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Abstract

We present a branch-and-bound method for multiobjective mixed-integer
convex quadratic programs that computes a superset of efficient integer as-
signments and a coverage of the nondominated set. The method relies on
outer approximations of the upper image set of continuous relaxations. These
outer approximations are obtained addressing the dual formulations of spe-
cific subproblems where the values of certain integer variables are fixed. The
devised pruning conditions and a tailored preprocessing phase allow a fast
enumeration of the nodes. Despite we do not require any boundedness of the
feasible set, we are able to prove that the method stops after having explored
a finite number of nodes. Numerical experiments on a broad set of instances
with two, three, and four objectives are presented.
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1 Introduction

The area of multiobjective mixed-integer programming (MOMIP) is receiving grow-
ing attention from the operations research and optimization community, both for
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its practical relevance and for the mathematical challenge of solving MOMIP prob-
lems. Applications can be found, for example, in transportation, design of water
distribution networks, and biology [23, 22, 19, 16]. When addressing multiobjective
programming problems, a typical goal is to compute an approximation of the non-
dominated set, which corresponds to the set of optimal values. The proper definition
of such an approximation is a debated topic (see [21] for an overview).

A possibility is given by the concept of an enclosure, exploited in several recent
approaches [7, 10] and in the mixed-integer context, too [8, 9]. Loosely speaking, an
enclosure is a well-structured set in the image space, as for example a union of boxes,
which contains the nondominated set as a subset. Using the enclosure concept, we
have a termination criterion for global algorithms: a multiobjective programming
problem can be considered solved to a certain precision as soon as the quality of the
enclosure is below a specific value. We will give the formal definition of an enclosure
in Section 2.

Various methods with correctness guarantees proposed in the literature are branch-
and-bound frameworks. This includes, for instance, [5, 12, 18] for multiobjective
integer programming and [4, 8, 14] for MOMIP. For a broader survey of branch-
and-bound methods, mainly for linear MOMIP problems, we refer to [20]. The
survey in [13] extends this collection by also including approaches that do not use a
branch-and-bound framework.

In this paper, we develop a branch-and-bound method that, using dual relax-
ations as a key ingredient, is guaranteed to compute an enclosure for the nondomi-
nated set of a multiobjective mixed-integer convex quadratic programming problem
in a finite number of iterations. What is more, our algorithm is able to deliver a
superset of the set of efficient integer assignments, that in turn is needed as input
for some existing approaches (see, e.g., [2]). Here, an efficient integer assignment is
a fixing of the integer variables in such a way that there exists an efficient point of
the problem with exactly this fixing.

The method we present extends the work in [3] to the presence of continuous
variables and linear inequality constraints. We focus on minimizing m ≥ 2 quadratic
objective functions given by fj : Rn → R,

fj(x) = x>Qjx+ (cj)>x+ aj,

for all j ∈ [m] := {1, . . . ,m} with symmetric positive definite matrices Q1, . . . , Qm ∈
Sn, vectors c1, . . . , cm ∈ Rn, and scalars a1, . . . , am ∈ R. The strong convexity of
the objective functions will be essential to derive the finiteness result. Assuming
that the objective functions are quadratic allows us to perform many of the expen-
sive calculations in a preprocessing phase. What is more important, we can make
use of simple dual formulations within our procedure which are a main aspect to
make our algorithm fast and efficient. The multiobjective mixed-integer quadratic
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programming problem which we study in this paper is given as

min
x

(f1(x), . . . , fm(x))>

s.t. Ax ≤ b
xi ∈ Z for all i ∈ [k]
x ∈ Rn

(MOMIQP)

with a matrix A ∈ Rp×n, a vector b ∈ Rp, and with 1 ≤ k ≤ n, i.e., we assume that
at least one variable can attain integer values only. We do not need any assumption
on the boundedness of the feasible set. In particular, we are not assuming any lower
or upper bounds on the variables, i.e., no box constraints, as it is often required, for
instance in [14] or for branch-and-bound based methods with a partitioning of the
starting box in the pre-image space as in [4, 8]. In the following, the feasible set of
(MOMIQP) is denoted by S, i.e.,

S := {x ∈ Zk × Rn−k | Ax ≤ b}.

Note that for k = n we have the special case of a multiobjective integer quadratic
programming problem, for which our method will be exact. This means that it will
be able to detect the whole nondominated set, which is a finite set.

The paper is organized as follows. In Section 2, we give some standard definitions
for multiobjective optimization and we formally recall what an enclosure of the
nondominated set is. In Section 3 we define the subproblems that we address at the
nodes of our branch-and-bound algorithm according to our branching strategy that
works by fixing integer variables. In Section 4 we present the theoretical results that
allow to avoid an infinite enumeration of nodes even in case problem (MOMIQP)
has an unbounded feasible set. In Section 5 a scheme of our branch-and-bound
algorithm is presented and in Section 6, we see how the dual relaxations may come
into play to save computational effort. Eventually, in Section 7, numerical results
are reported and in Section 8 we draw some conclusions.

2 Basic Notions and Definition of Enclosure

For the following notions as well as an introduction to multiobjective optimiza-
tion we refer, for instance, to [6]. We use the standard optimality notion based
on the componentwise partial ordering in the image space. A point x̄ ∈ S is
called an efficient point for (MOMIQP) if there is no feasible point x ∈ S with
f(x) 6= f(x̄) and with f(x) ≤ f(x̄). Here and in the following, ≤ and < are un-
derstood componentwise. The image f(x̄) of an efficient point for (MOMIQP) is
called nondominated, and the image set of all efficient points is denoted as the non-
dominated set N (also known, specifically for m = 2, as Pareto front). Thanks to
Corollary 8.2 in the Appendix, we have that the nondominated set of a MOMIP
problem with strongly convex objective functions is a bounded set. In particu-
lar, due to our assumptions, this holds for our problem (MOMIQP). Hence, it
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is guaranteed that a closed box B := [z, Z] := {x ∈ Rm | z ≤ x ≤ Z} with
N ⊆ int(B) = (z, Z) := {x ∈ Rm | z < x < Z}, where z, Z ∈ Rm, always exists.
As already mentioned, we aim at approximating the nondominated set N by an
enclosure that can be defined as follows (see [11]).

Definition 2.1. Let L,U ⊆ Rm be two finite sets with N ⊆ L + Rm
+ and N ⊆

U −Rm
+ . Then L is called a lower bound set, U is called an upper bound set, and the

set A which is given as

A = A(L,U) := (L+ Rm
+ ) ∩ (U − Rm

+ ) =
⋃
l∈L

⋃
u∈U ,
l≤u

[l, u]

is called an enclosure (or a box approximation) of the nondominated set N of
(MOMIQP) given L and U .

Note that for the elements of the set U one cannot take just objective function
values f(x) of feasible points x ∈ S, as one might be used to from single-objective
global optimization. Instead we need another concept, for instance the one of so-
called local upper bounds, which we will introduce below. A lower bound set L can
be computed as a union of ideal points of certain subproblems of (MOMIQP) which
we discuss in the forthcoming Section 3.

The quality of an enclosure A is given by its width w(A). It is defined in [7] as
the optimal value of

max
l,u

s(l, u) s.t. l ∈ L, u ∈ U , l ≤ u

where s(l, u) := min {ui − li | i ∈ [m]} denotes the shortest edge length of a box [l, u].
The surprising fact that this quality measure is based on the shortest edge length
of the boxes, and not on the largest as typically expected in global optimization, is
due to a desired relation to ε-optimality. For ε > 0 a point x̄ ∈ S is called ε-efficient
for (MOMIQP) if there exists no x ∈ S with f(x) 6= f(x̄)−εe and f(x) ≤ f(x̄)−εe,
where e represents the all-ones vector. We denote the image set of all ε-efficient
points by Nε. According to Lemma 3.1 in [7], if A is an enclosure of N with
w(A) < ε then any x ∈ S with f(x) ∈ A is at least ε-efficient for (MOMIQP). In
other words, A ∩ f(S) ⊆ Nε holds. This is the natural extension of ε-optimality
as used in single-objective global optimization. A more detailed discussion and
extensive motivation for this quality measure is provided in [7, 10].

