweighted methods [29–31].

2.3 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a canonical greedy algorithm for obtaining
heuristic solutions to (2) [32, 33]. Solving Problem (2) can be interpreted as determin-
ing the minimum number of columns from the input matrix A that must be selected
such that the residual of the projection of the input vector b onto the span of the
selected columns has ℓ2 norm equal to at most

√
ϵ. The OMP algorithm proceeds by

first selecting the column of A that is most collinear with b and subsequently itera-
tively adding the column of A that is most collinear with the residual of the projection
of b onto the subspace spanned by the selected columns until the norm of this residual
is at most

√
ϵ. Concretely, OMP proceeds as follows where for an arbitrary collection

of indices It ⊆ [n], we let A(It) ∈ Rm×|It| denote the matrix obtained by stacking
the |It| columns of A corresponding to the indices in the set It:

1. Initialize the iteration count t←− 0, the residual r0 ←− b and the index set I0 ←− ∅.
2. Select the column that is most collinear with the residual it ←− argmaxi∈[n]\It

|aT
i rt|

and update the index set It+1 ←− It ∪ it.
3. Compute the projection of b onto the current set of columns

xt+1 ←−
[
A(It+1)

TA(It+1)
]†
A(It+1)

T b,

and update the residual rt+1 ←− b−A(It+1)xt+1.
4. Terminate if ∥rt+1∥22 ≤ ϵ, otherwise increment t and return to Step 2.

Conditions under which the solution returned by OMP is the optimal solution of (2)
(either with high probability or with certainty) have been studied extensively [22, 34,
35]. Unfortunately, these conditions suffer from the same limitation as RIP in that in
general they are not tractable to verify on real world data. A closely related method
to OMP is Subspace Pursuit (SP) which is another greedy algorithm for obtaining a
heuristic solution to (2) in the ϵ = 0 setting but has the additional requirement that a
target sparsity value K must be specified in advance [36]. SP is initialized by selecting

6

the K columns of A that are most collinear with the vector b. At each iteration, SP
first computes the residual of the projection of b onto the current column set and
then greedily updates up to K elements of the column set, repeating this process until
doing so no longer decreases the norm of the residual.

3 Formulation Properties

In this section, we rigorously investigate connections between formulations (3) and
(2) for the CS problem in the noisy setting. The only difference between formulations
(2) and (3) is the inclusion of a ℓ2 regularization term in the objective function in
(3). We will see in Section 4 that the presence of this regularization term facilitates
useful reformulations. Moreover, in the case of regression, [18] show that augmenting
the ordinary least squares objective function with a ℓ2 regularization penalty pro-
duces regression vectors that are robust against data perturbations which suggests the
presence of such a regularization term may result in a similar benefit in (3). A natu-
ral question to ask is: under what conditions do problems (2) and (3) have the same
solution? We answer this question in Theorem 1.
Theorem 1. There exists a finite value γ0 <∞ such that for all γ̄ ≥ γ0, there exists
a vector x⋆ such that x⋆ is an optimal solution of (2) and also an optimal solution of
(3) where we set γ = γ̄. Letting x̃ denote a minimum norm solution to (2), we can
take γ0 = ∥x̃∥22 and x⋆ = x̃.

Phrased simply, Theorem 1 establishes that there exists a finite value γ0 such that
if the regularization parameter γ in problem (3) is at least as large as γ0, then there
is a vector x⋆ that is optimal to both problems (2) and (3). We note that this finite
value γ0 depends on the input data A, b and ϵ.

Proof. Consider any matrix A ∈ Rm×n, vector b ∈ Rm and scalar ϵ > 0. Let Ω denote
the set of optimal solutions to (2) and let X denote the feasible set of (2) and (3).
We have X = {x : ∥Ax − b∥22 ≤ ϵ} and Ω ⊆ X . Let x̃ ∈ argminx∈Ω ∥x∥22 and let
γ0 = ∥x̃∥22. Since x̃ ∈ Ω, x̃ is an optimal solution to (2). It remains to show that x̃ is
optimal to (3) for all γ ≥ γ0.

Fix any γ ≥ γ0. To show that x̃ is an optimal solution of (3), we will show that
for all x̄ ∈ X , we have

∥x̃∥0 +
1

γ
∥x̃∥22 ≤ ∥x̄∥0 +

1

γ
∥x̄∥22.

Fix an arbitrary x̄ ∈ X . Either x̄ ∈ X \Ω or x̄ ∈ Ω. Suppose x̄ ∈ X \Ω. The definition
of Ω and the fact that x̃ ∈ Ω implies

∥x̃∥0 < ∥x̄∥0 =⇒ ∥x̃∥0 + 1 ≤ ∥x̄∥0.

Next, note that since γ ≥ γ0 = ∥x̃∥22, we have

∥x̃∥0 +
1

γ
∥x̃∥22 ≤ ∥x̃∥0 + 1 ≤ ∥x̄∥0 ≤ ∥x̄∥0 +

1

γ
∥x̄∥22.

7

Suppose instead that x̄ ∈ Ω. The definition of Ω and x̃ imply ∥x̃∥0 = ∥x̄∥0 and
∥x̃∥22 ≤ ∥x̄∥22. It then follows immediately that ∥x̃∥0 + 1

γ ∥x̃∥
2
2 ≤ ∥x̄∥0 + 1

γ ∥x̄∥
2
2. Thus,

x̃ is optimal to (3). This completes the proof.

Though Theorem 1 is useful in establishing conditions for the equivalence of prob-
lems (2) and (3), it is important to note that computing the value of γ0 specified in
the Theorem requires solving (2) which is difficult in general. Suppose we are solving
problem (3) with some regularization parameter γ in the regime where 0 < γ < γ0. A
natural question to ask is: how well does the solution of (3) approximate the solution
of (2). We answer this question in Theorem 2.
Theorem 2. Let x̃ and γ0 be as defined in Theorem 1, and let X denote the feasible
set of (2) and (3). Specifically, x̃ denotes a minimum norm solution to (2), γ0 = ∥x̃∥22
and X = {x : ∥Ax− b∥22 ≤ ϵ}. Let λϵ > 0 be a value such that

argmin
x∈X

∥x∥22 = argmin
x

∥Ax− b∥22 + λϵ∥x∥22.

Fix any value γ with 0 < γ < γ0. Suppose x̄ is an optimal solution to (3). Then we
have

∥x̃∥0 ≤ ∥x̄∥0 ≤ ∥x̃∥0 +
1

γ

(
∥x̃∥22 −

∥∥∥(1

λϵ
I +ATA

)−1

AT b
∥∥∥2
2

)
.

Proof. Fix any value γ with 0 < γ < γ0 and consider any optimal solution x̄ to (3).
The inequality ∥x̃∥0 ≤ ∥x̄∥0 follows immediately from the optimality of x̃ in (2). By
the optimality of x̄, we must have

∥x̄∥0 +
1

γ
∥x̄∥22 ≤ ∥x̃∥0 +

1

γ
∥x̃∥22 =⇒ ∥x̄∥0 ≤ ∥x̃∥0 +

1

γ
(∥x̃∥22 − ∥x̄∥22).

Thus, to establish the result we need only derive an upper bound for the term (∥x̃∥22−
∥x̄∥22), or equivalently to derive a lower bound for the term ∥x̄∥22. Since x̄ ∈ X , such
a lower bound can be obtained by solving the optimization problem given by

min
x∈Rn

∥x∥22

s.t. x ∈ X = {x : ∥Ax− b∥22 ≤ ϵ}.
(9)

This optimization problem has the same optimal solution as the ridge regression
problem given by

min
x∈Rn

∥Ax− b∥22 + λϵ∥x∥22. (10)

for some value λϵ > 0. To see this, we form the Lagrangian for (9) L(x, µ) = ∥x∥22 +
µ(∥Ax−b∥22−ϵ) and observe that the KKT conditions for (x, µ) ∈ Rn×R are given by

1. ∥Ax− b∥22 ≤ ϵ;
2. µ ≥ 0;
3. µ(∥Ax− b∥22 − ϵ) = 0 =⇒ µ = 0 or ∥Ax− b∥22 = ϵ;
4. ∇xL(x, µ) = 0 =⇒ x = (1µI +ATA)−1AT b if µ ̸= 0 and x = 0 if µ = 0.

8

We note that if 0 ∈ X , then 0 is trivially an optimal solution to (9) with optimal value
given by 0. This corresponds to the degenerate case. In the nondegenerate case, we
have 0 /∈ X . This condition, coupled with the first and fourth KKT conditions implies
that at optimality, we have µ ̸= 0 and x = (1µI+ATA)−1AT b. Next, we note that the

unconstrained quadratic optimization problem given by (10) has an optimal solution
x⋆ given by x⋆ = (λϵI + ATA)−1AT b. Finally, we observe that the two preceding
expressions are the same when λϵ =

1
µ > 0. Thus, we have

∥x̄∥22 ≥ min
x∈X
∥x∥22 =

∥∥∥(1

λϵ
I +ATA

)−1

AT b
∥∥∥2
2
,

which implies that

∥x̄∥0 ≤ ∥x̃∥0 +
1

γ

(
∥x̃∥22 −

∥∥∥(1

λϵ
I +ATA

)−1

AT b
∥∥∥2
2

)
.

This completes the proof.

Remark 1. Though the statement of Theorem 2 is made for any fixed γ satisfying
0 < γ < γ0 with γ0 given by Theorem 1, we note that the proof of Theorem 2 in fact
generalizes to any γ > 0. This implies that the result of Theorem 1 holds for any γ′

0

satisfying γ′
0 >

(
∥x̃∥22−

∥∥∥(1
λϵ
I+ATA

)−1

AT b
∥∥∥2
2

)
. This is a stronger condition than

the one established by Theorem 1 but has the drawback of depending on the value λϵ

which in general cannot be computed easily.
Theorem 2 provides a worst case guarantee on the sparsity of the solution of (3) when
the regularization parameter γ satisfies 0 < γ < γ0.

