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Abstract In this paper, we study distributionally risk-receptive and distribu-
tionally robust (or risk-averse) multistage stochastic mixed-integer programs
(denoted by DRR- and DRO-MSIPs). We present cutting plane-based and
reformulation-based approaches for solving DRR- and DRO-MSIPs without
and with decision-dependent uncertainty to optimality. We show that these
approaches are finitely convergent with probability one. Furthermore, we in-
troduce generalizations of DRR- and DRO-MSIPs by presenting multistage
stochastic disjunctive programs and algorithms for solving them. These frame-
works are useful for optimization problems under uncertainty where the focus
is on analyzing outcomes based on multiple decision-makers’ differing perspec-
tives, such as interdiction problems that are attacker-defender games having
non-cooperative players. To assess the performance of the algorithms for DRR-
and DRO-MSIPs, we consider instances of distributionally ambiguous multi-
stage maximum flow and facility location interdiction problems that are impor-
tant in their own right. Based on our computational results, we observe that
the cutting plane-based approaches are 2800% and 2410% (on average) faster
than the reformulation-based approaches for the foregoing instances with dis-
tributional risk-aversion and risk-receptiveness, respectively. Additionally, we
conducted out-of-sample tests to showcase the significance of the DRR frame-
work in revealing network vulnerabilities and also in mitigating the impact of
data corruption.
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1 Introduction

Stochastic programming is a framework for modeling optimization problems
with uncertain input data, assuming that the probability distribution associ-
ated with the uncertain parameters is known. Typically, it employs a proba-
bility distribution that approximates the true probability distribution (which
is often not known in practice) using prior knowledge or historical data. When
the complete information of the distribution is not known, distributionally ro-
bust optimization provides a framework to a decision-maker for modeling risk-
aversion to such distributional ambiguity [39]. However, optimization problems
often involve multiple decision-makers, and the risk-aversion modeled by dis-
tributionally robust optimization may not be sufficient when the focus is on
analyzing outcomes from their diverse perspectives.

For an example, consider a two-player Stackelberg game played between
an attacker and a defender with distributional ambiguity. The attacker with
the aim of degrading the defender’s performance makes their decisions before
the defender, thereby influencing the defender’s subsequent decision-making
process. These games are often used to analyze vulnerabilities in the defender’s
system/network (refer to [10,14,40,24] for specific examples). In this adver-
sarial context, considering the attacker as risk-averse would represent an opti-
mistic view of the defender, downplaying the successfully-attacked scenarios in-
stead. Indeed, this underscores the necessity of a diametrically opposed frame-
work, where the defender evaluates the optimistic view of the attacker as well.
We characterize this risk behavior as distributionally risk-receptiveness (DRR),
in contrast with the conventional notion of distributionally risk-aversion [24].
Despite this juxtaposition, we adhere to the community convention by using
the term distributional robustness (or robust) (DRO) interchangeably with
distributional risk-aversion.

The DRR framework is also applicable when given samples may be con-
taminated. This optimistic optimization approach first rectifies the contami-
nation and then makes decision. We note that concepts similar to DRR have
also been explored to mitigate the impact of corrupted data in data-driven
decision-making processes (namely, robust statistics [8,9,23] and Rockafellian
relaxations [37]; refer to Sect. 2 for details). In the context of the Stackelberg
games for disrupting domestic sex trafficking networks [25] and illegal drug
supply chain networks [29] where attacker (or interdictor) is the protagonist,
the DRR framework allows a risk-receptive interdictor to mitigate the impact
of a network user (or defender) who can deceive the interdictor by provid-
ing false information about critical arcs of the network for maintaining the
maximum flow in the network (refer to Sect. 8.1 for details).
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In this paper, we study DRR and DRO models within the framework of
multistage stochastic programming. A single-stage DRR model is formulated
as a min-min problem. The outer problem seeks a decision that minimizes the
expected cost for a best-case probability distribution, selected by the inner
problem from a set of possible probability distributions, referred to as ambi-
guity set. Conversely, a single-stage DRO model is formulated as a min-max
problem, where the inner problem selects a worst-case probability distribution
from an ambiguity set. We extend these models to multistage stochastic in-
teger programs (MSIPs), where a sequence of decisions is made over a time
horizon. The objective of each stage is to minimize the sum of the current cost
and the expected cost of future stages. We introduce DRR-MSIP and DRO-
MSIP models to address distributional ambiguity in MSIPs. Furthermore, we
study DRR-MSIPs with decision-dependent uncertainty as decisions often af-
fect uncertainty in many real-world situations such as facility location [4,42]
and machine scheduling [33]. For example, in an agricultural supply chain, a
farmer would sign up to transport the harvest to the storage centers, only if
there is a nearby storage center that has been assigned to a processing mill with
adequate demand to consume the farmer’s harvest. This implies that decisions
such as selection of storage centers and their assignment to the processing mill
also impact the uncertain amount of harvest available at the storage centers
and hence, the probability distribution of this uncertain parameter.

Despite the simplicity of the DRR models, they face significant compu-
tational challenges in terms of solution approaches. Directly solving a DRR
model as a single-level minimization is impractical due to the integral defining
the expectation, unless the ambiguity set is specifically chosen. With a finite
support, the expectation is expressed as a summation, but this transforms
the model without decision-dependent uncertainty into a mixed-integer non-
convex bilinear program, which is notoriously difficult to solve. Even without
any integrality restrictions and in two-stage setup, the objective function of a
DRR model is nonconvex. In a multistage stochastic decision-making setup,
the complexity increases further due to factors such as the number of sce-
narios and stages, which expand the model size. In contrast, some solution
approaches for DRO models that utilize approximations are available in the
literature under certain conditions on the cost functions and feasible sets [2,
3,17,18,19,36,42]. It is worth noting that if the ambiguity sets are singleton,
then DRO- and DRR-MSIPs reduce to a (risk-neutral) MSIP.

In this paper, we first address DRR- and DRO-MSIPs without decision-
dependent uncertainty by presenting convex lower-approximations of the ex-
pected cost-to-go functions for best-case or worst-case distributions. We derive
valid cutting planes and utilize reformulation techniques, considering finite or
continuous supports. We note that while reformulations for DRR and DRO-
MSIPs are derived using standard techniques, they are presented in this pa-
per for comparative purposes as no other approaches for solving DRR-MSIPs
are known in the literature. These approximations enable the application of
decomposition methods, which effectively reduce complexity in a multistage
decision-making setup. Specifically, we introduce customized SDDP (Stochas-
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tic Dual Dynamic Programming) algorithms [35] for DRR- and DRO-MSIPs
that utilize these approximations. We also generalize these algorithms to solve
DRR and DRO multistage stochastic disjunctive linear programs (DRR- and
DRO-MSDPs) where the feasible sets are defined by disjunctive linear sets.

DRO problems where the ambiguity sets are dependent on the decisions
have been addressed by deriving their tractable reformulations [28,42] and
then using state-of-the-art approaches for solving these reformulations. How-
ever, a solution approach for DRR (or optimistic) optimization with decision-
dependent ambiguity set has not been studied in the literature, to the best
of our knowledge. We fill this gap by introducing a reformulation-based ap-
proximation for decision-dependent DRR-MSIPs where the ambiguity sets are
defined using Wasserstein distance. We also present lower-bound approxima-
tion for the associated decision-dependent optimistic “cost-to-go-function” and
then utilize it to introduce a cutting plane-based algorithm for DRR-MSIPs
with decision-dependent uncertainty.

To demonstrate practical applications of DRR- and DRO-MSIPs, we con-
sider multistage network interdiction problems (NIPs). Specifically, we intro-
duce multistage stochastic models for the maximum flow interdiction prob-
lem and the facility location interdiction problem, denoted by MS-MFIP and
MS-FLIP, respectively. MS-MFIP has applications in disrupting domestic sex
trafficking networks [25] and illegal drug supply chain networks [29], while MS-
FLIP is applicable for identifying critical assets in infrastructure systems [13].
Despite these applications, their multistage stochastic variants have not been
studied in the literature. To the best of our knowledge, only two-stage variants
where each stage corresponds to the decision-making process of a single player
have been explored in [14,22,38].

Through our DRO and DRR frameworks, we investigate the significance of
varying risk-appetite of the decision-maker in MS-MFIP. Also, we examine an
adversarial setting where data is corrupted, and demonstrate that the DRR
framework can enhance the out-of-sample performance under such environ-
ments. Lastly, we provide numerical results for both MS-MFIP and MS-FLIP,
showcasing the computational efficiency of the proposed approaches.

In the remainder of this section, we present formulations of general DRR-
and DRO multistage stochastic programs (MSPs) along with the contributions
and organization of this paper.

Notation. We use [d] to denote set {1, . . . , d} for any positive integer d.

1.1 Problem Formulation: DRO-MSP and DRR-MSP

We first present the Bellman equation of an (risk-neutral) MSP with a plan-
ning horizon of T stages and then generalize it to the cases with distributional
ambiguity, i.e., DRO- and DRR-MSPs. There are two types of decision vari-
ables at each stage: state decision variables that influence subsequent stages
and local decision variables specific to the current stage. Let xt and yt be
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the state and local decision vector for stage t ∈ [T ], respectively. An MSP is
formulated as

min
(x1,y1)∈X1

{
f1(x1, y1) + EP2

[
Q2(x1,ω2)

]}
, (1)

where ωt is a random vector that represents uncertain parameters for each
stage t = 2, . . . , T , and the cost-to-go functions are defined as

Qt(xt−1,ωt) = min
(xt,yt)∈Xt(xt−1,ωt)

{
ft(xt, yt,ωt) + EPt+1

[
Qt+1(xt,ωt+1)

]}
,

(2)
for t = 2, . . . , T, and QT+1 = 0. Set X1 denotes the feasible region of the
first stage, and set Xt(xt−1,ωt) denotes the feasible region of each stage
t ∈ {2, . . . , T} that depends on a decision of the previous stage xt−1. The
random vector ωt has a sample space Ωt, which is associated with a probabil-
ity distribution Pt.

Now, to present DRO- and DRR-MSPs, we consider a set Pt of probabil-
ity distributions as the ambiguity set for t ∈ {2, . . . , T}. Then, the bellman
equation form of a DRO-MSP is given by

min
(x1,y1)∈X1

{
f1(x1, y1) + max

P2∈P2

EP2

[
QRA

2 (x1,ω2)
]}
, (3)

where

QRA
t (xt−1,ωt) =

min
(xt,yt)∈Xt(xt−1,ωt)

{
ft(xt, yt,ωt) + max

Pt+1∈Pt+1

EPt+1

[
QRA

t+1(xt,ωt+1)
]} (4)

for t = 2, . . . , T , and QRA
T+1 = 0. We refer to the value function

QRA
t+1(xt) := max

Pt+1∈Pt+1

EPt+1

[
QRA

t+1(xt,ωt+1)
]

as the pessimistic expected cost-to-go function. By minimizing with respect to
the probability distribution within the ambiguity set in (3) and (4), instead of
maximizing, we can formulate a DRR-MSP as follows:

min
(x1,y1)∈X1

{
f1(x1, y1) + min

P2∈P2

EP2

[
QRR

2 (x1,ω2)
]}
, (5)

where

QRR
t (xt−1,ωt) =

min
(xt,yt)∈Xt(xt−1,ωt)

{
ft(xt, yt,ωt) + min

Pt+1∈Pt+1

EPt+1

[
QRR

t+1(xt,ωt+1)
]} (6)

for t = 2, . . . , T , and QRR
T+1 = 0. The value function

QRR
t+1(xt) := min

Pt+1∈Pt+1

EPt+1

[
QRR

t+1(xt,ωt+1)
]
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is referred to as the optimistic expected cost-to-go function. For DRR-MSPs
with decision-dependent uncertainty, we consider ambiguity sets that depend
on decisions, i.e., the optimistic expected cost-to-go functions are defined by

QRR
t+1(xt) = min

Pt+1∈Pt+1(xt)
EPt+1

[
QRR

t+1(xt,ωt+1)
]
.

When the feasible region Xt(xt−1,ωt) is defined by a set of linear inequal-
ities and disjunctive constraints, problems (3)-(4) and (5)-(6) are referred to
as DRO- and DRR-MSDPs, respectively, i.e.,

Xt(xt−1,ωt) :=

{
(xt, yt) ∈ Rdx

+ × Rdy

+ :∨
h∈Ht

(
Ah

t (ωt)xt +Bh
t (ωt)yt ≥ bht (ωt)− Ch

t (ωt)xt−1

)}
.

(7)

Here, notation ∨ is used to denote disjunction (“or” logical operator). The
disjunctive constraints generalize integrality constraints on variables. For ex-
ample, a binary restriction on a variable, i.e., x ∈ {0, 1}, is equivalent to a
disjunction: (x = 0) ∨ (x = 1). If the disjunctive constraints in (7) represent
linear inequalities with integrality constraints on variables, then the DRO- and
DRR-MSDPs reduce to DRO- and DRR-MSIPs. The main challenges encoun-
tered in solving these problems arises from the nonconvexity of feasible regions,
caused by logical disjunctions or integer variables, as well as the nonlinearity
and discontinuity of objective functions. Additionally, in the DRR problems,
each stage problem’s objective function is nonconvex even if all variables are
continuous.

1.2 Contributions and Organization of this Paper

In Sect. 2, we provide a review of previous studies on MSPs with and without
distributional ambiguity. The organization of the rest of this paper and our
contributions are as follows.

– DRR-MSIPs with finite support. In Sect. 3, we present a class of cutting
planes to under-approximate the optimistic expected cost-to-go function
QRR

t+1 at stage t. For the sake of computational comparisons, we also re-
formulate DRR-MSIPs by considering the probability distribution at each
stage as a decision vector and applying a McCormick envelope. We show
that our SDDP-based algorithms using the cutting plane- and reformulation-
based approximations are exact and finitely convergent (Sect. 6). Our com-
putational results in Sect. 8 show that the algorithm using the cutting
plane-based approach is 24.1 times faster (on average) than the algorithm
using the reformulation approach.
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– DRR-MSIPs with continuous support and decision-dependent ambiguity
sets. In Sect. 4, we study DRR-MSIPs with Wasserstein ambiguity sets
where the radii of the Wasserstein balls depend on the decision variables.
We derive a dual formulation of the inner minimization at each stage (6),
thereby deriving a class of valid cutting planes for the optimistic expected
cost-to-go function and a cutting plane-based solution approach.

– DRO-MSIPs. In Sect. 5, we present a cutting plane-based approximation
for DRO-MSIPs with a general family of ambiguity sets and finite sup-
ports. Also, we present a reformulation-based approximation using a dual
formulation of DRO-MSIPs with Wasserstein ambiguity sets and contin-
uous/finite support. We observe that the former is 28 times (on average)
faster than the latter approach for solving DRO-MSIP with finite support.

