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A New Single-Layer Inverse-Free Fixed-Time
Dynamical System for Absolute Value Equations

Xin Han

Abstract—In this technical note, a novel single-layer inverse-
free fixed-time dynamical system (SIFDS) is proposed to address
absolute value equations. The proposed SIFDS directly employs
coefficient matrix and absolute value equation function that aims
at circumventing matrix inverse operation and achieving fixed-
time convergence. The equilibria of the proposed SIFDS is proved
to be the unique solution of absolute value equation under the
mild condition. In contrast to most existing dynamical systems,
the salient feature of the proposed SIFDS is its concise struc-
ture and tighter upper bound of convergence time. Moreover,
theoretical analysis shows that our SIFDS possesses fixed-time
convergence which is independent of the initial values. To further
improve the upper bound of convergence time of SIFDS, we
establish a new global error bound for absolute value equation.
Finally, numerical simulation results are presented to validate
the effectiveness of the proposed SIFDS.

Index Terms—Absolute value equations, fixed-time conver-
gence, global error bound, single-layer inverse-free dynamical
system.

I. INTRODUCTION

Various equation systems have received widespread at-
tention in recent decades [1]–[4]. As a class of extremely
important equations, absolute value equations (AVEs) [5] have
been investigated and applied widely in many fields, such as
quadratic programming problem, variational inequality (VI),
linear complementarity problem (LCP), mixed integer pro-
gramming problem, bimatrix game and economic equilibrium
problem [6]–[10]. The problem of AVE is cast as

Az−
∣∣z∣∣− b = 0, (1)

where A ∈ Rm×m, z ∈ Rm, b ∈ Rm, and
∣∣z∣∣ ∈ Rm

represents the component-wise absolute value of z whose the
k-th component is zk if zk ∈ R+ ∪

{
0
}

and −zk otherwise.
It is well known that AVE (1) is NP-hard [5] owing to its
non-differentiability and nonlinearity.

To effectively address the AVEs, many numerical compu-
tation methods have been investigated, such as Levenberg-
Marquardt method [11], and fixed point iteration method [12]
and its improved form [13]. These methods are all discrete,
and they usually need to coordinate the iteration step length
and search direction to achieve the fast computation goal.
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The numerical methods [11]–[13] are easily implemented on
digital computers. However, they cannot efficiently obtain real-
time solutions, and often encounter difficulties in coordinating
the iteration step length and search direction. To tackle this
issue, this paper considers the dynamical systems. In contrast
to discrete methods, dynamical systems have the advantages
of parallel processing of information, acquisition of real-time
solutions, convenience of convergence analysis via Lyapunov
theory, and induction of some possible discrete methods [14]–
[18]. In the last decades, dynamical systems for addressing
the AVEs have attracted much attention in [19]–[25]. For
instance, to find the exact solution, the globally convergent
double-projection dynamical system was presented in [19]
and the asymptotically stable projection dynamical system
was constructed in [20]. In addition, the authors in [21]
reformulated AVE (1) as a smooth unconstrained problem by
the smooth approximation technique, and proposed a unified
smoothing dynamical system based on eight systematically
generated smoothing functions to tackle this smooth uncon-
strained problem. To overcome the dependence of the upper
bound for convergence time upon the initial states, the authors
in [22] reformulated AVE (1) as an LCP, and proposed a
fixed-time convergent projection dynamical system (FCPDS)
for solving this LCP to obtain the solution of AVE (1). It
is worth pointing out that these dynamical systems cannot
avoid matrix inversion, which may increase computation load,
especially for the large scale AVEs problems. To overcome
this limitation, several inverse-free dynamical systems were
designed for tackling the AVEs in the literatures. Recently,
the asymptotically convergent inverse-free dynamical system
(ACIDS) was proposed in [23]. In addition, the authors in
[24] extended the ACIDS, and proposed an inertial inverse-
free dynamical system (IIDS) by introducing an inertial term.
From the perspective of structure, we know that the ACIDS
is one-layer while the IIDS is two-layer and involves more
neurons than the ACIDS. Considering fixed-time stability and
the ACIDS with simple structure, more recently, the authors in
[25] proposed a fixed-time convergent inverse-free dynamical
system (FCIDS) with one-layer structure.

To inherit the characteristics of matrix inverse-free operation
and single-layer structure of the ACIDS [23], and the fixed-
time stability of the FCIDS [25], we aim to design an inverse-
free dynamical system with simple structure and accelerated
convergence to solve AVE (1). To put it briefly, our motivation
is to develop a new inverse-free dynamical system to improve
the convergence of the FCIDS [25]. The main contributions
of this technical note are highlighted as follows.