As already mentioned, and widely discussed in the literature, a proper concept to
obtain an upper bound set U are the so-called local upper bounds which have been
presented in [15]. In the following definition, we use the generalized definition of
local upper bounds from [11, Def. 4.1]. Within the definition we make use of stable
sets. These are sets N ⊆ Rm where for any two points y1, y2 ∈ N with y1 6= y2 it
holds that y1 6≤ y2, i.e., all elements of N are pairwise non-comparable.
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Definition 2.2. Let N ⊆ Rm be a finite and stable set. Then the lower search
region for N is s(N) := int(B) \ (N + Rm

+ ) and the lower search zone for some
u ∈ Rm is c(u) := {y ∈ int(B) | y < u}. A set U = U(N) ⊆ Rm is called local
upper bound set given N if s(N) =

⋃
u∈U(N) c(u) and if {u1} − int(Rm

+ ) 6⊆ {u2} −
int(Rm

+ ) for all u1, u2 ∈ U(N), u1 6= u2. Each point u ∈ U(N) is called a local upper
bound (LUB).

We remark that the set B within Definition 2.2 does not necessarily have to be
a box with N ⊆ int(B) as in our setting, but can be chosen as an arbitrary subset
of Rm with nonempty interior.

3 Building Subproblems by Fixing Variables

The algorithm we propose is a branch-and-bound method that works by fixing the
values of certain integer variables. More precisely, at a generic level d ∈ [k] ∪ {0}
of the branch-and-bound tree, the variables x1, . . . , xd are fixed to certain integer
values, say, r1, . . . , rd ∈ Z. In particular, the order in which integer variables are
fixed is predetermined. This means that we start by fixing the value of x1 at level
d = 1, continue by fixing the value of x2 at level d = 2, and so on, until we fix the last
integer variable xk at level d = k. Hence, at every node of the branch-and-bound
tree at the same level d ∈ [k] ∪ {0} the same set of integer variables is fixed to
certain (different) values. We remark that at level d = 0 (root node) no variable is
fixed and we have the original problem. The full algorithmic scheme of our method
is reported in Section 5.

Let r = (r1, . . . , rd)
> ∈ Zd be a vector of integer fixings. This vector defines a spe-

cific node at level d of the branch-and-bound tree. For every j ∈ [m], we define, as in
[3, Lemma 3.1], the function f rj : Rn−d → R by f rj (x) := fj(r1, . . . , rd, x1, . . . , xn−d).
This function can be expressed explicitly as

f rj (x) = x>Qd
jx+ (cj,r)>x+ aj,r,

where the positive definite symmetric matrix Qd
j is obtained by deleting the corre-

sponding d rows and columns of Qj and cj,r and aj,r are set to

cj,ri−d := cji + 2
d∑
l=1

qlirl, for i = d+ 1, . . . , n

and

aj,r := aj +
d∑
l=1

clrl +
d∑
l=1

d∑
i=1

qlirlri.

Similarly, we define the matrix Ad ∈ Rp×(n−d) and the vector br ∈ Rp by taking into
account the fixings, i.e., Ad denotes the matrix which is obtained from A by deleting
the first d columns and br := b− A(r1, . . . , rd, 0, . . . , 0)>.
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We consider the following continuous relaxation of (MOMIQP) induced by that
fixing r ∈ Zd of the first d integer variables:

min
x

(f r1 (x), . . . , f rm(x))>

s.t. Adx ≤ br

x ∈ Rn−d.

(MOPr)

In our method, we mainly use these continuous subproblems to compute a lower
bound set L for an enclosure of the nondominated set of (MOMIQP) and to check
whether the node corresponding to the fixing r ∈ Zd of integer variables can be
pruned. In fact, we do not consider (MOPr) directly, but an outer approximation
of the corresponding upper image set

Pr := {f r(x) ∈ Rm | Adx ≤ br, x ∈ Rn−d}+ Rm
+ .

The simplest outer approximation is determined by the ideal point of this set,
which is componentwise calculated as min{yj ∈ R | y ∈ Pr} for j ∈ [m]. By our
assumptions, these minima exist in case the feasible set Sr := {x ∈ Rn−d | Adx ≤ br}
of (MOPr) is nonempty. This approximation using the ideal point corresponds to an
outer approximation derived by m supporting hyperplanes to the set Pr with normal
vectors equal to the m unit vectors. As this outer approximation is very rough, we
allow improved outer approximations. In this respect, let L ⊆ {y ∈ Rm

+ | ‖y‖1 = 1}
be a finite set of nonnegative vectors which includes all m unit vectors. This set
defines the hyperplanes which are used for the outer approximation of Pr. The
derived approximation of the upper image set Pr will be involved in our pruning
condition which we define later.

In order to compute the outer approximation, at a node, we solve the |L| con-
tinuous single-objective subproblems

min
x

`>f r(x)

s.t. Adx ≤ br

x ∈ Rn−d.

(P r(`))

In fact, we will examine the dual problems of these subproblems, see Section 6. In
case problem (P r(`)) is infeasible, i.e., in case we have

Sr = {x ∈ Rn−d | Adx ≤ br} = ∅ , (Inf)

the node can be pruned, see the results in Section 4.1.
Otherwise, in case problem (P r(`)) is feasible, we define ϕr(`) to be its optimal

value for ` ∈ L. Moreover, we denote by x∗`,r ∈ Rn−d its unique minimizer, which
exists due to the strong convexity of the objective function. Note that for ` = ej,
the j-th unit vector, we minimize `>f r(·) = f rj (·). Hence, in that case x∗`,r denotes

the unique minimizer of f rj with respect to Sr. In particular, ϕr(ej) = f rj (x∗e
j ,r)

gives the j-th component of the ideal point of the set Pr.
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Furthermore, in case of feasibility, i.e., in case Sr 6= ∅, we define

α(d+ 1) := min
`∈L

x∗1
`,r, β(d+ 1) := max

`∈L
x∗1

`,r , (1)

and the interval
[ bα(d+ 1)c , dβ(d+ 1)e ] . (I)

Recall that the vector r ∈ Zd of integer fixings corresponds to a node at level d
of the branch-and-bound tree. In case d < k, the interval (I) basically defines the
smallest range of values r′d+1 ∈ Z for which, within our algorithm, child nodes with
xd+1 fixed to r′d+1 ∈ Z need to be considered. More importantly, we will show in
Lemma 4.10 that all child nodes corresponding to r′ := (r1, . . . , rd, r

′
d+1) ∈ Zd+1 with

r′d+1 outside that interval and far enough can safely be pruned. This is one of the
key results that ensures finiteness of the overall algorithm.

In the following, we briefly explain how exactly the child nodes at level d+1 ≤ k
corresponding to such vectors r′ ∈ Zd+1 of integer fixings are explored within our
algorithm. At the first child node, xd+1 is fixed to r′d+1 = bα(d + 1)c. Then its
sibling nodes are computed by consecutively fixing xd+1 to increasing integer values
r′d+1 ∈ {bα(d + 1)c + 1, bα(d + 1)c + 2, . . . , dβ(d + 1)e}. The method continuous
fixing xd+1 to increasing integer values r′d+1 > dβ(d + 1)e until it reaches the first
assignment of r′d+1 for which the node corresponding to r′ ∈ Zd+1 can be pruned by
one of the conditions we present in the forthcoming Section 4. Since that implies
that also all child nodes with even larger values of the integer variable xd+1 can be
pruned, the algorithm continues by exploring those nodes corresponding to fixings of
r′d+1 < bα(d+1)c. Again, starting from bα(d+1)c−1, the value of r′d+1 is decreased
until the first child node which can be pruned based on the results from Section 4 is
found. The rules adopted to fix the variables are outsourced in Algorithm 1. Again,
the full branch-and-bound algorithm is presented in Section 5.

Algorithm 1 Update rd
INPUT: rd, α(d)
OUTPUT: rd

1: if rd ≥ bα(d)c then
2: Set rd = rd + 1
3: else
4: Set rd = rd − 1
5: end if

To conclude this section, we consider the special case d = k. This means that
at a corresponding node all the integer variables are fixed to certain values given by
r ∈ Zk. In other words, a leaf node of the branch-and-bound tree is reached. At
this point, the sets L of lower bounds and U of upper bounds for the enclosure of
the nondominated set N of (MOMIQP) are built up as detailed in the following.
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We initialize L = ∅, U = U(∅) = {Z}, andN = ∅. At the leaf node corresponding
to r ∈ Zk, we solve the problems (P r(`)) for all ` ∈ L. The optimal solutions
x∗`,r ∈ Rn−k of (MOPr) lead to feasible points (r, x∗`,r) ∈ Zk×Rn−k of (MOMIQP).
The upper bound set U is then updated as

U = U(N ∪ {f r(x∗`,r) | ` ∈ L}). (2)

More precisely, we use [15, Algorithm 3] (which is the same as [11, Algorithm 1]) to
do so. By [11, Lemma 4.7], for the resulting local upper bound set it holds that

N ⊆ U − Rm
+ . (3)

On the other hand, the lower bound set L is updated by

L = L ∪ {(ϕr(e1), . . . , ϕr(em))}. (4)

We will show in Lemma 7.1 that the resulting set L computed by our algorithm is
indeed a lower bound set in the sense of Definition 2.1. We remark that, while U is
always an upper bound set for an enclosure in that sense, for L this only holds at
the end of our algorithm.