– Out-of-sample Performance. By conducting out-of-sample tests, we demon-
strate the significance of DRR and DRO in the context of interdiction prob-
lem, in particular, MS-MFIP. The results in Sect. 8.1.2 show that the DRO
framework enhances the robustness of decision policies under uncertainty,
and the DRR framework enables the identification of network vulnerabili-
ties by giving more weights to unfavorable scenarios for the network user.
Furthermore, in Sect. 8.1.3 we illustrate out-of-sample performance in an
adversarial setting, where the sample data are intentionally corrupted (re-
fer to robust statistics in Sect. 2 for details). The results show that the DRR
policies behaves robust to data corruption by decreasing the significance
of the corrupted data points.

– DRR-MSDPs and DRO-MSDPs. In Sect. 7, we introduce algorithms for
solving MSDPs, DRR-MSDPs, and DRO-MSDPs by deriving tight ex-
tended formulations for parametric disjunctive constraints in each stage.
Since MSIPs are special cases of MSDPs, we utilize the foregoing approach
for solving MSIPs with(out) distributional ambiguity as well, where a hi-
erarchy of relaxations of the feasible regions is obtained in each iteration.

– MS-MFIP and MS-FLIP. As mentioned in Sect. 1, MS-MFIP and MS-
FLIP are important interdiction problems in their own right and have not
been studied in the literature. We present algorithms to solve these prob-
lems and their distributionally ambiguous variants, thereby generalizing
results of [13,14,22,29,25] that study special cases of these problems.

In Sect. 8, we present our computational results and concluding remarks in
Sect. 9. For readers’ convenience, we list major abbreviations used in this paper
in Appendix A and provide all proofs in Appendix C. Throughout the paper,
we made the following assumptions:

Assumption 1 The random vectors are stage-wise independent, i.e., ωt is
independent of ω[t−1] = (ω2, . . . ,ωt−1) for all t = 3, . . . , T .

We note that the stage-wise independence assumption is required for compu-
tationally efficient algorithms, but not deriving convex approximations.
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Assumption 2 The state variables xt are binary for all t ∈ [T ]. The feasible
sets X1 and Xt(·, ·) are defined as mixed-integer sets (and disjunctive sets only
in Sect. 7).

Remark 1 For general integer or discrete state variables xt that are bounded,
we can obtain their equivalent binary representation by using the binary ex-
pansion.

Assumption 3 Sets X1 and Xt(xt−1, ωt), given any xt−1 ∈ {0, 1}dx and ωt ∈
Ωt, for all t = 2, . . . , T , are nonempty and compact.

Assumption 4 The supports Ωt, for all t = 2, . . . , T , are finite, i.e., |Ωt| <∞.
Accordingly, let pit be the probability of scenario ωi

t, i.e., Pt(ωt = ωi
t), for

i ∈ Nt, where Nt := {1, . . . , Nt} is the index set associated with the support
Ωt, t = 2, . . . , T .

Throughout the paper, we assume finite supports unless stated otherwise.
Specifically, we will relax this assumption and consider continuous supports in
Sect. 4 and Remark 2 in Sect. 5.

Assumption 5 Functions f1(x1, y1) and ft(xt, yt, ωt), for ωt ∈ Ωt and t =
2, . . . , T are linear.

2 Literature Review

In this section, we examine studies related to the DRR framework. In addition,
we review the literature on solution approaches for multistage stochastic linear
programs (MSLPs), MSIPs, and their distributionally robust variants.

2.1 Distributionally Risk-Receptive Programs and Robust Statistics

In the literature, the DRR framework has been studied in three main contexts:
(a) making decisions robust to outliers, errors, and adversarial corruptions in a
data-driven setting [8,37], (b) analyzing outcomes based on multiple decision-
makers’ differing perspective and varying risk-appetite of the decision-makers
[24], and (c) obtaining the bounds on the true expectations [16,11].

In the context of robust statistics, Blanchet et al. [8] discuss the connec-
tion between the DRR framework and robust statistics, which aim to seek
a reliable estimator given samples that may be contaminated. They present
the DRR framework as an optimistic optimization approach that first rectifies
the contamination and then makes decision. In [9], as a rectifying-optimizing
approach, a DRR program with an ambiguity set defined by an optimal trans-
port distance has been studied. Royset et al. [37] also study a similar optimistic
approach based on Rockafellian relaxations. Jiang and Xie [23] show that the
DRR framework with a specific selection of ambiguity sets can recover many
robust statistics, such as median and the least trimmed squares.
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In another direction, DRR programs are utilized in reinforcement learning
[41] to find an optimistic policy and Bayesian statistics [32] to approximate
a likelihood. In [21], the authors investigates the DRO and DRR frameworks
in comparison to a sample average approximation approach for out-of-sample
performance. In particular, they show that by solving both DRO and DRR
programs, one of their solutions always outperform the sample average ap-
proximation solutions in out-of-sample test.

In the context of obtaining bounds, Duchi et al. [16] employ the DRR and
DRO frameworks to construct a confidence interval for the true optimal ob-
jective of a stochastic optimization problem, which can be used to determine
the size of the ambiguity sets for a given confidence interval size. Similarly,
Cao and Gao [11] address problems involving covariate data where uncertain
parameters belong to a specific uncertainty set. They show that solving robust
and optimistic optimization problems yields worst-case and best-case rewards,
respectively, thus forming a confidence interval for the true reward. Nakao et
al. [31] consider a partially observable Markov decision process with distribu-
tional ambiguity. They solve a DRR model to obtain an upper bound on the
true value function of a DRO partial observable Markov decision process.

To the best of our knowledge, the literature lacks a solution approach for
DRR programs involving multistage decision-making with integer variables,
which is applicable to interdiction problems (as discussed in Section 1).

2.2 Multistage Stochastic and Distributionally Robust Programs

Multistage Stochastic Linear Programs. To solve MSLPs, Nested Benders De-
composition (NBD) approximates the cost-to-go function Qt+1 at each stage t
by a piecewise linear convex function using Benders cutting planes, which are
constructed by the dual solutions from the problem at the subsequent stage [7].
For MSLPs under the stage-wise independence assumption, SDDP [35] is a
NBD-like approach that harnesses scenario sampling to mitigate “curse of
dimensionality” of dynamic programming without losing the (almost surely)
finite convergence of the NBD algorithm. The iteration complexity of SDDP
is also examined in [26].

Distributionally Robust (or Risk-averse) MSLPs. Recently, Philpott et al. [36]
consider distributionally robust multistage stochastic linear programs (denoted
by DRO-MSLPs) where ambiguity sets are constructed based on χ2 distance
from a reference probability distribution. Their approaches are based on SDDP
embedding separation algorithms that compute a worst-case probability dis-
tribution for the different reference probability distributions. Note that their
problems consider only continuous variables. Duque and Morton [18] present
an SDDP-based algorithm for DRO-MSLPs where the ambiguity set is defined
using Wasserstein metric. Their approach is based on the dualization of the
inner problem for finding a worst-case probability distribution. They present
comparison analysis of the results from their algorithm and those from the
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modified algorithm of [36] for Wasserstein metric. Park and Bayraksan [34] in-
vestigate DRO-MSLPs, where the ambiguity set is defined using ϕ-divergence,
for an application to a water allocation problem. They propose a NBD-type
algorithm relying on the dual reformulation of the inner problem for finding a
worst-case probability distribution.

Multistage Stochastic Integer Programs. For solving MSIPs with binary state
variables, an extension to SDDP, referred to as SDDiP, has been proposed by
Zou et al. [44]. SDDiP uses a new class of cutting planes, constructed based
on a Lagrangian relaxation where the strong duality holds for the resulting
Lagrangian dual, to approximate the cost-to-go function in each stage. They
provide the cut conditions under which SDDiP is finitely convergent. For a
more general class of MSIPs, where all decision variables are allowed to be
mixed-integer, there are several studies applying scenario-wise decomposition
schemes to the deterministic equivalent formulation. For example, Carøe and
Schultz [12] present a branch-and-bound algorithm based on a dual decom-
position approach applied to the deterministic equivalent formulation. The
approach uses a Lagrangian relaxation of non-anticipativity constraints which
enforce the scenarios that follow the same history up to stage t to have the
same decisions until stage t. Lulli and Sen [27] propose a branch-and-price
algorithm, i.e., a branch-and-bound algorithm with column generation, for
the same class of MSIPs. We also note that for multistage stochastic mixed-
integer nonlinear programs, Zhang and Sun [43] present three decomposition
algorithms—one based on NBD and another based on SDDP—which rely on a
regularization of the expected cost-to-go function, i.e., EPt+1 [Qt+1(xt,ωt+1)]
at stage t, and a class of cutting planes called generalized conjugacy cut to
approximate the function.

Distributionally Robust MSIPs. Yu and Shen [42] investigate decision depen-
dent DRO-MSIPs, where state variables are binary and the ambiguity set
depends on the state decisions made at the previous stage. They consider
three types of ambiguity sets constructed based on the decision-dependent
moment information (e.g., mean and variance). They propose mixed-integer
linear programming and mixed-integer semidefinite programming reformula-
tions of the problems and solve them using SDDiP. Recently, in the dissertation
of Nakao [30], a dual decomposition approach is presented for a DRO-MSIP
where variables can be mixed-integer and the ambiguity sets are defined us-
ing Wasserstein metric. The approach applies the dual reformulations to the
inner problems over Wasserstein ambiguity sets in a consecutive manner for
deriving a monolithic-minimization deterministic equivalent formulation of the
DRO-MSIP. Then, they use a Lagrangian relaxation of the non-anticipativity
constraints in the deterministic equivalent formulation to derive a Lagrangian
dual. Bayraksan et al. [6] divide the scenario tree into subgroups to obtain
lower bounds and present conditions for selecting the radii of the ambigu-
ity sets of the subgroup problems, thereby leading to another decomposition
approach for DRO-MSIPs.
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3 Convex Approximations for DRR-MSIPs having Finite Supports

In this section, we present two convex approximations of the optimistic ex-
pected cost-to-go function QRR

t+1(xt) at stage t. We start by considering affine
cuts valid for QRR

t+1:

QRR
t+1(xt, ω

i
t+1) ≥ (αi,k

t )⊤xt + βi,k
t , ∀xt ∈ {0, 1}dx , (8)

and denote them by their coefficients (αi,k
t , βi,k

t ), where i ∈ Nt+1 indexes the
support Ωt+1, and k ∈ [Kt], with Kt ≥ 1 represents the number of cuts.
Throughout this section, we suppose these cuts are given for every stage t.
Discussions regarding the cut generating procedure and properties of these
cuts are deferred to Sect. 6. Using the cuts, we define the following nonconvex
(bilinear) approximating problem:

ϕBt (xt) := min
θt,Pt+1

∑
i∈Nt+1

pit+1θ
i
t (9a)

s.t. θit ≥ (αi,k
t )⊤xt + βi,k

t , ∀k ∈ [Kt], i ∈ Nt+1, (9b)

Pt+1 ∈ Pt+1. (9c)

Note that we consider the probabilities Pt+1 = (pit+1)i∈Nt+1
as decision vari-

ables. This leads to bilinear terms involving variables pit+1 and θit in the objec-
tive function. By construction, the function ϕBt (xt) provides a lower bound for
the optimistic expected cost-to-go function QRR

t+1(xt), yet solving this problem
directly is not desirable due to the bilinear terms. In the following sections,
we derive convex approximations of this problem using a new class of cutting
planes and a mixed-integer linear programming reformulation, respectively.
For simplicity of exposition, we let Kt = 1 for all t ∈ [T − 1] and suppress the
index k in notation.

3.1 A cutting plane-based approximation for DRR-MSIP

Consider any x̂t ∈ {0, 1}dx . We define a cutting plane-based approximating
function as:

ϕCt (xt) := min
{
ϕ : ϕ ≥ π⊤

t (xt − x̂t) + γt

}
(10)

where the parameters of the inequalities are given by

πt,j :=

{
minPt+1∈Pt+1

∑
i∈Nt+1

pit+1α
i
t,j , if x̂t,j = 0,

maxPt+1∈Pt+1

∑
i∈Nt+1

pit+1α
i
t,j , if x̂t,j = 1,

for j ∈ [dx], (11)

and γt := minPt+1∈Pt+1

∑
i∈Nt+1

pit+1

(
(αi

t)
⊤x̂t + βi

t

)
, for each t ∈ [T − 1].

Apparently, this function is convex. Also, it provides a lower-bound for QRR
t+1

as shown in Theorem 1.
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Theorem 1 The function ϕCt provides a lower bound for the optimistic ex-
pected cost-to-go function, i.e., ϕCt (xt) ≤ QRR

t+1(xt) for all xt ∈ {0, 1}dx and
t ∈ [T − 1].

An important property of this cut is that it preserves the tightness of the cuts
(αi

t, β
i
t), i.e., it intersects with QRR

t+1 at x̂t if the cuts (αi
t, β

i
t) intersect with

QRR
t+1(·, ωi

t+1) at x̂t for all i ∈ Nt+1. This property plays a key role in showing
the finite convergence of our algorithm presented in Sect. 6. Additionally,
it is important to note that the cuts (10) are different from Benders cuts,
which rely on the duality results of problems. Since the DRR problem (6)
is nonconvex even when involving continuous variables, convex combination
of Benders cuts cannot be applied to approximate the optimistic expected
cost-to-go function QRR

t+1(xt) as it can be done for risk-neutral and pessimistic
expected cost-to-go-function.

3.2 A reformulation-based approximation for DRR-MSIP

We present a reformulation-based approximation for DRR-MSIP by treating
the probability distribution as variables and using McCormick envelopes for
bilinear terms. Though straightforward, it remains the only approach using
existing techniques to solve this problem and therefore, we include it for com-
parative purpose. More specifically, it works as follows.

For each constraint in (9a), we multiply pit+1 to both sides of inequalities
for each i ∈ Nt+1, and replace pit+1xt with a decision vector ηit in the right-
hand side of the resulting inequalities. This yields the following system of
inequalities:

pit+1θ
i
t ≥ (αi

t)
⊤ηit + βi

tp
i
t+1, ∀i ∈ Nt+1, (12a)

ηit ≤ xt, η
i
t ≤ pit+1, η

i
t ≥ pit+1 + xt − 1, ηit ≥ 0, ∀i ∈ Nt+1. (12b)

Notice that a system of inequalities (12b) ensure that a feasible ηit equals to
pit+1xt, given any xt ∈ {0, 1}dx and (pit+1)i∈Nt+1 ∈ [0, 1]Nt+1 . We introduce an
additional variable θ̄it to replace pit+1θ

i
t. This yields an approximating function

of QRR
t+1 for each t ∈ [T − 1] as follows:

ϕRt (xt) := min
Pt+1,θ̄,ηt

{ ∑
i∈Nt+1

θ̄i : θ̄i ≥ (αi
t)

⊤ηit + βi
tp

i
t+1, ∀i ∈ Nt+1, (13a)

(12b), Pt+1 ∈ Pt+1.