• A novel single-layer inverse-free fixed-time dynamical
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system (SIFDS) is proposed to address AVE (1). Based on
the fixed-time stability theory in [26], SIFDS is rigorously
proved to be convergent in fixed time, and its convergence
point is just the unique solution of AVE (1). In contrast
to the FCIDS [25], the proposed SIFDS has a smaller
upper bound for convergence time to achieve the solution
of AVE (1). Moreover, for AVE (1), a new error bound
which is more compact than that in [23] is established to
further improve the convergence of SIFDS.

• Compared with the two-layer FCPDS [22], the proposed
SIFDS possesses less neurons and the feature of matrix
inverse-free operation, and only involves Assumption 1
which indicates that we have more relaxed restriction on
AVE (1).

• Detailed comparisons of SIFDS with the FCIDS [25] are
given by a numerical example. It can be observed from
the numerical simulation results that the proposed SIFDS
is effective and enjoys faster convergence.

This paper is outlined as below. Section II introduces some
preliminaries on AVE (1) and fixed-time stability theory.
Section III designs a novel single-layer inverse-free fixed-time
dynamical system, and provides some convergence results.
In Section IV, numerical simulation results are listed. The
conclusion is presented in Section V.

II. PRELIMINARIES

A. Notations

R+ represents the set of positive real numbers. Let 0 denote
a column vector or square matrix with all entries equal to
0 ∈ R (its size is to be understood from this brief). Let
E ∈ Rm×m stand for the identity matrix. (·)> represents the
transpose of some vector or matrix. 〈·, ·〉 denotes the inner
product. For B ∈ Rm×m, the spectral norm and spectral
radius will be represented by

∥∥B
∥∥

2
and ρ

(
B
)
, respectively.

For x ∈ Rm, the `1-norm will be denoted by
∥∥x
∥∥

1
and the `2-

norm by
∥∥x
∥∥. Denote

∣∣ · ∣∣ as the absolute value vectors defined
by
∣∣b∣∣ =

(∣∣b1∣∣, · · · , ∣∣bm∣∣)>. evs
(
B
)

denotes the eigenvectors
space of B ∈ Rm×m For B ∈ Rm×m, λmin

(
B
)

denotes B’s
smallest eigenvalue. Denote tridiag

(
p, q, r

)
as a matrix whose

the sub-diagonal, the main diagonal, the super-diagonal and
other entries are p ∈ R, q ∈ R, r ∈ R and 0 ∈ R, respectively.
Set C > 0 if C ∈ Rm×m is positive definite.

B. Absolute Value Equation (AVE)

Let Θ(z) := (A + E)z − b, Ξ(z) := (A − E)z − b and
Ω :=

{
z ∈ Rm : z ≥ 0

}
. According to the analysis of [5], [23],

it can be known that AVE (1) is equivalent to the following
general LCP: find a z ∈ Rm such that

Θ(z) ≥ 0, Ξ(z) ≥ 0 and
〈
Θ(z),Ξ(z)

〉
= 0. (2)

Notice that (2) is equivalent to the following VI: find a z ∈ Rm
such that Θ(z) ∈ Ω and〈

y−Θ(z),Ξ(z)
〉
≥ 0, ∀ y ∈ Ω, (3)

which can be equivalently transformed into the following
projection equation [29]:

Θ(z) = PΩ

[
Θ(z)− Ξ(z)

]
, (4)

where PΩ(v) represents a projection operator of the vector
v ∈ Rm on the set Ω, and PΩ(v) := arg minx∈Ω

∥∥x− v
∥∥.

Before proceeding, the following assumption is adopted for
our analysis.

Assumption 1. For AVE (1), σmin(A) ∈
(
1,+∞

)
, where

σmin(A) represents the smallest singular value of A.

Remark 1. Assumption 1 has received extensive attention (see
[5], [22], [23], [25]). From [5, Proposition 3], it can be seen
that Assumption 1 is given to ensure that AVE (1) enjoys a
unique solution, which means that it makes sense to design
some computing approaches to address AVE (1).

C. Some Necessary Definitions and Lemmas
Consider the following system:{

ż(t) = F
(
z(t)
)
,

z
(
t0
)

= z0 ∈ Rm, (5)

where F : Rm → Rm is a continuous function.
The following lemma results show the global fixed-time

stability characteristic of system (5).

