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Abstract

This paper studies the generalizations of multistage stochastic mixed-integer programs (MSIPs)
with distributional ambiguity, namely distributionally risk-receptive and risk-averse multistage
stochastic mixed-integer programs (denoted by DRR- and DRA-MSIPs). These modeling frame-
works have applications in non-cooperative Stackelberg games involving two players, namely a
leader and a follower, with uncertainty in the impact of the decisions made by the leader. We
present, cutting plane-based and reformulation-based approaches for solving DRR-~ and DRA-
MSIPs to optimality. We showcase that these approaches are finitely convergent with probability
one. We also introduce generalizations of MSIPs by considering multistage stochastic disjunctive
programs with(out) distributional ambiguity and present algorithms for solving them. To as-
sess the performance of the algorithms for MSIPs, we consider instances of multistage maximum
flow and facility location interdiction problems that are important interdiction problems in their
own right, and only their single-stage variants have been studied in the literature. Based on our
computational results, we observe that the cutting plane-based approaches are 26.1 times (on
average) faster than the reformulation-based approaches for the foregoing instances.

Keywords. distributionally robust optimization, multistage stochastic integer programs, multi-
stage stochastic disjunctive programs, stochastic dual dynamic programming, distributionally
risk-receptive optimization

1 Introduction

Multistage stochastic programming is a modeling framework for making a sequence of decisions
over multiple stages while addressing the uncertainty of input data parameters. In a multistage
stochastic program (MSP), the uncertain parameters are modeled as a stochastic process, and
decisions are made at each stage based on the information observed up to the time these decisions
are being made. The objective at each stage of MSP is to optimize the sum of the cost associated
with the decisions of the current stage and the expected cost of the future stage. Each stage has state
decision variables that directly affect the decisions of the next stage, and local decision variables
belonging to the stage only. (Refer to Chapter 6 of [7] for more details about MSPs.) In stochastic
programming, it is assumed that the probability distribution associated with uncertain data is
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known. However, in many real-world situations, the probability distribution is often unknown or
challenging to estimate. Such an ambiguity in the probability distribution has been tackled by min-
max stochastic programming [16, 38], which is lately known as distributionally robust optimization
(DRO).

A DRO model considers a set of possible probability distributions, referred to as an ambiguity
set, and evaluates an objective defined as the expected cost for a worst-case probability distribution
within the ambiguity set. An optimal solution provided by this model attains the robustness with
respect to the distributions, i.e., reflects the risk-aversion of the decision-maker. In this sense,
we refer to a DRO problem as a distributionally risk-averse optimization problem throughout this
paper (readers can refer to Chapters 6 and 7 of Shapiro et al. [40] for more discussions about
the equivalence between a DRO problem and a risk-averse optimization problem with a coherent
risk measure). Alternatively, one can consider an optimistic decision-maker under distributional
ambiguity whose objective is to optimize the expected cost for a best-case probability distribution
within the ambiguity set. We characterize the risk-appetite of such a decision-maker as risk-
receptiveness, opposed to the risk-aversion. Accordingly, we refer to an optimization problem under
the distributional ambiguity with a risk-receptive decision-maker as a distributionally risk-receptive
optimization problem [24].

The concepts of distributional risk-aversion and risk-receptiveness have practical applications
in game theoretic models involving two non-cooperative players, referred to as leader and follower,
with uncertainty in the impact of the decisions made by the leader to the follower’s objective,
feasible region, or both. One class of problems that fall under this category is network interdiction
problem (NIP), which involves a game played between two non-cooperative decision-makers—an
interdictor (or attacker) and a network user (or defender). In NIP, the interdictor aims to maximize
the disruption of the network, while the network user aims to optimize the network performance
given the disruptions caused by the interdictor. Since NIP involves two decision-makers with
conflicting objectives, it is important to address perspectives of both players. Specifically, from the
network user’s perspective who is interested in the vulnerability analysis of critical infrastructure,
the distributionally risk-receptive NIP model can be used to demonstrate the worst disruption
performance of the network, reflecting the interdictor’s optimistic view towards the distributional
ambiguity. Conversely, from the interdictor’s perspective who intends to disrupt the network, the
distributionally risk-averse NIP model can be used to obtain a robust plan for deploying interdiction
resources to negatively impact the network user’s objective (e.g., a robust plan of disrupting network
components to impede traffickers [25, 29]).

In this paper, we introduce generalizations of MSPs to address distributional ambiguity, i.e.,
distributionally risk-averse multistage stochastic programs (DRA-MSPs) and distributionally risk-
receptive multistage stochastic programs (DRR-MSPs). Our models consider binary state variables
and the set of feasible solutions for each stage is defined by either a mixed-integer set or a disjunctive
set that depends on state decisions made in the previous stage. We refer to these models as a dis-
tributionally risk-averse multistage stochastic mixed-integer or disjunctive linear program (denoted
by DRA-MSIP or DRA-MSDP) and a distributionally risk-receptive multistage stochastic mixed-
integer or disjunctive linear program (denoted by DRR-MSIP or DRR-MSDP). It is worth noting
that if the ambiguity sets are singleton, then DRA- and DRR-MSIPs reduce to a (risk-neutral)
MSIP.

For solving multistage stochastic linear programs (MSLPs), nested Benders decomposition
(NBD), proposed by Birge [6], is one of the earliest work, which under-approximates the cost-
to-go function by adding Benders cuts in a iterative manner. However, this approach could become
computationally impractical for a large scenario tree. To address this issue, SDDP (stochastic
dual dynamic programming) is developed by Pereira and Pinto [35] as a special case of NBD with



stochastic sampling of scenario paths for MSLPs under the stage-wise independence assumption,
i.e., random parameters at each stage are independent of the random process up to the previous
stage. For MSIPs with the foregoing assumption, Zou et al. [46] present stochastic dual dynamic
integer programming (SDDiP) embedded with Lagrangian cut. (Refer to Section 2 for an extensive
literature review.) To solve DRA- and DRR-MSIPs, we present reformulation-based and cutting
plane-based solution approaches that extend SDDP. We further generalize these algorithms for
solving DRA- and DRR-MSDPs and present its application for solving DRA and DRR-MSIPs as
well. We also introduce multistage maximum flow and facility location interdiction problems, for-
mulate them as DRA- and DRR-MSIPs, and utilize instances of these problems to evaluate the
effectiveness and efficiency of the proposed approaches.

In the remaining of this section, we present the generic formulations of DRA- and DRR-MSPs,
motivating applications to aforementioned multistage two-player interdiction games, and a sum-
mary of our contributions along with the organization of this paper. Throughout the paper, we use
[d] to denote set {1,...,d} for any positive integer d.

1.1 Problem Formulation: DRA-MSP and DRR-MSP

We first present the Bellman equation of an MSP with a planning horizon of T' stages and then
generalize it to the cases with distributional ambiguity, i.e., DRA- and DRR-MSPs. Assuming that
the state decision vector and the stage decision vector for stage t € [T] := {1,...,T} are denoted
by x; and y;, respectively, an (risk-neutral) MSP is formulated as follows:

min {fl(xlyyl) + Ep, [Q2(z1,w?)] }7 (1)
(z1,91)€X1
where w; is a random vector that represents uncertain parameters for stage t =2,...,T,
Qi(ry—1,wy) = min {ft(ﬂft, Y, wt) + Epy, [Qrgr (2, wig)] }7 (2)
(zt,y1) Xt (we—1,w1)

for t = 2,...,T and Qry1 = 0. Set X; denotes the feasible region of the first stage, and for
t € {2,...,T}, set Xy(zi—1,w;) denotes the feasible region of each stage t that depends on a
decision of the previous stage z;—1 and a realization of the random vector w; belonging to sample
space €);. In MSPs; it is assumed that the probability distribution P, associated with w; is known.

Now, to present DRA- and DRR-MSPs, we consider a set of probability distributions P; as the
ambiguity set. Then, the bellman equation form of a DRA-MSP is given by

min 21, y1) + max Ep, [QFA (21, w2)] b, ;
(z1,91)€X1 {fl( 1y1) o P2 Q2 (21 2)]} (3)
where
RA . "
—1,Wt) = , Y, W a E LW 4
Frened (mt’yt)er)%l&thwt){ft(xt o t)+Pt+I?e7§t+1 Pt [ Qi1 (e t+l)]} (4)

fort=2,...,7T, and Q%ﬂ = 0. By minimizing the probability distribution over the ambiguity set
in (3) and (4), instead of maximizing, we can formulate a DRR-MSP as follows:

min {f1($1,yl) +Pf2ﬂ€ig2 Ep, [Q3" (1,ws)] }, (5)

(w1,y1)€X1



where

RR . : RR
Q Ti—1,Wt) = min f Tty Yg, W) + min E Q T, Wt 6
! ( -t t) (wuyt)eXt(wtl,wt){ t( by t> Pi11€P4+1 PtH[ t 1( b 1)]} ( )

fort=2,...,T, and QFf, =0.

When the feasible region Xy(2z;—1,w;) is defined by a set of linear inequalities and disjunctive
constraints, problems (3)-(4) and (5)-(6) are referred to as DRA- and DRR-MSDPs, respectively.
Similarly, the feasible regions defined by mixed-integer sets lead to DRA- and DRR-MSIPs. Par-
ticularly, in DRA- and DRR-MSDPs, the feasible regions for ¢ € [T are defined as follows:

d
Xi(xp—1,wy) = {(wt,yt) € Rflf xR} :

(7)
V <A?(wt)xt + B (we)ye > b (we) — Cf(“tﬂt—l) } '
heHy

Here, notation V is used to denote disjunction (“or” logical operator). The disjunctive constraints
generalize integrality constraints on variables. For example, a binary restriction on a variable,
ie., z € {0,1}, is equivalent to a disjunction: (z = 0) V (x = 1). If the disjunctive constraints
in (7) represent linear inequalities with integrality constraints on variables, then the DRA- and
DRR-MSDPs reduce to DRA- and DRR-MSIPs. The main challenges encountered in solving these
problems arises from the nonconvexity of feasible regions, caused by logical disjunctions or integer
variables, as well as the nonlinearity and discontinuity of objective functions. Additionally, in
the DRR problems, each stage problem’s objective function is nonconvex even if all variables are
continuous. It is worth noting that DRA- and DRR-MSPs are at least as hard as their special case,
(risk-neutral) MSPs, which are in PSPACE (and conjectured in PSPACE-hard [18]).