4 Pruning of Nodes

As already mentioned, given a certain node at level d of the branch-and-bound tree,
the interval (I) defines the smallest range of integer values for which corresponding
child nodes at level d + 1 need to be computed. In this section, we analyze how to
stop the computation of new child nodes when fixing variable xd+1 to integer values
outside this interval. In particular, we provide sufficient conditions that allow to
consider a finite number of integer assignments. This implies that our method
needs to explore only a finite number of nodes even in the case that the original
problem has an unbounded feasible set.

4.1 Pruning by Infeasibility

Whenever for some d ∈ [k] and a vector r = (r1, . . . , rd) ∈ Zd the problem (P r(`))
is infeasible, i.e., condition (Inf) holds, the corresponding node and all its children
can of course be pruned:

Lemma 4.1. Let (Inf) hold for some d ∈ [k] and some vector r ∈ Zd of integer
fixings. Then there is no feasible point x̄ ∈ Zk × Rn−k of (MOMIQP) such that
(x̄1, . . . , x̄d) = (r1, . . . , rd).

In Lemma 4.2 we prove that, in case (Inf) holds, for integer fixings r ∈ Zd with
rd > dβ(d)e or rd < bα(d)c, thanks to linearity of the constraints, we can also prune
the outer siblings of that node.
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Lemma 4.2. Let (Inf) hold for some d ∈ [k] and some vector r ∈ Zd of integer
fixings with rd 6∈ [bα(d)c, dβ(d)e].

(a) If rd = δ > dβ(d)e, then there is no feasible point x̄ ∈ Zk×Rn−k of (MOMIQP)
such that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Zd with r̄d ≥ δ.

(b) If rd = δ < bα(d)c, then there is no feasible point x̄ ∈ Zk×Rn−k of (MOMIQP)
such that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Zd with x̄d ≤ δ.

Proof. We only prove (a). The proof of (b) is analogous.
Assume by contradiction that there exists a feasible point x̄ ∈ Zk × Rn−k

of (MOMIQP) with (x̄1, . . . , x̄d) = r̄ and r̄d ≥ δ. By the definition of β(d) there
exists a feasible point of (P r′(`)) for r′ := (r1, . . . , rd−1) ∈ Zd−1 and some ` ∈ L. In
particular, there exists some x′ ∈ Rn with Ax′ ≤ b, (x′1, . . . , x

′
d−1) = (r1, . . . , rd−1),

and x′d ≤ β(d). For any λ ∈ [0, 1] let q(λ) be the point defined as

q(λ) := λx̄+ (1− λ)x′.

By linearity, it holds Aq(λ) ≤ b for all λ ∈ [0, 1]. Moreover, qi(λ) = ri for all
i ∈ [d − 1] and for all λ ∈ [0, 1]. For the d-th component of q(λ) we have that
qd(0) = x′d ≤ β(d) < δ ≤ x̄d = qd(1). As a result, there exists λ̄ ∈ [0, 1] such that
qd(λ̄) = δ = rd. This contradicts (Inf).

Of course, problem (MOMIQP) can still have an unbounded feasible set and the
situation that (Inf) is satisfied might never occur. However, we will show in the
forthcoming Section 4.2 that even in case (Inf) is never satisfied, we can still prune
nodes and their siblings under certain conditions.

4.2 Pruning by Lower and Upper Bounds

In this section, we analyze what happens when infeasibility does not occur. In
particular, we make the following assumption.

Assumption 4.3. Let d ∈ [k] and r = (r1, . . . , rd) ∈ Zd be a vector of integer
fixings. Assume that (Inf) does not hold, i.e. Sr = {x ∈ Rn−d | Adx ≤ br} 6= ∅.

In order to be able to prune certain nodes and their siblings as in Section 4.1,
we define a pruning condition based on lower and upper bound sets. We say that
LBr ⊆ Rm is a lower bound set for the node corresponding to the vector r ∈ Zd of
integer fixings if

{f(x) ∈ Rm | x ∈ Zk × Rn−k, (x1, . . . , xd) = (r1, . . . , rd), Ax ≤ b} ⊆ LBr + Rm
+ .

A sufficient condition for this to hold is that Pr ⊆ LBr +Rm
+ . Due to the definition

of ϕr(`) and since L ⊆ Rm
+ , we have for any ` ∈ L that Pr ⊆ {y ∈ Rm | `>y ≥ ϕr(`)}.

Thus a valid lower bound set for the node is given by

LBr :=
{
y ∈ Rm

∣∣ `>y ≥ ϕr(`) ∀` ∈ L
}
. (5)
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Further, due to L ⊆ Rm
+ , we have that LBr = LBr + Rm

+ . Since we assume
that the set L contains the m unit vectors, we obtain for the ideal point idr :=
(ϕr(e1), . . . , ϕr(em)) of the set Pr that LBr ⊆ {idr}+ Rm

+ .
Intersecting the set of local upper bounds U with the lower bound set LBr gives

a pruning condition:
∀ u ∈ U : u 6∈ LBr. (Cond)

We need the following lemma for proving that this is indeed a pruning condition.

Lemma 4.4. Let Assumption 4.3 hold. If (Cond) holds then for the nondominated
set N of (MOMIQP) we have N ∩ LBr = ∅.

Proof. Since L ⊆ Rm
+ , for any h ∈ −Rm

+ it holds that `>h ≤ 0 for all ` ∈ L. As a
result, we have that u 6∈ LBr if and only if ({u} − Rm

+ ) ∩ LBr = ∅. Hence, (Cond)
holds if and only if (U −Rm

+ )∩LBr = ∅. Together with (3) we obtain that if (Cond)
holds then also N ∩ LBr = ∅.

Since for any feasible point x̄ ∈ Zd × Rn−d of (MOMIQP) with (x̄1, . . . , x̄d) =
(r1, . . . , rd) it holds that f(x̄) ∈ LBr, we immediately conclude from Lemma 4.4 the
following result for pruning:

Lemma 4.5. Let Assumption 4.3 hold. Further, let LBr ∈ Rm be a lower bound set
as in (5) and let (Cond) hold. Then there is no efficient point x̄ ∈ Zk × Rn−k for
(MOMIQP) with (x̄1, . . . , x̄d) = (r1, . . . , rd).

In the forthcoming Lemma 4.6, we prove that as soon as (Cond) holds for a
node r ∈ Zd with rd 6∈ [bα(d)c, dβ(d)e], we can prune its outer siblings r̄ ∈ Zd with
(r̄1, . . . , r̄d−1) = (r1, . . . , rd−1) and r̄d > rd or r̄d < rd.

Lemma 4.6. Let Assumption 4.3 hold for some d ∈ [k] and some vector r ∈ Zd of
integer fixings with rd 6∈ [bα(d)c, dβ(d)e]. Further, let LBr ∈ Rm be the lower bound
set computed as in (5) and let (Cond) hold.

(a) If rd = δ > dβ(d)e, then there is no efficient point x̄ ∈ Zk×Rn−k of (MOMIQP)
such that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Zd with r̄d ≥ δ.

(b) If rd = δ < bα(d)c, then there is no efficient point x̄ ∈ Zk×Rn−k of (MOMIQP)
such that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Zd with r̄d ≤ δ.

Proof. We only prove (a). The proof of (b) is analogous.
If (Inf) holds for r̄ then there cannot be an efficient point x̄ of (MOMIQP) with

(x̄1, . . . , x̄d) = r̄, see Lemma 4.1. Thus, in the following we consider the case where
(Inf) does not hold, i.e., Assumption 4.3 holds for r̄ ∈ Zd. Then we can determine
the set LB r̄ as in (5) based on the values ϕr̄(`) for ` ∈ L. We will show that it holds

ϕr(`) ≤ ϕr̄(`) for all ` ∈ L (6)

10



as then we have LB r̄ ⊆ LBr and (Cond) also holds for LB r̄. Lemma 4.5 then
concludes the proof.

To show (6), let ` ∈ L and denote by f̄ ` : Rn−d+1 → R the function

f̄ `(z) := `>f(r1, . . . , rd−1, z1, . . . , zn−d+1).