}
(13b)

Since θit is not restricted, we can readily show that the equivalence between
(12a) and constraint (13a). Therefore, the function ϕRt equals to the function
ϕBt , which is a lower bound for QRR

t+1(xt). When the ambiguity set Pt+1 is
defined by a polytope (e.g., Wasserstein ambiguity set with a finite support),
the problem (13) is a linear program. Consequently, ϕRt becomes piecewise
linear and convex by linear programming duality.
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4 Convex Approximation for DRR-MSIPs having Continuous
Supports and Decision-dependent Ambiguity Sets

In this section, we investigate DRR-MSIPs, where for each stage t the support
Ωt is continuous. Suppose that a finite set of data Ω̄t := {ω1

t , . . . , ω
Nt
t } is

available. Consider an empirical distribution P̄t =
1
Nt

∑
i∈Nt

δωi
t
, where δωi

t
is

the Dirac delta function centered at ωi
t for i ∈ Nt. We now present a dual-

based convex approximation of the optimistic expected cost-to-go function
QRR

t+1(xt) at stage t. This approximation can be applied to a further generalized
case where ambiguity sets are decision-dependent. In particular, we focus on
decision-dependent ambiguity sets defined using Wasserstein metric as follows:

Pt(xt−1) :=

{
Pt ∈ M(Ωt) : W(Pt, P̄t) ≤ ϵt(xt−1)

}
(14)

for t = 2, . . . , T [28], where M(Ωt) is a set of all probability distributions
supported on Ωt, and W(Pt, P̄t) is the 1-Wasserstein distance defined as

W(Pt, P̄t) := inf
P∈P(Ωt×Ωt)

{
Eπ

[
∥ωt − ω′

t∥
]
: P (ωt) = Pt, P (ω

′
t) = P̄t

}
. (15)

Here, P(Ωt ×Ωt) is the set of all joint probability distributions supported on
Ωt × Ωt. The marginal distributions of ωt and ω′

t are denoted by P (ωt) and
P (ω′

t), respectively, and ∥·∥ is an arbitrary norm. For a given ϵt(xt−1) > 0,
each ambiguity set Pt(xt−1), t ∈ {2, . . . , T}, is a Wasserstein ball containing
all probability distributions within a certain radius ϵt(xt−1) from the empirical
probability distribution. For the ease of exposition in this section, we use xt
to represent all decision variables at each stage t.

Proposition 1 (Strong duality) For the ambiguity set Pt(xt−1) defined as
(14), the optimistic expected cost-to-go function can be reformulated as

QRR
t (xt−1) = min

Pt∈Pt(xt−1)
E[QRR

t (xt−1,ωt)]

= max
ρt≥0

{
− ϵt(xt−1)ρt

+
∑
i∈Nt

1

Nt
min
ωt∈Ωt

{
ρt

∥∥ωt − ωi
t

∥∥+QRR
t (xt−1, ωt)

}}
.

(16)

Using Proposition 1, we derive an approximation for QRR
t in Theorem 2 under

the following assumptions.

Assumption 6 The support Ωt for each stage t is a bounded hyperrectangle,
i.e., Ωt = [lt, ut]

dω .

Assumption 7 Random vector ω ∈ Rdω is only associated with the right-
hand side of the constraints defining Xt(xt−1,ωt). Let Xt ⊆ Rdx be the set
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defined by the integrality constraints for xt. Then the feasible sets can be
written as

Xt(xt−1,ωt) =

{
xt ∈ Xt : Atxt ≥ ωt − Ctxt−1

}
. (17)

Assumption 8 The decision-dependent radius ϵt(xt−1) : Xt−1 → R+ is an
affine function.

Theorem 2 Given valid cuts’ coefficients {(πk
t , γ

k
t )}k∈[Kt] for QRR

t+1(xt),

(a) the optimistic expected cost-to-go function QRR
t (xt−1) is lower-approximated

as follows:

QRR
t (xt−1) ≥− ϵt(xt−1)ρt +

∑
i∈Nt

1

Nt

(
(−λit)⊤Ctxt−1 + (µi

t)
⊤lt

− (νit)
⊤ut + (λit − µi

t + νit)
⊤ωi

t +
∑

k∈[Kt]

ζitkγ
k
t

)
,

(18)

such that parameters (ρt, {λit, µi
t, ν

i
t , ζ

i
t}i∈Nt) satisfy the following system of

equations and inequalities (19):

A⊤
t λ

i
t −

∑
k∈[Kt]

ζitkπ
k
t = ct, ∀i ∈ Nt, (19a)

∥∥λit + µi
t − νit

∥∥
∗ ≤ ρt, ∀i ∈ Nt, (19b)∑

k∈[Kt]

ζitk = 1, ∀i ∈ Nt (19c)

ρt ≥ 0, (λit, µ
i
t, ν

i
t , ζ

i
t) ≥ 0, ∀i ∈ Nt, (19d)

where ∥·∥∗ is the dual norm of ∥·∥.
(b) the strongest lower bound approximation (18) is obtained by solving the

following problem:

max

{
− ϵt(xt−1)ρt +

1

Nt

∑
i∈Nt

(
(−λit)⊤Ctxt−1 + (µi

t)
⊤lt

− (νit)
⊤ut + (λit − µi

t + νit)
⊤ωi

t +
∑

k∈[Kt]

ζitkγ
k
t

)
: (19a)-(19d)

}
.

(20)

Problem (20) is a cut-generating problem, where any feasible solution yields
a cut in the form of (18). With the choice of specific norms, problem (20) be-
comes computationally manageable. For instance, if ∥·∥ represents the l1 norm,
the dual norm is the l∞ norm, allowing the linearization of constraints (19b)
and transformation of problem (20) into a linear program. Also, if ∥·∥ is the
l2 norm, its dual norm is also the l2 norm, resulting in problem (20) becoming
a second-order conic program.
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Using the cuts generated as above, we derive a cutting plane-based approx-
imating function for QRR

t as in the form of (10). It is important to note that
the cuts for next stage (t + 1) in Theorem 2 are naturally given through our
algorithmic procedure (discussed in Sect. 6). Our algorithm produces cuts in
a descending order of stages, from T down to 1, and thus there always exists
cuts for stage (t+ 1) when generating a cut at stage t.

5 Convex Approximations for DRA-MSIPs

In this section, we present two convex approximations of the pessimistic ex-
pected cost-to-go functions QRA

t+1(xt) for stage t. These approximations are
constructed using cutting planes derived by a separation approach and a re-
formulation derived by utilizing strong duality, respectively.

5.1 A cutting plane-based approximation for DRA-MSIP

We assume that the supports are finite (Assumption 4), and the valid cuts
defined by (αi

t, β
i
t) for Q

RA
t+1(·, ωi

t+1) for t ∈ [T − 1] and i ∈ Nt+1 are available.
Given cuts (αi

t, β
i
t), for i ∈ Nt+1, and solution x̂t, we identify a worst-case

probability distribution by solving the following problem, referred to as dis-
tribution separation problem at stage t ∈ [T − 1]:

max
Pt+1∈Pt+1

∑
i∈Nt+1

pit+1

(
(αi

t)
⊤x̂t + βi

t

)
. (21)

Let P̂t+1 = (p̂1t+1, . . . , p̂
Nt+1

t+1 ) be an optimal solution to the distribution sepa-
ration problem (21). We define a cutting plane-based approximating function
for t ∈ [T − 1] as

ϕSt (xt) := min
{
ϕ : ϕ ≥ π⊤

t xt + γt

}
, (22)

where πt =
∑

i∈Nt+1
p̂it+1α

i
t, and γt =

∑
i∈Nt+1

p̂it+1β
i
t . Clearly, the func-

tion ϕSt under-approximates QRA
t+1, since for solution x̄t ̸= x̂t it holds that

QRA
t+1(x̄t) ≥ maxPt+1∈Pt+1

∑
i∈Nt+1

pit+1((α
i
t)

⊤x̄t + βi
t) ≥ ϕSt (x̄t). Note that

there are various types of ambiguity sets for which we can solve problem (21)
and compute the coefficients (11) using a finite-time algorithm; e.g., ambiguity
sets constructed using Wasserstein metric [20], moment information [42], total
variation distance [5] and χ2 distance [36], where their supports are finite.

5.2 A reformulation-based approximation for DRA-MSIP

We present a reformulation-based approximation that relies on the dualization
of the inner maximization problems in (3) and (4), i.e., max{EPt+1

[QRA
t+1(·, ·)] :
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Pt+1 ∈ Pt+1} for t ∈ [T − 1]. We note that similar reformulation-based ap-
proaches are studied in recent papers for DRA-MSLPs with ϕ-divergence-
based ambiguity sets [34], DRA-MSLPs with Wasserstein ambiguity sets [18],
and DRA-MSIPs with moment-based ambiguity sets [42]. In the following, we
demonstrate the DRA-SDDP-R algorithm for DRA-MSIPs with Wasserstein
ambiguity sets, but we note that this approach can be applied to DRA-MSIPs
with a general family of ambiguity sets for which dual formulations of DRA
models are available.

TheWasserstein ambiguity set with finite support is defined for t = 2, . . . , T
as

Pt =

{
Pt ∈ RNt

+ :
∑
i∈Nt

pit = 1,
∑
j∈Nt

vij = pit, i ∈ Nt,
∑
i∈Nt

vij = p̄jt , j ∈ Nt,

∑
i̸=j∈Nt

∥ωi
t − ωj

t ∥vij ≤ ϵt, vij ≥ 0, ∀i, j ∈ Nt

}
,

where {p̄it}i∈Nt is a reference probability distribution on Ωt for t ∈ {2, . . . , T}.
The dual of the maximization in (3) and (4) for t ∈ [T − 1] is given as follows:

min
ρt≥0

{
ϵt+1ρt +

∑
i∈Nt+1

p̄it+1ν
i
t :

νit +
∥∥∥ωi

t+1 − ωj
t+1

∥∥∥ ρt ≥ QRA
t+1(xt, ω

j
t+1), ∀i, j ∈ Nt+1

}
.

Here, the strong duality holds by Theorem 1 in Gao and Kleywegt [20]. Then,
given cuts (αi

t, β
i
t), i ∈ Nt+1, we define a reformulation-based approximating

function for t ∈ [T − 1] as

ϕDt (xt) := min
{
ϵt+1ρt +

∑
i∈Nt+1

p̄it+1ν
i
t : ρt ≥ 0, (23a)

νit +
∥∥∥ωi

t+1 − ωj
t+1

∥∥∥ ρt ≥ (αi
t)

⊤xt + βi
t , ∀i, j ∈ Nt+1

}
. (23b)

Remark 2 The convex approximation described in this section can be applied
to DRA-MSIPs having continuous supports by employing additional algorith-
mic techniques. More specifically, the dual of the inner maximization in (3) and
(4) with continuous support is given by the following semi-infinite program:

min
ρt≥0

{
ϵt+1ρt +

∑
i∈Nt+1

p̄it+1ν
i
t :

νit +
∥∥ωi

t+1 − ωt+1

∥∥ ρt ≥ QRA
t+1(xt, ωt+1), ∀i ∈ Nt+1, ωt+1 ∈ Ωt+1

}
.

(24)

Given ωj
t+1 ∈ Ωt+1 and cuts (αj

t , β
j
t ) valid for QRA

t+1(·, ω
j
t+1), for some j, we

obtain valid cutting planes in the form of (23b) for this semi-infinite program.
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These constraints provide an outer approximation of the feasible region of the
semi-infinite program. Consequently, the optimal value within the outer ap-
proximation is a lower bound on the value of (24). We iteratively improve the
outer approximation through the following steps: (i) Solve the outer approxi-
mation of (24) with a finite number of cutting planes; (ii) Given its solution
(x̄t, ρ̄t), solve the separation problem maxωt+1∈Ωt+1

{QRA
t+1(x̄t, ωt+1)−∥ωi

t+1 −
ωt+1∥ρ̄t}; (iii) Add a cutting plane in the form of (23b) associated with a sce-
nario identified by solving the separation problem to the outer approximation
of (24); (iv) Repeat until the outer approximation is as tight as a predeter-
mined level. These iterative steps refine the outer approximation, making it
increasingly accurate in representing the feasible region of the semi-infinite
program, and thereby solve the DRA-MSIP with continuous support.

6 SDDP-based Algorithms for DRR-MSP and DRO-MSP

6.1 Distributionally ambiguous SDDP

We present a customized SDDP algorithm, referred to as distributionally am-
biguous SDDP (DA-SDDP), for both DRO-MSIPs and DRR-MSIPs, where
the convex approximations discussed in Sects. 3 and 5 are utilized. The DA-
SDDP approximates the pessimistic and optimistic expected cost-to-go func-
tions QRA

t+1 and QRR
t+1 for each t ∈ [T − 1]. Notably, DA-SDDP shares the

key sampling ideas of SDDP for approximating the expectation functions, but
the crux of this algorithm is in deriving convex approximations and iterative
refinement methods for them. Recall that SDDP solves the linear programs
and use dual solutions to derive a valid cut (or approximations) for MSLPs.
However, this is not applicable for DRR programs.

Algorithm 1 Distributionally Ambiguous SDDP

1: Initialize l ← 1; x0 ← initial state; ω1 ← data at the first stage; Ω1 := {ω1}; Kl
t ← 0

for t ∈ [T − 1];
2: while (satisfying none of stopping conditions) do
3: Sample a scenario path ξl ∈ Ξ := Ω1 × · · · ×ΩT

4: for t ∈ [T ] do ▷ Forward Step

5: Solve subproblem Pl
t(x

l
t−1, ξ

l
t) and obtain (xl

t, y
l
t) and Q̂l

t(x
l
t−1, ξ

l
t)

6: for t = T, . . . , 2 do ▷ Backward Step
7: for i ∈ Nt do
8: Solve relaxation P̃l

t(x
l
t−1, ω

i
t) and obtain cut (αi,l

t−1, β
i,l
t−1)

9: Refine approximating function ϕl
t−1 by using cuts (αi,l

t−1, β
i,l
t−1), i ∈ Nt

10: Kl
t−1 ← Kl

t−1 + 1

11: Solve subproblem Pl
1(x

l
0, ω1) and obtain the bound LB

12: Kl+1
t ← Kl

t for t = 1, . . . , T − 1; l← l+ 1
13: return Subproblems {Pl

t}t∈[T−1], LB
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A pseudocode of DA-SDDP is given in Algorithm 1. The algorithm is
initialized with a predetermined initial state of the model, denoted by x0, the
input data for the first stage, denoted by ω1, and the singleton set Ω1 := {ω1},
which are introduced to simplify the notation later. We also set the iteration
counter l to 1, and the number of cuts Kl

t for t ∈ [T − 1] at iteration l to 0.
At iteration l, the algorithm samples a scenario path ξl = (ξl1, · · · , ξlT ) from
Ξ := Ω1 × · · · × ΩT (Line 3). For the finite convergence of the algorithm, we
assume that the scenario path sampling is conducted with replacement. Note
that this can be readily extended to the sampling of multiple scenario paths
per iteration. The remainder of the iteration consists of a forward step (Lines 4
and 5) and a backward step (Lines 6-11).