1.2 Motivating Applications: Two-player Interdiction Problems

In this section, we formally present applications of DRR- and DRA-MSIPs in formulating two
interdiction problems, namely, the maximum flow interdiction problem (MFIP) and the facility
location interdiction problem (FLIP). The objective values of DRR- and DRA-MSPs provide a
“confidence interval at distributional ambiguity” that showcases a range of the expected objective
value, bounded by the optimistic and pessimistic estimates. For example, the vulnerability of a
network can be evaluated by solving DRR and DRA variants of MFIP, computing the confidence
interval of the network’s performance, and comparing a specified performance target with the
interval to determine whether it is likely to be achieved or not in the presence of disruptions.

1.2.1 Multistage maximum flow interdiction problem

In deterministic setting, Wollmer [42] and Wood [43] study single-stage MFIP, and Malaviya et
al. [29] and Kosmas et al. [25] study multistage MFIP. Cormican et al. [13] and Janjarassuk and
Linderoth [23] study stochastic (risk-neutral) variants of single-stage MFIP, and its DRA variant
has been studied by Sadana and Delage [37]. In this paper, we introduce multistage stochastic
MFIP (MS-MFIP) and its DRR and DRA models that incorporate varying risk-appetite of the
interdictor.

Multistage Stochastic MFIP. Consider a directed and capacitated network, denoted by G =
(N, A) where N is a set of nodes and A is a set of directed arcs of the network. The interdictor’s
objective is to minimize the total flow from the source node s to the sink node r of the network G



by interdicting a subset of arcs in A. In contrast, the network user’s objective is to maximize the
total flow given the interdicted network. For each stage, both the interdictor and the network user
make their decisions as follows: The interdictor removes a set of arcs from the network G given an
interdiction budget, and the network user finds a maximum flow after observing the interdictor’s
decision. It is assumed that after an arc is interdicted, the network user cannot use it to the end
of the time horizon.

Let x; and y; be the interdiction decision vector and the flow decision vector, respectively, for
stage t € [T]. An interdiction decision x;,, for each arc a € A, is binary, i.e., 24, = 1, if an
interdiction occurs on a € A, and x¢, = 0, otherwise. Each arc a € A is associated with the
interdiction cost, denoted by f;,. The interdiction budget is denoted by b, for each stage t € [T7.
We assume that the capacity of arc a € A is uncertain and denoted by ¢;q(w:). We denote the
set of the outgoing arcs and the set of the incoming arcs of node n € N by d*(n) and § (n),
respectively. For the brevity, we assume there exists a dummy arc from r to s in A associated with
infinite capacity and interdiction cost. Then, the bellman equation form of MS-MFIP is given by
(1) and (2) where

Qi(zi—1,wy) == min Yy(zy, wi) + Ep,, [Quir (e, wig)] (8a)
s.t. Z ft,axt,a S bt + Z ftaxt—l,a (Sb)

a€A acA
Ty > Ti_q (8c)
z; € {0,1}141, (8d)

and
(x4, wy) := max Yt (r,s) (9a)
st > Ya— Y. Wa=0, VneN (9b)
a€dt(n) a€d—(n)

Yt.a S Ct7a(wt)(]. — .I‘t,a), Va € A (90)
Y € R‘f', (Qd)

for each t € [T']. The minimization problem (8) is the interdictor’s problem in which Constraint (8b)
restricts the total interdiction cost within the given budget b;. Constraint (8c) ensures that once
the interdiction occurs on an arc, then its impact remains till the end of the time horizon. Given
an interdiction solution z;, the objective function of the interdictor’s problem at stage t € [T,
Yy (xy, wy), is a value function that provides a maximum flow over the interdicted network. The
function ¢ (z+, w;) is computed by solving the network user’s problem (9) where decision variable
Yt.q Tepresents a flow on arc a in A, Constraints (9b) enforce the flow balance on nodes in N, and
Constraints (9c) restrict the capacity of arcs in A. Notice that because of Constraints (9c), yq is
restricted to be zero if the interdiction occurs on arc a € A4, ie., if 244 = 1.

1.2.2 Multistage facility location interdiction problem

Single-stage (deterministic) FLIP, also referred to as the r-interdiction median problem, is intro-
duced by Church et al. [12]. The objective of the single-stage FLIP is to find a subset of r facilities
that when removed, maximizes the network user’s objective of minimizing total weighted distance.
The FLIP we present in this section is multistage stochastic FLIP, denoted by MS-FLIP, which
addresses uncertainty in the demand. In each stage of MS-FLIP, an interdiction decision is first



made to remove the interdicted facilities from the network, and then each demand point is assigned
to the closest facility to fulfill its demand value. We study its DRA and DRR models as well, which
have not been studied in the literature.

Multistage Stochastic FLIP. Let L and M be the number of demand points and facilities,
respectively. At stage t € [T, let a4, € {0,1} be an interdiction decision variable, which equals
1, if the interdiction occurs on facility m € [M], or equals 0, otherwise. Variable yy,, € {0, 1}
denotes an assignment decision that represents whether demand point [ is assigned to facility m.
We denote the random weighted distance between [ and m by ¢y, (wy) = ay(wyi)dp,, where dj, > 0
is the Euclidean distance between [ and m, and ay(w;) is an uncertain demand at point | € [L].
The bellman equation of MS-FLIP is given by (1) and (2) with

Qi(r4—1,w) := max Z Ctim (W) Ytim + Epy, [Qrgr (24, wit1)] (10a)
le[L],me[M]
st > yam=1, VI€[L], (10D)
me([M]
Ty 2> Ty 1, (10c)
Z (:L'tm - l'tfl,m) =Tt, (10d)
me([M]
Z Ytin < Tim, Vi € [L]vm € [M]v (106)
nESim
xp € {0, 1My € {0,1} XM, (10f)

Here Sp, := {n € [M] : dip, > din} is the set of facilities that are farther than facility m € [M]
is from demand point ! € [L]. The first term of the objective function (10a) represents the
total weighted distance of the assignment of demand points to non-interdicted facilities. Con-
straints (10b) enforce each demand point to be assigned to a facility. Constraint (10c) ensures
that the facilities interdicted from the previous stages remain interdicted for the current stage.
As a consequence, Constraint (10d) ensures that the total number of interdictions occurred at the
current stage equals to the budget r;. Constraint (10e), for each [ € [L] and m € [M], prevents the
demand point [ from being assigned to facilities farther than the facility m, unless the facility m is
interdicted. It should be noted that problem (10) is a single maximization problem, but not a max-
min problem, because of the assumption that each facility has enough capacity to cover all demand
values and the demand point is always assigned to the closest facility through Constraints (10e).

Remark 1. In [24], the authors consider DRA and DRR variants of the shortest path interdiction
problem. In the shortest path interdiction problem, the interdictor’s objective is to maximize the
traveling cost of the network user, whose objective is to find a shortest path on the interdicted
network. It is important to note that their problems consider only a single stage for each player,
i.e., T = 2, and the network user’s problem is a linear program, i.e., Q2(z1,) is piecewise linear
and convex, which are special cases of the frameworks presented in this paper.

1.3 Contribution and Organization

In this paper, we present exact and finitely convergent algorithms for solving DRR-MSIPs, DRA-
MSIPs, DRR-MSDPs, and DRA-MSDPs. We provide computational results for DRR- and DRA-
MSIPs using instances of MS-MFIP and MS-FLIP. More specifically, the contributions of this paper
are as follows.



e DRR-MSIPs. We present cutting plane-based and reformulation-based algorithms for DRR-
MSIPs, referred to as DRR-SDDP-C and DRR-SDDP-R algorithms, respectively. For the
DRR-SDDP-C algorithm, we derive a new class of valid inequalities to get lower-bound ap-
proximations in each iteration, and as a consequence, this algorithm is 24.1 times faster (on
average) than the DRR-SDDP-R algorithm. As per our knowledge, DRR-MSIPs have not

been studied in the literature even for T = 2.

e DRA-MSIPs. For DRA-MSIPs with Wasserstein ambiguity sets, we extend the approach
proposed in [17] for DRA-MSLPs that is based on the strong duality-based reformulation
(Theorem 1 in [21]). We denote this method by DRA-SDDP-R algorithm. Additionally,
we present another separation-based algorithm for DRA-MSIPs, denoted by DRA-SDDP-C
algorithm. Based on our computational experiments, we observe that the DRA-SDDP-C
algorithm is 28 times faster (on average) than the DRA-SDDP-R algorithm.

e DRR-MSDPs and DRA-MSDPs. We introduce the first algorithm for solving MSDPs, DRR-
MSDPs, and DRA-MSDPs by deriving tight extended formulations for parametric disjunctive
constraints in each stage. Since MSIPs are special cases of MSDPs, we utilize the foregoing
approach for solving MSIPs with(out) distributional ambiguity as well, where a hierarchy of
relaxations of the feasible regions is obtained in each iteration.

o MS-MFIP and MS-FLIP. As mentioned in Section 1.2, MS-MFIP and MS-FLIP are impor-
tant interdiction problems in their own right and have not been studied in the literature.
This paper presents solution approaches for solving these problems and their distributionally
ambiguous variants, thereby generalizing results of [12, 13, 23] that study single-stage version
of these problems.

e By conducting out-of-sample tests, we demonstrate the significance of distributional risk-
aversion and risk-receptiveness in the context of MS-MFIP. The results show that the distri-
butional risk-aversion enhances the robustness of policies under uncertainty, and the distri-
butional risk-receptiveness enables the identification of network vulnerabilities in situations
where realizations of the uncertainty are unfavorable from the network user’s perspective.

The rest of the paper is organized as follows: Section 2 provides a comprehensive review of
previous studies on MSPs (with and without distributional ambiguity). In Section 3, we present a
brief overview of SDDP and introduce its extension to address distributional ambiguity. We then
proceed to propose solution algorithms for DRR- and DRA-MSIPs in Sections 4 and 5, respectively,
along with the convergence analysis showing that they are finitely convergent. Subsequently, we
further extend our approaches to handle DRR~ and DRA-MSDPs in Section 6 and discuss applica-
tion of these approaches for solving their special cases with integer variables by deriving a hierarchy
of relaxations for the feasible set of each stage. In Section 7, we present our computational results,
followed by the conclusions in Section 8.

Throughout the paper, we made the following assumptions:

Assumption 1. The random vectors are stage-wise independent; that is, w; is independent of
Wi = (w2,...,w1) forallt =3,...,T.