Within this proof, we use the notation b̄ := b− A(r1, . . . , rd−1, 0, . . . , 0) and denote
as usual by Ad−1 the matrix which is obtained from A by deleting the first d − 1
columns. Then A(r1, . . . , rd−1, z)

> ≤ b reduces to Ad−1z ≤ b̄. Using this notation,
we have

ϕr(`) = min
z
{f̄ `(z) | z1 = rd, A

d−1z ≤ b̄, z ∈ Rn−d+1}

and
ϕr̄(`) = min

z
{f̄ `(z) | z1 = r̄d, A

d−1z ≤ b̄, z ∈ Rn−d+1}.

The first components of the unique minimal solutions u∗` ∈ argminz{f̄ `(z) | Ad−1z ≤
b̄, z ∈ Rn−d+1} determine the interval [bα(d)c, dβ(d)e], cf. (1), and we have that

u∗`1 ≤ β(d) ≤ dβ(d)e < δ = rd ≤ r̄d.

For γ ∈ R with u∗`1 < γ ≤ r̄d we define the parametric optimization problem P (γ)
by

min
z

f̄ `(z)

s.t. z1 ≥ γ,

Ad−1z ≤ b̄,
z ∈ Rn−d+1.

(P (γ))

Since Assumption 4.3 holds for r̄ ∈ Zd, all of these optimization problems are
solvable. We denote their optimal value by v(γ) for γ ∈ (u∗`1 , r̄d]. Due to r̄d ≥ rd we
have that v(rd) ≤ v(r̄d). Next, we prove by contradiction that for all γ ∈ (u∗`1 , r̄d] it
holds that

min
z
{f̄ `(z) | z1 ≥ γ, Ad−1z ≤ b̄, z ∈ Rn−d+1}

= min
z
{f̄ `(z) | z1 = γ, Ad−1z ≤ b̄, z ∈ Rn−d+1}.

(7)

Let γ ∈ (u∗`1 , r̄d] and z̄ ∈ Rn−d+1 be the optimal solution of (P (γ)) with z̄1 > γ.
We set q(λ) := (1 − λ)z̄ + λu∗`, i.e., q1(0) = z̄1 > γ and q1(1) = u∗`1 < γ. Note
that Ad−1q(λ) ≤ b̄ holds for all λ ∈ [0, 1]. Let 0 < λ̄ < 1 be such that q1(λ̄) = γ.
Moreover, by the definition of u∗` we have f̄ `(u∗`) ≤ f̄ `(z̄). Then, from the strict
convexity of f̄ `, we derive

f̄ `(q(λ̄)) = f̄ `((1− λ̄)z̄ + λ̄u∗`) < (1− λ̄)f̄ `(z̄) + λ̄f̄ `(u∗`) ≤ f̄ `(z̄),

which contradicts the minimality of z̄ for (P (γ)). Consequently, (7) holds, implies
that ϕr(`) = v(rd) ≤ v(r̄d) = ϕr̄(`), and we are done with showing (6).
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All pruning results within this subsection are based on the condition (Cond).
The next result simplifies the evaluation of (Cond). It exploits the fact that for any
u ∈ U it holds u 6∈ LBr if and only if there exists ` ∈ L with `>u < ϕr(`).

Lemma 4.7. Let Assumption 4.3 hold and define for u ∈ U the value σ(u) by

σ(u) := min{`>u− ϕr(`) | ` ∈ L}. (8)

Then (Cond) holds if and only if σ(u) < 0 for all u ∈ U .

The costs for evaluating (Cond) can be further reduced:

Remark 4.8. In order to verify whether (Cond) is satisfied it is sufficient to check
whether σ(u) < 0 only for those u ∈ U with u ≥ idr, where idr ∈ Rm is the ideal
point of Pr or some underestimator of it. This holds because of LBr ⊆ {idr}+ Rm

+ .
The ideal point is obtained as a byproduct when calculating LBr.

As we are making use of dual formulations of the problems (P r(`)) (see Section
6) and as we will try to avoid to solve them exactly, we sometimes calculate just
lower bounds for ϕr(`) in (5) and thus derive only sets LB′ which are supersets of
LBr. Still those sets can be used to formulate a sufficient condition for (Cond):

Remark 4.9. Let LBr ∈ Rm be the lower bound set computed as in (5) and let
LB′ ⊇ LBr be an arbitrary superset of it. Then, if (Cond) holds for LB′, i.e. if for
all u ∈ U we have u 6∈ LB′, then (Cond) holds also for LBr.

In Section 6, we explain how to make use of Lemma 4.7 in combination with
Remark 4.9 to speed up the pruning strategy in our branch-and-bound algorithm.

4.3 Occurring of Pruning Conditions

In the last two subsections, we formulated conditions for pruning a node in case (Inf)
or (Cond) hold. Furthermore, we have given conditions in order to prune all the
outer siblings of a node in case (Inf) or (Cond) are satisfied at that node. However,
since we are not assuming boundedness of the feasible region of (MOMIQP), it
may happen that an infinite number of nodes is visited, as neither (Inf) nor (Cond)
are satisfied at any node. This would imply that our algorithm never stops. The
following lemma shows that this cannot happen and that for all d ∈ [k] there exist
only finitely many integer fixings r ∈ Zd such that neither (Inf) nor (Cond) are
satisfied. The strong convexity of the objective functions is key to the proof of the
result.

Lemma 4.10. Let d ∈ [k − 1] ∪ {0} and let Assumption 4.3 hold at level d for
r ∈ Zd, i.e., (Inf) does not hold. Then there exists γ ∈ Z such that for all r̄ ∈ Zd+1

with (r̄1, . . . , r̄d) = r and

r̄d+1 6∈ [bα(d+ 1)c − γ, dβ(d+ 1)e+ γ]

either (Cond) or (Inf) is satisfied.
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Proof. First, select an arbitrary element ` ∈ L. For the current finite and nonempty
set of local upper bounds U define ξ := max{`>u | u ∈ U}. Since the objective func-
tions fj, j ∈ [m], are strongly convex, `>f : Rn → R is a strongly convex quadratic
function, too. Thus, there exists some ν > 0 such that

νλ(1− λ) ‖x− x′‖2
2 + `>f(λx+ (1− λ)x′) ≤ λ`>f(x) + (1− λ)`>f(x′) (9)

for all x, x′ ∈ Rn and all λ ∈ [0, 1]. Let x∗`,r denote the unique minimizer of the
problem (P r(`)). By definition it holds α(d+ 1) ≤ x∗1

`,r and β(d+ 1) ≥ x∗1
`,r.

Now, let δ ≥ 0 and consider the optimization problem

min
x

`>f r(x)

s.t. Adx ≤ br

x1 = dβ(d+ 1)e+ δ

x ∈ Rn−d.

(10)

First, assume that there exists some δ̄ ≥ 0 such that (10) is infeasible. Then we
define γ̄ := dδ̄e ∈ N and it holds that (10) remains infeasible for all δ ≥ γ̄ ≥ δ̄.
To see this, assume that there exists some δ′ > δ̄ such that (10) is feasible. The
corresponding minimizer x′ ∈ Rn−d is not only feasible for (10), but also for (P r(`)).
Further, it holds that

x∗1
`,r ≤ dβ(d+ 1)e+ δ̄ < dβ(d+ 1)e+ δ′ = x′1.

However, since both x∗`,r and x′ are feasible for (P r(`)) and the constraints are all
linear, there exists some feasible point x̂ ∈ Rn−d for (P r(`)) with x̂1 = dβ(d+1)e+ δ̄
which contradicts the assumption that (10) is infeasible for δ̄.

Next, assume that (10) is feasible for all δ ≥ 0 and denote for each δ ≥ 0 by
x̄(δ) ∈ Rn−d its unique minimizer. Note that for r̄ ∈ Zd+1 with (r̄1, . . . , r̄d) =
(r1, . . . , rd) and r̄d+1 = dβ(d+ 1)e+ δ it holds ϕr̄(`) = `>f r(x̄(δ)).

We obtain from (9) with λ = 1/2 and for any δ ≥ 0 that

0.25 ν
∥∥∥x∗`,r − x̄(δ)

∥∥∥2

2
+ `>f r(0.5x∗`,r + 0.5 x̄(δ)) ≤ 0.5 `>f r(x∗`,r) + 0.5 `>f r(x̄(δ)).

Since x̄(δ) and x∗`,r are feasible for (P r(`)), so are all convex combinations of
them and in particular the point 0.5x∗`,r + 0.5 x̄(δ). As x∗`,r is the unique min-
imizer of (P r(`)) we have `>f r(x∗`,r) ≤ `>f r(0.5x∗`,r + 0.5 x̄(δ)). Further, we have
`>f r(x∗`,r) ≤ `>f r(x̄(δ)) and hence

0.25 ν
∥∥∥x∗`,r − x̄(δ)

∥∥∥2

2
+ `>f r(x∗`,r) ≤ `>f r(x̄(δ)).