Lemma 1. [26] The vector z? ∈ Rm is called as an equilibria
of system (5) if F

(
z?
)

= 0. There exists a radially unbounded
and continuously differentiable function W : Rm → R+ ∪
{0} such that W

(
z(t)
)

= 0 iff z(t) = 0. Moreover, for each
solution z(t) ∈ Rm with t ≥ 0, if the following inequality

Ẇ
(
z(t)
)
≤ −

[
α̂W

(
z(t)
)

+ β̂Wc
(
z(t)
)

+ γ̂Wd
(
z(t)
)]

is satisified, where α̂, β̂, γ̂ ∈ R+, c ∈ (0, 1) and d ∈ (1,+∞),
then the equilibria z? ∈ Rm of system (5) is globally fixed-time
stable, and the estimate Tsup of the settling time T

(
z
(
t0
))

is
presented as follows:

T
(
z
(
t0
))
≤

ln
(
1 + α̂

β̂

)
α̂(1− c)

+
ln
(
1 + α̂

γ̂

)
α̂(d− 1)

= Tsup, ∀ z
(
t0
)
∈ Rm.

Remark 2. Utilizing the fact that the inequality 0 < ln(z +
1) < z always holds for all z ∈ R+, it is not difficult to
deduce that the supremum Tsup of the settling time T

(
z
(
t0
))

in Lemma 1 is slightly tighter than that in [28].

In the following, the properties for AVE (1) are listed.

Lemma 2. [23] Let ε(z) := Θ(z)− PΩ

[
Θ(z)−Ξ(z)

]
in (4).

Then, z? is a solution to AVE (1) iff ε
(
z?
)

= 0. Moreover,
ε(z) = Az−

∣∣z∣∣− b can be obtained directly.

Lemma 3. [23] If z? ∈ Rm is a solution to AVE (1) and
Assumption 1 holds, then〈

z− z?,A>
(
Az−

∣∣z∣∣− b
)〉
≥ 1

2

∥∥∥Az−
∣∣z∣∣− b

∥∥∥2

, ∀ z ∈ Rm.

Lemma 4. [23] Let Ω(z) := Az−
∣∣z∣∣− b. Under Assumption

1, AVE (1) possesses a unique solution, say z? ∈ Rm, and∥∥z− z?
∥∥ ∈ [ 1

τ1 + τ2

∥∥Ω(z)
∥∥, τ1 + τ2

η

∥∥Ω(z)
∥∥] (6)
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TABLE I: COMPARISON OF RELATED
DYNAMICAL SYSTEMS FOR AVE (1)

Algorithms Neurons Layers Matrix inversion Assumption 1 only

FCPDS [22] 2m 2 yes no

FCIDS [25] m 1 no yes

IIDS [24] 2m 2 no no

SIFDS m 1 no yes

holds for each z ∈ Rm, where τ1 =
∥∥A+E

∥∥
2
, τ2 =

∥∥A−E
∥∥

2
,

and η = λmin

(
ATA

)
− 1.

III. SIFDS AND ITS CONVERGENCE ANALYSIS1

For tackling AVE (1), the following SIFDS is proposed:

ż = −~
[
γ + α

∥∥Ω(z)
∥∥u−1

+ β
∥∥Ω(z)

∥∥v−1
]
Λ(z), (7)

where Ω(z) := Az −
∣∣z∣∣ − b, Λ(z) := A>Ω(z), and ~ ∈ R+,

γ ∈ R+, α ∈ R+, β ∈ R+, u ∈ (−1, 1) and v ∈ (1,+∞)
are six design parameters. The dynamical system described in
(7) is easy to be implemented by a one-layer recurrent neural
network.

Remark 3. The proposed SIFDS (7) is inspired from the
inverse-free dynamical systems in [23], [25]. It is worth
noticing that if γ = 1 and α = β = 0, then SIFDS (7)
degenerates to the ACIDS [23]. If γ = 0 and u ∈ (0, 1),
then SIFDS (7) degenerates to the FCIDS [25]. Meanwhile,
it can be observed from Table I that our SIFDS inherits the
advantages of single-layer structure, inverse-free calculation
and less restrictions on AVE (1) in [25]. However, different
from the FCIDS [25], our algorithm enjoys a smaller upper
bound for convergence time to achieve the unique solution of
AVE (1) (see Theorem 1 in this work for details). Moreover,
compared with the FCPDS [22] and IIDS [24], our algorithm
has fewer restrictions on AVE (1) and fewer neurons. In
contrast to the FCPDS [22], our algorithm can avoid matrix
inversion which effectively reduces the hardware consumption.