4 An Exact Reformulation and Convex Relaxations

In this section, we reformulate (4) as a mixed integer second order cone optimization
problem. We then employ the perspective relaxation [37] to construct a second order
cone relaxation for (4) and demonstrate that under certain conditions on the regu-
larization parameter γ, the resulting relaxation is equivalent to the Weighted Basis
Pursuit Denoising problem given by (7). As a special case, we obtain a convex relax-
ation for (3) and demonstrate that it is equivalent to (5) under the same conditions
on γ. Finally, we present a family of semidefinite relaxations to (4) using techniques
from polynomial optimization.

To model the sparsity of the vector x in (4), we introduce binary variables z ∈
{0, 1}n and require that xi = zixi. This gives the following reformulation of (4):

min
z,x∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i x

2
i

s.t. ∥Ax− b∥22 ≤ ϵ, xi = zixi ∀ i, zi ∈ {0, 1} ∀ i.

(11)

The constraints xi = zixi in (11) are nonconvex in the decision variables (x, z). To deal
with these constraints, we make use of the perspective reformulation [37]. Specifically,

9

we introduce non-negative variables θ ∈ Rn
+ where θi models x2

i and introduce the
constraints θizi ≥ x2

i , which are second order cone representable. Thus, if zi = 0, we
will have xi = 0. This results in the following reformulation of (11):

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

zi ∈ {0, 1} ∀ i, θi ≥ 0 ∀ i.

(12)

Theorem 3. The mixed integer second order cone problem given by (12) is an exact
reformulation of (4).

Proof. We show that given a feasible solution to (4), we can construct a feasible
solution to (12) that achieves the same objective value and vice versa.

Consider an arbitrary solution x̄ to (4). Let z̄ ∈ Rn be the binary vector obtained
by setting z̄i = 1{x̄i ̸= 0} and let θ̄ ∈ Rn be the vector obtained by setting θ̄i = x̄2

i .
We have ∥Ax̄ − b∥22 ≤ ϵ, z̄iθ̄i = 1{x̄i ̸= 0} · x̄2

i = x̄2
i , z̄ ∈ {0, 1}n and θ̄i ≥ 0 so the

solution (x̄, z̄, θ̄) is feasible to (12). Lastly, notice that we have

n∑
i=1

z̄i +
1

γ

n∑
i=1

w2
i θ̄i =

n∑
i=1

1{x̄i ̸= 0}+ 1

γ

n∑
i=1

w2
i x̄

2
i = ∥x̄∥0 +

1

γ
∥Wx̄∥22.

Thus, the solution (x̄, z̄, θ̄) is a feasible solution to (12) that achieves the same
objective value as x̄ does in (4).

Consider now an arbitrary solution (x̄, z̄, θ̄) to (12). Since we have ∥Ax̄−b∥22 ≤ ϵ,
x̄ is feasible to (4). Next, we note that the constraints x2

i ≤ ziθi and zi ∈ {0, 1} imply
that z̄i ≥ 1{x̄i ̸= 0} and θ̄i ≥ x̄2

i . Finally, we observe that

∥x̄∥0 +
1

γ
∥Wx̄∥22 =

n∑
i=1

1{x̄i ̸= 0}+ 1

γ

n∑
i=1

w2
i x̄

2
i ≤

n∑
i=1

z̄i +
1

γ

n∑
i=1

w2
i θ̄i.

Thus, the solution x̄ is a feasible solution to (4) that achieves an objective value equal
to or less than the objective value that (x̄, z̄, θ̄) achieves in (12). This completes the
proof.

4.1 A Second Order Cone Relaxation

Problem (12) is a reformulation of Problem (4) where the problem’s nonconvexity is
entirely captured by the binary variables z. We now obtain a convex relaxation of
(4) by solving (12) with z ∈ conv({0, 1}n) = [0, 1]n. This gives the following convex
optimization problem:

10

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i.

(13)

A natural question to ask is how problem (13) compares to the Weighted Basis Pursuit
Denoising problem given by (7), a common convex approximation for CS in the noisy
setting. Surprisingly, under mild conditions on the regularization parameter γ, it can
be shown that solving (13) is exactly equivalent to solving (7). This implies that though
Basis Pursuit Denoising is typically motivated as a convex approximation to CS in the
presence of noise, it can alternatively be understood as the natural convex relaxation
of the mixed integer second order cone problem given by (12) for appropriately chosen
values of γ. We formalize this statement in Theorem 4.
Theorem 4. There exists a finite value γ0 <∞ such that for all γ̄ ≥ γ0, any vector
x⋆ that is an optimal solution of (7) is also an optimal solution of (13). Let X = {x :
∥Ax− b∥22 ≤ ϵ}, the feasible set of (7). We can take γ0 = maxx∈X ∥Wx∥2∞.

Proof. Rewrite (13) as the two stage optimization problem given by (14).

min
x∈X

min
z,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. x2
i ≤ ziθi ∀ i, 0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i.

(14)

Let γ0 = maxx∈X ∥x∥2∞. To establish the result, we will show that for any x ∈ X the
optimal value of the inner minimization problem in (14) is a scalar multiple of the ℓ1
norm of Wx provided that γ ≥ γ0.

Fix γ ≥ γ0 and consider any x̄ ∈ X . We make three observations that allow us to
reformulate the inner minimization problem in (14):

1. The objective function of the inner minimization problem is separable.
2. For any i such that x̄i = 0, it is optimal to set zi = θi = 0 which results in no

contribution to the objective function.

3. For any i such that x̄i ̸= 0, we must have zi > 0 and it is optimal to take θi =
x̄2
i

zi
.

We can therefore equivalently express the inner minimization problem of (14) as:

min
z∈Rn

∑
i:xi ̸=0

[
zi +

w2
i

γ
· x̄

2
i

zi

]
s.t. 0 < zi ≤ 1 ∀ i.

(15)

Let fi(z) = z+
w2

i

γ ·
x̄2
i

z . We want to minimize the function fi(z) over the interval (0, 1] for

all i such that x̄i ̸= 0. Fix an arbitrary i satisfying x̄i ̸= 0. We have d
dz fi(z) = 1−w2

i

γ ·
x̄2
i

z2
i

and d
dz fi(z

⋆) = 0 ⇐⇒ z⋆ = ± wi√
γ |x̄i|. The condition γ ≥ γ0 = maxx∈X ∥Wx∥2∞ and

the fact that x̄ ∈ X implies that 1 ≥ w2
i x̄

2
i

γ for all i. Thus, we have 0 < wi√
γ |x̄i| ≤ 1. Let

11

z̄ = wi√
γ |x̄i|. Noting that limz−→0+ fi(z) = ∞, the minimum of fi(z) over the interval

(0, 1] must occur either at 1 or z̄. We have(
wi√
γ
|x̄i|−1

)2

≥ 0 =⇒ w2
i x̄

2
i

γ
−2wi√

γ
|x̄i|+1 ≥ 0 =⇒ fi(1) =

w2
i x̄

2
i

γ
+1 ≥ 2wi√

γ
|x̄i| = fi(z̄).

Therefore, the minimum of fi(z) on (0, 1] occurs at z̄ = wi√
γ |x̄i| and is equal to fi(z̄) =

2√
γ |x̄i|. This allows us to conclude that the optimal value of (14) is given by:

∑
i:xi ̸=0

2wi√
γ
|x̄i| =

n∑
i=1

2wi√
γ
|x̄i| =

2
√
γ
∥Wx̄∥1.

We have shown that for fixed x ∈ X , the optimal value of the inner minimization
problem of (14) is a scalar multiple of the ℓ1 norm of Wx. We can rewrite (14) as

min
x∈X

2
√
γ
∥Wx̄∥1, (16)

which has the same set of optimal solutions as (7) because this set is invariant under
scaling of the objective function. This completes the proof.

Remark 2. Note that by taking W = I, it immediately follows from Theorem 4 that
any vector x⋆ that is an optimal solution of (5) is also an optimal solution of (13)
when we set γ ≥ γ0 = maxx∈X ∥x∥2∞.

Convex relaxations of nonconvex optimization problems are helpful for two rea-
sons. Firstly, a convex relaxation provides a lower (upper) bound to a minimization
(maximization) problem which given a feasible solution to the nonconvex optimization
problem provides a certificate of worst case suboptimality. Secondly, convex relax-
ations can often be used as building blocks in the construction of global optimization
algorithms or heuristics for nonconvex optimization problems. Strong convex relax-
ations are desirable because they produce tighter bounds on the optimal value of
the problem of interest (stronger certificates of worst case suboptimality) and gen-
erally lead to more performant global optimization algorithms and heuristics. Let
X1 = {(z,x,θ) ∈ Rn × Rn × Rn : ∥Ax − b∥22 ≤ ϵ, x2

i ≤ ziθi ∀ i, θi ≥ 0 ∀ i} and
X1 = {(z,x,θ) ∈ Rn × Rn × Rn : z ∈ {0, 1}n}. We can equivalently write (12) as:

min
(z,x,θ)∈X1∩X2

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi.

The strongest possible convex relaxation to (12) would be obtained by minimizing the
objective function in (12) subject to the constraint that (z,x,θ) ∈ conv(X1∩X2). Since
the objective function is linear in the decision variables, solving over conv(X1 ∩ X2)
would produce an optimal solution to (12) since the objective would be minimized at
an extreme point of conv(X1∩X2) which by definition must be an element of X1∩X2.

12

Unfortunately, in general it is hard to represent conv(X1∩X2) explicitly. The relaxation
given by (13) consists of minimizing the objective function of (12) subject to the
constraint that (z,x,θ) ∈ (conv(X1) ∩ conv(X2)) = X1 ∩ conv(X2) ⊇ conv(X1 ∩ X2).

Stronger convex relaxations to (12) can be obtained by introducing additional valid
inequalities to (12) and then relaxing the integrality constraint on z. For example,
suppose we know a value M ≥ γ0 = maxx∈X ∥Wx∥2∞. We can use this value to
introduce Big-M constraints similar in similar flavour to the formulation proposed by
[11]. Under this assumption, it follows immediately that any feasible solution to (12)
satisfies −Mzi ≤ wixi ≤ Mzi ∀ i. Thus, we can obtain another convex relaxtion of
(12) by minimizing its objective function subject to the constraint (z,x,θ) ∈ X̄1 ∩
conv(X2) ⊇ conv(X1 ∩ X2) where we define X̄1 = X1 ∩ {(z,x,θ) ∈ Rn × Rn × Rn :
−Mzi ≤ wixi ≤Mzi ∀ i}. Explicitly, with knowledge of such a value M we can solve

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

w2
i θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i,

−Mzi ≤ wixi ≤Mzi ∀ i, 0 ≤ zi ≤ 1 ∀ i, θi ≥ 0 ∀ i.