Finally, making use of x̄(δ)1 = dβ(d+ 1)e+ δ ≥ x∗1
`,r + δ, we obtain that

0.25νδ2 + `>f r(x∗`,r) ≤ `>f r(x̄(δ)).

13



For δ ≥ 0 larger than some γ̄ ∈ N, we have that the left hand side of this inequality
exceeds ξ such that ξ < `>f r(x̄(δ)) for all δ ≥ γ̄.

Analogously, replacing the constraint x1 = dβ(d + 1)e + δ in (10) by x1 =
bα(d + 1)c − δ and using that α(d + 1) ≤ x∗1

`,r, one obtains that there exists some
γ ∈ N such that either (10) becomes infeasible or ξ < `>f r(x̄(δ)) for all δ ≥ γ.

Thus, for γ := max{γ̄, γ} and an arbitrary vector r̄ ∈ Zd+1 of integer fixings with
(r̄1, . . . , r̄d) = (r1, . . . , rd) and r̄d+1 6∈ [bα(d+ 1)c − γ, dβ(d+ 1)e+ γ] we obtain that
either (Cond) holds since ϕr̄(`) > ξ ≥ `>u for all u ∈ U or that (Inf) holds.

5 DEIA-BB: algorithmic scheme and finiteness

In order to summarize what we have presented so far, we report in Algorithm 2
the scheme of our branch-and-bound method, called DEIA-BB (for Detector of Ef-
ficient Integer Assignments-Branch-and-Bound). As already mentioned, DEIA-BB

computes two things. Primarily, it computes a lower bound set L and an upper
bound set U for an enclosure of the nondominated set of (MOMIQP). Thereby, it
also computes a superset of the set of efficient integer assignments. In the following,
we will briefly describe step-by-step how the algorithm works and how the steps are
related to the theoretical results presented in the previous sections.

The algorithm first checks in line 3 whether the continuous relaxation of (MOMIQP)
is feasible, i.e., whether the corresponding feasible set {x ∈ Rn | Ax ≤ b} is
nonempty. If it is nonempty, then α(1) and β(1) are computed and the algorithm
continues with the main loop in line 9. Otherwise, the algorithm detects the infea-
sibility of (MOMIQP) and stops.

The while loop basically computes feasible leaf nodes, i.e., integer fixings r̄ ∈ Zk
such that {x ∈ Rn−k | Akx ≤ br̄} 6= ∅, with a depth-first approach. It starts at
depth d = 1 with the integer fixing r = r1 = bα(1)c ∈ Zd. We remark that the
depth d ∈ N never exceeds k since it is only increased in line 28 of the algorithm
and this line is only called if d ≤ k − 1. We also remark that the first node that is
considered at level d+1 is always the one with the vector r = (r1, . . . , rd, bα(d+1)c)
of integer fixings.

For an arbitrary node, i.e., an arbitrary vector r ∈ Zd of integer fixings, at depth
d ∈ [k] the algorithm checks in line 11 whether this node needs to be explored. This
means it checks whether the integer relaxed version of (MOMIQP) where the first d
variables are fixed to r ∈ Zd is feasible and (Cond) does not hold. If this is the case
and d = k the algorithm has reached a leaf node and thus a feasible integer fixing
for (MOMIQP). This allows us to update the lower and upper bound sets L and
U for the initial enclosure, see line 13. Otherwise, we have not reached a leaf node
and compute the bounds α(d+ 1) and β(d+ 1) for the integer fixings at level d+ 1.

Next, the algorithm checks whether the children or siblings of the current node
can be pruned based on the results of Sections 4.1 and 4.2. Note that for the former
we need (Inf) and for the latter we need (Cond) to hold in order to prune. If neither
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Algorithm 2 DEIA-BB: Detector of Efficient Integer Assignments
INPUT: m strictly convex quadratic functions fj : Rn → R, j = 1, . . . ,m, linear con-
straints Ax ≤ b, finite set L ⊆ Rm+ with ej ∈ L for all j ∈ [m]
OUTPUT: L, U
1: Perform a preprocessing phase to speed up computations (see Algorithm 3)
2: Set U = U(∅) = {Z} and d = 0
3: if {x ∈ Rn | Ax ≤ b} 6= ∅ then
4: Compute α(1) and β(1) according to (1)
5: Set d = 1, r1 = bα(1)c
6: else
7: Stop the algorithm and state infeasibility of (MOMIQP)
8: end if
9: while d > 0 do

10: Evaluate whether (Inf) or (Cond) holds for d and r = (r1, . . . , rd)
11: if not ((Cond) or (Inf)) then
12: if d = k then
13: Update U and L according to (2), (4)
14: else
15: Compute α(d+ 1) and β(d+ 1) according to (1)
16: end if
17: end if
18: if ((Cond) or (Inf)) and rd < bα(d)c then
19: Set d = d− 1;
20: if (d > 0) Update rd with Algorithm 1 end if
21: else if ((Cond) or (Inf)) and rd ≥ bα(d)c then
22: if rd ≥ dβ(d)e then
23: Set rd = bα(d)c − 1
24: else
25: Set rd = rd + 1
26: end if
27: else if d ≤ k − 1 then
28: Set d = d+ 1;
29: Set rd = bα(d)c
30: else
31: Update rd with Algorithm 1
32: end if
33: end while
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(Inf) nor (Cond) hold, then the conditions in lines 18 and 21 of Algorithm 2 are
not satisfied, nothing is pruned, and the algorithm moves on (with its depth-first
approach) to level d+1, see line 28. In case d = k, i.e., at a leaf node, the algorithm
stays at level d = k and explores the siblings of the current node, see line 31. We
remark that by Lemma 4.10 at each level d ∈ [k] there only exist finitely many nodes
where neither (Inf) nor (Cond) are satisfied.

Thus, for Algorithm 2, it remains the setting that (Inf) or (Cond) are satisfied,
i.e., that either the clause in line 18 or in line 21 is true. If (Inf) holds then we can
prune all the children nodes of the current node corresponding to r ∈ Zd and in
particular the node itself. Also if (Cond) holds we can prune all the children nodes
by Lemma 4.5. Thus the algorithm only needs to decide whether siblings of the
current node need to be explored or can be pruned. Since at each level d we always
start with rd = bα(d)c and the value of rd is only changed if one of the clauses in
line 18 or 21 is true, we first consider the case in line 21. If bα(d)c ≤ rd ≤ dβ(d)e we
cannot prune any siblings of the current node based on the results from the previous
sections. Thus, we need to explore them. This is done by setting rd = rd + 1 in
line 25 of Algorithm 2. If rd > dβ(d)e it is known from Lemmas 4.2 and 4.6 that
all siblings with r̃d > rd can be pruned. Thus, the algorithm will not continue to
explore such nodes and goes on exploring nodes to the left of bα(d)c by setting
rd = bα(d)c − 1, see line 23. For any siblings of the current node this means that
the condition in line 21 will never be satisfied again. Instead, the condition in line
18 will be satisfied for any future sibling where (Inf) or (Cond) holds. If this is the
case, then also all siblings with r̃d < rd can be pruned by Lemma 4.2 or 4.6. As a
result, since the node corresponding to the current integer assignment r ∈ Zd itself
and all of its sibling nodes can be pruned, also its parent node at level d− 1 can be
pruned. Thus, Algorithm 2 moves back to level d− 1, see line 19, and continues by
exploring a sibling of that parent node.

This whole procedure is repeated until we reach line 19 with d = d − 1 = 0,
return to the root node, and terminate the algorithm since the condition d > 0 of
the while loop is no longer satisfied. Together with Lemma 4.10 and the fact that
each of the intervals [bα(d + 1)c, dβ(d + 1)e] is bounded, we eventually reach this
line within a finite number of iterations and obtain the following finiteness result for
Algorithm 2.

Theorem 5.1. Algorithm 2 stops after a finite number of iterations returning the
sets L and U .

6 Using Dual Relaxations

Let r = (r1, . . . , rd)
> ∈ Zd be the vector of integer fixings defining a node at level d in

our branch-and-bound algorithm. As already stated, the multiobjective continuous
relaxation of problem (MOMIQP), where the integer variables are fixed to r ∈ Rd, is
(MOPr). Instead of addressing the problem (MOPr), our aim is to compute LBr by
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addressing the dual of the |L| single-objective problems (P r(`)), where the objective
function is defined by

`>f r(x) =
m∑
j=1

`j(x
>Qd

jx+ (cj,r)>x+ aj,r)

= x>

(
m∑
j=1

`jQ
d
j

)
x+

(
m∑
j=1

`jc
j,r

)>
x+

m∑
j=1

`jaj,r.