The following lemma states the equivalence between the
solution to AVE (1) and the equilibria of SIFDS (7).

Lemma 5. Under Assumption 1, z? ∈ Rm is an equilibria of
SIFDS (7) iff it is the unique solution to AVE (1).

Proof: It is pointed out that if z? ∈ Rm is an equilibrium
point of SIFDS (7), then[

α
∥∥Ω(z)

∥∥u−1
+ β

∥∥Ω(z)
∥∥v−1

+ γ
]
Λ(z) = 0,

that is,

Λ
(
z?
)

= A>Ω
(
z?
)

= 0. (8)

Note that it can be directly deduced from Assumption 1 that
square matrix A is invertible. It thus follows from (8) that

Ω
(
z?
)

= Az? −
∣∣z?∣∣− b = 0, (9)

1For notational simplicity, (t) will be omitted for all variables
(
like z(t)

)
containing (t) in the remainder of this work, unless necessary.

which means that vector z? is the solution to AVE (1).
Conversely, if vector z? is the solution to AVE (1), it is not
difficult to find that it is the equilibria of SIFDS (7). Hence,
the conclusion is established.

We now show Lipschitz continuity of Λ(z) in (7).

Lemma 6. The mapping Λ(·) : Rm → Rm involved in SIFDS
(7) is Lipschitz continuous in Rm.

Proof: By (7), the triangle inequality and the compatibil-
ity [30] of the matrix spectral norm and vector `2-norm, we
deduce:∥∥Λ(x)− Λ(y)

∥∥ ≤ ∥∥A>A(x− y)
∥∥+

∥∥A>(
∣∣x∣∣− ∣∣y∣∣)∥∥ (10)

for each x, y ∈ Rm. From [30, Remark 1], it follows that∥∥A>A
(
x− y

)∥∥ ≤ l1∥∥x− y
∥∥, (11)

and ∥∥∥A>(
∣∣x∣∣− ∣∣y∣∣)∥∥∥ ≤ l2∥∥∥∣∣x∣∣− ∣∣y∣∣∥∥∥, (12)

where l1 =
∥∥A>A

∥∥
2

and l2 =
∥∥A
∥∥

2
. Then, combining (10),

(11) and (12), one has∥∥Λ(x)− Λ(y)
∥∥ ≤ l1∥∥x− y

∥∥+ l2

∥∥∥∣∣x∣∣− ∣∣y∣∣∥∥∥. (13)

In light of (13) and the fact that
∥∥∥∣∣x∣∣ − ∣∣y∣∣∥∥∥ ≤ ∥∥x − y

∥∥, it
implies that ∥∥Λ(x)− Λ(y)

∥∥ ≤ (l1 + l2
)∥∥x− y

∥∥,
which means that the mapping Λ(·) : Rm → Rm is globally
Lipschitz continuous with the Lipschitz constant L = l1 + l2.
Therefore, this completes the proof.

Remark 4. From [27, Lemma 3], it can be seen that Λ(·) is
a Lipschitz continuous vector field. By virtue of [27, Lemma
3] and Lemma 6, one deduces that SIFDS (7) has a unique
equilibrium point.

In what follows, the fixed-time convergence analysis of
SIFDS (7) is presented.

Theorem 1. Under Assumption 1, SIFDS (7) is globally fixed-
time convergent with the settling time given as

T
(
z
(
t0
))
≤

ln
(
1 + α̂

β̂

)
α̂(1− c)

+
ln
(
1 + α̂

γ̂

)
α̂(d− 1)

= Tsup (14)

for any initial vector z
(
t0
)
∈ Rm, where

α̂ = ~γζ2, β̂ = ~αζu+1, γ̂ = ~βζv+1, (15a)

ζ =
η

τ1 + τ2
, c =

u+ 1

2
∈ (0, 1), d =

v + 1

2
∈ (1,+∞)

(15b)

are all positive constants.

Proof: The Lyapunov function candidate is defined as

W
(
z(t)
)

:=
∥∥z(t)− z?