(17)

Remark 3. Given any input data A, b, ϵ, if M satisfies M ≥ γ0 = maxx∈X ∥Wx∥2∞,
then the optimal value of (17) is no less than the optimal value of (13). This fol-
lows immediately by noting that under the condition on M , the feasible set of (17) is
contained in the feasible set of (13).

The mixed integer second order cone reformulation and convex relaxation intro-
duced in this section lead to two approaches for solving (4) to certifiable optimality.
On the one hand, solvers like Gurobi contain direct support for solving mixed integer
second order cone problems so problem (4) can be solved directly. On the other hand,
it is possible to develop a custom branch-and-bound routine that leverages a modifi-
cation of (7) to compute lower bounds. We illustrate this in Section 5. This custom,
problem specific approach outperforms Gurobi because (5) is a more tractable prob-
lem than (13) due in part to the presence of fewer second order cone constraints which
decreases the computational time spent computing lower bounds.

4.2 A Positive Semidefinite Cone Relaxation

In this section, we formulate (4) as a polynomial optimization problem and present a
semidefinite relaxation using the sum of squares (SOS) hierarchy [38]. We show that
this semidefinite relaxation is tighter than the second order cone relaxation presented
previously.

Let f(z,x) =
∑n

i=1 zi+
1
γ

∑n
i=1 w

2
i θi denote the objective function of (12). Notice

that the constraint z ∈ {0, 1}n in (12) is equivalent to the constraint z◦z = z (where ◦
denotes the element wise product). With this observation, we can express the feasible
set of (12) as the semialgebraic set given by:

Ω = {(z,x) ∈ Rn × Rn : ϵ− ∥Ax− b∥22 ≥ 0, xizi − xi = 0 ∀ i, z2i − zi = 0 ∀ i}.

13

Thus, we can equivalently write (12) as min(z,x)∈Ω f(z,x). It is not difficult to see
that the preceding optimization problem has the same optimal value as the problem
given by

max
λ∈R

λ s.t. f(z,x)− λ ≥ 0 ∀ (z,x) ∈ Ω. (18)

Problem (18) is a polynomial optimization problem that has the same optimal value
as (4).

We can obtain tractable lower bounds for (18) by leveraging techniques from sum
of squares (SOS) optimization [39, 40]. A polynomial g ∈ R[x] is said to be sum of
squares (SOS) if for some K ∈ N there exists polynomials {gk}Kk=1 ⊂ R[x] such that

g =
∑K

k=1 g
2
k. We denote the set of all SOS polynomials as Σ2[x]. Moreover, we denote

the set of polynomials of degree at most d as Rd[x] ⊂ R[x] and we denote the set of
SOS polynomials of degree at most 2d as Σ2

d[x] ⊂ Σ2[x]. It is trivial to see that any
polynomial that is SOS is globally non-negative. More generally, SOS polynomials can
be utilized to model polynomial non-negativity over arbitrary semialgebraic sets. The
quadratic module associated with the semialgebraic set Ω is defined as:

QM(Ω) =

{
s0(z,x) + s1(z,x)(ϵ− ∥Ax− b∥22) +

n∑
i=1

ti(z,x)(xizi − xi)

+

n∑
i=1

ri(z,x)(z
2
i − zi) : s0, s1 ∈ Σ2[z,x], ti, ri ∈ R[z,x] ∀ i

}
.

(19)

It is straightforward to see that if a function h(z,x) is an element of QM(Ω), then
h(z,x) is non-negative on Ω (since for points in Ω, h(z,x) takes the form of the sum
of two SOS polynomials). Thus, membership in QM(Ω) is a sufficient condition for
non-negativity on Ω. We further define the restriction of QM(Ω) to polynomials of
degree at most 2d as:

QMd(Ω) =

{
s0(z,x) + s1(z,x)(ϵ− ∥Ax− b∥22) +

n∑
i=1

ti(z,x)(xizi − xi)

+

n∑
i=1

ri(z,x)(z
2
i − zi) : s0 ∈ Σ2

d[z,x], s1 ∈ Σ2
d−1[z,x], ti, ri ∈ R2d−2[z,x] ∀ i

}
.

(20)
It is immediate that QMd(Ω) ⊂ QM(Ω) and membership in QMd(Ω) provides a
certificate of non-negativity on Ω. Importantly, given an arbitrary polynomial h(z,x)
it is possible to verify membership in QMd(Ω) by checking feasibility of a semidefinite
program. Thus, for any d ∈ N, we obtain a semidefinite relaxation of (4) by solving:

max
λ∈R

λ s.t. f(z,x)− λ ∈ QMd(Ω). (21)

Since QMd(Ω) ⊂ QMd+1(Ω), (21) produces an increasingly strong lower bound with
increasing values of d. A natural question to ask is how the relaxation given by (21)
compares to that given by (13). We answer this question in Theorem 5.

14

Theorem 5. For every d ≥ 1, the optimal value of (21) is no less than the optimal
value of (13).

Proof. Without loss of generality, we take W = I. We prove the result for γ ≥ γ0 =
maxx∈X ∥x∥2∞ though the result extends naturally to the case of arbitrary γ. Fix any
ϵ > 0, A ∈ Rm×n and b ∈ Rm. By Theorem 4, (13) has the same optimal value as (7).
Consider the dual of (7) which for W = I is given by

max
ν∈Rm

bTν −
√
ϵ∥ν∥2 s.t. |νTAi| ≤

2
√
γ
∀ i. (22)

Strong duality holds between (22) and (7) since ν = 0 is always a strictly feasible
point in (22) [41]. Fix d = 1. We will show that for any feasible solution to (22), we can
construct a feasible solution to (21) that achieves the same objective value. Let ν̄ ∈ Rm

denote an arbitrary feasible solution to (22). Define r̄i(z,x) = −1, t̄i(z,x) = AT
i ν̄ for

all i, s̄1(z,x) = τ and define s̄0(z,x) = monomial(z,x, 1)T S̄monomial(z,x, 1) where
monomial(x, z, 1) ∈ R[z,x]2n+1 is the vector of monomials in R[z,x] of degree at
most 1 and S̄ ∈ R2n+1×2n+1 is given by

S̄ =

 1
γ In + τATA diag(−AT ν̄

2) AT (12 ν̄ − τb)

diag(−AT ν̄
2) In 0n

(12 ν̄
T − τbT)A 0T

n τ(bT b− ϵ)− ν̄T b+
√
ϵ∥ν̄∥2

 .

Clearly, we have t̄i, r̄i ∈ R0[z,x] for all i and s̄1 ∈ Σ2
0[z,x] provided τ ≥ 0. We claim

that s̄0 ∈ Σ2
1[z,x] for an appropriately chosen value of τ ≥ 0. To see this, note that by

the generalized Schur complement lemma (see Boyd et al. 1994, Equation 2.41), S̄ ⪰ 0

if and only if

(
In 0n

0T
n σ

)
⪰ 0 and 1

γ In+τATA−diag(−AT ν̄
2)2− 1

4σA
T (12 ν̄−τb)(12 ν̄

T −

τbT)A ⪰ 0 where we let σ = τ(bT b−ϵ)−ν̄T b+
√
ϵ∥ν̄∥2. The first condition is satisfied

provided that σ ≥ 0 ⇐⇒ τ ≥ ν̄T b−
√
ϵ∥ν̄∥2

(bT b−ϵ)
> 0. Moreover, it is possible to choose

τ ≥ ν̄T b−
√
ϵ∥ν̄∥2

(bT b−ϵ)
such that the matrix − 1

4σA
T (12 ν̄ − τb)(12 ν̄

T − τbT)A is positive

semidefinite, while the matrix 1
γ In+ τATA−diag(−AT ν̄

2)2 is positive semidefinite for

any τ ≥ 0 as long as |ν̄TAi| ≤ 2√
γ for all i which is guaranteed by the feasibility of ν̄

in (22). Thus, we have S̄ ⪰ 0 =⇒ s̄0 ∈ Σ2
1[z,x]. Finally, we note that

s̄0 + s̄1(ϵ− ∥Ax− b∥22) +
n∑

i=1

t̄i(xizi − xi) +

n∑
i=1

r̄i(z
2
i − zi) = f(z,x)− bT ν̄ +

√
ϵ∥ν̄∥2

We have shown that given an arbitrary feasible solution to (22), we can construct a
solution that is feasible to (21) that achieves the same objective value. Note that this
construction holds for any d ≥ 1. Thus, for any d ∈ N the optimal value of (21) is at
least as high as the optimal value of (13).

15

We have shown that for any value of d, (21) produces a lower bound on the optimal
value of (4) at least as strong as the bound given by (13). Unfortunately, (21) suffers
from scalability challenges as it requires solving a positive semidefinite program with
PSD constraints on matrices with dimension

(
2n+d

d

)
×
(
2n+d

d

)
. We further discuss the

scalability of (21) in Section 6. Note that since (21) is a maximization problem, any
feasible solution (in particular a nearly optimal one) still consists of a valid lower
bound on the optimal value of (4).

5 Branch-and-Bound

In this section, we propose a branch-and-bound algorithm in the sense of [42, 43] that
computes certifiably optimal solutions to Problem (3) by solving the mixed integer
second order cone reformulation given by (12). We state explicitly our subproblem
strategy in Section 5.1, before stating our overall algorithmic approach in Section 5.2.

5.1 Subproblems

Henceforth, for simplicity we will assume the weights wi take value 1 for all i. What
follows generalizes immediately to the setting where this assumption does not hold.
Notice that (12) can be equivalently written as the two stage optimization problem
given by minz∈{0,1}n h(z) where we define h(z) as:

h(z) = min
x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i, θi ≥ 0 ∀i.