Assumption 2. The supports Qq, for all t = 2,... T, are finite, i.e., || < oo. Accordingly, let
i = pe(w)), i € N, where Py = {pt(w}) }ienr, and N; == {1,..., N¢} is the index set associated with
the support 4, t =2,...,T.

Assumption 3. Variables x; € {0,1}% and y; € Vy(z4,w;) C ]Riy for every t € [T], where Vi(z¢, wt)
is defined by either a mixed-integer set or a disjunctive set.



Remark 2. Note that, for general integer or discrete state variables z; that is bounded, we can
obtain its equivalent binary representation by using the binary expansion (e.g. see Bonami and
Margot [8]). Also, even for mixed-integer state variables z;, the binary expansion can be used to
approximate the state variables. As discussed in Zou et al. [46], the use of the binary expansion is
justified in MSIPs since the fraction of binary variables in the extensive formulation of an MSIP to
all variables reaches zero as the number of stages or the size of support per stage increases.

Assumption 4. Sets X1 and X3 (21, w), given any x;_1 € {0,1}% and wy € Qy, forallt =2,...,T,
are nonempty and compact.

Assumption 5. Functions fi(z1,y1) and fi(x¢, ye, wy), for t =2,...,T and w; € Qy, are linear.

For readers’ convenience, below we list major abbreviations used in this paper:

DRA /DRR: Distributionally risk-averse/Distributionally risk-receptive.
MSLP/MSIP/MSDP: Multistage stochastic linear/integer/disjunctive program.
SDDP: Stochastic dual dynamic programming.

DA-SDDP: Our extension of SDDP that addresses distributional ambiguity.
DRR-SDDP-C: DA-SDDP for DRR-MSPs with a cutting plane-based approximation.
DRR-SDDP-R: DA-SDDP for DRR-MSPs with a reformulation-based approximation.
DRA-SDDP-C: DA-SDDP for DRA-MSPs with a cutting plane-based approximation.
DRA-SDDP-R: DA-SDDP for DRA-MSPs with a reformulation-based approximation.
MS-MFIP: Multistage stochastic maximum flow interdiction problem

MS-FLIP: Multistage stochastic facility location interdiction problem

2 Literature Review

In this section, we review literature related to solution approaches for MSLPs and MSIPs along
with their distributionally robust variants.

Multistage Stochastic Linear Programs. As mentioned before, in order to solve MSLPs, NBD [6]
approximates the expected cost-to-go function at each stage t, i.e., Ep,,, [Q:+1(-)], by a piecewise
linear function using Benders cutting planes, which are constructed by the dual solutions from the
problem at the subsequent stage. For MSLPs under the stage-wise independence assumption, SDDP
[35] is a NBD-like approach that harnesses scenario sampling to mitigate “curse of dimensionality” of
dynamic programming without losing the (almost surely) finite convergence of the NBD algorithm.
The (iteration) complexity and convergence of SDDP has also been further examined in [26, 39];
refer to [20] and references therein for recent advances for MSLPs.

Distributionally Robust (or Risk-averse) MSLPs. Recently, Philpott et al. [36] consider dis-
tributionally risk-averse multistage stochastic linear programs (denoted by DRA-MSLPs) where
ambiguity sets are constructed based on y? distance from a reference probability distribution.
Their approaches are based on SDDP embedding separation algorithms that compute a worst-case
probability distribution for the different reference probability distributions. Note that their prob-
lems consider only continuous variables. Duque and Morton [17] present an SDDP-based algorithm
for DRA-MSLPs where the ambiguity set is defined using Wasserstein metric. Their approach is
based on the dualization of the inner problem for finding a worst-case probability distribution.
They present comparison analysis of the results from their algorithm and those from the modi-
fied algorithm of Philpott et al. [36] for Wasserstein metric. Park and Bayraksan [34] investigate
DRA-MSLPs, where the ambiguity set is defined using ¢-divergence, for an application to a water
allocation problem. They propose a NBD-type algorithm relying on the dual reformulation of the
inner problem for finding a worst-case probability distribution.



Multistage Stochastic Integer Programs. For solving MSIPs with binary state variables, an
extension to SDDP, referred to as SDDiP, has been proposed by Zou et al. [46]. SDDiP uses
a new class of cutting planes, constructed based on a Lagrangian relaxation where the strong
duality holds for the resulting Lagrangian dual, to approximate the expected cost-to-go function
in each stage. Zou et al. [46] provide the cut conditions under which SDDIP is finitely convergent.
For a more general class of MSIPs, where all decision variables are allowed to be mixed-integer,
there are several studies applying decomposition schemes directly to the deterministic equivalent
formulation. For example, Carge and Schultz [11] present a branch-and-bound algorithm based on
a dual decomposition approach applied to the deterministic equivalent formulation. The approach
uses a Lagrangian relaxation of non-anticipativity constraints which enforce the scenarios that follow
the same history up to stage t to have the same decisions until stage t. As another example, Lulli
and Sen [28] propose a branch-and-price algorithm, i.e., a branch-and-bound algorithm with column
generation, for the same class of MSIPs. Recently, Biiytiktahtakin [9] presents an approach for the
MSIP with mixed-integer variables (in both risk-neutral and risk-averse settings), using cutting
planes developed upon the concept of “scenario dominance” that is based on a partial ordering
of scenarios. These cutting planes are generated by solving subproblems related to a subgroup of
scenarios and added to the deterministic equivalent formulation within a branch-and-cut procedure.
We also note that for multistage stochastic mixed-integer nonlinear programs, Zhang and Sun [45]
present three decomposition algorithms—one based on NBD and two based on SDDP—which rely
on a regularization of the expected cost-to-go function and a class of cutting planes called generalized
conjugacy cut to approximate the function.

Distributionally Robust MSIPs. For DRA-MSIPs, much less has been studied in the literature.
Yu and Shen [44] investigate decision-dependent DRA-MSIPs, where state variables are binary,
and the ambiguity set depends on the state decisions made at the previous stage. They consider
three types of ambiguity sets constructed based on the decision-dependent moment information
(e.g., mean and variance). They propose mixed-integer linear programming and mixed-integer
semidefinite programming reformulations of the problems and solve them using SDDiP. Recently,
in the dissertation of Nakao [31], a dual decomposition approach is presented for a DRA-MSIP where
variables can be mixed-integer, and the ambiguity sets are defined using Wassertstein metric. The
approach applies the dual reformulations to the inner problems over Wasserstein ambiguity sets in
a consecutive manner for deriving a monolithic-minimization deterministic equivalent formulation
of the DRA-MSIP. Then, they use a Lagrangian relaxation of the non-anticipativity constraints in
the deterministic equivalent formulation to derive a Lagrangian dual. They provide computational
results obtained by solving the Lagrangian dual using the branch-and-bound algorithm, proposed
by Carge and Schultz [11]. It is worth noting that for DRA-MSIPs, DRA-MSDPs, and DRA-MSLPs
with T' = 2, i.e., two stages, solution approaches are presented in [2, 4], [3], and [2, 19] respectively.

Distributionally Risk-Receptive Programs. Duchi et al. [15] employ DRR and DRA programs to
construct a confidence interval for an optimal objective of a stochastic program with true probability
distribution. Similarly, Cao and Gao [10] consider decision-making problems involving covariate
data where uncertain parameters belong to a specific uncertainty set. They show that solving
robust and optimistic optimization problems leads to worst-case and best-case rewards, respectively,
which construct a confidence interval for the true reward. Gotoh et al. [22] investigate DRA and
DRR programs in comparison to a sample average approximation. In particular, they show that by
solving both DRA and DRR programs, one of their solutions always outperform the sample average
approximation solutions in terms of out-of-sample test performance. Nakao et al. [32] consider a
partially observable Markov decision process with distributional ambiguity. They solve a DRR
model to obtain an upper bound on a true value function of a DRA partial observable Markov
decision process. Moreover, DRR programs are studied in the context of reinforcement learning



[41] to find an optimistic policy and Bayesian statistics [33] to approximate a likelihood. However,
these studies [41, 33] focus on only the problem of finding a best-case probability distribution and
do not consider a decision-making procedure as in our DRR frameworks. Note that aforementioned
studies have not considered multistage decision-making with integer variables and are not applicable
for interdiction problems considered in this paper.

3 SDDP and its Extension to Distributional Ambiguity

In this section, we review SDDP developed for MSLPs and extend it to handle distributional
ambiguity. This extension, referred to as distributionally ambiguous SDDP (DA-SDDP), serves as
a broader architecture for our approaches to solve the DRA-MSP and DRR-MSP models.

The key ideas of SDDP are to approximate, rather than exactly evaluate, the expected values
of the future costs, Q;1(w;) := Ep,_, [Qi+1(2, wiy1)] for t € [T — 1], using a set of cuts and to
tighten this approximation in an iterative process that consists of two main steps: forward and
backward steps. During a forward step, SDDP samples scenario paths, and along each scenario
path it solves the stage problems (1) and (2) with approximations of the function Q;y;(x), for
all t € [T]. This generates feasible solutions to the MSLP. In a backward step, SDDP solves the
linear programming dual of the approximating problems at each stage t for all realizations given
the feasible solutions obtained from the forward step. These dual solutions are then used to derive
a valid cut that is added to the approximating problem at the previous stage ¢t — 1 to further tighten
the approximation of the function Qy(z_1).

We propose an extension of SDDP, referred to as DA-SDDP, for both DRA-MSPs and DRR-
MSPs, that approximates the pessimistic and optimistic expected cost-to-go functions: Qﬁé (x¢) :=
max{Ep, , [Qff} (x1,wi1)] : Py1 € Piy1} and QFf () := min{Ep,, [Qff (z,wii1)] © Py €
Piy1}, for all t € [T — 1], by constructing a convex lower approximation for each function. Note
that these functions are not piecewise linear and convex for DRR- and DRA-MSIP as in the case
of SDDP for MSLPs. This is because of the presence of integer variables in each stage. Moreover,
even for a DRR-MSP with only continuous variables in each stage, Of%ft (2;) is nonconvex.