∥∥2
. (16)

For the sake of simplification discusssed, W is used to stand
for W

(
z(t)
)

in the remainder of this brief, unless necessary.
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From (16), it follows that W > 0 for each z ∈ Rm \
{

z?
}

,
and W = 0 iff z = z?, and

W ≥ 1

2

∥∥z− z?
∥∥2
,

which means that W → +∞ when
∥∥z
∥∥→ +∞. Taking W’s

time derivative yields Ẇ = dW
dz ·

dz
dt , it then follow from (7),

(16), and Lemma 3 that

Ẇ =2
〈
z− z?, ż

〉
=− 2~

〈
z− z?,

[
γ + α

∥∥Ω(z)
∥∥u−1

+ β
∥∥Ω(z)

∥∥v−1
]
Λ(z)

〉
≤−

[
~α
∥∥Ω(z)

∥∥u−1
+ ~β

∥∥Ω(z)
∥∥v−1

+ ~γ
]∥∥Ω(z)

∥∥2

≤0, (17)

which implies that W is non-increasing. It is worth pointing
out that if Ẇ = 0, then Ω(z) = 0 is satisfied by utilizing (17)
and Lemma 5, which means that ż = 0 is established. The
above indicates that W is a Lyapunov function.

By virtue of (6) in Lemma 4, it implies that∥∥Ω(z)
∥∥ ≥ η

τ1 + τ2

∥∥z− z?
∥∥. (18)

Based on the definition ofW , one hasW 1
2 =

∥∥z−z?
∥∥. Further,

by (18), one derives that∥∥Ω(z)
∥∥2 ≥

( η

τ1 + τ2

)2

W. (19)

It then follows from (19) that
∥∥Ω(z)

∥∥u+1 ≥
(

η
τ1+τ2

)u+1

W u+1
2 ,∥∥Ω(z)

∥∥v+1 ≥
(

η
τ1+τ2

)v+1

W u+1
2 .

(20)

By (17), (19) and (20), one deduces:

Ẇ ≤ − ~γ
( η

τ1 + τ2

)2

W − ~α
( η

τ1 + τ2

)u+1

W
u+1
2

− ~β
( η

τ1 + τ2

)v+1

W
v+1
2

=−
(
α̂W + β̂Wc + γ̂Wd

)
, (21)

where α̂ ∈ R+, β̂ ∈ R+, γ̂ ∈ R+, c ∈ (0, 1), and d ∈ (1,+∞)
are five constants defined as in (15). Consequently, it follows
from (21) and Lemma 1 that SIFDS (7) is fixed-time stable,
and the supremum Tsup for the time T

(
z
(
t0
))

is listed as in
(14). Hence, this proof is completed.

Remark 5. Theorem 1 indicates that SIFDS (7) can effectively
deal with AVE (1) within fixed time for any initial conditions.
In other words, AVE (1) is not necessarily satisfied at the initial
time and will hold after a settling time. It is worth pointing
out that if γ = 0 in (7), then the proposed SIFDS is also
globally fixed-time convergent (see Theorem 2). However, the
supremum of the settling time for our SIFDS with γ = 0 is
larger than one for our SIFDS as noted in Remark 2, which
means that T̃sup in (25) is greater than Tsup in (14). In addition,
from Theorem 1, it is not difficult to obtain that if γ = 0 and
β = 0 in (7), then the proposed SIFDS is globally finite-time
convergent.

Theorem 2. If Assumption 1 is satisfied, then SIFDS (7) with
γ = 0 is globally fixed-time convergent with the settling time
given as

T
(
z
(
t0
))
≤ 1

α̃(1− c)
+

1

β̃(d− 1)
= T̃sup (22)

for any initial point z
(
t0
)
∈ Rm, where α̃ = ~αζu+1 ∈ R+,

β̃ = ~βζv+1 ∈ R+, and the designed parameters ζ, c and d
are defined as in (15b).

Proof: This proof follows from Theorem 1, and thus it is
omitted for brevity.

Remark 6. It is worth noticing that the proposed SIFDS
possesses the same fixed-time convergence characteristics as
the dynamical systems in [22], [25]. However, from Remark
3 and Theorem 2, one deduces that the upper bound of
convergence time of our SIFDS is smaller than that of the
FCPDS [22] and FCIDS [25]. Specifically, their fixed-time
convergence are established for the case that λ1 ∈ (0, 1),
excluding the case that λ1 ∈ (−1, 0], where λ1 plays the
same role as u in this work. Meanwhile, notice that the other
parameters in [22], [25] correspond completely to the roles
of the parameters α, β and v in SIFDS (7) with γ = 0, and
these parameters can correspond to equality. Thus, it can be
seen from Theorems 1-2 that we fill the gap. In addition, from
Table I, one can observe that our SIFDS not only circumvents
the matrix inversion operations involved in the FCPDS [22],
but also inherits the conciseness of the FCIDS [25].