(23)

Note that in general, there exist binary vectors z̄ ∈ {0, 1}n such that the optimization
problem in (23) is infeasible. For any such z̄, we define h(z̄) = ∞. We construct an
enumeration tree that branches on the entries of the binary vector z which models the
support of x. A (partial or complete) sparsity pattern is associated with each node
in the tree and is defined by disjoint collections I0, I1 ⊆ [n]. For indices i ∈ I0, we
constrain zi = 0 and for indices j ∈ I1, we constrain zj = 1. We say that I0 and I1
define a complete sparsity pattern if |I0| + |I1| = n, otherwise we say that I0 and
I1 define a partial sparsity pattern. A node in the tree is said to be terminal if its
associated sparsity pattern is complete.

Each node in the enumeration tree has an associated subproblem, defined by the
collections I0 and I1, which is given by:

min
z∈{0,1}n

h(z), s.t. zi = 0 ∀ i ∈ I0, zj = 1 ∀ j ∈ I1. (24)

Note that if I0 = I1 = ∅, (24) is equivalent to (12) (under the assumetion that wi = 1
for all i).

16

5.1.1 Subproblem Lower Bound

Let I = I0 ∪ I1. We obtain a lower bound for (24) by relaxing the binary variables
that are not fixed (zi such that i /∈ I) to take values within the interval [0, 1]. The
resulting lower bound is given by

min
z,x,θ∈Rn

n∑
i=1

zi +
1

γ

n∑
i=1

θi

s.t. ∥Ax− b∥22 ≤ ϵ, x2
i ≤ ziθi ∀ i, 0 ≤ zi ≤ 1 ∀ i /∈ I,

zi = 0 ∀ i ∈ I0, zi = 1 ∀ i ∈ I1, θi ≥ 0 ∀ i.

(25)

Notice that for an arbitrary set Ī0 ⊆ [n], problems (24) and (25) are infeasible if and
only if the set {x : ∥Ax − b∥22 ≤ ϵ, xi = 0 ∀ i ∈ Ī0} is empty. Moreover, observe
it immediately follows that if (24) and (25) are infeasible for Ī0, then they are also
infeasible for any set Î0 ⊆ [n] satisfying Ī0 ⊆ Î0. We use this observation in section
5.2 to generate feasibility cuts whenever an infeasible subproblem is encountered in
the branch-and-bound tree. Using a similar argument as in the proof of Theorem 4,
it can be shown that when γ ≥ γ0 = maxx∈X ∥x∥2∞, (25) is equivalent to the convex
optimization problem given by (26):

min
x∈Rn

|I1|+
1

γ

∑
i∈I1

x2
i +

2
√
γ

∑
i/∈I

|xi|

s.t. ∥Ax− b∥22 ≤ ϵ, xi = 0 ∀ i ∈ I0,
(26)

where if x⋆ is optimal to (26), then (z⋆,x⋆,θ⋆) is optimal to (25) taking z⋆i = |xi|⋆√
γ and

θ⋆i = x⋆2
i . Problem (26) is a second order cone problem that that emits the following

dual:

max
ν∈Rm

|I1|+ bTν −
√
ϵ∥ν∥2 −

γ

4
νT

∑
i∈I1

(AiA
T
i)ν s.t. |νTAi| ≤

2
√
γ
∀ i /∈ I. (27)

Strong duality holds between (26) and (27) since ν = 0 is always a strictly feasible
point in (27) for any collections I0, I1 [41]. In our branch-and-bound implementation
described in 5.2, we compute lower bounds by solving (26) using Gurobi. We note
that depending on the solver employed, it may be beneficial to compute lower bounds
using (27) in place of (26).

5.1.2 Subproblem Upper Bound

Recall that solving Problem (2) can be interpreted as determining the minimum num-
ber of columns from the input matrix A that must be selected such that the residual
of the projection of the input vector b onto the span of the selected columns has ℓ2
norm equal to at most

√
ϵ. The same interpretation holds for Problem (3) under the

assumption that the ℓ2 regularization term in the objective is negligible.
Consider an arbitrary node in the branch-and-bound algorithm and let x⋆ denote

an optimal solution to (26). To obtain an upperbound to (24), we define an ordering

17

on the columns of A and iteratively select columns from this ordering from largest
to smallest until the ℓ2 norm of the residual of the projection of b onto the selected
columns is less than

√
ϵ. The ordering of the columns of A corresponds to sorting the

entries of x⋆ in decreasing absolute value. Specifically, we have Ai ⪰ Aj ⇐⇒ |x⋆
i | ≥

|x⋆
j |. Algorithm 1 outlines this approach. For an arbitrary collection of indices It ⊆ [n],

we let A(It) ∈ Rm×|It| denote the matrix obtained by stacking the |It| columns of
A corresponding to the indices in the set It. Specifically, if ik denotes the kth entry
of It, then the kth column of A(It) is Ai. Let x

ub denote the output of Algorithm 1.
The objective value achieved by xub in (3) is the upper bound.

Algorithm 1 Branch-and-Bound Upper Bound

Require: A ∈ Rm×n, b ∈ Rm, ϵ > 0. An optimal solution x⋆ of (26).
Ensure: x̄ is feasible to (3).
1: I0 ←− ∅;
2: r0 ←− b;
3: t←− 0;
4: δ0 ←− ∥r0∥22
5: while δt > ϵ do
6: it ←− argmaxi∈[n]\It

|x⋆
i |;

7: It+1 ←− It ∪ it;

8: xt+1 ←−
[
A(It+1)

TA(It+1)
]†
A(It+1)

T b;
9: rt+1 ←− b−A(It+1)xt+1;

10: δt+1 ←− ∥rt+1∥22;
11: t←− t+ 1;
12: end while
13: Define x̄ ∈ Rn as x̄(ik) = xt(k) for ik ∈ It and x̄(ik) = 0 otherwise;
14: Return x̄.

The computational bottleneck of Algorithm 1 is computing the matrix inverse of
A(It)TA(It) ∈ R|It|×|It| at each iteration. Doing so explicitly at each iteration t
would require O(|It|3) operations. Letting k⋆ = ∥xub∥0 where xub is the output of
Algorithm 1, the total cost of executing these matrix inversions is

k⋆∑
t=1

|It|3 =

k⋆∑
t=1

t3 =

[
k⋆(k⋆ + 1)

2

]2
= O(k⋆4)

However, it is possible to accelerate the computation of these matrix inverses by lever-
aging the fact that A(It) and A(It+1) differ only by the addition of one column and
leveraging block matrix inversion which states that for matrices C ∈ Rn1×n1 ,D ∈
Rn2×n2 and U ,V ∈ Rn1×n2 , we have:

[
C U
V T D

]†
=

[
C† +C†U(D − V TC†U)−1V TC† −C†U(D − V TC†U)−1

(D − V TC†U)−1V TC† (D − V TC†U)−1

]

18

where it is assumed that the matrix (D − V TC†U) is invertible [44]. Letting n1 =
|It|, n2 = 1,C = A(It)TA(It),U = V = A(It)Tait , and D = aTitait , we can compute
the matrix inverse of A(It+1)

TA(It+1) using O(|It|2 +m|It|) operations. With this
implementation, the total cost of executing matrix inversions in Algorithm 1 becomes

k⋆∑
t=1

|It|2+m|It| =
k⋆∑
t=1

t2+m

k⋆∑
t=1

t =
k⋆(k⋆ + 1)(2k⋆ + 1)

6
+
mk⋆(k⋆ + 1)

2
= O(k⋆3+mk⋆2)

which is a significant improvement over the naive O(k⋆4) approach.

5.2 Branch-and-Bound Algorithm

Having stated how we can compute upper and lower bounds to (23) at each node in the
enumeration tree, we are now ready to present the branch-and-bound algorithm in its
entirety. Algorithm 2 describes our approach which is based on the implementation by
[45]. Though branching rules and node selection rules for branch-and-bound algorithms
form a rich literature [46], we follow the design of [45] and employ the most fractional
branching rule and least lower bound node selection rule.

Explicitly, for an arbitrary non-terminal node p, let z∗ be the optimal vector z of
the node relaxation given by (25). We branch on entry i⋆ = argmini/∈I0∪I1

|zi − 0.5|.
When selecting a node to investigate, we select the node whose lower bound is equal
to the global lower bound. If multiple such nodes exist, we choose arbitrarily from
the collection of nodes satisfying this condition. Suppose that a given node produces
a subproblem (26) that is infeasible where we let Ī0 correspond to the zero index
set of this node. Note that this implies that all child nodes of this node will also
produce infeasible subproblems. Accordingly, to prune this region of the parameter
space entirely, we introduce the feasibility cut

∑
i∈Ī0

zi ≥ 1. Let f(x) = ∥x∥0+ 1
γ ∥x∥

2
2,

the objective function of (3) and let g(I0, I1) denote the optimal value of (26) for any
collections I0, I1 ⊆ [n], I0 ∩I1 = ∅. The final objective value returned by Algorithm 2
is given by mini f(xi) where {xi}i denotes the collection of feasible solutions produced
by Algorithm 1 at any point during the execution of Algorithm 2. The output lower
bound of Algorithm 2 is given by min(I0,I1)∈N g(I0, I1) where N denotes the set of
non-discarded nodes upon the termination of Algorithm 2.
Theorem 6. Algorithm 2 terminates in a finite number of iterations and returns a δ
globally optimal solution to (2).

Proof. The proof follows the proof of Theorem 21 in [45]. Note that Algorithm 2
can never visit a node more than once and that there is a finite number of partial
and complete sparsity patterns (each corresponding to a possible node in the tree)
because the set {0, 1}n is discrete. Thus, Algorithm 2 terminates in a finite number of
iterations. Moreover, upon termination we must have ub−lb

ub ≤ δ, therefore the output
solution x̄ is δ globally optimal to problem (3) by definition since lb consists of a global
lower bound and x̄ is feasible to (3).

We conclude the discussion of Algorithm 2 by describing two modifications that
accelerate its execution time (or equivalently, improve its scalability) at the expense of

19

Algorithm 2 Optimal Compressed Sensing

Require: A ∈ Rm×n, b ∈ Rm, ϵ, γ ∈ R+. Tolerance parameter δ ≥ 0.
Ensure: x̄ solves (3) within the optimality tolerance δ.