Forward Step. For each stage t ∈ [T ], DA-SDDP solves the following approx-
imation of Problem (4) (or (6)), which we refer to as subproblem and denote
by Pl

t(x
l
t−1, ξ

l
t) (Line 5):

Q̂l
t(x

l
t−1, ξ

l
t) := min

(xt,yt)∈Xt(xl
t−1,ξ

l
t)

{
ft(xt, yt, ξ

l
t) + ϕlt(xt)

}
, t ∈ [T ], (25)

where ϕlT (·) = 0, and xlt−1, t = 2, .., T, is an optimal stage-(t− 1) solution. To
simplify notation, we let xl0 := x0 and X1(x

l
0, ξ

l
1) := X1. Function ϕ

l
t(xt), for

each t ∈ [T − 1], is a convex function that is constructed by Kl
t cuts, and it

serves as an under-approximation of the pessimistic and optimistic expected
cost-to-go functions—QRA

t+1 and QRR
t+1—while solving DRO-MSIP and DRR-

MSIP, respectively. The approximating functions presented in Sect. 3 and 5
are viable substitutes for the function ϕlt when they are defined using the set

of cuts {(αi,k
t , βi,k

t )}k∈[Kl
t]
available at iteration l and stage t.

Backward Step. For each t = T, . . . , 2, the algorithm solves relaxations of the
subproblems, denoted by P̃l

t(x
l
t−1, ω

i
t), and compute affine cuts (αi,l

t−1, β
i,l
t−1)

for i ∈ Nt (Line 8) using the information obtained by solving the relaxations.
These cuts provide a lower-bounding approximation of the value function Q̂l

t

such that

Q̂l
t(xt−1, ω

i
t) ≥ (αi,l

t−1)
⊤xt−1 + βi,l

t−1, ∀xt−1 ∈ {0, 1}dx , i ∈ Nt, (26a)

Q̂l
t(x

l
t−1, ω

i
t) = (αi,l

t−1)
⊤xlt−1 + βi,l

t−1. (26b)

It should be noted that the cut’s validity is defined for Q̂l
t, yet this condition is

sufficient to construct a lower-approximation for the optimistic or pessimistic
expected cost-to-go function, since Q̂l

t is always lower-bounding the exact value

function QRR
t or QRA

t , respectively. Using the cuts {(αi,l
t−1, β

i,l
t−1)}i∈Nt

, the
algorithm tightens the approximating function ϕlt−1(xt−1) and improves the
lower bound (Line 9). In Line 11, the algorithm computes the lower bound on
the overall optimal objective value by solving the subproblem associated with
the first stage.
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The algorithm repeats these iterations with the forward and backward steps
until one of predetermined stopping conditions is satisfied. These conditions
can include a maximum number of iterations, a limit on elapsed time, or
convergence of the lower bound.

There are various ways of generating a cut (αi,l
t−1, β

i,l
t−1), i ∈ Nt, which

is a supporting hyperplane of the epigraph of Q̂l
t(xt−1, ω

i
t), intersecting at

xt−1 = xlt−1, i.e., a cut satisfying both (26a) and (26b). For example, by
solving the subproblem to optimality, we can obtain an integer optimality cut,
given a lower bound L for the value function Q̂l

t, in the following form:

Q̂l
t(xt−1, ω

i
t) ≥

(
q̂lt − L

)( ∑
i∈[dx]

2xlt−1,ixt−1,i − xt−1,i − xlt−1,i

)
+ q̂lt,

where q̂lt := Q̂l
t(x

l
t−1, ω

i
t). As another example, consider a Benders cut ob-

tained by solving a linear programming relaxation of the subproblem when
solving a DRO-MSIP (or DRR-MSIP). This cut satisfies (26a), though not
necessarily (26b). However, we can derive a mixed-binary linear programming
reformulation of the subproblem by adding binary variables replacing integer
variables, use the hierarchy of relaxations (discussed in Sect. 7.2) to solve the
reformulation to optimality, and obtain a Benders cut that satisfies both (26a)
and (26b).

6.2 Finite Convergence

Now, we show the finite convergence of DA-SDDP equipped with the convex
approximations presented earlier. For DRR-MSIPs, we use DRR-SDDP-C and
DRR-SDDP-R to denote variants of DA-SDDP with the cutting plane-based
approximation ϕCt (10) and the reformulation-based approximation ϕRt (13),
respectively. We define a policy by a collection of functions {x̄t(ξ[t]), ȳt(ξ[t])}t∈[T ],
where ξ[t] = (ξ1, . . . , ξt), which serves as a decision rule given any scenario path
(ξ1, . . . , ξT ). A policy is optimal for a DRR-MSIP if (x̄t(ξ[t]), ȳt(ξ[t])) is optimal
to the t-th stage problem (6) ((5) for t = 1) for t ∈ [T ] and all ξ ∈ Ξ.

Theorem 3 The forward step of the DRR-SDDP-C algorithm defines an op-
timal policy for a DRR-MSIP in a finite number of iterations of its while loop
with probability one. Furthermore, each iteration of the while loop is executed
in a finite time if there exists a finite-time algorithm for computing the cut
coefficients (11).

Remark 3 When the ambiguity sets are singletons, the finite convergence re-
sult presented in Theorem 3 applies to MSIPs, where the finite convergence
result previously established by Zou et al. [44]. While their proof utilizes as-
sumptions regarding the validity, tightness, and finiteness of cuts, the proof
in this paper with binary state variables demonstrates that the convergence
holds even without the finiteness assumption on cuts.
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Theorem 4 The forward step of the DRR-SDDP-R algorithm defines an op-
timal policy to a DRR-MSIP in a finite number of iterations of its while loop
with probability one. Furthermore, each iteration of the while loop is executed
in a finite time if the ambiguity set at every stage is defined by a polytope or
a mixed-binary linear set.

Similarly, for DRO-MSIPs, we refer to the variants of DA-SDDP as DRO-
SDDP-C and DRO-SDDP-R, utilizing the cutting plane-based approximation
ϕSt (22) and the reformulation-based approximation ϕDt (23), respectively.

Theorem 5 The forward step of the DRO-SDDP-C algorithm provides an
optimal policy for DRO-MSIP in a finite number of iterations of its while loop
with probability one. Furthermore, each iteration of the while loop is executed
in a finite time if there exists a finite-time algorithm for solving the distribution
separation problem (21).

7 Extensions to Multistage Stochastic Disjunctive Programs with
Distributional Ambiguity

In this section, we present extensions of the DA-SDDP algorithms to DRR-
and DRO-MSDPs defined in Section 1.1, under the following assumption: For

h ∈ Ht, set {(xt, yt) ∈ Rdx
+ ×Rdy

+ : Ah
t (ωt)xt+B

h
t (ωt)yt ≥ bht (ωt)−Ch

t (ωt)xt−1}
is nonempty and compact for any xt−1 ∈ {0, 1}dx and ωt ∈ Ωt. Also, its
constraints include xt ≥ 0 and xt ≤ 1.

7.1 DA-SDDP algorithms for DRR- and DRO-MSDPs

Let us consider a set of cuts, {(πk
t , γ

k
t )}k∈[Kl

t]
, for iteration l and stage t,

constructing an approximation of the pessimistic or optimistic expected cost-
to-go function. Then, with the same definition of x0 and ω1 as in Algorithm 1,
the subproblem at iteration l is given by

Q̂l
t(xt−1, ωt) = min

(xt,yt)∈Xt(xt−1,ωt)

{
ft(xt, yt, ωt) + ϕt :

ϕt ≥ (πk
t )

⊤xt + γkt , k ∈ [Kl
t]
} (27)

for t ∈ [T ] and ωt ∈ Ωt, where ϕT = Kl
T = 0 and Xt(xt−1, ωt) is defined by a

disjunctive set (7). We define the feasible set of the foregoing subproblem by

Dl
t(xt−1, ωt) :=

{
(xt, yt, ϕt) ∈ Rdx

+ × Rdy

+ × R+ :∨
h∈Ht

(
ϕt − (πk

t )
⊤xt ≥ γkt , k ∈ [Kl

t],

Ah
t (ωt)xt +Bh

t (ωt)yt ≥ bht (ωt)− Ch
t (ωt)xt−1

)}
, (28)

and derive the convex hull of Dl
t(xt−1, ωt) in the following proposition.
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Proposition 2 For any xt−1 ∈ {0, 1}dx and ωt ∈ Ωt, the convex hull of
the set Dl

t(xt−1, ωt), t ∈ [T ], is equivalent to the projection of polyhedral set
D̃l

t(xt−1, ωt) onto the (xt, yt, ϕt)-space where D̃l
t(xt−1, ωt) is given by{ ∑

h∈Ht

ζht,0 = 1,
∑
h∈Ht

ζht,1 − xt = 0,

∑
h∈Ht

ζht,2 − yt = 0,
∑
h∈Ht

ζht,3 = xt−1,
∑
h∈Ht

ζht,4 − ϕt = 0,

Ah
t (ωt)ζ

h
t,1 +Bh

t (ωt)ζ
h
t,2 + Ch

t (ωt)ζ
h
t,3 − bht (ωt)ζ

h
t,0 ≥ 0, h ∈ Ht,

ζht,4 − (πk
t )

⊤ζht,1 − γkt ζ
h
t,0 ≥ 0, h ∈ Ht, k ∈ Kl

t,

xt ∈ Rdx
+ , yt ∈ Rdy

+ , ϕt ∈ R+,

ζht,0 ∈ R+, ζ
h
t,1 ∈ Rdx

+ , ζht,2 ∈ Rdy

+ , ζ
h
t,3 ∈ Rdx

+ , ζht,4 ∈ R+, h ∈ Ht

}
.

Using Proposition 2, we also derive an extension of DA-SDDP for DRR-
and DRO-MSDPs, namely DA-SDDP-DP. Its pseudocode is provided in Ap-
pendix D. DA-SDDP-DP shares a similar structure to DA-SDDP, but note
that it involves distinct subproblems and a special subroutine for adding cuts
to the subproblems. In particular, it solves the linear programming equiv-
alents of subproblems (27), derived using Proposition 2 and referred to as
LP-subproblems:

min
{
ft(xt, yt, ωt) + ϕt : (xt, yt, ϕt) ∈ Projxt,yt,ϕt

(
D̃l

t(xt−1, ωt)
)}
, (29)

for t ∈ [T ] and ϕT = 0. We note that the DA-SDDP-DP algorithms for
DRR- and DRO-MSDPs have the finite convergence if cuts (πl

t−1, γ
l
t−1) are

obtained as in the cutting plane-based algorithms for DRR- and DRO-MSIPs,
respectively. The comprehensive description of the algorithm is provided in
Appendix D.

7.2 Application of Proposition 2 for solving DRR- and DRO-MSIPs using
Hierarchical Relaxations

In this section, we present a hierarchy of relaxations ranging from linear re-
laxation to tight extended formulations for each stage to solve DRR- and
DRO-MSIPs by applying Proposition 2. For the ease of exposition, let yt be
continuous. Then, the subproblem (25) of DRR- and DRO-MSIPs for iteration
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l and stage t can be rewritten as

min

{
ft(xt, yt, ξ

l
t) + ϕlt :

(
xt,j = 0 ∨ xt,j = 1, j = 1, . . . , dx

)
∧(

ϕt − (πk
t )

⊤xt ≥ γkt , k ∈ [Kl
t],

At(ξ
l
t)xt +Bt(ξ

l
t)yt ≥ bt(ξ

l
t)− Ct(ξ

l
t)xt−1

)}
. (30)

We use Dl
t(xt−1, ξ

l
t) and Dl,LP

t (xt−1, ξ
l
t) to denote the feasible region of the sub-

problem (30) and its linear programming relaxation, respectively. A relaxation

of Dl
t(xt−1, ξ

l
t) can be defined as follows: Dl,s

t (xt−1, ξ
l
t) := Dl,LP

t (xt−1, ξ
l
t) ∩

{xt,j = 0 ∨ xt,j = 1, j ∈ [s]}, for s ∈ [dx]. It is easy to see that the

set Dl,s
t (·, ·) for s = dx is equivalent to the original set Dl

t(·, ·). Moreover,

Dl,LP
t (·, ·) ⊇ Dl,1

t (·, ·) ⊇ · · · ⊇ Dl,dx

t (·, ·) = Dl
t(·, ·), and thus conv(Dl,1

t (·, ·)) ⊇
· · · ⊇ conv(Dl,dx

t (·, ·)) = conv(Dl
t(·, ·)). This provides a hierarchy of relaxations

of the feasible region Dl
t(·, ·) of DRR- and DRO-MSIPs. The tight extended

formulation of the convex hull of the relaxations can be obtained using Propo-
sition 2.

Proposition 3 The convex hull of the set Dl,s
t (xt−1, ωt) is the projection of

the following set onto the (xt, yt, ϕt)-space for any xt−1 ∈ {0, 1}dx and ωt ∈ Ωt:{ ∑
h∈[|J s

t |]

ζht,0 = 1,
∑

h∈[|J s
t |]

ζht,1 − xt = 0,

∑
h∈[|J s

t |]

ζht,2 − yt = 0,
∑

h∈[|J s
t |]

ζht,3 = xt−1,
∑

h∈[|J s
t |]

ζht,4 − ϕt = 0,

At(ωt)ζ
h
t,1 +Bt(ωt)ζ

h
t,2 + Ct(ωt)ζ

h
t,3 ≥ bt(ωt), h ∈ [|J s

t |],
ζht,1,j = 0, j ∈ Jh

1 , h ∈ [|J s
t |],

ζht,1,j = ζht,0, j ∈ Jh
2 , h ∈ [|J s

t |],
ζht,4 − (πk

t )
⊤ζht,1 − γkt ζ

h
t,0 ≥ 0, h ∈ [|J s

t |], k ∈ [Kl
t],

xt ∈ Rdx
+ , yt ∈ Rdy

+ , ϕt ∈ R+,

ζht,0 ∈ R+, ζ
h
t,1 ∈ Rdx

+ , ζht,2 ∈ Rdy

+ , ζ
h
t,3 ∈ Rdx

+ , ζht,4 ∈ R+, h ∈ [|J s
t |]

}
,

(31)

where J s
t := {(Jh

1 , J
h
2 ) : h ∈ [|J s

t |]}, s ∈ [dx], t ∈ [T ], be a set of all pairs of
disjoint sets (J1, J2) such that J1, J2 ⊆ [dx], J1 ∩ J2 = ∅, and |J1 ∪ J2| = s.

Proposition 3 provides the following relaxation that can be used to gen-

erate cuts in Line 8 of Algorithm 1: Q̃l,s
t (xlt−1, ξ

l
t) = min

{
ft(xt, yt, ξ

l
t) +
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ϕlt(xt) : (xt, yt) ∈ Projxt,yt
(Dl,s

t (xlt−1, ξ
l
t))

}
, where Q̃l,1

t (xlt−1, ξ
l
t) ≤ · · · ≤

Q̃l,dx

t (xlt−1, ξ
l
t) = Q̂l

t(x
l
t−1, ξ

l
t). For s = dx, a Benders cut obtained by solv-

ing this relaxation is a supporting hyperplane satisfying (26b). For the smaller
values of s, the Benders cut does not necessarily support the value function
Q̂l

t(·), but the relaxations are computationally easier to solve. The value of
s can be adjusted either before or during the execution of the algorithm to
address this trade-off between the computational effort and the effectiveness
of the cuts.