To further improve the convergence time upper bound of the
proposed SIFDS, we present the following new global error
bound for AVE (1), which is more compact than that in [25].

Lemma 7. The function Ω(z) is defined as in (7). If As-
sumption 1 holds, then AVE (1) possesses the unique solution
z? ∈ Rm, and∥∥z− z?

∥∥ ∈ [ 1

τ new
1 + τ new

2

∥∥Ω(z)
∥∥, τ new

1 + τ new
2

η

∥∥Ω(z)
∥∥] (23)

holds for every z ∈ Rm, where
τ new
1 =

{
ρ
(
A + E

)
, z− z? ∈ evs

(
A + E

)
,∥∥A + E

∥∥
2
, otherwise,

τ new
2 =

{
ρ
(
A− E

)
, z− z? ∈ evs

(
A− E

)
,∥∥A− E

∥∥
2
, otherwise,

(24)

and η = λmin

(
A>A

)
− 1.

Proof: See Appendix for detailed proof.

Remark 7. Notice that it can be deduced from Lemma 7
that τnew

1 + τnew
2 in (23) is less than or equal to τ1 + τ2 in

(6) for Lemma 4 (i.e., [23, Theorem 4.1]) by virtue of the
property (see [31, Theorem 5.6.9.]) of the spectral radius and
compatibility (see [30, Remark 1]) of the matrix spectral norm
and the vector `2-norm. Therefore, theoretically, the upper and
lower bounds of the error involved in Lemma 7 are more
compact than those in Lemma 4, which means that the results
in [23] are improved.
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Through Lemma 7 and the proof of and Theorem 1, we can
directly deduce two other fixed-time convergence conclusions
of SIFDS, so the proof of Theorems 3-4 is omitted.

Theorem 3. If Assumption 1 holds, SIFDS (7) is globally
fixed-time convergent with the settling time given as

T
(
z
(
t0
))
≤

ln
(
1 + α̂new

β̂new

)
α̂new(1− c)

+
ln
(
1 + α̂new

γ̂new

)
α̂new(d− 1)

= T new
sup

for any initial point z
(
t0
)
∈ Rm, where α̂new, β̂new and γ̂new

are similar to the definition of (15), except that ζ = η/
(
τ1 +

τ2
)

in (15) is replaced by ζnew = η/
(
τ new
1 + τ new

2

)
.

Theorem 4. Under Assumption 1, SIFDS (7) with γ = 0 is
globally fixed-time convergent with the settling time given as

T
(
z
(
t0
))
≤ 1

α̃new(1− c)
+

1

β̃new(d− 1)
= T̃ new

sup (25)

for any initial vector z
(
t0
)
∈ Rm, where α̃new and β̃new are

similar to the definition of Theorem 3, except that ζ = η/
(
τ1+

τ2
)

is replaced by ζnew = η/
(
τ new
1 + τ new

2

)
.

Remark 8. It is not difficult to derive T new
sup ≤ Tsup and T̃ new

sup ≤
T̃sup from Lemma 7 and Theorems 3-4. This indicates that
theoretically, the upper bound of the convergence time of the
proposed SIFDS is theoretically improved with the aid of the
new global error bound formula in Lemma 7.

IV. EXPERIMENTAL RESULTS

This section provides a numerical example to illustrate
the computation performance and theoretical results of the
proposed SIFDS. The ODE45 solver in MATLAB R2019b
is used to conduct the simulation on the FCIDS [25] and
the proposed SIFDS. In this simulation, we choose the same
initial value for different dynamical systems. For the sake
of convenience, the parameters ~, α, β, u, and v are used
to replace parameters γ, ρ1, ρ2, λ1, and λ2 in the FCIDS
[25], respectively. In addition, we set the design parameters as
~ = 100 and α = β = 1. We take γ = 0.5, u = −0.8, and
v = 1.2 in our SIFDS. Consequently, in our SIFDS, the upper
bound of the estimation for the settling time is Tsup = 0.0028s.
To evaluate the performance of all comparison algorithms, we
regard (16) as the tracking error.