1: if ∥(I −A
[
ATA

]†
AT)b∥22 > ϵ then

2: Return ∅;
3: end if
4: if ∥b∥22 ≤ ϵ then
5: Return 0;
6: end if
7: p0 ←− (I0, I1) = (∅, ∅);
8: N ←− {p0};
9: lb←− optimal value of (26);

10: x̄←− solution returned by Algorithm 1;
11: ub←− f(x̄);
12: while ub−lb

ub > ϵ do
13: select (I0, I1) ∈ N according to the node selection rule;
14: select an index i /∈ I0 ∪ I1 according to the branching rule;
15: for k = 0, 1 do
16: l←− (k + 1) mod 2;

17: newnode ←−
((
Ik ∪ i

)
, Il

)
;

18: if newnode violates an existing feasibility cut then
19: continue;
20: end if
21: if newnode is infeasible then
22: Add the feasibility cut

∑
i∈I0

zi ≥ 1;
23: end if
24: lower ←− lowerBound(newnode);
25: upper ←− upperBound(newnode) with feasible point x⋆;
26: if upper < ub then
27: ub←− upper ;
28: x̄←− x⋆;
29: remove any node in N with lower ≥ ub;
30: end if
31: if lower < ub then
32: add newnode to N ;
33: end if
34: end for
35: remove (I0, I1) from N ;
36: update lb to be the lowest value of lower over N ;
37: end while
38: Return x̄, lb.

20

sacrificing the universal optimality guarantee by drawing on techniques from the high
dimensional sparse machine learning literature [47] and the deep learning literature
[48].

5.2.1 Backbone Optimization

Note that the total number of terminal nodes in the branch-and-bound tree is at most∑n
k=1

(
n
k

)
= 2n in the worst case so the total number of nodes can be upper bounded

by 2n+1− 1. Since the runtime of Algorithm 2 (and the feasible space) is proportional
to the number of nodes explored which grows exponentially in n, reducing n leads to
reduced run time. Observe that if we knew in advance that the support of the optimal
solution to (3) was contained within a set of cardinality less than n, then we could
run Algorithm (2) on the corresponding reduced feature set which would result in
improving the runtime of (2) while preserving its optimality guarantee. Formally, let
x⋆ denote an optimal solution to (3). If we know a priori that support(x⋆) ⊆ I ⊂ [n],
then we can pass A(I) to Algorithm 2 in place of A without discarding x⋆ from the
feasible set. The speed up can be quite significant when |I| ≪ n.

Knowing with certainty that support(x⋆) ⊆ I ⊂ [n] a priori is too strong an
assumption, however a more reasonable assumption is knowing a priori that with high
probability there exists a good solution x̄ with support(x̄) ⊆ I ⊂ [n]. In this setting,
we can still pass A(I) to Algorithm 2 and benefit from an improved runtime at the
expense of sacrificing optimality guarantees. In this setting, the columns of A(I) can
be interpreted as a backbone for (3) [47]. In practice, I can be taken to be the set of
features selected by some heuristic method. In Section 6, we take I = {i : |x̄i| ≥ 10−6}
where x̄ is an optimal solution to (5).

5.2.2 Early Stopping

A common property of branch-and-bound algorithms is that the algorithm quickly
arrives at an optimal (or near-optimal) solution early during the optimization proce-
dure and spends the majority of its execution time improving the lower bound to obtain
a certificate of optimality. Accordingly, this motivates halting Algorithm 2 before it
terminates and taking its upper bound at the time of termination to be its output.
Doing so is likely to still yield a high quality solution while reducing the Algorithm’s
runtime. In Section 6, we place an explicit time limit on Algorithm 2 and return the
current upper bound if the Algorithm has not already terminated before reaching the
time limit. Note that this approach shares strong connections with early stopping in
the training of neural networks [48]. A well studied property of over-parameterized
neural networks is that as the optimization procedure progreses, the error on the
training data continues to decrease though the validation error plateaus and some-
times even increases. Given that the validation error is the metric of greater import,
a common network training technique is to stop the optimization procedure after the
validation error has not decreased for a prespecified number of iterations. To illustrate
the connection in the case of Algorithm 2, the upper bound loosely plays the role of
the validation error while the lower bound loosely plays the role of the training error.
Note that the neural network literature suggests an alternate approach to early stop-
ping Algorithm 2 (instead of an explicit time limit) by terminating the algorithm after

21

the upper bound has remained unchanged after visiting some prespecified number of
nodes in the enumeration tree.

6 Computational Results

We evaluate the performance of our branch-and-bound algorithm (Algorithm 2, with
γ =

√
n), our second order cone lower bound (13) (with γ =

√
n) and our semidef-

inite lower bound (21) (with γ =
√
n and d = 1) implemented in Julia 1.5.2 using

the JuMP.jl package version 0.21.7, using Gurobi version 9.0.3 to solve all sec-
ond order cone optimization (sub)problems and using Mosek version 9.3 to solve
all semidefinite optimization problems. We compare our methods against Basis Pur-
suit Denoising (BPD) given by (5), Iterative Reweighted ℓ1 Minimizaton (IRWL1)
described in Section 2.2 and Orthogonal Matching Pursuit (OMP) described in
Section 2.3. We perform experiments on both synthetic data and real world data.
We conduct our experiments on MIT’s Supercloud Cluster [49], which hosts Intel
Xeon Platinum 8260 processors. To bridge the gap between theory and practice, we
have made our code freely available on GitHub at github.com/NicholasJohnson2020/
DiscreteCompressedSensing.jl.

6.1 Synthetic Data Experiments

To evaluate the performance of Algorithm 2, BPD, IRWL1 and OMP on synthetic
data, we consider the sparsity of the solution returned by each method, its accuracy
(ACC), true positive rate (TPR) and true negative rate (TNR). Let xtrue ∈ Rn denote
the ground truth and consider an arbitrary vector x̂ ∈ Rn. Let Itrue = {i : |xtrue

i | >
10−4}, Î = {i : |x̂i| > 10−4}. The sparsity of x̂ is given by |Î|. We define the accuracy
of x̂ as

ACC(x̂) =

∑
i∈Itrue 1{|x̂i| > 10−4}+

∑
i/∈Itrue 1{|x̂i| ≤ 10−4}

n
.

Similarly, we define the true positive rate of x̂ as

TPR(x̂) =

∑
i∈Itrue 1{|x̂i| > 10−4}

|Î|
,

and we define the true negative rate of x̂ as

TNR(x̂) =

∑
i/∈Itrue 1{|x̂i| ≤ 10−4}

n− |Î|
.

To evaluate the performance of (13) and (21), we consider the strength of the lower
bound and execution time of each method. We seek to answer the following questions:

1. How does the performance of Algorithm 2 compare to state-of-the-art methods such
as BPD, IRWL1 and OMP on synthetic data?

22

GitHub
github.com/NicholasJohnson2020/DiscreteCompressedSensing.jl
github.com/NicholasJohnson2020/DiscreteCompressedSensing.jl

2. How is the performance of Algorithm 2 affected by the number of features n, the
underlying sparsity k of the ground truth, and the tolerance parameter ϵ?

3. How does the strength of the lower bound produced by (21) compare to that
produced by (13)?

6.1.1 Synthetic Data Generation

To generate synthetic data x ∈ Rn,A ∈ Rm×n and b ∈ Rm, we first select a random
subset of indices Itrue ⊂ [n] that has cardinality k (|Itrue| = k) and sample xi ∼
N(0, σ2

n) for i ∈ Itrue (for i /∈ Itrue, we fix xi = 0). Next, we sample Aij ∼ N(0, σ2

n)
where σ > 0 is a parameter that controls the signal to noise ratio. We fix σ = 10 and
m = 100 throughout all experiments unless stated otherwise. Next, we set b = Ax+n
where nj ∼ N(0, σ2). Finally, we set ϵ = α∥b∥22. α ∈ [0, 1] is a parameter that can
be thought of as controlling the proportion of observations that are allowed to go
unexplained by a solution to (3).

6.1.2 Sensitivity to n

We present a comparison of Algorithm 2 with BPD, IRWL1 and OMP as we vary
the number of features n. In these experiments, we fixed k = 10, and α = 0.2 across
all trials. We varied n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and we performed 100
trials for each value of n. We give Algorithm 2 a cutoff time of 10 minutes. For IRWL1,
we terminate the algorithm after the 50th iteration or after two subsequent iterates are
equal up to numerical tolerance. Formally, letting x̄t denote the iterate after iteration
t of IRWL1, we terminate the algorithm if either t > 50 or if ∥x̄t − x̄t−1∥2 ≤ 10−6.
Additionally, we further sparsify the solutions returned by BPD (respectively IRWL1)
by performing a greedy rounding following the procedure defined by Algorithm 1 where
we pass the solution returned by BPD (respectively IRWL1) as input to the algorithm
in place of an optimal solution to (26).

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true neg-
ative rate (TNR) for each method in Figure 1. We additionally report the sparsity
accuracy and execution time for each method in Tables A1, A2, A3 of Appendix A.
The performance metric of greatest interest is the sparsity. Our main findings from
this set of experiments are:

1. Algorithm 2 systematically produces sparser solutions than OMP, IRWL1 and BPD.
This trend holds in all but one trial (see Table A1). Algorithm 2 on average produces
solutions that are 2.71% more sparse than OMP, 16.62% more sparse than BPD
and 6.04% more sparse than IRWL1. BPD is the poorest performing method in
terms of sparsity of the fitted solutions. We remind the reader that sparsity is
computed only after a greedy rounding of the BPD (respectively IRWL1) solution.
The sparsity of the BPD (respectively IRWL1) solution prior to rounding is much
greater. Indeed, before further sparsifying the BPD (respectively IRWL1) solution,
the solution returned by Algorithm 2 is on average 66.33% (respectively 6.21%)
more sparse than the BPD (respectively IRWL1) solution. The sparsity of solutions
returned by all methods increases as the number of features n increases.

23

2. Algorithm 2 marginally outperforms the benchmark methods on accuracy with the
exception of the first two parameter configurations (n = 100 and n = 200, see Table
A2). The accuracy of all methods tends to trend upwards with increasing n.