Remark 4 The above relaxations can be readily extended to the case where yt
are mixed-binary variables. Furthermore, if yt are mixed-integer, a hierarchy
of relaxations can be derived by employing the binary expansion as discussed
in Remark 1.

8 Computational Tests

In this section, we present computational results for the DRR-SDDP-C, DRR-
SDDP-R, DRO-SDDP-C, and DRO-SDDP-R algorithms. Recall that these
are specific implementations of DA-SDDP, utilizing the approximations (10),
(13), (22), and (23), respectively. We apply these algorithms to solve instances
of multistage maximum flow and facility location interdiction problems with
distributional ambiguity. All the algorithms are implemented in Julia 1.8 where
subproblems, coefficient-computing problems (11), and distribution separation
problem (21) are solved using Gurobi 9.5 with an optimality tolerance of 10−4.
We also integrate our implementation of the inner functionalities of our DA-
SDDP algorithms with SDDP.jl [15] package to be consistent with the research
community, e.g., [36], thereby making it convenient for future computational
and applied users of these algorithms. We conducted all tests on a machine
equipped with an Intel Core i7 processor (3.8 GHz), utilizing a single thread,
and 32 GB RAM.

In our implementations, all the algorithms generate a strengthened Benders
cut and an integer optimality cut alternately during the backward steps. For
details on the strengthened Benders cuts, we refer readers to Zou et al. [44].
For ambiguity set, we consider Wasserstein ambiguity set with the l1 norm
throughout all test instances. Note that in this case the distribution separation
problem (21) is a linear program and the subproblem (25) in the DRR-SDDP-
R algorithm is a mixed-binary linear program.

8.1 MS-MFIP with Distributional Ambiguity

Throughout this section, we consider DRR and DRO variants of the MS-MFIP
formulation that is provided in Appendix. B. In the subsequent sections, we
present the results of a comparative analysis of the algorithms and demonstrate
the significance of DRR and DRO for MS-MFIP. In addition, we extend the
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analysis to the case involving data corruption where the defender can deceive
the interdictor by providing false information about critical arcs in a network.

8.1.1 Instance generation and computational results

Networks are randomly generated, following the method presented in Cormi-
can et al. [14]. First, we place all nodes, excluding the source and sink nodes, in
a grid pattern. Next, we establish connections between the leftmost and right-
most nodes in the grid to the source and sink nodes, respectively, using non-
interdictable arcs with infinite capacity. Then, every pair of adjacent nodes in
the grid is connected by an arc. Horizontal arcs are oriented from left to right,
and vertical arcs, connecting the leftmost or rightmost nodes, are oriented from
up to down. The orientations of the remaining arcs are randomly chosen. To
avoid trivial solutions, e.g., removing all horizontal arcs in the same column,
we set 80 percent of all arcs to be interdictable. Following the above procedure,
we generate two distinct networks with different sizes. For the first network
and the second network, we sample realizations of the random capacity of each
arc uniformly distributed on [30, 60] and [20, 90], respectively, to construct the
support Ωt of size |Ω| for each stage t. We set the Wasserstein ball size pa-
rameter ϵ to 30. The interdiction budget for each stage is set to one to avoid
a trivial solution where an interdiction solution in an early stage completely
separates the source and sink nodes, leaving no arcs to remove in later stages.

Table 1: Details of DRR- and DRA-
MFIP instances

Instance |N | × |A| T |Ω| #Scenario

NI-1-3-5 37 x 73 3 5 25
NI-1-3-10 10 100
NI-1-3-15 15 225

NI-1-4-5 4 5 125
NI-1-4-10 10 1000
NI-1-4-15 15 3375

NI-1-5-5 5 5 625
NI-1-5-10 10 10000
NI-1-5-15 15 50625

NI-1-6-5 6 5 3125
NI-1-6-10 10 100000
NI-1-6-15 15 759375

NI-2-3-5 52 x 106 3 5 25
NI-2-3-10 10 100
NI-2-3-15 15 225

NI-2-4-5 4 5 125
NI-2-4-10 10 1000
NI-2-4-15 15 3375

Table 1 summarizes the details
of the test instances. Each row
corresponds to a single instance
that is labeled accordingly under
the Instance column. The nam-
ing convention NI-i-T -|Ω| is used
for an instance with the ith net-
work among the two aforemen-
tioned networks, T stages, and
|Ω| realizations per stage. The la-
bels |N | × |A| and #Scenario de-
note the number of nodes and
arcs of the network and the to-
tal number of scenario paths, re-
spectively. For termination condi-
tions, we specify a time limit of
3 hours for all algorithms. Also,
there is an early-termination con-
dition based on the convergence
of lower bound. In particular, the
algorithm is stopped if the lower
bound fails to improve for 100 con-
secutive iterations.
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Table 2: Performance comparison of algorithms for DRR- and DRA-MFIP
instances

DRA-SDDP-C DRA-SDDP-R DRR-SDDP-C DRR-SDDP-R

Instance LBound Time (s) LBound Time (s) LBound Time (s) LBound Time (s)

NI-1-3-5 537.08 39.1 537.08 224.1 528.10 41.1 528.10 585.0
NI-1-3-10 535.00 50.3 535.00 1653.2 527.05 60.3 527.05 2172.9
NI-1-3-15 534.76 105.0 534.76 10800+ 528.11 103.1 528.11 6774.8
NI-1-4-5 655.58 169.1 655.58 4794.1 644.76 173.8 644.76 10800+
NI-1-4-10 670.44 547.2 662.12 10800+ 655.45 453.2 600.68 10800+
NI-1-4-15 657.02 401.6 641.21 10800+ 643.02 525.3 590.32 10800+
NI-1-5-5 735.84 1019.2 729.85 10800+ 727.05 1455.2 645.57 10800+
NI-1-5-10 718.36 1443.9 676.38 10800+ 701.54 1958.1 583.27 10800+
NI-1-5-15 792.14 704.2 774.19 10800+ 769.31 746.9 650.32 10800+
NI-1-6-5 737.51 3058.8 705.42 10800+ 725.69 3491.4 631.55 10800+
NI-1-6-10 762.90 5066.5 672.96 10800+ 744.84 6853.9 593.40 10800+
NI-1-6-15 748.97 10800+ 594.48 10800+ 715.37 10800+ 576.73 10800+
NI-2-3-5 1018.51 54.2 1018.51 115.3 1013.16 61.7 1013.16 906.5
NI-2-3-10 892.61 73.9 892.61 994.0 884.66 96.8 884.66 3543.9
NI-2-3-15 903.28 148.8 903.28 263.7 891.10 171.7 891.10 10244.7
NI-2-4-5 1181.45 410.0 1181.45 9978.1 1173.41 436.3 1136.69 10800+
NI-2-4-10 1096.20 1426.5 1062.48 10800+ 1086.77 1574.4 981.57 10800+
NI-2-4-15 1105.07 3387.2 1027.92 10800+ 1089.51 3553.0 824.64 10800+

In Table 2, we report lower bounds and solution times in seconds for each
algorithm, labeled LBound and Time (s), respectively. We may also obtain
upper bounds computed statistically through a sampling approach using the
policy after termination. However, to focus on the computational performance
of the algorithms in terms of convergence while running, we will only report
lower bounds and solution times here. The results indicate that the DRO-
SDDP-C algorithm provides better lower bounds and solution times than the
DRO-SDDP-R algorithm for all instances. On average, the DRO-SDDP-C al-
gorithm converges 17.2 times faster than the DRO-SDDP-R algorithm. This
performance advantage increases to 26.4 times (on average) for eight instances
where both algorithms provide the same lower bounds. The results show that
the DRO-SDDP-R algorithm’s performance is more susceptible to T and |Ω|
than the DRO-SDDP-C algorithm. For example, as |Ω| increases from 5 to 15
for NI-1-3-5, the DRO-SDDP-R algorithm’s solution time increases by 48.2
times, while the DRO-SDDP-C algorithm’s solution time increases by 2.7
times. Similarly, when T increases to 5 and 6 from 3 for NI-1-3-5, the DRO-
SDDP-R algorithm fails to solve the 5-stage and 6-stage instances—NI-1-5-5
and NI-1-6-5—within the time limit, whereas the DRO-SDDP-C algorithm
solves all instances within the time limit. This is mainly because the DRO-
SDDP-R algorithm adds a significantly larger number of cuts (|Ω|2 cuts for
every subproblem solved) for each iteration, which increases the solution times
for subproblems. Regarding DRR-MFIP, the DRR-SDDP-C algorithm outper-
forms the DRR-SDDP-R algorithm for all test instances. In terms of solution
time, the DRR-SDDP-C algorithm converges, on average, 22.3 times faster



26 Sumin Kang, Manish Bansal

(a) 90th percentile (DRA-MFIP) (b) 95th percentile (DRA-MFIP)

(c) 5th percentile (DRR-MFIP) (d) 10th percentile (DRR-MFIP)

Fig. 1: Plots of percentiles from out-of-sample tests on DRA-MFIP (90th and
95th percentiles) and DRR-MFIP (5th and 10th percentiles)

than the DRR-SDDP-R algorithm, and this advantage increases to 41.3 times
for seven instances where both the algorithms provide the same bounds. This
is because the DRR-SDDP-R algorithm solves larger subproblems that arise
from (13b), incorporated by the linearization and the ambiguity set, respec-
tively.

8.1.2 Impact of DRO and DRR on MS-MFIP

To demonstrate the impact of DRO and DRR on MS-MFIP, we present the re-
sults from out-of-sample tests, which are conducted as follows. We first sample
realizations of the capacity over the stages. Then, the DRO-MFIP and DRR-
MFIP instances obtained over this sample ({Ωt : t ∈ [T ]}) are solved using
the algorithms. The resulting subproblems along with the cuts generated by
the algorithms define a policy for MS-MFIP, i.e., the decision rule that selects
the set of arcs to remove given a realization of the capacity. We simulate the
DRR and DRO policies using scenario paths of the capacity that are sampled
independently from the realizations used in solving the problems.

Throughout the out-of-sample tests in this section, we consider the problem
with 4 stages, 30 realizations per stage, 3000 independently-sampled scenario
paths, and a network with 30 nodes and 60 arcs. All capacity realizations are
sampled from a truncated normal distribution with a mean of 30, a standard
deviation of 5, and values constrained to the interval [10, 50]. The policies are
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generated for the set of different Wasserstein ball size parameter ϵ belonging to
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, 10}. We present the results from the simulations in
Figure 1: Figures 1a and 1b show the 90th and 95th percentiles of the objective
values obtained by the DRO policies, and Figures 1c and 1d show the 5th and
10th percentiles of the objective values obtained by the DRR policies. Each
figure contains the result from the policy generated by SDDiP with ϵ = 0, i.e.,
the risk-neutral policy, as an orange horizontal line for comparison.

The DRO policies give the smaller 90th and 95th percentiles compared
to the risk-neutral policy. As the ball size ϵ increases from 0.1 to 0.3, the
corresponding policies yield the lower 90th and 95th percentiles, indicating
the better out-of-sample performance. As the ball size ϵ increases further,
to 0.5, 1, 5, and 10, the overall performance of the policies drops, yet their
90th and 95th percentiles remain smaller than those of the risk-neutral policy.
This demonstrates that the DRO policies achieve the robustness of interdic-
tion solutions by incorporating conservatism over unfavorable realizations in
Ωt, t ∈ [T ]. On the other hand, the DRR policies give the smaller 5th and 10th
percentiles compared to the risk-neutral policy. This indicates that the DRR
policies yield more effective interdiction solutions than the risk-neutral policy
for certain scenario paths and reflect a more pessimistic perspective of the
network user on the network performance. Consequently, this pessimistic view
can identify the network vulnerabilities that are unnoticed by the risk-neutral
policy. The level of pessimism increases as ϵ increases from 0.1 to 0.5, except
for ϵ = 0.4. However, as it continues to increase up to ϵ = 10, the pessimistic
view on the performance diminishes.

8.1.3 Significance of DRR framework for MS-MFIP with data corruption

In this test setup, we assume the network user has a capability of deceiving
the interdictor by providing false information about critical arcs, i.e., most
essential arcs to maintain the maximum flow. Specifically, the network user
introduces uncertainty about the success of interdiction on the critical arcs
before the interdictor makes a decision. In this adversarial setting, we consider
a risk-receptive interdictor, i.e., an optimistic decision-maker, to mitigate the
impact of the false information. The significance of DRR is demonstrated
through out-of-sample tests we conduct as follows.

To simplify analysis, we focus on a two-stage case of MS-MFIP, where the
interdiction decision is made only in the first stage, and the flow decision is
made only in the second stage. That is, the interdictor’s decision is made based
on the corrupted sample data of the random vector in the second stage. Let
G = (N,A) represent the network. For random data generation, we generate
samples of the capacity of each arc a ∈ A from a normal distribution with mean
µa and standard deviation σa = µa/4, where µa is drawn from a discrete
uniform distribution in the interval [20, 40]. The network user manipulates
these sample data by solving deterministic MS-MFIP on G with true mean
values, identifying the critical arcs in A, and introducing fake data where
interdiction on these arcs fails, replacing an ᾱ proportion of the sample data.
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Fig. 2: A network in a 5× 2 grid shape.

The parameter ᾱ ∈ [0, 1] denotes the contamination level. Throughout all
tests, we fix the number of scenarios to 30 for consistency.

We first consider a simple network depicted in Figure 2. The solid lines
represent interdictable arcs, and the dotted lines represent non-interdictable
arcs. The label on each arc represents its name and mean of capacity. In this
network, the most critical arc is a3, followed by a1 as the second most critical.
The third most critical arc is either a2 or a4, as they share the same mean
value. We assume the network user manipulates the data associated with arcs
a1, a2, and a3. Now we assess the impact of the corrupted data and DRR on
optimal interdiction solutions by solving the DRR variant of MS-MFIP with
Wasserstein ambiguity set. We also solve the DRO variant for comparative pur-
poses. The contamination level ᾱ varies in {0.2, 0.4, 0.6}, and the Wasserstein
ball size parameter ϵ varies in {0, 10, 20, 40}. The interdiction budget b is set
to 2. In Table 3, we present the optimal interdiction solutions for these models.
When the interdictor is risk-neutral, i.e., ϵ = 0, solutions (a3, a4) and (a4, a5)
are chosen. This demonstrates that the fake uncertainty of interdiction success
motivates the interdictor to deviate from the optimal solution (a1, a3) with the
true mean values by choosing arcs a4 and a5, where the success of interdiction
is guaranteed across all scenarios. The risk-averse interdictor prioritizes the
most conservative solution (a4, a5), illustrating how DRO could be susceptible
to data corruption in adversarial settings. In contrast, the risk-receptive inter-
dictor includes the critical arcs a1, a2, and a3 in their solutions in almost all
cases. For ᾱ = 0.6, the optimal solution diverges from these critical arcs when
ϵ = 10, selecting (a4, a5), but it reverts to interdicting the critical arcs as ϵ in-
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Table 3: Optimal interdiction solutions for the DRR and DRO models with
ᾱ ∈ {0.2, 0.4, 0.6} and ϵ ∈ {0, 10, 20, 40}.