Algorithm 1 Distributionally Ambiguous Stochastic Dual Dynamic Programming

1: Initialize | < 1; zg < initial state; w; ¢ data at the first stage; Q; := {w1}; K} < 0 for
t=1,...,T —1;
2: while (satisfying none of stopping conditions) do

3 Sample a scenario path & € Z:=Qy x --- x Qp

4:  fort e [T] do > Forward Step
5 Solve subproblem P}(z! |, £l) and obtain (zf,y}) and Q}(z!_,,€})

6: fort=1T,...,2do > Backward Step
7 for i € N; do

8 Solve relaxation P!(z |, wi) and obtain cut (aﬁl, ﬁl)

9 Refine approximating function ¢! ; by using cuts (aﬁl, Z_ll),z e Ny

10: Kl « K +1

11:  Solve subproblem P! (z},w;) and obtain the bound LB
122 K« Klfort=1,...,T—1

13: < 1+1

14: return Subproblems {Pﬁ}te[T_l], LB

A pseudocode of DA-SDDP is given in Algorithm 1. The algorithm is initialized with a prede-
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termined initial state of the model, denoted by xg, the input data for the first stage, denoted by wy,
and the singleton set €; := {w }, which are introduced to simplify the notation later. We also set
the iteration counter [ to 1, and the number of cuts Ké to 0. At iteration [, the algorithm samples
a scenario path ¢ = (¢! - .. ,fép) from Z:=Q; x .-+ x Qp (Line 3). Note that this can be readily
extended to the sampling of multiple scenario paths per iteration. The remainder of the iteration
consists of a forward step (Lines 4 and 5) and a backward step (Lines 6 to 11).

Forward Step. For each stage t € [T'], DA-SDDP solves the following approximation of Problem (4)
(or (6)), which we refer to as subproblem and denote by PL(z! ,, &) (Line 5):

Qi1 &) = min - {fe(wnyn &) + dy(z)}, te [T, (11)

(we,ye)eXe(2t_1,€h)

where gi)lT() =0, and z}_;,t =2,..,T, is an optimal stage-(t — 1) solution. To simplify notation,
we let o)) := ¢ and X (), &) := X;. Function ¢l(x;), for each ¢t € [T — 1], is a piecewise linear
and convex function that is constructed by K,f cuts and it serves as an under-approximation of
the pessimistic and optimistic expected cost-to-go functions— Qt 11 and QEFRl—while solving DRA-
MSP (3) and DRR-MSP (5), respectively. The details of methods to construct the function ¢ ()
will be presented in Sections 4 and 5.

Backward Step. For each t =T, ..., 2, the algorithm solves relaxations of the subproblems, denoted
by l@’é(mi_l, w?), and obtain affine cuts, denoted by their coefficients (aifl, 5;{1) for i € Ny (Line ).
These cuts (supporting hyperplanes) provide a lower-bounding approximation of the value function
QL(-,-) such that

~

Qi 1,wl) > (@ Vo + 8, Vo € {0,1}% i e N, (12)

and X
Ql(ah_y,wi) = (o' ) Tty + 874 (13)

It should be noted that the validity is defined for QL(-, ), yet it is sufficient to construct the function
¢l_1(~) to yield a lower bound for the optimistic or pessimistic expected cost-to-go function, since
QL(-,-) is always lower bounding the exact value function Qf*7(-,-) or QF*4(-,-), respectively. Using
the cuts {(at 1,ﬁt 1)}16/\@7 the algorithm tightens the approximating function ¢! ;(z;_1) and
improves the lower bound (Line 9). In Line 11, the algorithm computes the lower bound on the
overall optimal objective value by solving the subproblem associated with the first stage.

The algorithm repeats these iterations with the forward and backward steps until one of pre-
determined stopping conditions is satisfied. These conditions can include a maximum number of
iterations, a limit on elapsed time, or convergence of the lower bound.

Note that there exist various ways of generating a cut (oet 1 ﬁl), i € N, which is a supporting
hyperplane of the epigraph of Qt(:vt,l,wt), intersecting at x;_1 = x}_,, i.e., a cut satisfying both
(12) and (13). By solving the subproblem to optimality, we can obtain an integer optimality cut [27],
given a lower bound for the value function Ql(-, ), that satisfies (12) and (13). As another example,
consider a Benders cut obtained by solving a linear programming relaxation of the subproblem
when solving a DRA-MSIP (or DRR-MSIP). This cut satisfies (12), though not necessarily (13).
However, we can derive a mixed-binary linear programming reformulation of the subproblem by
adding binary variables replacing integer variables, use the hierarchy of relaxations (discussed in
Section 6.2) to solve the reformulation to optimality, and obtain a Benders cut that satisfies both

(12) and (13).
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4 DA-SDDP Algorithms for DRR-MSIPs

In this section, we develop two DA-SDDP algorithms for DRR-MSIPs: DRR-SDDP-C and DRR-
SDDP-R algorithms, where the approximation functions ¢!(x;) are derived using cutting planes
and reformulation techniques, respectively.

We define an approximating problem that is associated with the optimistic expected cost-to-
go function Qfif(z;) and is constructed using cuts {(ai’k,,BZ’k) i € Nip1,k € [K]]}, for each
te [T -1}

1,B . i i

Z(x¢) := min Py 10 14a

)= iy 3t (14)
st 00 > (0™ Twy + 8%, Yk e [K]], i € Ny, (14Db)

where Pri1 = {p{,; }ienr,,- By construction, solving this problem yields a lower bound on Q% (z;).
In the following sections, we describe how DRR-SDDP-C and DRR-SDDP-R algorithms construct
the approximating functions ¢}(z;), for ¢t € [T — 1], using cutting planes that utilize the binary
property of the state variables and a mixed-integer linear programming reformulation of the prob-
lem (14), respectively. Each of these algorithm is followed by the convergence analysis.

4.1 DRR-SDDP-C algorithm with a cutting plane-based approximation

We define a cutting plane-based approximation function at iteration [ for each ¢ € [T'—1] as follows:

6 () = min 6 o)
st. ¢ > (7)) (w —af) + pf, VK € [K]], (15b)
where ) i bk ek
5fj _ {11111r1pt+1679t+1 D ieNi ptﬂ-laté]}; I'f act];j =0, (16)
’ maxp, Py, Zi€M+1 pi+1o‘tjj’ if zi; =1,
and , ; '
pr = Pt+I31€i%t+1 ie%rlpiﬂ ((a?k)TIf + ﬂz,k)’

for each t € [T — 1] and k € [K}]. Recall that ¥ and (ai’k, ﬂzk) are an optimal stage-t solution
and a cut generated in Line 8 at iteration k € [K}]. In Lemma 1, we prove that qbf;c(a:t) provides
a lower-bound approximation for QFf (2;). As a consequence, we can replace ¢}(z;) with gbi’c(xt)
in Algorithm 1 to get the DRR-SDDP-C algorithm.

Lemma 1. The cutting plane-based approximating function provides a lower bound for the op-
timistic expected cost-to-go function, i.e., qﬁi’c(azt) < QFfE(x) for all 1 > 0,2, € {0,1}% and
te[lT—1].

Proof. For any k € [K}] and z, € {0,1}% it is satisfied that

P min Z p§+1Qi+1(wt,W§+1) > _ min Z Pit1 <(04725 )T$t + By ) (17a)
t4+1E€Pt41 . P 1E€Pi41 .
i€N+1 1€EN; 41
it min S () (e - o) (1)
t+1E€EPt+1 .
€N 41
k : i i,k k
> pr + Z p, min Z piﬂaz’]- (Tt — x;)- (17¢)
. t+1€Pt+1
JjE[da] i1€N+1

12



In the last inequality, if a:f ; =0, then (z; — xf ;) € {0,1}. It follows that we can fix the coefficient
of the term (z;; — xf]) to
k : i iyk
6 ;= min Z Di4104;- (18)

Piy1€Pt41 .
+ + iEN

If xf’j =1, then (z,; — :vfj) € {0,—1}. In this case, we can fix the coefficient to

k
0=, max Py (19)
t+1€Pt+1 EN 1

Fixing the coefficients for all j € d, and k € [K}], we have

P, i > Q@ wig) = (0F) (e — 2f) + pf, Yk € [K]]. (20)
t+1€Pt+1 €N

Function gi)i’c(xt) is constructed using the affine functions in the right-hand side of (20), and thus
it follows that ¢ (z) < OFR (zy). O

Now, we show the finite convergence of the DRR-SDDP-C algorithm. To this end, we define
a policy by a collection of decision functions {Z:(£y), ¢ (€[) teer), where &g = (&1, - -, &), which
serves as a decision rule given any scenario path (§1,...,&r). A policy is optimal for a DRR-MSIP
if (z¢(€[), ve(&y)) is optimal to the ¢-th stage problem (6) ((5) for ¢ = 1) for ¢ € [T] and all £ € =.

Theorem 1. The forward step of the DRR-SDDP-C' algorithm defines an optimal policy for a
DRR-MSIP in a finite number of iterations of its while loop with probability one. Furthermore,
each iteration of the while loop is executed in a finite time if there exists a finite-time algorithm for
computing the cut coefficients (16).

Proof. We first show that the finiteness of the while loop. Let {Z}({y), 7i(§y) : t € [T]} be a policy
that is defined by the forward step at iteration [ of the DRR-SDDP-C algorithm. Then, to achieve
the optimality of the policy, it suffices to show that (ﬁi’c(fé(f 1)) = QPR (ZL(&y)) for t € [T — 1]
and all £ € =.

Let £ denote the set of iterations where the policy is non-optimal. For each t € [T' — 1], let
Iy € L be the largest iteration such that gbi’c(a?i(&[t})) < ﬁRl(:Et(ﬁ 4)) for some & € E. Also, given
iteration m, let X;™ ¢ € [T — 1], be the set of Z}(§y) for all future iterations [ € £\ [m] and ¢ € E,
e, X" ={z(&y) : £ € B l>m,l e L}

We first show that [p_q is finite with probability one. At the forward step of iteration [, if we
observe that gblTC:l(i?) < QFF(z) for any € X1} _|, then for all future iterations m > [ we have

e o -
or(2) > min > phQin(z,wh) = QF(). (21)
T€PT .
’LENT
The above holds since the cut added at iteration [ (in the form of (15b)) satisfies both (12) and (13),
and by definition Q% is equivalent to QF. Tt follows that ¢TT"3(:E) = QRE(z) for any m > I. Since
|X:1p_1| < oo and every & € = has a positive probability to be sampled, it holds with probability one

that ¢é}€1( ) = QFF(z) for all z € X}, after finitely many iterations. This shows that I7_; < oo
with probability one.
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Next, we show that l7_o is also finite with probability one. Suppose at iteration | > lp_; we
observe that qbngz(:Z‘) < QR (%) for any z € XlT 5. Then, we have gzbgf"_g(:i) = ORE (z) for all
future iterations m > [ since

C - . i A = i
o5 (Z) > p, IR E p%“leéffl('%w%‘fl) (22a)
T_1€PT_1 N
= i QR (z ) = QFF(z). (22b)
P min Pr—1WT—1 9C7WT 1 T—1\T
T-1€PT-1 Ny

The first equality holds since ¢ 1( z) = QFE(z) for m > Ip_;. So, we have ¢ 2( z) = QFF (7)
for any future iteration m > [. Since \XTTJI\ < oo and every £ € = has a positive probability, there
exists a finite iteration [ such that ¢IT(’:2(:E) = QFR (z) for all 7 € XéT__zl with probability one,
which implies l7_2 < oo with probability one. Similarly, we can prove by induction that [;, for all
t € [T — 1], are finite. This proves that |£| < co with probability one.