3. The TPR and TNR of all methods are roughly comparable across these experi-
ments. The TPR of all methods decreases while the TNR increases as the number
of features n is increased.

200 400 600 800
N

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Sp
ar

si
ty

Sparsity vs N

BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

200 400 600 800
N

0.940

0.945

0.950

0.955

0.960

0.965

0.970

A
cc

ur
ac

y

Accuracy vs N

200 400 600 800
N

0.2

0.4

0.6

0.8

1.0

TP
R

TPR vs N

200 400 600 800
N

0.95

0.96

0.97

0.98

0.99
TN

R
TNR vs N

Fig. 1 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true negative
rate (bottom right) versus n with k = 10, and α = 0.2. Averaged over 100 trials for each parameter
configuration.

6.1.3 Sensitivity to k

We present a comparison of Algorithm 2 with BPD, IRWL1 and OMP as we vary k the
sparsity of the underlying ground truth signal. In these experiments, we fixed n = 200
and α = 0.2 across all trials. We varied k ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 55} and
we performed 100 trials for each value of k. We give Algorithm 2 a cutoff time of 10
minutes.

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true negative
rate (TNR) for each method in Figure 2. We additionally report the sparsity, accuracy

24

and execution time for each method in Tables A4, A5 and A6 of Appendix A. Our
main findings from this set of experiments are:

1. Consistent with the results in the previous section, Algorithm 2 systematically
produces sparser solutions than OMP, IRWL1 and BPD. This trend holds across
trials (see Table A4. Algorithm 2 on average produces solutions that are 4.78%
more sparse than OMP, 10.73% more sparse than BPD and 4.20% more sparse
than IRWL1. Before further sparsifying the BPD (respectively IRWL1) solution,
the solution returned by Algorithm 2 is on average 62.97% (respectively 4.29%)
more sparse than the BPD (respectively IRWL1) solution. BPD is again the poorest
performing method in terms of sparsity of the fitted solutions. IRWL1 and OMP
produce comparably sparse solutions. The sparsity of solutions returned by all
methods initially decreases than subsequently increases as the sparsity level k of
the ground truth signal increases.

2. Algorithm 2 is competitive with OMP and IRWL1 on accuracy and slightly outper-
forms BPD on accuracy for larger values of k The accuracy of all methods trends
downwards with increasing k.

3. The TPR and TNR of Algorithm 2, OMP, and IRWL1 are comparable across these
experiments. The TPR and TNR of BPD is competitive with the other methods
for small values of k, but slightly deteriorates for larger values of k.

6.1.4 Sensitivity to ϵ

We present a comparison of Algorithm 2 with BPD, IRWL1 and OMP as we vary
α which controls the value of the parameter ϵ. Recall we have ϵ = α∥b∥22, so α can
loosely be interpreted as the fraction of the measurements b that can be unexplained
by the returned solution to (3). In these experiments, we fixed n = 200 and k = 10
across all trials. We varied α ∈ {0.05, 0.1, 0.15, . . . , 0.9} and we performed 100 trials
for each value of α. We give Algorithm 2 a cutoff time of 10 minutes.

We report the sparsity, accuracy (ACC), true positive rate (TPR) and true nega-
tive rate (TNR) for each method in Figure 3, and we report the sparsity, accuracy and
execution time for each method in Tables A7, A8 and A9 of Appendix A. Consistent
with previous experiments, Algorithm 2 outperforms the benchmark methods in terms
of sparsity of the returned solution while having comparable performance on accu-
racy, TPR and TNR. Here, Algorithm 2 on average produces solutions that are 2.40%
more sparse than OMP, 5.92% more sparse than BPD and 2.54% more sparse than
IRWL1. Before further sparsifying the BPD (respectively IRWL1) solution, the solu-
tion returned by Algorithm 2 is on average 59.23% (respectively 2.62%) more sparse
than the BPD (respectively IRWL1) solution.

6.1.5 Lower Bound Performance

In Section 4, we reformulated (3) exactly as a mixed integer second order cone problem
and illustrated multiple approaches to obtain lower bounds on the optimal value of
the reformulation. In this Section, we compare the strength of the second order cone
relaxation given by (13) and the semidefinite cone relaxation given by (21). We fixed
k = 10 and we varied α ∈ {0.05, 0.1, 0.15, . . . , 0.9}. We report results for (n,m) =

25

10 20 30 40 50
K

11

12

13

14

15

16

17

Sp
ar

si
ty

Sparsity vs K
BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

10 20 30 40 50
K

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

Accuracy vs K

10 20 30 40 50
K

0.6

0.7

0.8

0.9

TP
R

TPR vs K

10 20 30 40 50
K

0.80

0.85

0.90

0.95

TN
R

TNR vs K

Fig. 2 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true negative
rate (bottom right) versus k with N = 200 and α = 0.2. Averaged over 100 trials for each parameter
configuration.

(25, 100) in Figure 4 and (n,m) = (50, 25) in Figure 5. We performed 100 trials for
each value of α. Letting lbSOC denote the optimal value of (13) and lbSOS denote the

optimal value of (21), we define the SOS lower bound improvement to be lbSOS−lbSOC

lbSOC .
Consistent with the Theorem 5, Problem (21) produces a stronger lower bound than

Problem (13) at the expense of being more computationally intensive to compute due
to the presence of positive semidefinite constraints. On average, the bound produced
by (21) is 8.92% greater than the bound produced by (13). These results suggests
that if Problem (21) can be solved to optimality or near optimality efficiently at scale,
it could potentially be used to accelerate Algorithm 2 by producing stronger lower
bounds than the current approach, thereby allowing for a more aggressive pruning of
the feasible space. Off the shelf interior point methods suffer from scalability challenges
for semidefinite optimization problems.

6.2 Real World Data

We seek to answer the following question: how does the performance of Algorithm 2
compare to state-of-the-art methods such as BPD, IRWL1 and OMP on real world
data? To evaluate the performance of Algorithm 2, BPD, IRWL1 and OMP on real
world data, we consider the problem of compressed sensing for electrocardiogram

26

0.2 0.4 0.6 0.8
0

10

20

30

Sp
ar

si
ty

Sparsity vs

BnB_Primal
OMP
BPD_rounded
IRWL1_rounded

0.2 0.4 0.6 0.8

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
cc

ur
ac

y

Accuracy vs

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

TP
R

TPR vs

0.2 0.4 0.6 0.8

0.955

0.960

0.965

0.970

0.975

0.980

0.985

TN
R

TNR vs

Fig. 3 Sparsity (top left), accuracy (top right), true positive rate (bottom left) and true negative
rate (bottom right) versus α with n = 200 and k = 10. Averaged over 100 trials for each parameter
configuration.

(ECG) acquisition [5]. We obtain real ECG recording samples from the MIT-BIH
Arrhythmia Database (https://www.physionet.org/content/mitdb/1.0.0/) and con-
sider the performance of the methods in terms sparsity of the returned signal and
reconstruction error between the returned signal and the true signal.

6.2.1 ECG Experiment Setup

We employ the same 100 ECG recordings sampled at 360 Hz from the MIT-BIH
Arrhythmia Database that are used in [5]. These recordings collectively originate from
10 distinct patients (each contributing 10 independent recordings) and the recording
length of an individual record is 1024. In keeping with [5], we use 30 ECG recordings
as a training set to fit an overcomplete dictionary D via the K-SVD method [50]. We
fit a dictionary with 2000 atoms, meaning that D ∈ R1024×2000 and Xtrain ≈ DΘ
where Xtrain ∈ R1024×30 is a matrix whose columns are the training ECG signals and
Θ ∈ R2000×30 is a sparse matrix. Each column of Θ should be thought of as a (sparse)
representation of the corresponding column of Xtrain in the dictionary given by D
(∥Θ∥0 ≪ ∥Xtrain∥0). We employ the Bernouilli sensing matrix B ∈ R40×1024 consid-
ered by [5]. Given an ECG signal xtest ∈ R1024, we consider the perturbed observations
s = B(xtest + η) where η ∈ R1024 is a vector of mean 0 normal perturbations with

27

https://www.physionet.org/content/mitdb/1.0.0/

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

Lo
w

er
 B

ou
nd

Lower Bound vs

SOC
SOS

0.2 0.4 0.6 0.8

10.0

12.5

15.0

17.5

20.0

22.5

Im
pr

ov
em

en
t (

%
)

SOS Lower
Bound Improvement

Fig. 4 Problem (3) lower bound (left) produced by Problem (13) (SOC) and Problem (21) (SOS)
with d = 1. Percent improvement of Problem (3) lower bound of compared to (right). n = 25,m = 100
and k = 10.

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

Lo
w

er
 B

ou
nd

Lower Bound vs

SOC
SOS

0.2 0.4 0.6 0.8
4

6

8

10

12

14

Im
pr

ov
em

en
t (

%
)

SOS Lower
Bound Improvement

Fig. 5 Problem (3) lower bound (left) produced by Problem (13) (SOC) and Problem (21) (SOS)
with d = 1. Percent improvement of Problem (3) lower bound of compared to (right). n = 50,m = 25
and k = 10.

variance
(

∥xtest∥1

4·1024

)2

I. Figure 6 illustrates the ECG signal and perturbed ECG signal

for record 31 of the dataset. With these preliminaries, we consider the reconstruction
problem given by

min
θ∈R2000

∥θ∥0 +
1

γ
∥θ∥22

s.t. ∥BDθ − s∥22 ≤ ϵ.

(28)

where we set ϵ = 1.05 · ∥s − Bxtest∥22. Note that (28) is equivalent to (3) where

(θ,BD, s) play the role of (x,A, b) and we have (n,m) = (2000, 40). Letting θ̂ denote
a feasible solution to (28) returned by one of the solution methods, we employ 10−4

as the numerical threshold to compute the sparsity ∥θ̂∥0 of θ̂ and we define the ℓq

reconstruction error of θ̂ as
∥Dθ̂−xtest∥q

q

∥xtest∥q
q

for q ∈ {1, 2}.

28

0 200 400 600 800 1000

1.5

1.0

0.5

0.0

0.5

1.0

True Signal

0 200 400 600 800 1000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Perturbed Signal

Fig. 6 Ground truth ECG signal (left) and perturbed signal (right) for ECG record 31.