ϵ

Risk-neutral DRR DRO

ᾱ 0 10 20 40 10 20 40

0.2 (a3, a4) (a1, a3) (a1, a3) (a2, a3) (a3, a4) (a4, a5) (a4, a5)
0.4 (a3, a4) (a1, a3) (a1, a3) (a2, a3) (a4, a5) (a4, a5) (a4, a5)
0.6 (a4, a5) (a4, a5) (a1, a3) (a1, a3) (a4, a5) (a4, a5) (a4, a5)

Fig. 3: Comparison of interdiction solutions from different models in out-of-
sample test. Network has a 5× 2 grid shape, and contamination level ᾱ is 0.4.

creases to 20 and 30. Next, we evaluate the out-of-sample performance of these
interdiction solutions. We randomly sample 1000 scenario paths from the clean
distributions and solve the second-stage problem using the solutions provided
in Table 3 for ᾱ = 0.4. The plot of objective values for the sample paths is
illustrated in Figure 3, with average values denoted by red marks along with
their respective numbers. Since we are evaluating the interdictor’s solutions,
lower objective values indicate better performance. Comparing average per-
formances, the DRR interdiction solutions, (a1, a3) and (a2, a3), outperform
the other solutions. The DRO interdiction solution (a4, a5) shows the most
inferior out-of-sample performance among the four solutions with an average
objective value that is 23.3 percent higher than that of the DRR interdiction
solution (a1, a3).

To assess the significance of DRR in a more complicated instance, we per-
form additional tests with the network in a 6 × 3 grid shape and the inter-
diction budget of 5. We set ᾱ = 0.4, obtain the DRR and DRO solutions for
ϵ ∈ {0, 10, 20, 40}, and conduct the out-of-sample test with these solutions.
The results are plotted in Figure 4. Consistent with our observations in the
simpler instance, the out-of-sample performance of the DRR solutions im-
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Fig. 4: Comparison of interdiction solutions from different models in out-of-
sample test. Network has a 6 × 3 grid shape, interdiction budget b is 5, and
contamination level ᾱ is 0.4.

proves as ϵ increases. In contrast, the DRO model produces identical solutions
for all values of ϵ, yielding the poorest average performance among the four
solutions.

8.2 Multistage facility location interdiction problem with distributional
ambiguity

We evaluate the computational performance of the algorithms for MS-FLIP
with distributional ambiguity, referred to as DRR-FLIP and DRO-FLIP. The
detailed formulation of MS-FLIP is provided in Appendix B.

8.2.1 Computational results

To generate instances, we use the following method that is similar to the one
used in [42]. We first randomly sample (L+M) points from a 100×100 grid and
place demand points and facilities. For each demand point l ∈ [L], we randomly
choose µl from a uniform discrete distribution [20, 40]. Then, to construct the
support Ωt of size |Ω| for each stage t, we randomly sample |Ω| realizations of
the random demand for l ∈ [L] from a truncated normal distribution, where
the mean is µl, the standard deviation is σl = µl/4, and the truncation interval
is [1, 60]. For all test instances, we set the Wasserstein ball size ϵ to 10 and set
the interdiction budget for each stage to one, i.e., rt = 1, t ∈ [T ]. The details of
the test instances are given in Table 4. Each instance, denoted by LI-i-T -|Ω|,
involves the ith network out of two randomly generated networks, T stages,
and |Ω| realizations per stage. For each row of the table, the labels L×M and
#Scenario denote the number of demand points and facilities and the number
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of total scenario paths, respectively. The termination conditions are identical
to those used for the DRR- and DRO-MFIP instances.

Table 4: Details of DRR- and DRA-
FLIP instances

Instance L×M T |Ω| #Scenario

LI-1-3-10 10 x 20 3 10 100
LI-1-3-20 20 400
LI-1-3-50 50 2500

LI-1-4-10 4 10 1000
LI-1-4-20 20 8000
LI-1-4-50 50 125000

LI-1-5-10 5 10 10000
LI-1-5-20 20 160000
LI-1-5-50 50 6250000

LI-2-3-10 15 x 30 3 10 100
LI-2-3-20 20 400
LI-2-3-50 50 2500

LI-2-4-10 4 10 1000
LI-2-4-20 20 8000
LI-2-4-50 50 125000

LI-2-5-10 5 10 10000
LI-2-5-20 20 160000
LI-2-5-50 50 6250000

Table 5 presents the upper
bounds and solution times in sec-
onds obtained by each algorithm
under the label UBound and Time
(s). The numbers in each row of the
table correspond to the result for a
single instance. Note that smaller
bounds are better since they are
upper bounds. For DRO-FLIP, the
DRO-SDDP-C algorithm provides
the upper bounds better than the
DRO-SDDP-R algorithm for all in-
stances. Also, on average, the DRO-
SDDP-C algorithm is 38.9 times
faster than the DRO-SDDP-R al-
gorithm, and this advantage in-
creases to 48.4 times for 11 in-
stances where both the algorithms
produce the same bounds. The per-
formance of the DRO-SDDP-R al-
gorithm is comparatively suscepti-
ble to the number of realizations
per stage. For example, the DRO-SDDP-R algorithm takes 458.7 seconds to
solve LI-2-3-10, but it fails to converge within the time limit when solving
LI-2-3-50. The DRO-SDDP-C algorithm, however, converges for the both in-
stances within the time limit. When comparing the results for DRR-FLIP,
the DRR-SDDP-C algorithm provides better upper bounds than the DRR-
SDDP-R algorithm for all the instances. In terms of solution time, the DRR-
SDDP-C algorithm is, on average, 25.8 times faster than the DRR-SDDP-R
algorithm for all instances, and 26.7 times faster for 13 instances where both
the algorithms produce the same bounds. As discussed in the previous sec-
tion, this shows that the both DRO-SDDP-R and DRR-SDDP-R algorithms
require more time to solve due to the larger subproblems resulting from the
reformulation techniques.

9 Conclusion

We studied multistage stochastic integer and disjunctive programs under dis-
tributional ambiguity, considering the distributional risk-receptiveness and
robustness in a decision making process. For distributionally risk-receptive
multistage stochastic integer programs (DRR-MSIPs) without and with de-
cision dependent uncertainty, we presented new classes of cutting planes and
reformulation-based approaches to derive convex approximations of the op-
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Table 5: Performance comparison of algorithms for DRR- and DRA-FLIP
instances

DRA-SDDP-C DRA-SDDP-R DRR-SDDP-C DRR-SDDP-R

Instance UBound Time (s) UBound Time (s) UBound Time (s) UBound Time (s)

LI-1-3-10 431.29 29.1 431.29 169.7 437.28 28.4 437.28 109.1
LI-1-3-20 327.32 49.8 327.32 1761.0 333.39 41.3 333.39 630.6
LI-1-3-50 384.83 75.8 384.83 10800+ 392.50 74.5 392.50 3373.3
LI-1-4-10 489.80 53.2 489.80 1170.2 498.44 48.6 498.44 622.1
LI-1-4-20 479.23 68.5 479.23 6511.9 491.03 78.7 491.03 1963.0
LI-1-4-50 651.45 105.6 651.45 10800+ 668.28 106.8 668.28 10800+
LI-1-5-10 654.12 73.6 654.12 1744.3 670.83 74.5 670.83 1501.3
LI-1-5-20 774.27 89.5 774.27 4853.6 792.99 80.3 792.99 4635.5
LI-1-5-50 929.85 156.2 931.32 10800+ 955.35 162.9 978.63 10800+
LI-2-3-10 452.23 74.1 452.23 458.7 456.76 78.3 456.76 333.4
LI-2-3-20 463.56 119.4 463.56 1894.1 468.56 112.7 468.56 772.8
LI-2-3-50 489.47 459.4 518.37 10800+ 495.10 453.1 495.10 10800+
LI-2-4-10 500.09 369.0 500.09 10800+ 506.22 378.5 506.22 4815.8
LI-2-4-20 508.09 476.5 531.57 10800+ 514.78 444.9 514.78 8376.8
LI-2-4-50 556.50 761.3 721.03 10800+ 564.69 692.1 1194.59 10800+
LI-2-5-10 599.37 534.6 661.32 10800+ 605.32 550.7 1009.53 10800+
LI-2-5-20 816.66 879.1 904.14 10800+ 828.21 1026.6 1339.16 10800+
LI-2-5-50 756.16 1732.8 949.12 10800+ 767.99 1927.1 1756.89 10800+

timistic expected cost-to-go functions. For distributionally robust multistage
stochastic integer programs (DRO-MSIPs), we presented a cutting plane-based
and reformulation-based approximations of the pessimistic expected cost-to-go
functions. We developed algorithms using these approximations and provided
their finite convergence analysis. Furthermore, we extended the algorithms for
distributionally risk-receptive and distributionally robust multistage stochastic
disjunctive programs (DRR- and DRO-MSDPs) and then presented applica-
tions of them to solve DRR- and DRO-MSIPs using a hierarchy of relaxations.
We compared the algorithms for DRR- and DRO-MSIPs by solving multi-
stage stochastic network interdiction problems under distributional ambiguity
that are multi-round attacker-defender games and have not been addressed
in the literature. The computational results show that the algorithms using
the cutting plane-based approximations outperform the algorithms using the
reformulation-based approximations by 26.1 times, on average, in terms of so-
lution time until convergence. In addition, we conducted out-of-sample tests,
and their results demonstrate that the DRA policies provide robust decision
rules for uncertainty, while the DRR policies may reveal the network vulner-
abilities that are overlooked by risk-neutral policies for uncertainty. In an ad-
versarial setting, we showcased that the DRR policies can be used to mitigate
the impact of data corruption.

Data Availability Statement The instances used for computational studies
in this paper are available in “Multistage-Interdiction-Problems” folder at
https://github.com/Bansal-ORGroup/.

https://github.com/Bansal-ORGroup/


Distributionally Risk-Receptive and Robust Multistage Stochastic Programs 33

References

1. Balas, E.: Disjunctive programming. Springer (2018)
2. Bansal, M., Huang, K.L., Mehrotra, S.: Decomposition algorithms for two-stage dis-

tributionally robust mixed binary programs. SIAM Journal on Optimization 28(3),
2360–2383 (2018)

3. Bansal, M., Zhang, Y.: Scenario-based cuts for structured two-stage stochastic and
distributionally robust p-order conic mixed integer programs. Journal of Global Opti-
mization 81(2), 391–433 (2021)

4. Basciftci, B., Ahmed, S., Shen, S.: Distributionally robust facility location problem un-
der decision-dependent stochastic demand. European Journal of Operational Research
292(2), 548–561 (2021)

5. Bayraksan, G., Love, D.K.: Data-driven stochastic programming using phi-divergences,
pp. 1–19. INFORMS TutORials in Operations Research (2015)

6. Bayraksan, G., Maggioni, F., Faccini, D., Yang, M.: Bounds for multistage mixed-integer
distributionally robust optimization. SIAM Journal on Optimization 34(1), 682–717
(2024)

7. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear
programs. Operations Research 33(5), 989–1007 (1985)

8. Blanchet, J., Li, J., Lin, S., Zhang, X.: Distributionally robust optimization and robust
statistics. arXiv preprint arXiv:2401.14655 (2024)

9. Blanchet, J., Li, J., Pelger, M., Zanotti, G.: Automatic outlier rectification via optimal
transport. arXiv preprint arXiv:2403.14067 (2024)

10. Brown, G., Carlyle, M., Salmerón, J., Wood, K.: Defending critical infrastructure. In-
terfaces 36(6), 530–544 (2006)

11. Cao, J., Gao, R.: Contextual decision-making under parametric uncertainty and data-
driven optimistic optimization. Optimization Online preprint:2021/10/8634 (2021)

12. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Op-
erations Research Letters 24(1), 37–45 (1999)

13. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: The
median and covering facility interdiction problems. Annals of the Association of Amer-
ican Geographers 94(3), 491–502 (2004)

14. Cormican, K.J., Morton, D.P., Wood, R.K.: Stochastic network interdiction. Operations
Research 46(2), 184–197 (1998)

15. Dowson, O., Kapelevich, L.: Sddp. jl: a julia package for stochastic dual dynamic pro-
gramming. INFORMS Journal on Computing 33(1), 27–33 (2020)

16. Duchi, J.C., Glynn, P.W., Namkoong, H.: Statistics of robust optimization: A general-
ized empirical likelihood approach. Mathematics of Operations Research 46(3), 946–969
(2021)

17. Duque, D., Mehrotra, S., Morton, D.P.: Distributionally robust two-stage stochastic
programming. SIAM Journal on Optimization 32(3), 1499–1522 (2022)

18. Duque, D., Morton, D.P.: Distributionally robust stochastic dual dynamic programming.
SIAM Journal on Optimization 30(4), 2841–2865 (2020)

19. Gangammanavar, H., Bansal, M.: Stochastic decomposition method for two-stage distri-
butionally robust linear optimization. SIAM Journal on Optimization 32(3), 1901–1930
(2022)

20. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with wasserstein
distance. Mathematics of Operations Research 48(2), 603–655 (2023)

21. Gotoh, J.y., Kim, M.J., Lim, A.E.: A data-driven approach to beating saa out of sample.
Operations Research (2023)

22. Janjarassuk, U., Linderoth, J.: Reformulation and sampling to solve a stochastic network
interdiction problem. Networks 52(3), 120–132 (2008)

23. Jiang, N., Xie, W.: Distributionally favorable optimization: A framework for data-driven
decision-making with endogenous outliers. SIAM Journal on Optimization 34(1), 419–
458 (2024)

24. Kang, S., Bansal, M.: Distributionally risk-receptive and risk-averse network interdiction
problems with general ambiguity set. Networks 81(1), 3–22 (2023)



34 Sumin Kang, Manish Bansal

25. Kosmas, D., Sharkey, T.C., Mitchell, J.E., Maass, K.L., Martin, L.: Multi-period max
flow network interdiction with restructuring for disrupting domestic sex trafficking net-
works. Annals of Operations Research pp. 1–64 (2022)

26. Lan, G.: Complexity of stochastic dual dynamic programming. Mathematical Program-
ming 191(2), 717–754 (2022)

27. Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer pro-
gramming with application to stochastic batch-sizing problems. Management Science
50(6), 786–796 (2004)

28. Luo, F., Mehrotra, S.: Distributionally robust optimization with decision dependent
ambiguity sets. Optimization Letters 14(8), 2565–2594 (2020)

29. Malaviya, A., Rainwater, C., Sharkey, T.: Multi-period network interdiction problems
with applications to city-level drug enforcement. IIE Transactions 44(5), 368–380 (2012)

30. Nakao, H.: Distributionally robust optimization in sequential decision making. Ph.d.
thesis, University of Michigan, Ann Arbor (2021)

31. Nakao, H., Jiang, R., Shen, S.: Distributionally robust partially observable markov de-
cision process with moment-based ambiguity. SIAM Journal on Optimization 31(1),
461–488 (2021)

32. Nguyen, V.A., Shafieezadeh-Abadeh, S., Yue, M.C., Kuhn, D., Wiesemann, W.: Opti-
mistic distributionally robust optimization for nonparametric likelihood approximation.
In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc.
(2019)

33. Noyan, N., Rudolf, G., Lejeune, M.: Distributionally robust optimization under a
decision-dependent ambiguity set with applications to machine scheduling and human-
itarian logistics. INFORMS Journal on Computing 34(2), 729–751 (2022)

34. Park, J., Bayraksan, G.: A multistage distributionally robust optimization approach to
water allocation under climate uncertainty. European Journal of Operational Research
306(2), 849–871 (2023)

35. Pereira, M.V., Pinto, L.M.: Multi-stage stochastic optimization applied to energy plan-
ning. Mathematical Programming 52(1), 359–375 (1991)

36. Philpott, A.B., de Matos, V.L., Kapelevich, L.: Distributionally robust SDDP. Com-
putational Management Science 15(3), 431–454 (2018)

37. Royset, J.O., Chen, L.L., Eckstrand, E.: Rockafellian relaxation in optimization under
uncertainty: Asymptotically exact formulations. arXiv preprint arXiv:2204.04762 (2023)

38. Sadana, U., Delage, E.: The value of randomized strategies in distributionally robust
risk-averse network interdiction problems. INFORMS Journal on Computing 35(1),
216–232 (2023)

39. Scarf, H.: A min-max solution of an inventory problem, pp. 201–209. Stanford University
Press (1958)

40. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms. Euro-
pean Journal of Operational Research 283(3), 797–811 (2020)

41. Song, J., Zhao, C.: Optimistic distributionally robust policy optimization. arXiv
preprint arXiv:2006.07815 (2020)

42. Yu, X., Shen, S.: Multistage distributionally robust mixed-integer programming with
decision-dependent moment-based ambiguity sets. Mathematical Programming 196(1),
1025–1064 (2022)

43. Zhang, S., Sun, X.A.: Stochastic dual dynamic programming for multistage stochastic
mixed-integer nonlinear optimization. Mathematical Programming 196(1), 935–985
(2022)

44. Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Mathe-
matical Programming 175(1), 461–502 (2019)



Distributionally Risk-Receptive and Robust Multistage Stochastic Programs 35

Appendix A List of Major Abbreviations

– DRO/DRR: Distributionally robust (or robustness)/Distributionally risk-
receptive (or risk-receptiveness).