Example 1 ( [32]): Consider AVE (1) with A = tridiag
(
−

1, 8,−1
)
∈ Rm, and b = Ay−

∣∣y∣∣ ∈ Rm, where
tridiag(−1, 8,−1) =



8 −1
−1 8 −1

−1 8
. . . −1
−1 8 −1

−1 8


,

y =
(
− 1, 1,−1, 1, · · · ,−1, 1

)>
.

As pointed out in [32], λmin(A>A) > 1, which means that
Assumption 1 holds. Let m = 10 in Example 1. All simulation
results are presented in Figs. 1-2.

(a)

(b)

Fig. 1: (a) Transient responses for the SIFDS (7);
(b) Tracking error convergence responses for the SIFDS (7).

Fig. 1 reports the transient behaviors of z(t) and the tracking
errors of SIFDS with five different initial points. From Fig.
1(a)-(b), one observes that SIFDS can converge to the solution
z? = y under different initial conditions, and its convergence
time is upper bounded and far less than 0.0028s. Moreover,
from Fig. 1(b), it can be seen that the tracking error trajectories
of SIFDS with five different initial values reach stability before
0.0028s, and their final error values hover around 10−5.

Fig. 2(a) depicts the tracking error responses under the
FCIDS [25] and SIFDS. Meanwhile, Fig. 2(b) reports several
sample results on the tracking error responses for SIFDS with
γ = 0.5 under different values of u and v. It can be seen
from Fig. 2(a) that these algorithms ultimately achieve the
solution of Example 1. It is worth noticing that the settling
time for the FCIDS [25] is strictly larger than 0.0028s, while
the settling time for SIFDS less than 0.0028s. Furthermore,
one can observe from Fig. 2(a) that when u and v are almost
unchanged, the settling time for SIFDS becomes smaller as
the value of γ increases. When u = 0.2 and v = 1.1 are fixed,
the error trajectory of SIFDS with γ = 0.5 reaches stability
faster than that of FCIDS [25]. If γ = 0.5 and v changes
slightly, the convergence time for SIFDS becomes shorter as
the value of u decreases. We also notice that when v is almost
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equal and γ = 0, the convergence time for all algorithms
becomes shorter as u tends to −1, and the convergence time
of our SIFDS is naturally shorter than that of the FCIDS [25].
As can be observed from Fig. 2(b), the convergence time of
SIFDS is improved as the value of u decreases, but the value
of v has almost no effect on it. Therefore, it can be found
from the above analysis that the proposed SIFDS enjoys faster
convergence than the FCIDS [25].

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

10-10

10-8

10-6

10-4

10-2

100

(a)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

10-10

10-8

10-6

10-4

10-2

100

102

(b)

Fig. 2: (a) Tracking error convergence responses for the
FCIDS [25] and SIFDS (7); (b) For the SIFDS (7), effect of

the design parameters (~ = 100, α = β = 1, γ = 0.5).

V. CONCLUSIONS

In this paper, we proposes a SIFDS for tackling AVE (1),
and rigorously prove its fixed-time convergence. The solution
of AVE (1) is achieved in fixed time which does not depend
on the initial states of the proposed SIFDS, and an upper
bound for the settling time is also explicitly obtained by virtue
of Lemma 1. In addition, for AVE (1), we establish a more
compact global error bound to further improve the conver-
gence. Numerical simulation results are finally presented to
demonstrate the effectiveness and advantages of our SIFDS.
Potential future work includes designing distributed algorithms
to address AVE (1) and its general form.

APPENDIX

PROOF OF LEMMA 7

Proof: For simplification, we replace ε(z), Θ(z), Θ
(
z?
)
,

Ξ(z) and Ξ
(
z?
)

with ε, Θ, Θ?, Ξ and Ξ?, respectively. From
the VI (3) and the proof of [23, Theorem 3.5], it follows that〈

ε,
(
Θ−Θ?

)
+
(
Ξ− Ξ?

)〉
≥
∥∥ε∥∥2

+
〈
Θ−Θ?,Ξ− Ξ?

〉
.

(26)

Let G = A>A − E. Using Assumption 1 and the fact that
G = G>, we obtain G > 0. It then follows that〈

Θ−Θ?,Ξ− Ξ?
〉

=
〈
z− z?,G

(
z− z?