6.2.2 ECG Computational Results

We present a comparison of BPD, IRWL1, OMP and Algorithm 2 as we vary the
regularization parameter γ in (28). We considered values of γ in the set

Γ = {(8a+ 0.01)f(n) : a ∈ [14], f(n) ∈ {
√
n, n, n2}},

and we evaluate performance on the 70 ECG recordings that are not part of the
training set used to fit the overcomplete dictionary D. We give Algorithm 2 a cutoff
time of 5 minutes. As in the synthetic experiments, we terminate IRWL1 after the
50th iteration or after two subsequent iterates are equal up to numerical tolerance.
Moreover, we sparsify the solutions returned by BPD and IRWL1 using the procedure
given by Algorithm 1 as done in the synthetic experiments.

Figure 7 illustrates the average ℓ1 error (left) and average ℓ2 error (right) versus
the average sparsity of solutions returned by each method. Each red dot corresponds
to the performance of Algorithm 2 for a fixed value of γ ∈ Γ. Given that more sparse
solutions and solutions with lesser ℓ1 (respectively ℓ2) error are desirable, Figure 7
demonstrates that as we vary γ, the solutions returned by Algorithm 2 trace out an
efficient frontier that dominates the solutions returned by BPD, IRWL1 and OMP.
Indeed, for all benchmark methods (BPD, IRWL1 and OMP), there is a value of γ
such that Algorithm 2 finds solutions that achieve lower sparsity and lower recon-
struction error than the solution returned by the benchmark method. For the same
ℓ2 reconstruction error, Algorithm 2 can produce solutions that are on average 3.88%
more sparse than IRWL1, 6.29% more sparse than BPD and 19.70% more sparse than
OMP. For the same sparsity level, Algorithm 2 can produce solutions that have on
average 1.42% lower ℓ2 error than IRWL1, 2.66% lower ℓ2 error than BPD and 28.23%
lower ℓ2 error than OMP. Thus, Algorithm 2 outperforms BPD, IRWL1 and OMP on
this real world dataset.

6.3 Summary of Findings

We now summarize our findings from our numerical experiments. In Sections 6.1.2-
6.1.4, we see that across all experiments using synthetic data, Algorithm 2 produces

29

10 11 12 13 14
Sparsity

0.80

0.85

0.90

0.95

1.00

1
er

ro
r

OMP
BPD_rounded
IRWL1_rounded
BnB_Primal

10 11 12 13 14
Sparsity

0.9

1.0

1.1

1.2

2
er

ro
r

Fig. 7 ℓ1 reconstruction error (left) and ℓ2 reconstruction error (right) versus ℓ0 norm (Sparsity)
for ECG reconstructions obtained using OMP, BPD, IRWL1 and Algorithm 2 for varying values of
γ. n = 2000 and m = 40.

solutions that are on average 6.22% more sparse than the solutions returned by state
of the art benchmark methods after they are further sparsified by greedy rounding. If
we omit greedy rounding, Algorithm 2 produces solutions that are on average 17.17%
more sparse in our synthetic experiments. In Section 6.1.5, we find that the bound
produced by (21) is on average 8.92% greater than the bound produced by (13).
Finally, in Section 6.2, we see that for a given level of ℓ2 reconstruction error, Algorithm
2 produces solutions that are on average 9.95% more sparse than the solutions returned
by state of the art benchmark methods after they are further sparsified by greedy
rounding on the real world dataset we experiment with. Furthermore, for a given
sparsity level, Algorithm 2 produces solutions that have on average 10.77% lower ℓ2
reconstruction error than benchmark methods.

7 Conclusion

In this paper, we introduced an ℓ2 regularized formulation (3) for CS which emits a nat-
ural reformulation as a mixed integer second order cone program (12). We presented a
second order cone relaxation (13) and a stronger but more expensive semidefinite cone
relaxation (21) to (12). We presented Algorithm 2, a custom branch-and-bound algo-
rithm that can compute globally optimal solution for (3). We find that our approach
produces solutions that are on average 6.22% more sparse on synthetic data and
9.95% more sparse on real world ECG data when compared to state of the art bench-
mark approaches. Further work might focus on strengthening our convex relaxations
by deriving additional valid inequalities for (12) or increasing the scalability of our
branch-and-bound method. Algorithm 2 currently uses our second order cone relax-
ation to compute lower bounds. If fast problem specific solution methods could be
derived for our positive semidefinite cone relaxation, employing the latter for lower
bounds in Algorithm 2 could potentially lead to important scalability gains.

Appendix A Supplemental Computational Results

30

Table A1 Comparison of the sparsity of
solutions returned by (2), OMP, IRWL1 and
BPD for different values of n. Averaged over 100
trials for each parameter configuration.

Sparsity Level

N Algorithm 2 OMP IRWL1 BPD

100 5.0 5.0 5.0 5.0
200 11.9 12.3 12.5 13.6
300 15.5 16.2 16.6 18.8
400 17.1 17.9 18.5 21.3
500 17.5 17.9 18.7 21.9
600 17.3 17.7 18.4 21.6
700 16.9 17.2 18.3 21.1
800 16.7 17.0 18.1 21.0

Table A2 Comparison of the accuracy of
solutions returned by (2), OMP, IRWL1 and BPD
for different values of n. Averaged over 100 trials
for each parameter configuration.

Accuracy

N Algorithm 2 OMP IRWL1 BPD

100 0.944 0.947 0.946 0.945
200 0.949 0.948 0.948 0.944
300 0.944 0.942 0.943 0.938
400 0.948 0.945 0.946 0.941
500 0.955 0.954 0.954 0.949
600 0.960 0.959 0.960 0.955
700 0.965 0.964 0.963 0.960
800 0.969 0.969 0.967 0.964

31

Table A3 Comparison of the execution time of
solutions returned by (2), OMP, IRWL1 and BPD for
different values of n. Averaged over 100 trials for each
parameter configuration.

Execution Time (milliseconds)

N Algorithm 2 OMP IRWL1 BPD

100 2048.646 5.717 463.636 146.111
200 334804.020 13.212 1109.263 234.263
300 574501.859 25.141 1630.212 297.849
400 601792.939 42.919 2181.636 351.717
500 601424.020 72.535 2435.141 405.131
600 601451.838 110.364 3118.465 433.626
700 601572.848 166.525 3674.980 504.626
800 601716.929 231.980 3865.788 540.859

Table A4 Comparison of the sparsity of
solutions returned by (2), OMP, IRWL1 and
BPD for different values of k. Averaged over 100
trials for each parameter configuration.

Sparsity Level

K Algorithm 2 OMP IRWL1 BPD

10 11.7 12.2 12.3 13.4
15 10.4 10.7 11.0 11.7
20 10.4 10.8 10.7 11.3
25 11.3 11.8 11.8 12.5
30 11.5 12.0 11.9 12.8
35 12.1 12.8 12.6 13.5
40 12.4 13.2 13.0 13.9
45 13.4 14.3 14.1 15.2
50 13.8 14.8 14.4 15.6
55 14.6 15.6 15.4 16.8

Table A5 Comparison of the accuracy of
solutions returned by (2), OMP, IRWL1 and BPD
for different values of k. Averaged over 100 trials
for each parameter configuration.

Accuracy

K Algorithm 2 OMP IRWL1 BPD

10 0.948 0.948 0.947 0.943
15 0.945 0.944 0.945 0.942
20 0.935 0.934 0.936 0.933
25 0.915 0.911 0.917 0.915
30 0.893 0.887 0.896 0.895
35 0.872 0.866 0.875 0.873
40 0.851 0.840 0.852 0.850
45 0.825 0.815 0.827 0.827
50 0.801 0.791 0.803 0.804
55 0.772 0.764 0.777 0.780

32

Table A6 Comparison of the execution time of
solutions returned by (2), OMP, IRWL1 and BPD for
different values of k. Averaged over 100 trials for each
parameter configuration.

Execution Time (milliseconds)

K Algorithm 2 OMP IRWL1 BPD

10 305993.475 13.182 1270.000 341.454
15 199128.374 12.556 1144.818 284.071
20 119282.667 12.646 1080.535 278.596
25 139224.525 13.263 1081.202 327.151
30 171844.485 12.909 1169.798 314.192
35 193257.535 12.798 1163.121 361.485
40 231721.737 13.404 1151.455 277.647
45 314269.394 13.495 1142.374 308.919
50 351790.071 13.727 1219.707 315.081
55 412429.717 14.010 1260.899 289.616

Table A7 Comparison of the sparsity of
solutions returned by (2), OMP, IRWL1 and BPD
for different values of α. Averaged over 100 trials
for each parameter configuration.

Sparsity Level

α Algorithm 2 OMP IRWL1 BPD

0.05 31.6 32.8 33.2 37.4
0.10 21.9 22.9 23.3 26.2
0.15 15.6 16.1 16.5 18.3
0.20 12.2 12.7 12.8 14.1
0.25 8.8 9.1 9.1 9.7
0.30 6.6 6.9 6.9 7.2
0.35 5.8 5.9 6.0 6.2
0.40 4.6 4.7 4.7 4.8
0.45 3.8 3.9 3.9 3.9
0.50 3.2 3.3 3.3 3.4
0.55 2.8 2.8 2.8 2.8
0.60 2.2 2.2 2.2 2.2
0.65 2.0 2.1 2.1 2.1
0.70 1.7 1.8 1.8 1.8
0.75 1.5 1.5 1.5 1.5
0.80 1.2 1.3 1.2 1.2
0.85 1.1 1.1 1.1 1.1
0.90 1.0 1.0 1.0 1.0

33

Table A8 Comparison of the accuracy of solutions
returned by (2), OMP, IRWL1 and BPD for
different values of α. Averaged over 100 trials for
each parameter configuration.