Now, we show that each iteration terminates in finite time. This is followed by the facts that
the subproblems are bounded and thus solvable in a finite time using a branch-and-cut algorithm
and Line 9 is executed in a finite time by assumption. O

4.2 DRR-SDDP-R algorithm with a reformulation-based approximation

For each constraint in (14b), we multiply p! 41 to both sides of inequalities for each i € Nj;1, and
replace p;, z¢ with a decision vector n; in the right-hand side of the resulting inequalities. This
yields the following system of inequalities:

Piabi 2 (") T + B by, Yk € [, i € Niga, (23)
ny < x, Vi € Nita, (23b)
< Piy, Vi € Nit, (23c)
n > i+ o — 1, Vi € Nit1, (23d)
n; >0, Vi € Nipja. (23e)

Notice that a system of inequalities (23b) to (23e) ensure that a feasible 7} equals to pt 1%, given
any z; € {0, 1} and {pi,;}tiens,s € [0,1]V+1. We introduce an additional variable 6; to replace
Dii1 0i. This yields a reformulation-based approximating function of Qt Y1 () at iteration [ for each
te [T — 1] as follows:

o™ (x1) := min Z Z (24a)
€N 41

st 0; > (o) Tl + B, plyr, Vk € (K] i € Ny, (24b)

(23b)(23e), (24¢)

Py € Pey. (24(1)

Since ! is not restricted, we can readily show that the equivalence between (23a) and (24b).
Therefore, by construction, qﬁi’R(:Ut) equals to the value function ¢f§’B(xt) (14), which is a lower
bound for Q% (z,). The DRR-SDDP-R algorithm is defined as Algorithm 1 with the function ¢} (z¢)
being replaced by (;StR(xt) for every iteration ! and stage t. We note that the above formulation
becomes a linear program when the ambiguity set P41 is defined by a polytope (e.g., Wasserstein
ambiguity set with a finite support).

We show the finite convergence of the DRR-SDDP-R algorithm as follows.
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Theorem 2. The forward step of the DRR-SDDP-R algorithm defines an optimal policy to a
DRR-MSIP in a finite number of iterations of its while loop with probability one. Furthermore,
each iteration of the while loop is executed in a finite time if the ambiguity set at every stage is
defined by a polytope or a mized-binary linear set.

Proof. By following a similar argument to the proof of Theorem 1, we can show that the number
of the while-loop iterations required to define an optimal policy is finite with probability one and
each while-loop iteration is executed in a finite time. O

5 DA-SDDP Algorithms for DRA-MSIPs

In this section, we develop two DA-SDDP algorithms for DRA-MSIPs: DRA-SDDP-C and DRA-
SDDP-R algorithms, where the approximation function d)i(a;t) is constructed using cutting planes
derived by a separation approach and a reformulation derived by utilizing the strong duality, re-
spectively.

5.1 DRA-SDDP-C algorithm with a cutting plane-based approximation

Recall that we consider the cuts, {(aik, Zk) i € Ny, k € [KY]}, for each t € [T — 1] to get
approximations in the backward steps of DA-SDDP. For DRA-MSIPs, we identify a worst-case

probability distribution in each iteration k for the given cuts (ai k, b k) i € Nit1, and the given

solution xt by solving the following problem, referred to as dzstmbutwn separation problem:

i JNT
Jmax 3 (o) b + B, (25)
z+1673t+1ieN,t+l

for each t € [T — 1]. Let {pifl }ienis, be an optimal solution to the distribution separation prob-
lem (25). Then, we define a cutting plane-based approximating function for iteration / and ¢t € [T'—1]
as follows:

¢y () = min {<z> L > (nF) Tay +f, Yk € [Ki]}, (26)

where

Z ptﬂat , (27a)
€Nyt
’7;6: Z PeiaB (27b)

i€Nty1

Consequently, we define the DRA-SDDP-C algorithm as Algorithm 1 with ¢}(z;) being replaced
by qﬁfgs(xt) for every iteration [ and ¢t € [T'—1]. The following theorem shows the finite convergence
of the DRA-SDDP-C algorithm.

Theorem 3. The forward step of the DRA-SDDP-C' algorithm provides an optimal policy for
DRA-MSIP in a finite number of iterations of its while loop with probability one. Furthermore,
each iteration of the while loop is executed in a finite time if there exists a finite-time algorithm for
solving the distribution separation problem (25).

Proof. Let {ié(f[t]),gjé(f[t])}tem be a policy that is defined by the forward step at iteration [. To
show its optimality, it suffices to show gbi’s(:if‘/(f[t])) = t+1($t(§[t )) for t € [T'— 1] and all £ € E.
We can prove the statement by following a similar argument to the proof of Theorem 1. O
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Remark 3. There are various types of ambiguity sets for which we can solve problem (25) and
compute the coefficients (16) using a finite-time algorithm; e.g., ambiguity sets constructed using
Wasserstein metric [21], moment information [44], total variation distance [5] and x? distance [36],
where their supports are finite.

5.2 DRA-SDDP-R algorithm with dual-based reformulation

We present a reformulation-based approach, referred to as DRA-SDDP-R algorithm, that relies on
the dualization of the inner maximization problems in (3) and (4), i.e., max{Ep,,, [QF4 (2, wi1)] :
Piy1 € Piy1}. We note that similar reformulation-based approaches are studied in recent papers
for DRA-MSLPs with ¢-divergence-based ambiguity sets [34], DRA-MSLPs with Wasserstein am-
biguity sets [17], and DRA-MSIPs with moment-based ambiguity sets [44]. In the following, we
demonstrate the DRA-SDDP-R algorithm for DRA-MSIPs with Wasserstein ambiguity sets, but
we note that this approach can be applied to DRA-MSIPs with a general family of ambiguity sets
for which dual formulations of DRA models are available.
The Wasserstein ambiguity set is defined for t € {2,...,T} as

,PtVV::{PtGth:Zpi:L Zvij:pi7ie/\/;a Zvij:ﬁg7j€-/\/;f7

i€N: JEM ieN:
Z ”(’ul‘/Z - ng,UZ] < €, Vjj > 07 \V/'l,j € M}7
i#jEN}

where {pi}icn; is a reference probability distribution on €2 for t € {2,...,T}, and ||-|| is the notation
for any norm. For a given ¢ > 0, each ambiguity set PtW ,t € {2,...,T}, is a Wasserstein ball
containing all probability distributions within e-Wasserstein distance from the reference probability
distribution. The dual of the maximization in (3) and (4) for t € [T' — 1] is given as follows:

rvn>151 {efy — Z PV v 4 lwiy — w1y > QA (e, W], ), Viyj € -/\/t+1}- (28)
- 1€Nt 41

Here, the strong duality holds by Theorem 1 in [21]. Then, given cuts (a*, 85%), i € N1, k € [K]],
we define a reformulation-based approximating function for iteration ! and ¢ € [T' — 1] as follows:

l ' o
6P () = min{ey— 3 B iy 20,
€N 1
Vit i — wlally 2 (@) Tae+ 875, Vg € N, b € (KL}

Consequently, the DRA-SDDP-R algorithm for DRA-MSIPs with Wasserstein ambiguity set are
defined as Algorithm 1 in which ¢l (z;) is being replaced with (bf;D(xt).

6 Extensions to Multistage Stochastic Disjunctive Programs with
Distributional Ambiguity

In this section, we present extensions of the DA-SDDP algorithms to DRR- and DRA-MSDPs
defined in Section 1.1, under the following assumption: For h € Hy, set {(x¢, ) € Rflﬁ X Riy :
AP (wy)zy + B (wi)ye > b (wi) — O (wy)wi—1} is nonempty and compact for any z;_1 € {0,1}% and
wt € €. Also, its constraints include x;_ 1 > 0,241 < 1,z > 0, and =y < 1.
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6.1 DA-SDDP algorithms for DRR- and DRA-MSDPs

Let us consider a set of cuts, {(ﬂf,fyf)}ke[Kﬂ, for iteration [ and stage ¢, constructing an approx-
imation of the pessimistic (risk-averse) or optimistic (risk-receptive) expected cost-to-go function.
Then, with the same definition of xg and w; as in Algorithm 1, the subproblem at iteration [ is
given by

Qi (wi—1,wp) = min  fy(ws, ye, wr) + bt (29a)
st. ¢ > (78) T ay +4F, VEk € [K]]; (xt,y¢) € Xi(w4—1, 1), (29b)

for t € [T] and w; € Qy, where ¢ = K% = 0 and Xy(z—1,w;) is defined by a disjunctive set (7).
We define the feasible set of the foregoing subproblem by
d
Di(awr-1, ) = { (w1, 01, 60) € RE X RY x Ry

V(0= ()T 248, k € (KL, A+ Bl (@ 2 b () = Clwne) }.
heH,

and derive the convex hull of D!(z;_1,w;) in the following proposition.