)〉
≥ 0. (27)

In addition, by [33, Lemma 6], for 0 < G ∈ Rm×m, there is
an orthogonal matrix P ∈ Rm×m, such that〈

x,Gx
〉

=

m∑
i

λi
(
Px
)2
i
≥ η

m∑
i

(
Px
)2
i

= η
∥∥x
∥∥2

(28)

always holds for any vector x ∈ Rm (which may not be the
eigenvector of G), where λi ∈ R+

(
i ∈

{
1, · · · ,m

})
is the

eigenvalue of G and η = λmin(A>A)− 1 = λmin

(
G
)
. It then

follows from (27) and (28) that〈
Θ−Θ?,Ξ− Ξ?

〉
≥ η

∥∥z− z?
∥∥2
. (29)

Further, by (26) and (29), one has

η
∥∥z− z?

∥∥2 ≤
〈
ε,
(
Θ−Θ?

)
+
(
Ξ− Ξ?

)〉
. (30)

Applying the Cauchy-Schwarz inequality and the triangle
inequality, (30) translates to∥∥z− z?

∥∥2 ≤ 1

η

∥∥ε∥∥(∥∥Θ−Θ?
∥∥+

∥∥Ξ− Ξ?
∥∥). (31)

If z−z? ∈ evs
(
A+E

) (
z−z? ∈ evs

(
A−E

))
, then

∥∥(A+E)
(
z−

z?
)∥∥ ≤ ρ(A+E

)∥∥z−z?
∥∥ (∥∥(A−E)

(
z−z?

)∥∥ ≤ ρ(A−E
)∥∥z−

z?
∥∥) by utilizing [31, Theorem 5.6.9] and the homogeneity of

the matrix norm. Otherwise, by the compatibility (see [30,
Remark 1]) of the matrix spectral norm and the vector `2-
norm, we obtain that

∥∥(A + E)
(
z− z?

)∥∥ ≤ ∥∥A + E
∥∥

2

∥∥z− z?
∥∥

and
∥∥(A− E)

(
z− z?

)∥∥ ≤ ∥∥A− E
∥∥

2

∥∥z− z?
∥∥.

Thus, by the definitions of Θ(·) and Ξ(·), (31) can be
rewritten as∥∥z− z?

∥∥2 ≤1

η

∥∥ε∥∥[∥∥(A + E)(z− z?)
∥∥+

∥∥(A− E)(z− z?)
∥∥]

≤τ
new
1 + τnew

2

η

∥∥ε∥∥∥∥z− z?
∥∥,

namely, ∥∥z− z?
∥∥ ≤ τnew

1 + τnew
2

η

∥∥Ω(z)
∥∥, (32)

where τnew
1 and τnew

2 are defined by (24). Note that τnew
1 ≥ 0

and τnew
2 ≥ 0 always hold, and τnew

1 = 0
(
τnew
2 = 0

)
iff

A = −E (A = E), so τnew
1 + τnew

2 ∈ R+ must be true.
From (32), it then follows that the right-hand inequality of
(23) holds.

Besides, for any y ∈ Rm and z ∈ Rm, if y − z ∈ evs
(
A +

E
)
, then

∥∥(A + E)
(
y − z

)∥∥ ≤ ρ
(
A + E

)∥∥y − z
∥∥ by using

[31, Theorem 5.6.9] and the homogeneity of the matrix norm;
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otherwise, it follows from [30, Remark 1] that
∥∥(A + E)

(
y−

z
)∥∥ ≤ ∥∥A + E

∥∥
2

∥∥y− z
∥∥. Thus, by the definitions of Θ(·) and

τnew
1 , we conclude that∥∥Θ(y)−Θ(z)

∥∥ ≤ τnew
1

∥∥y− z
∥∥ (33)

for any y ∈ Rm and z ∈ Rm. It then follows from (33)
that Θ(·) is globally Lipschitz continuous with the Lipschitz
constant L = τnew

1 . By (26) and (27), one has∥∥ε∥∥2 ≤
〈
ε,
(
Θ−Θ?

)
+
(
Ξ− Ξ?

)〉
. (34)

By (24), (34), the Cauchy-Schwarz inequality, the triangle
inequality, [31, Theorem 5.6.9] and [30, Remark 1], one has∥∥ε∥∥2 ≤

∥∥ε∥∥(∥∥Θ−Θ?
∥∥+

∥∥Ξ− Ξ?
∥∥)

≤
(
τnew
1 + τnew

2

)∥∥ε∥∥∥∥z− z?
∥∥,

that is ∥∥z− z?
∥∥ ≥ 1

τnew
1 + τnew

2

∥∥Ω(z)
∥∥. (35)

It thus follows from (35) that the left-hand inequality of (23)
is true. This proof is completed.
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