Accuracy

α Algorithm 2 OMP IRWL1 BPD

0.05 0.858 0.856 0.855 0.838
0.10 0.901 0.898 0.898 0.887
0.15 0.933 0.932 0.932 0.925
0.20 0.946 0.944 0.946 0.940
0.25 0.959 0.958 0.959 0.957
0.30 0.964 0.964 0.965 0.963
0.35 0.962 0.964 0.965 0.964
0.40 0.963 0.963 0.964 0.964
0.45 0.963 0.963 0.965 0.964
0.50 0.962 0.963 0.963 0.963
0.55 0.961 0.962 0.962 0.962
0.60 0.959 0.960 0.960 0.960
0.65 0.959 0.959 0.959 0.959
0.70 0.958 0.959 0.958 0.958
0.75 0.956 0.957 0.957 0.957
0.80 0.956 0.956 0.956 0.956
0.85 0.955 0.955 0.955 0.955
0.90 0.955 0.955 0.955 0.955

Table A9 Comparison of the execution time of
solutions returned by (2), OMP, IRWL1 and BPD for
different values of α. Averaged over 100 trials for each
parameter configuration.

Execution Time (milliseconds)

α Algorithm 2 OMP IRWL1 BPD

0.05 603205.808 22.798 5164.919 934.717
0.10 577124.980 18.061 2158.465 522.212
0.15 454366.242 15.535 1801.596 636.172
0.20 343487.778 14.636 2013.323 967.657
0.25 181672.232 13.970 1477.374 654.091
0.30 81074.212 14.253 1087.737 510.162
0.35 61929.838 13.475 1503.990 904.788
0.40 41775.950 13.838 1213.343 684.101
0.45 15927.495 18.939 1056.717 531.091
0.50 10387.101 13.687 1384.343 872.040
0.55 7032.818 18.091 1001.253 530.556
0.60 858.253 13.212 1118.929 640.242
0.65 1012.121 18.404 1280.869 926.727
0.70 494.808 18.333 783.697 514.081
0.75 499.677 19.899 696.495 511.717
0.80 749.626 20.283 965.010 910.485
0.85 479.091 20.606 539.768 537.869
0.90 462.808 13.394 485.869 514.566

34

References

[1] Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine: An Official
Journal of the International Society for Magnetic Resonance in Medicine 58(6),
1182–1195 (2007)

[2] Brady, D.J., Choi, K., Marks, D.L., Horisaki, R., Lim, S.: Compressive holography.
Optics express 17(15), 13040–13049 (2009)

[3] Hashemi, A., Rostami, M., Cheung, N.-M.: Efficient environmental temperature
monitoring using compressed sensing. In: 2016 Data Compression Conference
(DCC), pp. 602–602 (2016). IEEE Computer Society

[4] Wang, G., Zhao, Z., Ning, Y.: Design of compressed sensing algorithm for coal
mine iot moving measurement data based on a multi-hop network and total
variation. Sensors 18(6), 1732 (2018)

[5] Chen, J., Xing, J., Zhang, L.Y., Qi, L.: Compressed sensing for electrocardiogram
acquisition in wireless body sensor network: A comparative analysis. International
Journal of Distributed Sensor Networks 15(7), 1550147719864884 (2019)

[6] Donoho, D.L.: Compressed sensing. IEEE Transactions on information theory
52(4), 1289–1306 (2006)

[7] Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE 98(6), 948–958 (2010)

[8] Rani, M., Dhok, S.B., Deshmukh, R.B.: A systematic review of compressive
sensing: Concepts, implementations and applications. IEEE access 6, 4875–4894
(2018)

[9] Owen, A.B., Perry, P.O.: Bi-cross-validation of the SVD and the nonnegative
matrix factorization. The Annals of Applied Statistics 3(2), 564–594 (2009)

[10] Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine
Learning Research 2, 499–526 (2002)

[11] Karahanoğlu, N.B., Erdoğan, H., Birbil, Ş.İ.: A mixed integer linear programming
formulation for the sparse recovery problem in compressed sensing. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 5870–
5874 (2013). IEEE

[12] Bourguignon, S., Ninin, J., Carfantan, H., Mongeau, M.: Exact sparse approxima-
tion problems via mixed-integer programming: Formulations and computational
performance. IEEE Transactions on Signal Processing 64(6), 1405–1419 (2015)

[13] Chen, S., Donoho, D.: Basis pursuit. In: Proceedings of 1994 28th Asilomar

35

Conference on Signals, Systems and Computers, vol. 1, pp. 41–44 (1994). IEEE

[14] Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis
pursuit. SIAM review 43(1), 129–159 (2001)

[15] Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory 52(12),
5406–5425 (2006)

[16] Gill, P.R., Wang, A., Molnar, A.: The in-crowd algorithm for fast basis pursuit
denoising. IEEE Transactions on Signal Processing 59(10), 4595–4605 (2011)

[17] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological) 58(1), 267–288 (1996)

[18] Bertsimas, D., Copenhaver, M.S.: Characterization of the equivalence of robusti-
fication and regularization in linear and matrix regression. European Journal of
Operational Research 270(3), 931–942 (2018)

[19] Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse rep-
resentation in pairs of bases. IEEE Transactions on Information Theory 48(9),
2558–2567 (2002)

[20] Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthog-
onal) dictionaries via l1 minimization. Proceedings of the National Academy of
Sciences 100(5), 2197–2202 (2003)

[21] Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE
transactions on Information theory 49(12), 3320–3325 (2003)

[22] Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE
Transactions on Information Theory 50(10), 2231–2242 (2004)

[23] Candes, E.J., Tao, T.: Decoding by linear programming. IEEE transactions on
information theory 51(12), 4203–4215 (2005)

[24] Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the
restricted isometry property for random matrices. Constructive Approximation
28(3), 253–263 (2008)

[25] Guédon, O., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Restricted isom-
etry property for random matrices with heavy-tailed columns. Comptes Rendus
Mathematique 352(5), 431–434 (2014)

[26] Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1
minimization. Journal of Fourier analysis and applications 14(5), 877–905 (2008)

[27] Needell, D.: Noisy signal recovery via iterative reweighted l1-minimization. In:

36

2009 Conference Record of the Forty-Third Asilomar Conference on Signals,
Systems and Computers, pp. 113–117 (2009). IEEE

[28] Asif, M.S., Romberg, J.: Fast and accurate algorithms for re-weighted l1-norm
minimization. IEEE Transactions on Signal Processing 61(23), 5905–5916 (2013)

[29] Chen, X., Zhou, W.: Convergence of reweighted l1 minimization algorithms
and unique solution of truncated lp minimization. Department of Applied
Mathematics, The Hong Kong Polytechnic University (2010)

[30] Wang, H., Zhang, F., Shi, Y., Hu, Y.: Nonconvex and nonsmooth sparse optimiza-
tion via adaptively iterative reweighted methods. Journal of Global Optimization
81(3), 717–748 (2021)

[31] Wang, H., Zeng, H., Wang, J.: An extrapolated iteratively reweighted l1 method
with complexity analysis. Computational Optimization and Applications, 1–31
(2022)

[32] Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition. In:
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers,
pp. 40–44 (1993). IEEE

[33] Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries.
IEEE Transactions on signal processing 41(12), 3397–3415 (1993)

[34] Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with
noise. IEEE Transactions on Information theory 57(7), 4680–4688 (2011)

[35] Wang, J.: Support recovery with orthogonal matching pursuit in the presence of
noise. IEEE Transactions on Signal processing 63(21), 5868–5877 (2015)

[36] Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal recon-
struction. IEEE transactions on Information Theory 55(5), 2230–2249 (2009)

[37] Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Mixed
Integer Nonlinear Programming, pp. 61–89. Springer, USA (2012)

[38] Lasserre, J.B.: An explicit exact sdp relaxation for nonlinear 0-1 programs. In:
Integer Programming and Combinatorial Optimization: 8th International IPCO
Conference Utrecht, The Netherlands, June 13–15, 2001 Proceedings 8, pp. 293–
303 (2001). Springer

[39] Lasserre, J.B.: Global optimization with polynomials and the problem of
moments. SIAM Journal on optimization 11(3), 796–817 (2001)

[40] Lasserre, J.B.: Moments, Positive Polynomials and Their Applications vol. 1.
World Scientific, France (2009)

37

[41] Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge
university press, USA (2004)

[42] Land, A.H., Doig, A.G.: An Automatic Method for Solving Discrete Programming
Problems, pp. 105–132. Springer, Berlin, Heidelberg (2010)

[43] Little, J.D.: Branch and bound methods for combinatorial problems. (1966)

[44] Petersen, K.B., Pedersen, M.S., et al.: The matrix cookbook. Technical University
of Denmark 7(15), 510 (2008)

[45] Bertsimas, D., Cory-Wright, R., Johnson, N.A.G.: Sparse Plus Low Rank Matrix
Decomposition: A Discrete Optimization Approach (2023)

[46] Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning.
Discrete Optimization 19, 79–102 (2016)

[47] Bertsimas, D., Digalakis Jr, V.: The backbone method for ultra-high dimensional
sparse machine learning. Machine Learning 111(6), 2161–2212 (2022)

[48] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cam-
bridge, MA, USA (2016)

[49] Reuther, A., Kepner, J., Byun, C., Samsi, S., Arcand, W., Bestor, D., Bergeron,
B., Gadepally, V., Houle, M., Hubbell, M., Jones, M., Klein, A., Milechin, L.,
Mullen, J., Prout, A., Rosa, A., Yee, C., Michaleas, P.: Interactive supercomputing
on 40,000 cores for machine learning and data analysis. In: 2018 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–6 (2018). IEEE

[50] Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Transactions on signal
processing 54(11), 4311–4322 (2006)

38

	Introduction
	Contributions and Structure
	Notation:

	Literature Review
	Basis Pursuit Denoising
	Iterative Reweighted L1
	Orthogonal Matching Pursuit

	Formulation Properties
	An Exact Reformulation and Convex Relaxations
	A Second Order Cone Relaxation
	A Positive Semidefinite Cone Relaxation

	Branch-and-Bound
	Subproblems
	Subproblem Lower Bound
	Subproblem Upper Bound

	Branch-and-Bound Algorithm
	Backbone Optimization
	Early Stopping

	Computational Results
	Synthetic Data Experiments
	Synthetic Data Generation
	Sensitivity to n
	Sensitivity to k
	Sensitivity to epsilon
	Lower Bound Performance

	Real World Data
	ECG Experiment Setup
	ECG Computational Results

	Summary of Findings

	Conclusion
	Supplemental Computational Results