Proposition 1. For any v;—1 € {0,1}% and w; € 4, the convez hull of the set D(z—1,wt),t € [T],
is equivalent to the projection of polyhedral set D(z_1,wt) onto the (x4, yt, d¢)-space where

f)zlt(xt—l’wt) = { Z Ct}fo =1, Z Ct}fl —x =0, Z Ct},L2 -y =0,

heHy heHy heH;
h h
E Gy = Tt—1, E Ga — 91 =0,
heH; heH;

A?(M)C& + B}fh(wt)CthQ + C'th(wt)dfg — bf(wt)dfo >0, heH,, (30)
Ga— () ¢ —Afcly >0, heHke K],

de d
Tt eR » Yt €R+y7¢t GR-F:

h h dz ,h dy +h dz ~h
Ct,OGR“r?Ct,l€R+7<t,26R—‘f7ct73€R+7Ct,4€R+7h€Ht}'

Proof. Refer to Appendix A. O

Using Proposition 1, we derive an extension of DA-SDDP for DRR- and DRA-MSDPs, namely
DA-SDDP-DP. Its pseudocode is provided in Algorithm 2.

DA-SDDP-DP shares a similar structure to DA-SDDP, but note that it involves distinct sub-
problems and a special subroutine for adding cuts to the subproblems. In particular, it solves the
linear programming equivalents of subproblems (29), derived using Proposition 1 and referred to
as LP-subproblems:

min {ft(xt,yt,Wt) + ¢t 1 (T, Y, wt) € Proja, y,.6, (f)zle(l‘t—l,wt))}, t e [T, (31)
where ¢7 = 0. In this algorithm, let 2! be an optimal solution obtained by solving the LP-
subproblem (31) during a forward step (Line 5) for iteration ! and stage ¢. In a backward step

(Line 8), the algorithm solves the LP-subproblem (31) given x} and w} to obtain a cut in the form of
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Algorithm 2 DA-SDDP-DP

1: Initialize | < 1; zo <« initial state; w; < data at the first stage; Q; := {w1}; K! < 0 for
t=1,...,T—1;
2: while (satisfying none of stopping conditions) do
Sample a scenario path & € Z:=Qy x --- x Qp
for t € [T] do > Forward Step
Solve t-stage LP-subproblem (29) given z;_1 = x}_; and w; = &
fort=1T,...,2do > Backward Step
for : € N; do
Solve t-stage LP-subproblem (29) given ;-1 = 2! | and w; = w! and obtain cut
(Uzil,l? Uzil,o) ‘ }
Add cuts (7!_;,7!_;) to (t —1)-stage LP-subproblem (29) by using cuts (Uﬁu, Uﬂl’o),i €
N
10: Kl + Kl +1
11:  Solve LP-subproblem (29) for ¢ = 1 to obtain the bound LB
122 KM e« Klfort=1,...,T -1
13 l+1+1
14: return LP-subproblems, LB

®

Benders cut, (01{7171($i71,w§),01{7170($é71,w§)), where Uiq,l(dq"*’é) and aiflyo(xifl,wz) are the
optimal dual multipliers, associated with the constraints » ;. Ct}fo =1l and )y, C,ff3 =al
respectively. These cuts (o} (2} _1,wf), 01 1 o(x}_1,wf)) for i € N; are used to derive a cut
(ml_1,~4i_1); the cut (m!_;,~!_ ;) takes the form of (15b), if we solve a DRR-MSDP, and it takes
the form of (26), if we solve a DRA-MSDP. Then, its copies for h € H; are added to the (¢t — 1)-
stage LP-subproblem (Line 9). In Line 11, it computes the lower bound by solving the first-stage
LP-subproblem. DA-SDDP-DP repeats this procedure until a stopping condition is met. Both the
DRR- and DRA-SDDP-DP algorithms, defined as Algorithm 2 with cut (7!_;,~{_;) obtained as
above for DRR-MSDPs and DRA-MSDPs, respectively, have the finite convergence that can be
proved using Theorems 1 and 3, respectively.

Remark 4. In the implementation of Algorithm 2, we can establish the LP-subproblems once and
reuse them in each iteration, without the need for repeated construction, by adding constraints
Ct}f4 - (ﬂf)TCt}fl — ’yfgfo to the LP-subproblems as needed (in Line 9).

6.2 Application of Proposition 1 for solving DRR- and DRA-MSIPs using Hi-
erarchical Relaxations

In this section, we present a hierarchy of relaxations ranging from linear relaxation to tight extended
formulations for each stage to solve DRR-~ and DRA-MSIPs by applying Proposition 1. For the
ease of exposition, let y; be continuous. Then, the subproblem (11) of DRR- and DRA-MSIPs for
iteration [ and stage ¢ can be rewritten as

min{ft(xt,yt,ﬁi) + cbff : (;Uw =0V =15 = 1,...,dm>

A\ (90— )T = o k€ K1), Ad(EDae + Bulghye = bu(&) — Ce(D)in) } (32)
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We use Di(x;_1,&l) and Di’LP(xt_l, €}) to denote the feasible region of the subproblem (32) and its
linear programming relaxation, respectively. A relaxation of Di(x;_1,£!) can be defined as follows.

Dy (we-1,&) == Dy (w1, &) N {zej =0V ayj =1, j € [s]}, for s € [dy]. (33)
It is easy to see that Di’s (z¢_1,&l) for s = d, is equivalent to the original set. Moreover,
I,LP 1,1 l,dq
Dy (w-1,€0) 2 Dy (20-1,€1) 2 -+ 2 D™ (-1, &) = Di(e-1, &),

and thus conv(Di’l(a:t_l,{é)) 2.+ D conv(Di’d’“ (z¢-1,€)) = conv(Dl(x¢_1,€))). This provides a
hierarchy of relaxations of the feasible region Di@t—l,ffe) of DRR-~ and DRA-MSIPs. The tight
extended formulation of the convex hull of the relaxations can be obtained using Proposition 1.

Proposition 2. The convex hull of the set Di’s(mt,l,wt) 1s the projection of the following set onto
the (¢, Y, ¢t )-space for any xi—1 € {0,1}% and wy € Q:

{ Z CtO*l Z Ctl—xtfo Z CtQ ye =0, Z Ct3*37t 1

Re(|TE ] Re(|TE ] hell T2 hell 77
Ap(w) ¢ + Bi(w) (s + Colwi) (s > be(wy),  he [T,
Cgl,j = 07 ] € J{‘Lv Ct}fl,j = CZ?()’ ] € ‘]517 h € [|k7ts|]a (34)

(= ()¢ =l 20, he |k e K,
ze € RE yy € R%@t € Ry,

h h dz +h dy +h de ~h
Ct,O € R-i-th,l S R+ 7€t,2 S R+y’<t,3 S R+ 7<t,4 S R-f-v h e [|~7ts|]}ﬂ

where JF = {(JM, %) : h € |||}, s € [da],t € [T], be a set of all pairs of disjoint sets (Jy, Jo)
such that Jy, Jy C [dy], J1 N Jo =0, and |J1 U Jo| = s.

Proof. For s € [dy], the set Di’s(wt_l,wt), t € [T}, is given by the following disjunctive constraints:

\/ (:Ct]—o jedi, xj=15€Jo, ¢r— (7 )act>'yt,k€[Kl]
(‘]1»‘]2)6':7.*,3

Au(wor)are + Bilwn)ye = bolewr) — ctwt)a:t_l), (35)

where J° = {(J1,J2) : Ji,J2 C [ds], J1 N J2 = 0,|J1 U J2| = s}. By applying Proposition 1 to this
disjunctive set, we obtain the tight extended formulation (34). O

Proposition 2 provides the following relaxation that can be used to generate cuts in Line 8 of
Algorithm 1:

QN?S(I%A’@[&) = min{ fi(z¢, 1, &) + Sh(xe) (w1, 0) € Projz, v, (Di’s(fﬂiq,fﬁ))h

where Qi’l(mi_l,fi) < < Ql d”‘(wé_l, b = Qlal ,,€). For s = dg, a Benders cut obtained
by solving this relaxation is a supporting hyperplane satisfying (13). For the smaller values of
s, the Benders cut does not necessarily support the value function Qé(), but the relaxations are
computationally easier to solve. It is worth noting that the value of s can be adjusted either before
or during the execution of the algorithm to address this trade-off between the computational effort
and the effectiveness of the cuts.

Remark 5. The above relaxations can be readily extended to the case where ¥, is mixed-binary
variables. Furthermore, if y; is mixed-integer, a hierarchy of relaxations can be derived by employing
the binary expansion as discussed in Remark 2.
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7 Computational Tests

In this section, we present computational results of utilizing the presented algorithms, the DRR-
SDDP-C, DRR-SDDP-R, DRA-SDDP-C, and DRA-SDDP-R algorithms, to solve multistage stochas-
tic maximum flow interdiction problem (MS-MFIP) and multistage stochastic facility location in-
terdiction problem (MS-FLIP), discussed in Section 1.2, with distributional ambiguity. These
algorithms are implemented in Julia 1.8 where subproblems, coefficient-computing problems (16),
and distribution separation problem (25) are solved using Gurobi 9.5 with an optimality tolerance
of 1074, We also integrate our implementation of the inner functionalities of our DA-SDDP al-
gorithms with SDDP. j1 [14] package because of two reasons: (a) To ensure fair comparison with
benchmark algorithms [30], and (b) To be consistent with the research community, thereby making
it convenient for future computational and applied users of these algorithms. We conducted all
tests on a machine equipped with an Intel Core i7 processor (3.8 GHz), utilizing a single thread,
and 32 GB RAM.

Throughout all test instances, we consider Wasserstein ambiguity set with the {; norm. Note
that with the Wasserstein ambiguity set, the distribution separation problem (25) becomes a linear
program and the subproblem (11) in the DRR-SDDP-R algorithm becomes a mixed-binary linear
program.

7.1 Computational Results for Instances of MS-MFIP with Distributional Am-
biguity

Using a tractable reformulation of MS-MFIP, presented in Appendix B, i.e., (39), we obtain DRR
and DRA variants of MS-MFIP (8), denoted by DRR- and DRA-MFIPs. In the following sec-
tions, we report the results from the comparative analysis of the algorithms and demonstrate the
significance of risk-aversion and risk-receptiveness for MS-MFIP.

7.1.1 Instance generation and computational results

Networks are randomly generated, following the method presented in Cormican et al. [13]. First,
we place all nodes, excluding the source and sink nodes, in a grid pattern. Next, we establish
connections between the leftmost and rightmost nodes in the grid to the source and sink nodes,
respectively, using non-interdictable arcs with infinite capacity. Then, every pair of adjacent nodes
in the grid is connected by an arc. Horizontal arcs are oriented from left to right, and vertical
arcs, connecting the leftmost or rightmost nodes, are oriented from up to down. The orientations
of the remaining arcs are randomly chosen. To avoid trivial solutions, e.g., removing all horizontal
arcs in the same column, we set 80 percent of all arcs to be interdictable. Following the above
procedure, we generate two distinct networks with different sizes. For the first network and the
second network, we sample realizations of the random capacity of each arc uniformly distributed
on [30,60] and [20,90], respectively, to construct the support € of size || for each stage ¢. The
Wasserstein ball size parameter € is set to 30 and the interdiction budget for each stage is set to
one, i.e., the interdictor can remove up to one arc for each stage.