We do so in order to accelerate the pruning process for those nodes that can be
pruned because of (Cond). As we will see, addressing the dual of the |L| single-
objective problems (P r(`)) may allow to stop the computation of LBr to a rough
though effective-for-pruning set and this clearly helps in saving computational effort.

For ease of notation, we introduce the following:

Q̄d
` =

m∑
j=1

`jQ
d
j , c̄`,r =

m∑
j=1

`jc
j,r, ā`,r =

m∑
j=1

`jaj,r.

We obtain the dual of problem (P r(`)) by first forming the Lagrangian

Ld` (x, λ) = x>Q̄d
`x+ (c̄`,r)>x+ ā`,r + λ>(Adx− br)

and then, for fixed λ ∈ Rp, minimizing Ld` with respect to the primal variables x. As
Q̄d
` is under our assumptions positive definite, Ld` (·, λ) is a strictly convex quadratic

function and its unique minimizer can be computed in closed form as

xd` (λ) = −1

2
(Q̄d

` )
−1(c̄`,r + Ad

>
λ).

Then, the dual of problem (P r(`)) is

max
λ
Ld` (λ)

λ ∈ Rp
+,

(11)

with

Ld` (λ) := Ld` (xd` (λ), λ) =λ>
(
−1

4
Ad(Q̄d

` )
−1Ad

>
)
λ −

(
br> +

1

2
(c̄`,r)>(Q̄d

` )
−1Ad

>
)
λ

− 1

4
(c̄`,r)>(Q̄d

` )
−1(c̄`,r) + ā`,r.

Note that −1
4
Ad(Q̄d

` )
−1Ad

>
=: −Q̃d

` is a negative semidefinite matrix, so that prob-
lem (11) can be seen as a convex quadratic minimization problem with simple non-
negativity constraints. Also note that since all constraints of problem (P r(`)) are
affine, strong duality holds if the primal problem (P r(`)) is feasible [17]. On the
other hand, if problem (P r(`)) is infeasible, the dual problem (11) is unbounded [17].

Thanks to weak duality, we also have that Ld` (λ) ≤ ϕr(`) for each feasible λ ≥ 0.
This means that Lemma 4.7 can be easily extended, cf. Remark 4.9, as follows:
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Lemma 6.1. Let Assumption 4.3 hold and define for u ∈ U , λ ∈ Rp
+ the value

σL(u, λ) by
σL(u, λ) := min{`>u− Ld` (λ) | ` ∈ L}.

Then (Cond) holds if and only if for all u ∈ U there exists some λ := λ(u) ∈ Rp
+

such that σL(u, λ) < 0 .

Proof. First we will show that if for all u ∈ U there exists λ(u) ∈ Rp
+ such that

σL(u, λ(u)) < 0 then this implies (Cond). Assume by contradiction that (Cond) does
not hold. Then there exists ū ∈ U such that ū ∈ LBr. This implies `>ū−ϕr(`) ≥ 0
for all ` ∈ L. Due to weak duality it holds for all λ ∈ Rp

+ that Ld` (λ) ≤ ϕr(`). Hence,
we also have that `>ū − Ld` (λ) ≥ 0 for all ` ∈ L and all λ ∈ Rp

+ which contradicts
σL(ū, λ(ū)) < 0.

We now show that if (Cond) holds, then for all u ∈ U there exists λ ∈ Rp
+ such

that σL(u, λ) < 0. For that fix some u ∈ U . By Lemma 4.7, there exists some
` ∈ L such that `>u < ϕr(`). Since strong duality holds, λ̂` ∈ Rp

+ exists such that

Ld` (λ̂`) = ϕr(`). This implies that also σL(u, λ̂`) < 0.

Remark 6.2. If Assumption 4.3 does not hold, namely (P r(`)) is infeasible, for each
` ∈ L a sequence of points {λ`,k} ⊆ Rp

+ exists such that limk→∞ Ld` (λ`,k) = +∞. In
particular, for each ` ∈ L there is some sufficiently large k̄(`) ∈ N such that(

max
u∈U

`>u

)
− Ld` (λ`,k̄(`)) < 0.

Thus, for all u ∈ U and all ` ∈ L there is some λ := λ`,k̄(`) such that `>u−Ld` (λ) < 0
which implies that for each u ∈ U there is some λ ∈ Rp

+ with σL(u, λ) < 0. In fact,
there even exists one λ′ ∈ Rp

+ for all u ∈ U such that σL(u, λ′) < 0.

We address problem (11) with FAST-QPA, an active set feasible method devised
in [1] that uses conjugate gradient directions. The reduced matrices Q̄d

` , (Q̄d
` )
−1, and

Ad only depend on the depth d, but not on specific integer fixings r ∈ Zd. Hence,
the quadratic part of the reduced dual objective functions Q̃d

` can be computed
in the preprocessing phase, as it only depends on (Q̄d

` )
−1 and Ad. What is more,

also the maximum eigenvalue λmax(Q̃d
` ), needed for ensuring a proper setting of the

parameter for the active set estimate and the convergence of FAST-QPA (see [1]),
can be computed in the preprocessing phase. The preprocessing phase used in our
implementation is detailed in Algorithm 3.
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Algorithm 3 Preprocessing

INPUT: m strictly convex quadratic functions fj : Rn → R, j = 1, . . . ,m, linear
constraints Ax ≤ b, finite set of vectors L, number of integer variables k
OUTPUT: (Q̄d

` ), (Q̄d
` )
−1, Ad, Q̃d

` , λmax(Q̃
d
` ) for d = 0, . . . , n− 1, for ` ∈ L;

1: For d = 0, . . . , n− 1 let Ad be the submatrix of A given by columns d+ 1, . . . , n;
2: For d = 0, . . . , n− 1 and ` ∈ L compute the submatrix Q̄d

` ;
3: For d = 0, . . . , n− 1 and ` ∈ L compute (Q̄d

` )
−1;

4: For d = 0, . . . , n− 1 and ` ∈ L compute Q̃d
` = Ad(Q̄d

` )
−1Ad

>

5: For d = 0, . . . , n − 1 and ` ∈ L compute λmax(Q̃d
` ), the maximum eigenvalue of

Q̃d
` ,

Let {λk} be the sequence of points produced by FAST-QPA when dealing with
problem (11). Given the properties of FAST-QPA, λk is feasible for all k ∈ N and
{Ld` (λk)} is a monotonically increasing sequence. From the convergence results
shown in [1, Proposition 11], in case problem (11) admits a maximal solution, under
specific assumptions on the parameter used in the active set estimate, we have that

lim
k→+∞

‖max{0,∇Ld` (λk)}‖ = 0.

By [1, Theorem 13] this implies that every limit point of the sequence {λk} produced
by FAST-QPA satisfies the standard first-order optimality conditions for problem (11).
Furthermore, since problem (11) is a convex problem (maximization of a concave
function over a convex feasible set), this in turn implies that every limit point of
{λk} is an optimal point. In our implementation of FAST-QPA, we declare optimality
when the point λk satisfies the condition

‖max{0,∇Ld` (λk)}‖ ≤ 10−5, (12)

having then a guarantee that the algorithm stops after a finite number of iterations.
Handling problem (11) with a feasible method (i.e., an optimization method able

to produce a sequence of feasible points) allows us to implement a strategy for which
the node corresponding to r ∈ Zd can be pruned before computing the lower bound
set LBr. We call this phenomenon early pruning. We now describe the implemented
strategy and give an example of early pruning.

Given u ∈ U , thanks to Lemma 6.1 and Remark 6.2, when dealing with prob-
lem (11) for a specific ` ∈ L, we stop FAST-QPA as soon as one of the following
occurs:

i) we get, at iteration k̂(`), that `>u < Ld` (λ`,k̂(`)) implying

σL(u, λ`,k̂(`)) < 0, (13)

ii) we have that (12) holds at iteration k(`) and we set ϕr(`) := Ld` (λ`,k(`)).
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Note that, in case i), k̂(`) ≤ k(`) and Ld` (λ`,k̂(`)) ≤ Ld` (λ`,k(`)). If Assumption 4.3
holds for the current vector r ∈ Zd of integer fixings at level d, i.e., Sr 6= ∅, and (13)
holds for every u ∈ U , condition (Cond) holds and the node can be pruned. More-
over, in case (Inf) holds, i.e., Sr = ∅, the |L| dual problems (11) are unbounded.
Then, i) occurs and (13) is satisfied for every u ∈ U so that the node is pruned
after a finite number of iterations of FAST-QPA in that case as well. Consequently,
by applying FAST-QPA in our implementation of DEIA-BB, we can possibly prune
the node using only k̂(`) iterations of FAST-QPA, see i), instead of k(`) iterations to
compute ϕr(`) exactly, see ii).