– MSLP/MSIP/MSDP : Multistage stochastic linear/integer/disjunctive pro-
gram.

– SDDP : Stochastic dual dynamic programming.
– DA-SDDP : Our customized SDDP that addresses distributional ambiguity.
– DRR-SDDP-C : DA-SDDP for DRR-MSIPs with the cutting plane-based

approximation (10).
– DRR-SDDP-R: DA-SDDP for DRR-MSIPs with the reformulation-based

approximation (13).
– DRO-SDDP-C : DA-SDDP for DRO-MSIPs with the cutting plane-based

approximation (22).
– DRO-SDDP-R: DA-SDDP for DRO-MSIPs with the reformulation-based

approximation (23).
– MS-MFIP : Multistage stochastic maximum flow interdiction problem
– MS-FLIP : Multistage stochastic facility location interdiction problem

Appendix B Formulations of the Network Interdiction Problems

We provide detailed formulations of the multistage NIPs used in our compu-
tational tests. We focus on the risk-neutral formulations, as their DRO and
DRR variants can be readily derived from these by appropriately maximizing
or minimizing with respect to the probability distribution within an ambiguity,
as in (3) and (5).

B.1 Formulation of MS-MFIP

Consider a directed and capacitated network, denoted by G = (N,A) where N
is a set of nodes and A is a set of directed arcs of the network. The interdictor’s
objective is to minimize the total flow from the source node s to the sink node
r of the network G by interdicting a subset of arcs in A. In contrast, the
network user’s objective is to maximize the total flow given the interdicted
network. At each stage, both the interdictor and the network user make their
decisions as follows: The interdictor removes a set of arcs from the network
G given an interdiction budget, and the network user finds a maximum flow
after observing the interdictor’s decision. It is assumed that after an arc is
interdicted, the network user cannot use it till the end of the time horizon.

Let xt and yt be the interdiction decision vector and the flow decision
vector, respectively, for stage t ∈ [T ]. An interdiction decision xt,a, for each arc
a ∈ A, is binary, i.e., xt,a = 1, if an interdiction occurs on a ∈ A, and xt,a = 0,
otherwise. Each arc a ∈ A is associated with the interdiction cost, denoted
by ft,a. The interdiction budget is denoted by bt, for each stage t ∈ [T ]. We
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assume that the capacity of arc a ∈ A is uncertain and denoted by ct,a(ωt).
We denote the set of the outgoing arcs and the set of the incoming arcs of
node n ∈ N by δ+(n) and δ−(n), respectively. For the brevity, we assume
there exists a dummy arc from r to s in A associated with infinite capacity
and interdiction cost. Then, the bellman equation form of MS-MFIP is given
by (1) and (2) where for each t ∈ [T ],

Qt(xt−1,ωt) := min ψt(xt,ωt) + EPt+1

[
Qt+1(xt,ωt+1)

]
(32a)

s.t. xt ≥ xt−1 (32b)∑
a∈A

ft,axt,a ≤ bt +
∑
a∈A

ft,axt−1,a (32c)

xt ∈ {0, 1}|A|, (32d)

and

ψt(xt,ωt) := max
yt≥0

{
yt,(r,s) :

∑
a∈δ+(n)

yt,a −
∑

a∈δ−(n)

yt,a = 0, ∀n ∈ N, (33a)

yt,a ≤ ct,a(ωt)(1− xt,a), ∀a ∈ A

}
. (33b)

In interdictor’s problem (32), constraint (32b) ensures that the impact of inter-
diction on an arc remains till the end of the time horizon, and constraint (32c)
restricts the total interdiction cost within the given budget bt. Given an in-
terdiction solution xt, the objective function of the interdictor’s problem at
stage t ∈ [T ], ψt(xt,ωt), is a value function that provides a maximum flow
over the interdicted network. The function ψt(xt,ωt) is computed by solving
the network user’s problem (33) where decision variable yt,a represents a flow
on arc a in A, constraints (33a) enforce the flow balance on nodes in N , and
constraints (33b) restrict the capacity of arcs in A. Notice that because of
constraints (33b), yt,a is restricted to be zero if the interdiction occurs on arc
a ∈ A, i.e., if xt,a = 1.

To solve each stage’s problem during our tests, we first dualize the network
user’s problem (33) and then reformulate the problem (32) into a single-level
minimization mixed-binary program.

B.2 Formulation of MS-FLIP

The single-stage (deterministic) FLIP, also known as the r-interdiction median
problem, is introduced by Church et al. [13]. The objective of the single-stage
FLIP is to find a subset of r facilities whose removal maximizes the network
user’s objective of minimizing the total weighted distance. MS-FLIP extends
this problem to a multistage stochastic setting, where interdiction decisions
are made sequentially over multiple time periods under demand uncertainty.

Let L and M be the number of demand points and facilities, respectively.
At stage t ∈ [T ], let xtm ∈ {0, 1} be an interdiction decision variable, which
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equals 1, if the interdiction occurs on facility m ∈ [M ], or equals 0, otherwise.
Variable ytlm ∈ {0, 1} denotes an assignment decision that represents whether
demand point l is assigned to facility m. We denote the random weighted
distance between l and m by ctlm(ωt) = atl(ωt)dlm, where dlm > 0 is the
Euclidean distance between l and m, and atl(ωt) is an uncertain demand at
point l ∈ [L]. The formulation of MS-FLIP is given by (1) and (2) with

Qt(xt−1,ωt) := max
∑

l∈[L],m∈[M ]

ctlm(ωt)ytlm + EPt+1

[
Qt+1(xt,ωt+1)

]
(34a)

s.t.
∑

m∈[M ]

ytlm = 1, ∀l ∈ [L], (34b)

xt ≥ xt−1, (34c)∑
m∈[M ]

(xtm − xt−1,m) = rt, (34d)

∑
n∈Slm

ytln ≤ xtm, ∀l ∈ [L],m ∈ [M ], (34e)

xt ∈ {0, 1}M , yt ∈ {0, 1}L×M . (34f)

Here Slm := {n ∈ [M ] : dln > dlm} is the set of facilities that are farther than
facility m ∈ [M ] is from demand point l ∈ [L]. The first term of the objective
function (34a) represents the total weighted distance of the assignment of
demand points to non-interdicted facilities. Constraints (34b) enforce each
demand point to be assigned to a facility. Constraint (34c) ensures that the
facilities interdicted from the previous stages remain interdicted for the current
stage. Constraint (34d) ensures that the total number of interdictions occurred
at the current stage equals to the budget rt. Constraint (34e), for each l ∈ [L]
and m ∈ [M ], prevents the demand point l from being assigned to facilities
farther than the facility m, unless the facility m is interdicted. It should be
noted that problem (34) is a single-level maximization problem, but not the
max-min form of typical interdiction problems, because of the assumption that
each facility has enough capacity to cover all demand values and the demand
point is always assigned to the closest facility through constraints (34e).



38 Sumin Kang, Manish Bansal

Appendix C Proofs

C.1 Proof of Theorem 1

Proof For any k ∈ [Kl
t] and xt ∈ {0, 1}dx , it is satisfied that

min
Pt+1∈Pt+1

∑
i∈Nt+1

pit+1Q̂
l
t+1(xt, ω

i
t+1) ≥ min

Pt+1∈Pt+1

∑
i∈Nt+1

pit+1

(
(αi,k

t )⊤xt + βi,k
t

)

= min
Pt+1∈Pt+1

∑
i∈Nt+1

pit+1

(
(αi,k

t )⊤(xt − x̂t) + (αi,k
t )⊤x̂t + βi,k

t

)
≥ γkt + min

Pt+1∈Pt+1

∑
i∈Nt+1

pit+1(α
i,k
t )⊤(xt − xkt )

≥ γkt +
∑

j∈[dx]

min
Pt+1∈Pt+1

∑
i∈Nt+1

pit+1α
i,k
t,j (xt,j − xkt,j).

In the last inequality, if xkt,j = 0, then (xt,j − xkt,j) ∈ {0, 1}. It follows that we
can fix the coefficient of the term (xt,j − xkt,j) to

πk
t,j = min

Pt+1∈Pt+1

∑
i∈Nt+1

pit+1α
i,k
t,j .

If xkt,j = 1, then (xt,j − xkt,j) ∈ {0,−1} and we can fix the coefficient to

πk
t,j = max

Pt+1∈Pt+1

∑
i∈Nt+1

pit+1α
i,k
t,j .

Fixing the coefficients for all j ∈ dx and k ∈ [Kl
t], we have

min
Pt+1∈Pt+1

∑
i∈Nt+1

pit+1Q̂
l
t+1(xt, ω

i
t+1) ≥ (πk

t )
⊤(xt − xkt ) + γkt , ∀k ∈ [Kl

t]. (35)

Function ϕl,Ct (xt) is constructed using the affine functions in the right-hand

side of (35), and thus it follows that ϕl,Ct (xt) ≤ QRR
t+1(xt). ⊓⊔

C.2 Proof of Proposition 1

Proof Function QRR
t (xt−1) = −maxPt∈Pt(xt−1) EPt

[−QRR
t (xt−1,ωt)]. By ap-

plying Theorem 1 in [20] to the maximization problem, the dual formulation
is given by

QRR
t (xt−1) = − min

ρt≥0,vi
t

ϵt(xt−1)ρt +
∑
i∈Nt

p̄itv
i
t

s.t. ρt
∥∥ωt − ωi

t

∥∥+ vit ≥ −QRR
t (xt−1, ωt), ∀ωt ∈ Ωt, i ∈ Nt.
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where p̄it = 1/Nt. Consequently, we obtain

QRR
t (xt−1)

= −min
ρt≥0

{
ϵt(xt−1)ρt +

∑
i∈Nt

p̄it max
ωt∈Ωt

{
− ρt

∥∥ωt − ωi
t

∥∥−QRR
t (xt−1, ωt)

}}
= max

ρt≥0

{
− ϵt(xt−1)ρt +

∑
i∈Nt

p̄it min
ωt∈Ωt

{
ρt

∥∥ωt − ωi
t

∥∥+QRR
t (xt−1, ωt)

}}
. ⊓⊔

C.3 Proof of Theorem 2

Proof By Proposition 1, we have

QRR
t (xt−1) = max

ρt≥0

{
− ϵt(xt−1)ρt +

∑
i∈Nt

p̄itV
i
t (xt−1, ρt)

}}
, (36)

where p̄it = 1/Nt and

V i
t (xt−1, ρt) := min

ωt∈Ωt

{
ρt

∥∥ωt − ωi
t

∥∥+QRR
t (xt−1, ωt)

}
for i ∈ Nt. (37)

Using the valid cuts with coefficients {(πk
t , γ

k
t )}k∈[Kt] for Q

RR
t (xt), we obtain

a lower-bounding approximation V i
t of V

i
t under assumptions 3 and 5, where

V i
t(xt−1, ρt) := min

ωt,xt

ρt
∥∥ωt − ωi

t

∥∥+ c⊤t xt + θt (38a)

s.t. Atxt − ωt ≥ −Ctxt−1 (38b)

ωt ∈ Ωt = [lt, ut]
dω (38c)

θt ≥ (πk
t )

⊤xt + γkt , ∀k ∈ [Kt] (38d)

xt ∈ Xt, ωt ∈ Rdω , θt ∈ R. (38e)

Then, a Lagrangian relaxation of (38) without integrality restrictions on xt,
where λit, (µ

i
t, ν

i
t), ζ

i
tk are dual multipliers associated with constraints (38b),

(38c), (38d), respectively, is given by

min
(xt,ωt,θt)∈Rdx+dω+1

− (λit)
⊤Ctxt−1 + (µi

t)
⊤lt − (νit)

⊤ut + ρt
∥∥ωt − ωi

t

∥∥
+ (λit − µi

t + νit)
⊤ωt +

(
ct − λitAt +

∑
k∈[Kt]

πk
t

)⊤

xt

+

(
1−

∑
k∈[Kt]

ζitk

)
θt +

∑
k∈[Kt]

γkt ζ
i
tk.

(39)
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Next, we prove that the Lagrangian dual is equivalent to

max −(λit)
⊤Ctxt−1+(µi

t)
⊤lt − (νit)

⊤ut

+ (λit − µi
t + νit)

⊤ωi
t +

∑
k∈[Kt]

γkt ζtk

(40a)

s.t. A⊤
t λ

i
t −

∑
k∈[Kt]

πk
t ζtk = ct (40b)

∥∥λit − µi
t + νit

∥∥
∗ ≤ ρt (40c)∑

k∈[Kt]

ζitk = 1 (40d)

(λit, µ
i
t, ν

i
t , ζ

i
t) ≥ 0. (40e)

As a consequence, we can substitute V i
t for all scenarios i ∈ Nt in (36) with the

value functions of these Lagrangian duals and obtain problem (20). Since the
Lagrangian duals are maximization problems, any feasible solutions of them
yield a valid cut in the form of (18), and tightest cuts are attained by optimal
solutions.