Table 1 summarizes the details of the test instances. Each row corresponds to a single instance
that is labeled accordingly under the Instance column. The naming convention NI-i-T-|€)| is used
for an instance with the ith network among the two aforementioned networks, T stages, and |Q2|
realizations per stage. The labels |[N| x |A| and #Scenario denote the number of nodes and arcs
of the network and the total number of scenario paths, respectively. For termination conditions,
we specify a time limit of 3 hours for all algorithms. Also, there is an early-termination condition
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Table 1: Details of DRR- and DRA-MFIP instances

Instance IN| x |A] | T | |9 | #Scenario
NI-1-3-5 37Tx73 | 3 5 25
NI-1-3-10 10 100
NI-1-3-15 15 225
NI-1-4-5 4 5 125
NI-1-4-10 10 1000
NI-1-4-15 15 3375
NI-1-5-5 5 5 625
NI-1-5-10 10 10000
NI-1-5-15 15 50625
NI-1-6-5 6 5 3125
NI-1-6-10 10 100000
NI-1-6-15 15 759375
NI-2-3-5 52 x 106 | 3 5 25
NI-2-3-10 10 100
NI-2-3-15 15 225
NI-2-4-5 4 5 125
NI-2-4-10 10 1000
NI-2-4-15 15 3375

based on the convergence of the lower bound. In particular, the algorithm is stopped if the lower
bound fails to improve for 100 consecutive iterations.

In table 2, we report the lower bounds and the solution times in seconds for each algorithm,
labeled LBound and Time (s), respectively. The results indicate that the DRA-SDDP-C algorithm
provides better lower bounds and solution times than the DRA-SDDP-R algorithm for all instances.
On average, the DRA-SDDP-C algorithm is 17.2 times faster than the DRA-SDDP-R, algorithm.
This performance advantage increases to 26.4 times (on average) for eight instances where both
algorithms provide the same lower bounds. The results show that the DRA-SDDP-R algorithm’s
performance is more susceptible to 7" and || than the DRA-SDDP-C algorithm. For example, as
we increase || from 5 to 15 for NI-1-3-5, the DRA-SDDP-R algorithm’s solution time increases
by 48.2 times, while the DRA-SDDP-C algorithm’s solution time increases by 2.7 times. Similarly,
when we increase T to 5 and 6 from 3 for NI-1-3-5, the DRA-SDDP-R algorithm failed to solve the
5-stage and 6-stage instances—NI-1-5-5 and NI-1-6-5—within the time limit, whereas the DRA-
SDDP-C algorithm was able to solve all instances within the time limit. This is mainly because the
DRA-SDDP-R algorithm adds a significantly larger number of cuts (|Q2|? cuts for every subproblem
solved) for each iteration, which increases the solution times for subproblems. Regarding DRR-
MFIP, the DRR-SDDP-C algorithm outperforms the DRR-SDDP-R algorithm for all test instances.
In terms of solution time, the DRR-SDDP-C algorithm is, on average, 22.3 times faster than the
DRR-SDDP-R algorithm, and this advantage increases to 41.3 times for seven instances where both
the algorithms provide the same bounds. This is because the DRR-SDDP-R algorithm solves larger
subproblems that arise from (24c) and (24d), incorporated by the linearization and the ambiguity
set, respectively.

7.1.2 Impact of risk-aversion and risk-receptiveness

To demonstrate the impact of risk-aversion and risk-receptiveness on MS-MFIP, we present the
results from out-of-sample tests, which are conducted as follows. We first sample realizations of
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Table 2: Performance comparison of algorithms for DRR- and DRA-MFIP instances

DRA-SDDP-C DRA-SDDP-R DRR-~-SDDP-C DRR-SDDP-R
Instance | LBound | Time (s) | LBound | Time (s) | LBound | Time (s) | LBound | Time (s)
NI-1-3-5 537.08 39.1 537.08 224.1 528.10 41.1 528.10 585.0
NI-1-3-10 | 535.00 50.3 | 535.00 1653.2 | 527.05 60.3 | 527.05 2172.9

NI-1-3-15 | 534.76 105.0 | 534.76 | 10800+ | 528.11 103.1 528.11 6774.8
NI-1-4-5 655.58 169.1 | 655.58 4794.1 644.76 173.8 | 644.76 | 10800+
NI-1-4-10 | 670.44 547.2 | 662.12 | 10800+ | 655.45 453.2 | 600.68 | 10800+
NI-1-4-15| 657.02 401.6 | 641.21 | 10800+ | 643.02 525.3 | 590.32 | 10800+
NI-1-5-5 735.84 1019.2 | 729.85| 10800+ | 727.05 1455.2 | 645.57 | 108004
NI-1-5-10 | 718.36 1443.9 | 676.38 | 10800+ | 701.54 1958.1 583.27 | 10800+
NI-1-5-15 | 792.14 704.2 | 774.19 | 108004 | 769.31 746.9 | 650.32 | 10800+
NI-1-6-5 737.51 3058.8 | 705.42 | 10800+ | 725.69 3491.4 | 631.55 | 10800+
NI-1-6-10 | 762.90 5066.5 | 672.96 | 10800+ | 744.84 6853.9 | 593.40 | 10800+
NI-1-6-15 | 748.97 | 10800+ | 594.48 | 10800+ | 715.37 | 10800+ | 576.73 | 10800+
NI-2-3-5 1018.51 54.2 | 1018.51 115.3 | 1013.16 61.7 | 1013.16 906.5
NI-2-3-10 | 892.61 73.9 | 892.61 994.0 | 884.66 96.8 | 884.66 3543.9
NI-2-3-15 | 903.28 148.8 | 903.28 263.7 | 891.10 171.7 | 891.10 | 10244.7
NI-2-4-5 1181.45 410.0 | 1181.45 9978.1 | 1173.41 436.3 | 1136.69 | 10800+
NI-2-4-10 | 1096.20 1426.5 | 1062.48 | 10800+ | 1086.77 1574.4 | 981.57 | 10800+
NI-2-4-15 | 1105.07 3387.2 | 1027.92 | 10800+ | 1089.51 3553.0 | 824.64 | 10800+

the capacity over the stages. Then, the DRA-MFIP and DRR-MFIP instances obtained over this
sample ({Q; : ¢t € [T]}) are solved using the algorithms. The resulting subproblems along with the
cuts generated by the algorithms define a policy for MS-MFIP, i.e., the decision rule that selects
the set of arcs to remove to minimize the maximal flow of the network for each stage. We simulate
the DRR and DRA policies using scenario paths of the capacity that are sampled independently
from the realizations used in solving the problems.

Throughout the out-of-sample tests, we consider the problem with 4 stages, 30 realizations per
stage, 3000 independently-sampled scenario paths, and a network with 30 nodes and 60 arcs. All
realizations are sampled from a truncated normal distribution where the mean is 30, the standard
deviation is 5, and the capacity belongs to the interval [10,50]. The policies are generated for the
set of different Wasserstein ball size parameter € belonging to {0,0.1,0.2,0.3,0.4,0.5,1,5,10}. We
present the results from the simulations in fig. 1: figs. 1a and 1b show the 90th and 95th percentiles
of the objective values obtained by the DRA policies, and figs. 1c and 1d show the 5th and 10th
percentiles of the objective values obtained by the DRR policies. Each figure contains the result
from the policy generated by SDDiP with ¢ = 0, i.e., the risk-neutral policy, as an orange horizontal
line for comparison.

The DRA policies give the smaller 90th and 95th percentiles compared to the risk-neutral policy.
As e increases from 0.1 to 0.3, the corresponding policies yield the lower 90th and 95th percentiles,
indicating the better out-of-sample performance. As e increases further, to 0.5,1,5, and 10, the
overall performance of the policies drops, yet their 90th and 95th percentiles remain smaller than
those of the risk-neutral policy. This demonstrates that the DRA policies achieve the robustness
of interdiction solutions by incorporating conservatism over unfavorable realizations in Q,t € [T]].
On the other hand, the DRR policies give the smaller 5th and 10th percentiles compared to the
risk-neutral policy. This indicates that the DRR policies yield more effective interdiction solutions
than the risk-neutral policy for certain scenario paths and reflect a more pessimistic perspective
of the network user on the network performance. Consequently, this pessimistic view can identify
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Figure 1: Plots of percentiles from out-of-sample tests on DRA-MFIP (90th and 95th percentiles)
and DRR-MFIP (5th and 10th percentiles)

the network vulnerabilities that are unnoticed by the risk-neutral policy. The level of pessimism
increases as € increases from 0.1 to 0.5, except for ¢ = 0.4. However, as it continues to increase up
to € = 10, the pessimistic view on the performance diminishes.

7.2 Computational Results of MS-FLIP with Distributional Ambiguity

In this section, we report the computational performances of the algorithm for DRR and DRA
variants of MS-FLIP (10), referred to as DRR-FLIP and DRA-FLIP, respectively. To generate
instances, we use the following method that is similar to the one used in Yu and Shen [44]. We
first randomly sample (L + M) points from a 100 x 100 grid and place demand points and facilities.
For each demand point [ € [L], we randomly choose y; from a uniform discrete distribution [20, 40].
Then, to construct the support €; of size || for each stage ¢, we randomly sample || realizations
of the random demand for [ € [L] from a truncated normal distribution, where the mean is yy,
the standard deviation is o; = /4, and the truncation interval is [1,60]. For all test instances,
we set the Wasserstein ball size € to 10 and set the interdiction budget for each stage to one, i.e.,
re = 1,¢t € [T]. The details of the test instances are given in table 3. Each instance, denoted
by LI-i-T-|€2|, involves the ith network out of two randomly generated networks, T" stages, and
|2| realizations per stage. For each row of the table, the labels L x M and #Scenario denote the
number of demand points and facilities and the number of total scenario paths, respectively. The
termination conditions are identical to those used for the DRR- and DRA-MFIP instances.