We now discuss a biobjective example where early pruning is possible, see also
Figure 1. Consider an integer fixing r = (r1, . . . , rd) ∈ Zd, a set of local upper bounds
U = {u1, u2, u3}, and a set of vectors L = {(1, 0), (0, 1), (0.5, 0.5)}. In Figure 1a
the optimal lower bound set LBr is represented by the blue dashed lines. We will
show by this example that our pruning strategy allows us to prune the node without
the need of computing LBr exactly, but just a rough approximation of it. At the
beginning, DEIA-BB takes into account the first local upper bound u1 ∈ U and calls
FAST-QPA on problem (11) with `1 = (1, 0)>. In Figure 1b we see how FAST-QPA

stops when i) is satisfied. In other words, for u1, FAST-QPA stops at iteration k̂(`1)

and detects a λ`
1,k̂(`1) such that σL(u1, λ`

1,k̂(`1)) < 0. Since σL(u1, λ`
1,k̂(`1)) < 0,

DEIA-BB can move to the next local upper bound u2 ∈ U . Since σL(u2, λ`
1,k̂(`1)) > 0,

FAST-QPA is resumed on problem (11) with `1 = (1, 0)>, from iteration k̂(`1). From
Figure 1c we see again how FAST-QPA stops before reaching optimality or, in other
words, it stops at an iteration k̄(`1) > k̂(`1) such that σL(u2, λ`

1,k̄(`1)) < 0. As before,
since σL(u2, λ`

1,k̄(`1)) < 0, DEIA-BB can move to the next local upper bound u3 ∈ U .
Since σL(u3, λ`

1,k̄(`1)) > 0, FAST-QPA is resumed on problem (11) with `1 =
(1, 0)>, from iteration k̄(`1). From Figure 1d we notice (see the blue dashed line)
that in this case FAST-QPA stops reaching optimality, or in other words at an iteration
k(`1) such that (12) holds. However, we still have that σL(u3, λ`1,k(`1)) > 0. Then,
the new vector `2 ∈ L is considered and FAST-QPA is called on problem (11) with
`2 = (0, 1)>. From Figure 1d we see that FAST-QPA stops at iteration k̂(`2) detecting

λ`
2,k̂(`2) such that σL(u3, λ`

2,k̂(`2)) < 0. Then, by Lemma 6.1, we have that (Cond)
holds and the node can be pruned. Note that DEIA-BB did not have to compute LBr.
In particular, we did not need to solve the (duals of) |L| single-objective problems
(P r(`)) to optimality.

7 Numerical results

In order to investigate the performance of DEIA-BB, we considered randomly gen-
erated instances of (MOMIQP) with m ∈ {2, 3, 4}. The instances were built
with a number of variables n ∈ {5, 10, 15}, a number of constraints p = 15, and
a percentage of integer variables out of the total number of variables equal to
%int ∈ {25, 50, 75, 100} (rounded up). Matrices Qj ∈ Rn×n , j ∈ [m] were built
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(a) (b)

(c) (d)

Figure 1: Outer approximations of f r(Sr) obtained through dual relaxations - ex-
ample of early pruning.
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using the MATLAB function sprandsym and we considered three different density
levels ρ ∈ {0.25, 0.50, 0.75}. Namely, we generated matrices with approximately
ρ · n2 nonzeros entries. For each combination of n,m,%int, ρ we produced 5 differ-
ent instances, having a total of 540 instances. All the algorithms considered have
been implemented in MATLAB. All experiments have been performed on an In-
tel(R) Core(TM) i7-1165G7 running at 2.8 GHz under Linux. Each instance was
addressed by DEIA-BB and, in case the algorithm stopped within one hour, we con-
sidered the instance solved by DEIA-BB and the sets L and U were considered to
build an enclosure of the nondominated set. We can in fact rely on the following
theoretical results. The first lemma shows that the output set L ⊆ Rm of DEIA-BB
is a lower bound set of (MOMIQP). This in turn implies (see Corollary 7.2) that
DEIA-BB is able to release an enclosure (or box approximation) of the nondominated
set N of (MOMIQP).

Lemma 7.1. The set L ⊆ Rm computed by Algorithm 2 is a lower bound set in the
sense of Definition 2.1.

Proof. By Theorem 5.1 we know that L is finite. It only remains to prove that
N ⊆ L+ Rm

+ . So let z ∈ N and let x̄ ∈ S, r ∈ Zk, with (x̄1, . . . , x̄k) = (r1, . . . , rk),
such that f(x̄) = z. We prove that DEIA-BB has explored the leaf node r ∈ Zk. This
would imply by (4) that for the ideal point idr = (ϕr(e1), . . . , ϕr(em)) ∈ L computed
at this leaf node it holds that idr ≤ z. By contradiction, assume that the leaf node
r ∈ Zk has not been explored. Then the parent node r′ ∈ Zd of this leaf node at
a certain level d ∈ [k] with (r′1, . . . , r

′
d) = (r1, . . . , rd) was pruned. Since x̄ ∈ Rn is

feasible for (MOMIQP) this parent node was not pruned by (Inf). Hence, it was
pruned by (Cond). This means that for all u ∈ U we have that u 6∈ LBr′ . By (3)
we also have that z = f(x̄) ∈ N ⊆ U − Rm

+ . But then there exists u ∈ U such that
u ≥ z ∈ LBr + Rm

+ = LBr ⊆ LBr′ which is a contradiction.

Corollary 7.2. Let L,U ⊆ Rm be the finite sets obtained by Algorithm 2, σ > 0
a small offset, and denote by e ∈ Rm the all-ones vector. Then B := A(L′, U ′) =
(L′ + Rm

+ ) ∩ (U ′ − Rm
+ ) with L′ := L − {σe} and U ′ := U + {σe} is an enclosure of

the nondominated set N of (MOMIQP) such that N ⊆ int(B).

As a first test, we ran DEIA-BB on instances with m = 2, checking the width
of the enclosure obtained when varying the percentage of integer variables. In Ta-
ble 1, we report a comparison among three version of DEIA-BB, where we consid-
ered |L| ∈ {2, 3, 5}, respectively. In particular, we considered L = {(0, 1), (1, 0)},
L = {(0, 1), (1, 0), (0.5, 0.5)}, L = {(0, 1), (1, 0), (0.5, 0.5), (0.25, 0.75), (0.75, 0.25)},
respectively. We report, for each version of DEIA-BB, the average CPU time (in
seconds), the average number of nodes, the average width of the enclosure obtained
and the average cardinality of the set L. All the averages are taken over the 15
instances built for fixed n and %int. We can notice that the quality of the enclosure
obtained with DEIA-BB improves with the percentage of integer variables considered.
As expected, DEIA-BB is able to detect the exact nondominated set when dealing
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with purely integer instances (note that the width of the computed enclosure is 0 for
those instances). We can notice that as the cardinality of L increases, the number
of nodes that DEIA-BB needs to explore decreases. However, this does not always
correspond to a saving in terms of CPU time. This can be explained by the fact
that in every node for which the pruning condition is not satisfied, a larger number
of subproblems needs to be solved. The cardinality of the set L has an impact with
respect to the cardinality of the lower bound set deliverd by DEIA-BB: in general,
the higher the cardinality of L the smaller is the cardinality of the lower bound set
L (after reducing it to a stable set). From the results in Table 1, we also notice that
the CPU time needed by DEIA-BB strongly increases with the number of variables.

n %int |L| = 2 |L| = 3 |L| = 5

time nodes width cardL time nodes width cardL time nodes width cardL
5 25 0.01 14.47 0.37 4.47 0.01 14.53 0.37 4.47 0.02 14.53 0.37 4.47
5 50 0.03 32.13 0.18 6.13 0.04 31.67 0.18 6.07 0.05 31.33 0.18 6.07
5 75 0.09 60.00 0.06 6.07 0.11 63.20 0.06 6.47 0.14 62.53 0.06 6.47
5 100 0.16 98.40 0.00 5.00 0.20 97.80 0.00 5.00 0.25 97.93 0.00 5.00

10 25 0.03 102.60 1.99 36.13 0.95 85.80 1.99 30.73 0.94 82.87 1.99 29.53
10 50 0.07 408.07 1.05 78.53 1.02 310.00 1.05 59.47 1.30 292.27 1.05 56.27
10 75 0.49 362.20 0.42 71.87 1.49 425.73 0.42 65.53 1.83 473.87 0.42 63.20
10 100 1.41 292.00 0.00 47.07 2.76 267.07 0.00 48.60 3.20 261.33 0.00 49.53

15 25 33.91 473.67 3.22 183.27 132.91 350.13 3.22 139.00 132.94 322.27 3.25 126.27
15 50 255.58 369.67 1.59 488.53 257.91 323.87 1.59 395.20 246.51 281.33 1.62 340.73
15 75 155.41 352.07 0.49 354.27 225.89 383.40 0.49 321.87 230.17 346.80 0.49 293.80
15 100 181.34 355.00 0.00 189.00 260.99 300.47 0.00 187.20 233.41 284.47 0.00 187.20

Table 1: Performance of DEIA-BB according to the cardinality of L, m = 2.