Constraints (40b) and (40d) are straightforwardly derived to ensure (ct −
λAt +

∑
k∈[Kt]

πk
t ) = 0, and (1−

∑
k∈[Kt]

ζk) = 0, thereby ensuring that (39)
is not unbounded because of unrestricted xt and θt. Likewise, as shown below,
constraint (40c) ensures that

τ := inf
ωt∈Rdω

{ρt
∥∥ωt − ωi

t

∥∥+ (λit − µi
t + νit)

⊤ωt} > −∞.

For the ease of exposition, we use (λ, µ, ν) instead of (λit, µ
i
t, ν

i
t) in the following

claim.

Claim Let ∥·∥∗ be the dual norm of ∥·∥. Given ρt ≥ 0, we have τ > −∞ if
and only if (ρt − ∥λ− µ+ ν∥∗) ≥ 0. Also, if (ρt − ∥λ− µ+ ν∥∗) ≥ 0, then
τ = (λ− µ+ ν)⊤ωi

t.

Proof By letting ω′
t = ωi

t − ωt, the infimum τ can be rewritten as follows.

τ = (λ− µ+ ν)⊤ωi
t + inf

ω′
t∈Rdω

{
ρt ∥ω′

t∥ − (λ− µ+ ν)⊤ω′
t

}
. (41a)

Let τ0 := infω′
t∈Rdω

{
ρt ∥ω′

t∥ − (λ − µ + ν)⊤ω′
t

}
. If (ρt − ∥λ− µ+ ν∥∗) ≥ 0,

then we have

τ0 ≥ inf
ω′

t∈Rdω

{
∥ω′

t∥ · (ρt − ∥λ− µ+ ν∥∗)
}
= 0.

The inequality holds by Hölder’s inequality. The infimum τ0 = 0 since ω′
t = 0

is feasible. Therefore, τ = (λ− µ+ ν)⊤ωi
t.

Now we show the “only-if” direction using proof by contradiction. Suppose
that τ > −∞ and (ρt−∥λ− µ+ ν∥∗) < 0. This implies that τ0 is also bounded.
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By definition of dual norm, i.e., ∥λ− µ+ ν∥∗ = maxωt∈Rdω {ω⊤
t (λ − µ + ν) :

∥ωt∥ ≤ 1}, there exists ω̄t ∈ Rdω such that

ρt < ω̄⊤
t (λ− µ+ ν) and ∥ω̄t∥ ≤ 1.

Thus, ρt ∥ω̄t∥ − ω̄⊤
t (λ − µ + ν) < 0. Considering scalar r → ∞, we have

ρt ∥rω̄t∥ − (rω̄t)
⊤(λ − µ + ν) → −∞. By taking ω′

t = rω̄t, it follows that
τ0 = −∞, and τ = −∞. ⊓⊔

C.4 Proof of Theorem 3

Proof We first show that the finiteness of the while loop. Let {x̄lt(ξ[t]), ȳlt(ξ[t]) :
t ∈ [T ]} be a policy that is defined by the forward step at iteration l of the
DRR-SDDP-C algorithm. Then, to achieve the optimality of the policy, it
suffices to show that ϕl,Ct (x̄lt(ξ[t])) = QRR

t+1(x̄
l
t(ξ[t])) for t ∈ [T − 1] and all

ξ ∈ Ξ.
Let L denote the set of iterations where the policy is non-optimal. For

each t ∈ [T − 1], let lt ∈ L be the largest iteration such that ϕl,Ct (x̄lt(ξ[t])) <

QRR
t+1(x̄

l
t(ξ[t])) for some ξ ∈ Ξ. Also, given iteration m, let X̄m

t , t ∈ [T − 1],

be the set of x̄lt(ξ[t]) for all future iterations l ∈ L \ [m] and ξ ∈ Ξ, i.e.,

X̄m
t = {x̄lt(ξ[t]) : ξ ∈ Ξ, l > m, l ∈ L}.
We first show that lT−1 is finite with probability one. At the forward step

of iteration l, if we observe that ϕl,CT−1(x̄) < QRR
T (x̄) for any x̄ ∈ X̄1

T−1, then
for all future iterations m > l we have

ϕm,C
T−1(x̄) ≥ min

PT∈PT

∑
i∈NT

piT Q̂
l
T (x̄, ω

i
T ) = QRR

T (x̄). (42)

The above holds since the cut added at iteration l (in the form of constraint
(10)) satisfies both (26a) and (26b), and by definition Q̂l

T is equivalent to QRR
T .

It follows that ϕm,C
T−1(x̄) = QRR

T (x̄) for any m > l. Since |X̄1
T−1| <∞ and every

ξ ∈ Ξ has a positive probability to be sampled, it holds with probability one
that ϕl,CT−1(x̄) = QRR

T (x̄) for all x̄ ∈ X̄1
T−1 after finitely many iterations. This

shows that lT−1 <∞ with probability one.
Next, we show that lT−2 is also finite with probability one. Suppose at

iteration l ≥ lT−1 we observe that ϕl,CT−2(x̄) < QRR
T−1(x̄) for any x̄ ∈ X̄

lT−1

T−2 .

Then, we have ϕm,C
T−2(x̄) = QRR

T−1(x̄) for all future iterations m > l since

ϕm,C
T−2(x̄) ≥ min

PT−1∈PT−1

∑
i∈NT−1

piT−1Q̂
l
T−1(x̄, ω

i
T−1)

= min
PT−1∈PT−1

∑
i∈NT−1

piT−1Q
RR
T−1(x̄, ω

i
T−1) = QRR

T−1(x̄).
(43)

The first equality holds since ϕm,C
T−1(x̄) = QRR

T (x̄) for m > lT−1. So, we have

ϕm,C
T−2(x̄) = QRR

T−1(x̄) for any future iteration m > l. Since |X̄ lT−1

T−2 | < ∞ and
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every ξ ∈ Ξ has a positive probability, there exists a finite iteration l such

that ϕl,CT−2(x̄) = QRR
T−1(x̄) for all x̄ ∈ X̄

lT−1

T−2 with probability one, which implies
lT−2 < ∞ with probability one. Similarly, we can prove by induction that lt,
for all t ∈ [T − 1], are finite. This proves that |L| <∞ with probability one.

Now, we show that each iteration terminates in finite time. This is followed
by the facts that the subproblems are bounded and thus solvable in a finite
time using a branch-and-cut algorithm and Line 9 is executed in a finite time
by assumption.

⊓⊔

C.5 Proof of Theorem 4

Proof By following a similar argument to the proof of Theorem 3, we can show
that the number of the while-loop iterations required to define an optimal
policy is finite with probability one and each while-loop iteration is executed
in a finite time. ⊓⊔

C.6 Proof of Theorem 5

Proof Let {x̄lt(ξ[t]), ȳlt(ξ[t])}t∈[T ] be a policy that is defined by the forward

step at iteration l. To show its optimality, it suffices to show ϕl,St (x̄lt(ξ[t])) =

QRA
t+1(x̄

l
t(ξ[t])) for t ∈ [T − 1] and all ξ ∈ Ξ. We can prove the statement by

following a similar argument to the proof of Theorem 3. ⊓⊔

C.7 Proof of Proposition 2

Proof Let zt = (xt, yt, ϕt). For any x̄t−1 ∈ {0, 1}dx , stage t, and iteration l, the
convex hull of Dl

t(x̄t−1, ωt) is equivalent to the convex hull of F l
t(ωt)∩E(x̄t−1)

where

F l
t(ωt) :=

{
(xt−1, zt) ∈ Rdx

+ × Rdx+dy+1
+ :∨

h∈Ht

(
ϕt − (πk

t )
⊤xt ≥ γkt , k ∈ [Kl

t],

Ah
t (ωt)xt +Bh

t (ωt)yt + Ch
t (ωt)xt−1 ≥ bht (ωt)

)}
, (44)

and E(x̄t−1) := {(xt−1, zt) : xt−1 = x̄t−1}.
We claim that conv(F l

t(ωt) ∩ E(x̄t−1)) = conv(F l
t(ωt)) ∩ E(x̄t−1). Clearly,

conv(F l
t(ωt) ∩ E(x̄t−1)) ⊆ conv(F l

t(ωt)) ∩ E(x̄t−1).
To show that conv(F l

t(ωt) ∩ E(x̄t−1)) ⊇ conv(F l
t(ωt)) ∩ E(x̄t−1), pick any

point (x̄t−1, z̄t) ∈ conv(F l
t(ωt)) ∩ E(x̄t−1). Then, there exist (xjt−1, z

j
t ) ∈

F l
t(ωt) and λ

j ∈ (0, 1], j = 1, . . . , J such that
∑

j∈[J] λ
j = 1,

∑
j∈[J] λ

jxjt−1 =
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x̄t−1,
∑

j∈[J] λ
jzjt = z̄t. Since x̄t−1 is binary and xjt−1 belongs to [0, 1]dx ,

this implies that xjt−1 = x̄t−1 for all j ∈ [J ]. Consequently, (xjt−1, z
j
t−1) ∈

F l
t(ωt) ∩ E(x̄t−1), j ∈ [J ], and (x̄t−1, z̄t) ∈ conv(F l

t(ωt) ∩ E(x̄t−1)). This com-
pletes the proof of the claim.

To obtain conv(F l
t(ωt)), we first use Theorem 2.1 in [1] and derive a tight

extended formulation of F l
t(ωt), which is given by

F̂ l
t(ωt) :=

{ ∑
h∈Ht

ζht,0 = 1,
∑
h∈Ht

ζht,1 − xt = 0,
∑
h∈Ht

ζht,2 − yt = 0,

∑
h∈Ht

ζht,3 − xt−1 = 0,
∑
h∈Ht

ζht,4 − ϕt = 0,

Ah
t (ωt)ζ

h
t,1 +Bh

t (ωt)ζ
h
t,2 + Ch

t (ωt)ζ
h
t,3 − bht (ωt)ζ

h
t,0 ≥ 0, h ∈ Ht,

ζht,4 − (πk
t )

⊤ζht,1 − γkt ζ
h
t,0 ≥ 0, h ∈ Ht, k ∈ Kl

t,

xt ∈ Rdx
+ , yt ∈ Rdy

+ , xt−1 ∈ Rdx
+ , ϕt ∈ R+,

ζht,0 ∈ R+, ζ
h
t,1 ∈ Rdx

+ , ζht,2 ∈ Rdy

+ , ζ
h
t,3 ∈ Rdx

+ , ζht,4 ∈ R+, h ∈ Ht

}
.

(45)
Since F l

t(ωt) is unbounded, the projection of the above formulation (45) onto
the (xt−1, zt)-space is the closed convex hull of F l

t(ωt). Consider |Ht| polyhedra
defined by disjunctive constraints for h ∈ Ht in (44). They are nonempty and
have identical recession cones. This implies that conv(F l

t(ωt)) is a polyhedron,
and thus the closed convex hull of F l

t(ωt) is equivalent to conv(F l
t(ωt)). Hence,

using the tight extended formulation (45), the convex hull of Dl
t(x̄t−1, ωt) is

given by Projxt−1,zt(F̂ l
t(ωt)) ∩ E(x̄t−1), which is equivalent to the projection

of the set D̃l
t(x̄t−1, ωt) onto the zt-space. ⊓⊔

C.8 Proof of Proposition 3

Proof For s ∈ [dx], the set Dl,s
t (xt−1, ωt), t ∈ [T ], is given by the following

disjunctive constraints:

∨
(J1,J2)∈J s

t

(
xt,j = 0, j ∈ J1, xt,j = 1, j ∈ J2, ϕt − (πk

t )
⊤xt ≥ γkt , k ∈ [Kl

t],

At(ωt)xt +Bt(ωt)yt ≥ bt(ωt)− Ct(ωt)xt−1

)
,

(46)
where J s

t = {(J1, J2) : J1, J2 ⊆ [dx], J1 ∩ J2 = ∅, |J1 ∪ J2| = s}. By applying
Proposition 2 to this disjunctive set, we obtain the tight extended formulation
(31). ⊓⊔
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Appendix D Pseudocode of DA-SDDP-DP Algorithm

Algorithm 2 DA-SDDP-DP

1: Initialize l ← 1; x0 ← initial state; ω1 ← data at the first stage; Ω1 := {ω1}; Kl
t ← 0

for t = 1, . . . , T − 1;
2: while (satisfying none of stopping conditions) do
3: Sample a scenario path ξl ∈ Ξ := Ω1 × · · · ×ΩT

4: for t ∈ [T ] do ▷ Forward Step
5: Solve t-stage LP-subproblem (27) given xt−1 = xl

t−1 and ωt = ξlt
6: for t = T, . . . , 2 do ▷ Backward Step
7: for i ∈ Nt do
8: Solve t-stage LP-subproblem (27) given xt−1 = xl

t−1 and ωt = ωi
t and obtain

cut (σi,l
t−1,1, σ

i,l
t−1,0)

9: Add cuts (πl
t−1, γ

l
t−1) to (t − 1)-stage LP-subproblem (27) by using cuts

(σi,l
t−1,1, σ

i,l
t−1,0), i ∈ Nt

10: Kl
t−1 ← Kl

t−1 + 1
11: Solve LP-subproblem (27) for t = 1 to obtain the bound LB

12: Kl+1
t ← Kl

t for t = 1, . . . , T − 1
13: l← l+ 1
14: return LP-subproblems, LB

In this algorithm, let xlt be an optimal solution obtained by solving the LP-
subproblem (29) during a forward step (Line 5) for iteration l and stage t. In a
backward step (Line 8), the algorithm solves the LP-subproblem (29) given xlt
and ωi

t to obtain a cut in the form of Benders cut, (σi,l
t−1,1, σ

i,l
t−1,0), where σ

i,l
t−1,1

and σi,l
t−1,0 are the optimal dual multipliers, associated with the constraints∑

h∈Ht
ζht,0 = 1 and

∑
h∈Ht

ζht,3 = xlt−1, respectively. These cuts (σ
i,l
t−1,1, σ

i,l
t−1,0)

for i ∈ Nt are used to derive a cut (πl
t−1, γ

l
t−1); the cut (πl

t−1, γ
l
t−1) takes the

form of (10), if we solve a DRR-MSDP, and it takes the form of (22), if we
solve a DRO-MSDP. Then, its copies for h ∈ Ht are added to the (t− 1)-stage
LP-subproblem (Line 9). In Line 11, it computes the lower bound by solving
the first-stage LP-subproblem. DA-SDDP-DP repeats this procedure until a
stopping condition is met. Both the DRR- and DRO-SDDP-DP algorithms,
defined as Algorithm 2 with cut (πl

t−1, γ
l
t−1) obtained as above for DRR-

MSDPs and DRO-MSDPs, respectively, have the finite convergence that can
be proved using Theorems 3 and 5, respectively.

Remark 5 In the implementation of Algorithm 2, we can establish the LP-
subproblems once and reuse them in each iteration, without the need for re-
peated construction, by adding constraints ζht,4 − (πk

t )
⊤ζht,1 − γkt ζ

h
t,0 to the

LP-subproblems as needed (in Line 9).
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