Table 4 presents the upper bounds and solution times in seconds obtained by each algorithm

23



Table 3: Details of DRR- and DRA-FLIP instances

Instance Lx M | T | |9 | #Scenario
LI-1-3-10 | 10x20 | 3 10 100
LI-1-3-20 20 400
LI-1-3-50 50 2500
LI-1-4-10 4 10 1000
LI-1-4-20 20 8000
LI-1-4-50 50 125000
LI-1-5-10 5 10 10000
LI-1-5-20 20 160000
LI-1-5-50 50 6250000
LI-2-3-10 | 15x30 | 3 10 100
LI-2-3-20 20 400
LI-2-3-50 50 2500
LI-2-4-10 4 10 1000
LI-2-4-20 20 8000
LI-2-4-50 50 125000
LI-2-5-10 5 10 10000
LI-2-5-20 20 160000
LI-2-5-50 50 6250000

under the label UBound and Time (s). The numbers in each row of the table correspond to the
result for a single instance. Note that smaller bounds are better since they are upper bounds. For
DRA-FLIP, the DRA-SDDP-C algorithm provides the upper bounds better than the DRA-SDDP-
R algorithm for all instances. Also, on average, the DRA-SDDP-C algorithm is 38.9 times faster
than the DRA-SDDP-R algorithm, and this advantage increases to 48.4 times for 11 instances
where both the algorithms produce the same bounds. The performance of the DRA-SDDP-R
algorithm is comparatively susceptible to the number of realizations per stage. For example, the
DRA-SDDP-R algorithm takes 458.7 seconds to solve LI-2-3-10, but it fails to converge within the
time limit when solving LI-2-3-50. The DRA-SDDP-C algorithm, however, converges for the both
instances within the time limit. When comparing the results for DRR-FLIP, the DRR-SDDP-C
algorithm provides better upper bounds than the DRR-SDDP-R algorithm for all the instances.
In terms of solution time, the DRR-SDDP-C algorithm is, on average, 25.8 times faster than the
DRR-SDDP-R algorithm for all instances, and 26.7 times faster for 13 instances where both the
algorithms produce the same bounds. As discussed in the previous section, this shows that the
both DRA-SDDP-R and DRR-SDDP-R algorithms require more time to solve due to the larger
subproblems resulting from the reformulation techniques.

8 Conclusion

We studied multistage stochastic integer and disjunctive programs under distributional ambiguity,
considering the distributional risk-receptiveness and risk-aversion in a decision making process.
We developed reformulation-based and cutting plane-based algorithms for solving distributionally
risk-receptive and distributionally risk-averse multistage stochastic integer programs (DRR- and
DRA-MSIPs) and provided the finite convergence analysis for these algorithms. Furthermore, we
extended the algorithms for distributionally risk-receptive and distributionally risk-averse multi-
stage stochastic disjunctive programs (DRR- and DRA-MSDPs) and then applied them to solve
DRR- and DRA-MSIPs using a hierarchy of relaxations for each stage subproblem. We compared
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Table 4: Performance comparison of algorithms for DRR- and DRA-FLIP instances

DRA-SDDP-C DRA-SDDP-R DRR-~-SDDP-C DRR-SDDP-R
Instance | UBound | Time (s) | UBound | Time (s) | UBound | Time (s) | UBound | Time (s)
LI-1-3-10 431.29 29.1 431.29 169.7 437.28 28.4 437.28 109.1
LI-1-3-20 327.32 49.8 327.32 1761.0 333.39 41.3 333.39 630.6
LI-1-3-50 384.83 75.8 384.83 | 10800+ 392.50 74.5 392.50 3373.3
LI-1-4-10 489.80 53.2 489.80 1170.2 498.44 48.6 498.44 622.1
LI-1-4-20 479.23 68.5 479.23 6511.9 491.03 78.7 491.03 1963.0
LI-1-4-50 651.45 105.6 651.45 | 10800+ 668.28 106.8 668.28 | 10800+
LI-1-5-10 654.12 73.6 654.12 1744.3 670.83 74.5 670.83 1501.3
LI-1-5-20 774.27 89.5 774.27 4853.6 792.99 80.3 792.99 4635.5
LI-1-5-50 929.85 156.2 931.32 | 10800+ 955.35 162.9 978.63 | 10800+
LI-2-3-10 452.23 74.1 452.23 458.7 456.76 78.3 456.76 333.4

LI-2-3-20 463.56 119.4 463.56 1894.1 468.56 112.7 468.56 772.8
LI-2-3-50 489.47 459.4 518.37 | 10800+ 495.10 453.1 495.10 | 10800+
LI-2-4-10 500.09 369.0 500.09 | 10800+ 506.22 378.5 506.22 4815.8
LI-2-4-20 508.09 476.5 531.57 | 10800+ 514.78 444.9 514.78 8376.8
LI-2-4-50 556.50 761.3 721.03 | 10800+ 564.69 692.1 | 1194.59 | 10800+
LI-2-5-10 599.37 534.6 661.32 | 10800+ 605.32 550.7 | 1009.53 | 10800+
LI-2-5-20 816.66 879.1 904.14 | 10800+ 828.21 1026.6 | 1339.16 | 10800+
LI-2-5-50 756.16 1732.8 949.12 | 10800+ 767.99 1927.1 | 1756.89 | 10800+

the algorithms for DRR~ and DRA-MSIPs by solving multistage stochastic network interdiction
problems under distributional ambiguity that are sequential two-player non-cooperative games and
have not been addressed in the literature. The computational results show that the cutting plane-
based algorithms outperform the reformulation-based algorithms in terms of both the solution
bounds and times. In addition, we conducted out-of-sample tests, and their results demonstrate
that the DRA policies provide robust decision rules for uncertainty, while the DRR policies may
reveal the network vulnerabilities that are overlooked by risk-neutral policies for uncertainty.

A Proof of Proposition 1

Let z; = (2¢,ys, ¢¢). For any Z;_1 € {0,1}% stage ¢, and iteration [, the convex hull of D}(Z;_1, w;)
is equivalent to the convex hull of F}(w;) N E(Z;_1) where

fg(wt) = {(:ct_l,zt) € Riz X R(j_z+dy+1 :

\/ (60 = (xf) e 2 ks k€ (K], AP(@i)as + Bl wiys + Cf (wowes > b?w)}, (36)
heH;

and E(Zi—1) == {(w¢_1,2) : 24_1 = Ty_1}. We claim that conv(F}(wi) NE(T4_1)) = conv(F}(we)) N
E(Z4—1). Clearly, conv(F}H(w) N E(Fi—1)) C conv(Fi(wy)) N E(Fi—1). To show that conv(F}(w) N
E(Z4-1)) 2 conv(Fi(wi)) NE(ZTy—1), pick any point (Z¢—1, 2) € conv(Fy(wi)) NE(Z—1). Then, there
exist (z]_y,2]) € Fi(w) and M € (0,1],5 = 1,...,J such that YieN = LY e N =
Ti_1, Zje[J] )\jzg = Z;. Since T;_1 is binary and x{_l belongs to [0, 1], this implies that 1’{_1 = T4_1
for all j € [J]. Consequently, (:L‘{_l, zf_l) € FHw)NE(T4_1),7 € [J], and (Ty_1,2) € conv(F}(we)N
E(Z¢—1)). This completes the proof of the claim.

25



To obtain conv(F}(w;)), we first use Theorem 4 and derive a tight extended formulation of
Fi(w;), which is given by

) :={ S oo LS = 0.5 0,

heH; heH; heH,
s —m1=0,> ¢y—d =0,
heH; heH;
A (@)Cl + Bl (@o)(la + O (wi) (s — b (we)(lo > 0, h e Hy, (37)

C{fll - (Trtk)TCt}fl - fYtkCt}fO > 07 h e Ht7 S KL

dy d dy
v €ERY yr e RY o € RYT, 0 € Ry,

h h dz ,h dy ~h de ~h
<t,O€R+7Ct71€R+7€t72ER—FyJCt’S€R+7Ct’4€R+7h€Ht}'

Since F{(w;) is unbounded, the projection of the above formulation (37) onto the (z;_1, z;)-space is
the closed convex hull of F}(w;). Consider |H;| polyhedra defined by disjunctive constraints for h €
H, in (36). They are nonempty and have identical recession cones. This implies that conv(F (w;)) is
a polyhedron, and thus the closed convex hull of F}(w;) is equivalent to conv(F} (w;)). Hence, using
the tight extended formulation (37), the convex hull of D(Z;_1,w;) is given by Projiy,_; - (Fi(wi))N
E(Z¢—1), which is equivalent to the projection of formulation (30) onto the z;-space.

B Mixed-binary linear programming reformulation of MS-MFIP

Let )\ € ]R'fl and p € RNV be the dual multipliers corresponding to (9b) and (9c¢), respectively.
Given z¢ and wy, the dual of the maximum flow problem (9) is

min Z ctalwr)(1 —zea)Aa (38a)
acA

St Ag+pi —p; >0, V(i,j)=aec A\{(t,9)} (38b)
Alts) + 1t — s > 1 (38c)
x> 0. (38d)

Note that by the max-flow min-cut theorem a feasible dual solution A, € {0, 1} indicates whether
arc a € A is in a solution cut-set or not. Therefore, we can introduce a variable w, € R to replace
Tt aMa in the objective function such that A\, —wg, > 0,244 — we > 0,wq — Ag — T4 > —1, and
obtain a linear programming reformulation of the dual (38). Note that we can omit the constraints
Wq — Ag — Tp,q > —1 for a € A, since we only need to restrict the upper bound on w,. By
embedding the resulting linear program into the bellman equation (8), we obtain a mixed-integer
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linear programming reformulation:

C

min ) (Ct,a(wt))\a - Ct7a(wt)wa> + Y P Qe (@ wipy) (39a)

a€A €Ny

s.t. (8b)—(8d) (39b)
(38b)—(38d) (39¢)
Mo —we >0, VacA (39d)
Tpg —we >0, Vae A (39¢)
w >0, (39f)

Tight extended formulation of disjunctive set

Consider nonempty polyhedra G" := {z € R Ahz > "} h € H, and let G := Uner G". Then,
the closed convex hull of G is given as follows.

Theorem 4. (Theorem 2.1 in Balas [1]) The closed conver hull of G is the projection of the
following extended formulation onto the x-space.

x_zch:()?

heH
Ah¢h — el > 0,
d =1,
heH
"¢ty >0, heH.
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