In Figure 2, we report the enclosure produced by DEIA-BB on an instance with
m = 2, n = 15, %int = 75 considering |L| = 2. The lower and upper bound sets are
highlighted. The width of the obtained enclosure is 0.3859 (which is smaller than
the average value obtained for all the instances having n = 15).

Despite DEIA-BB is able to compute an enclosure of the nondominated set of
(MOMIQP), its quality cannot be controlled by any of the algorithm’s parame-
ters. This is the reason why we further investigate the performance of DEIA-BB in
combination with AdEnA, the method proposed in [11, Algorithm 3]. By default,
AdEnA starts with an enclosure of the nondominated set which is given as a single
box and refines it until an enclosure with a prescribed width is computed. How-
ever, AdEnA can be warmstarted by any enclosure. Thus, we explore warmstarting
AdEnA using the enclosure computed by DEIA-BB. The resulting method, named
AdEnA(DEIA-BB), is a hybrid decision-criterion space algorithm and computes an
enclosure of prescribed quality. Indeed, for an arbitrary choice of the quality pa-
rameter ε > 0 and using the initial bound sets L′, U ′ ⊆ Rm from Corollary 7.2,
AdEnA computes an enclosure A with w(A) ≤ ε within a finite number of iterations,
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Figure 2: Enclosure produced by DEIA-BB on an instance with m = 2, n = 15,
%int = 75.

see [11, Corollary 5.3].
In the following, we provide a comparison among DEIA-BB, AdEnA(DEIA-BB) and

AdEnA on the 540 instances built. We set ε, the parameter controlling the quality of
the enclosure released, equal to 0.1 inside AdEnA (and then inside AdEnA(DEIA-BB)

too). In Table 2, we report the average results for DEIA-BB, AdEnA(DEIA-BB) and
AdEnA. We considered DEIA-BB with cardinality of L equal to 3. Fixing n, m and
%int, we report for each method the number of instances solved within the time
limit of one hour and the average CPU time (in seconds) taken over the instances
solved. We can see that the instances with m = 2, 3 are all solved within the time
limit by all methods. As already mentioned, DEIA-BB particularly suffers from an
increasing number of integer variables, as the number of nodes to be visited strongly
grows with respect to this number. Furthermore, the combination of DEIA-BB with
AdEnA does not seem to be always convenient. However, the time needed by DEIA-BB

seems to scale better with the number of objective functions than with the number
of variables, so that the results obtained when dealing with more than two objectives
look promising. Recall that DEIA-BB is able to detect the complete nondominated
set in case of pure integer instances. This is the reason why for those instances (%int
= 100) the time of AdEnA(DEIA-BB) is 0.
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n m %int DEIA-BB AdEnA(DEIA-BB) AdEnA

sol time(s) sol time(s) sol time(s)

5 2 25 15 0.01 15 0.08 15 0.25
5 2 50 15 0.04 15 0.03 15 0.22
5 2 75 15 0.11 15 0.01 15 0.22
5 2 100 15 0.20 15 0.00 15 0.19
5 3 25 15 0.02 15 1.72 15 2.55
5 3 50 15 0.08 15 1.13 15 2.14
5 3 75 15 0.18 15 0.38 15 1.57
5 3 100 15 0.32 15 0.00 15 0.92
5 4 25 15 0.03 15 42.32 15 65.62
5 4 50 15 0.18 15 13.97 15 34.27
5 4 75 15 0.44 15 3.96 15 15.19
5 4 100 15 0.77 15 0.00 15 4.78

10 2 25 15 0.95 15 0.84 15 0.88
10 2 50 15 1.02 15 0.80 15 0.89
10 2 75 15 1.49 15 0.49 15 0.94
10 2 100 15 2.76 15 0.00 15 1.00
10 3 25 15 0.18 15 26.13 15 23.78
10 3 50 15 0.29 15 25.42 15 24.32
10 3 75 15 1.35 15 10.01 15 16.50
10 3 100 15 5.16 15 0.00 15 9.30
10 4 25 15 0.18 14 775.64 15 626.87
10 4 50 15 0.64 14 588.68 14 429.86
10 4 75 15 2.65 15 162.24 15 260.65
10 4 100 15 14.29 15 0.00 15 63.35

15 2 25 15 132.91 15 2.11 15 2.01
15 2 50 15 257.91 15 2.71 15 2.32
15 2 75 15 225.89 15 3.06 15 3.94
15 2 100 15 260.99 15 0.00 15 4.97
15 3 25 15 1.67 15 89.10 15 80.59
15 3 50 15 169.84 15 101.40 15 79.87
15 3 75 15 147.32 15 131.99 15 127.72
15 3 100 15 282.47 15 0.00 15 87.19
15 4 25 15 14.39 10 1666.12 15 1278.19
15 4 50 14 608.21 12 1881.59 15 1153.48
15 4 75 14 827.80 11 1343.69 15 909.66
15 4 100 14 1193.88 14 0.00 15 420.47

Table 2: Results on 540 instances with m = 2, 3, 4.
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8 Conclusions

We devised a branch-and-bound method able to compute a superset of the set of
efficient integer assignments for multiobjective mixed-integer convex quadratic pro-
grams. The solution of dual formulations of specific subproblems combined with a
corresponding preprocessing phase enables a fast enumeration of the nodes. The
algorithm is guaranteed to compute an enclosure of the nondominated set. In par-
ticular, DEIA-BB finds the complete set of nondominated points in case the problem
has only integer variables. No assumption on the boundedness of the feasible set is
needed. Numerical results on biobjective instances as well as on instances with three
and four objectives are reported, showing the ability of the method in computing an
enclosure of the nondominated set of multiobjective mixed-integer convex quadratic
programs.
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Appendix

Consider a multiobjective programming problem of the form

min (f1(x), . . . , fm(x))>

s.t. x ∈ Ω ⊆ Rn (14)

where fj : Rn → R denotes a strongly convex function with parameter γj > 0 for all
j ∈ [m] and Ω ⊆ Rn is a nonempty feasible set. The following results show that the
efficient set and the nondominated set of (14) are bounded sets.

Proposition 8.1. Let E be the efficient set of (14). Then there exist x̄, x ∈ Rn such
that E ⊆ int(BE) =: (x̄, x).

Proof. Assume by contradiction that (xk)k∈N ⊆ E exists such that limk→∞
∥∥xk∥∥2

2
=

+∞. Let x̃ ∈ Ω and let ρ := f(x̃). In particular, we have that

lim
k→∞

∥∥xk − x̃∥∥2

2
= +∞. (15)

Further, let j ∈ [m]. Since fj is strongly convex, we have that

0.25 γj ‖x− x̃‖2
2 + fj(0.5(x+ x̃)) ≤ 0.5fj(x) + 0.5fj(x̃)
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holds for all x ∈ Rn or, equivalently,

0.5 γj ‖x− x̃‖2
2 + 2fj(0.5(x+ x̃))− fj(x̃) ≤ fj(x). (16)

Furthermore, let x∗j denote the unique minimizer of fj over Rn. From (16) and since
fj(x) ≥ fj(x

∗
j) for all x ∈ Rn, we have that for all k ∈ N

fj(x
k) ≥ 0.5 γj

∥∥xk − x̃∥∥2

2
+ 2fj(x

∗
j)− fj(x̃).

Therefore, from (15), it necessarily holds limk→∞ fj(x
k) = +∞ for all j ∈ [m]. In

particular, for sufficiently large k ∈ N we have that f(xk) > ρ = f(x̃), contradicting
that (xk)k∈N ⊆ E .

As a direct consequence from Proposition 8.1 we obtain the following:

Corollary 8.2. Let N be the nondominated set of (14). Then there exist z, Z ∈ Rm

such that N ⊆ int(BN ) =: (z, Z).
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