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Abstract

Many liberalized electricity markets use capacity mechanisms to ensure that sufficient resources will
be available in advance of operations. Recent events have called into question the ability of capacity
mechanisms to provide sufficient incentives for reliability. A core challenge is that penalties for non-
performance on capacity obligations are lower than what theory would suggest is economically efficient,
giving suppliers an incentive to overstate their contributions to reliability. System operators can miti-
gate the effect of weak incentives by conducting accreditation studies that limit the size of the capacity
obligation taken on by suppliers. However, the technical and administrative complexity of these accred-
itation studies has contributed to ongoing challenges for reliability and efficiency. This paper reviews
fundamental elements of capacity market design, enabling a description of current inefficiencies as well
as an identification of several assumptions stressed by the transition to variable and fuel-constrained
resources. In light of these challenges, the clearest path of reform is to reduce reliance on accreditation
studies, instead working to restore economic incentives through larger non-performance penalties. Given
the financial risk this implies for suppliers, accreditation studies would nevertheless remain important in
order assess credit risk and prevent the use of bankruptcy as a hedge.

1 Introduction

In systems that rely on private investment in electricity generation, the resource adequacy problem is

addressed through market mechanisms that create an incentive for investors to build a portfolio of assets

capable of delivering an appropriate level of reliability. A fundamental issue in this context is the significant

volatility of electricity prices, driven by the high value of reliable power combined with our limited ability to

shift consumption. Providing full-strength incentives for investors would entail that system operators allow

prices to reach levels commensurate with this extraordinary value. Allowing such prices to reach end-use

consumers is typically a political impossibility given the critical importance of electricity and the difficulty

of differentiating in real time between genuine scarcity and the exercise of market power. Moreover, as

witnessed in the catastrophic generation shortfalls experienced in Texas in February 2021, even a credible

political commitment to full-strength spot prices in an “energy-only” market design is not sufficient to

ensuring resource adequacy given risk aversion and barriers to contracting (Mays et al., 2022). In light of

these challenges, regulators in most market areas have introduced a resource adequacy mechanism (e.g., a

capacity market) that mandates contracts between loads and generators (Joskow and Tirole, 2007; Cramton

et al., 2013; Borenstein et al., 2023).
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But recent events, most notably the approximately 57,000 MW of unplanned outages PJM experienced

during Winter Storm Elliott, suggest that this model is not working as intended (PJM Interconnection,

2023). In response to the perception that capacity markets are not working, some regulators and market

participants have begun to question whether they are capable of meeting resource adequacy needs. For

example, Commissioner Mark Christie has written that “it is past time to reconsider whether [capacity]

constructs, certainly those in the large, multi-state RTOs, are still capable of performing the important

duties expected of them” (Christie, 2023).

In this paper, we discuss some of the reasons that existing resource adequacy mechanisms do not deliver on

their theoretical promise. From an economic perspective, the core issue is that penalties for non-performance

are weaker than what theory suggests they should be. The experiences of PJM and ISO-New England (ISO-

NE), discussed in Aagaard and Kleit (2022), highlight the difficulty of implementing theoretically efficient

payment structures. In PJM, the 2014 polar vortex exposed significant weaknesses in the capacity mar-

ket design. During this event, PJM experienced a 22% forced outage rate, amounting to 40,000 MW of

forced outages, with approximately half of these outages coming from gas-fired plants (PJM Interconnec-

tion, 2014). Non-performance charges for that period totaled just $38.9 million, which was only 0.6% of

total capacity revenues (Federal Energy Regulatory Commission, 2015). This low penalty rate meant that

even poorly performing resources could expect to pay only minimal penalties, placing most of the risk of

under-performance on load. Similarly, ISO-NE faced its own challenges with resource performance. Prior

to reforms, ISO-NE had provided capacity payments of $674 million to a set of resources that had provided

on average only 17% of their Capacity Supply Obligations (Federal Energy Regulatory Commission, 2014).

In response to these issues, both PJM and ISO-NE implemented significant reforms in 2014 to strengthen

non-performance charges and improve the accreditation process. These reforms included measuring capac-

ity performance during a narrower set of critical hours, increasing non-performance charges, and limiting

exemptions to non-performance charges. However, these reforms faced several limitations. The potential for

high non-performance penalties increased the risk of generator defaults. Concerns over generator credit risk

were borne out in Winter Storm Elliott, with suppliers warning that “Non-Performance Charges penalties”

could “drive generators into default, suspension or termination from the market, and potential bankrupt-

cies” (Coalition of PJM Capacity Resources, 2023). Anticipating this challenge, both markets implemented

stop-loss limits and other provisions that dilute the strength of the non-performance charges. As such, de-

spite being significantly stronger than those used historically or in other U.S. markets, the current penalties

in PJM and ISO-NE are still well below what would be suggested by theory.

Given these challenges, a second focus of reform efforts has been on improving capacity accreditation

methods. By limiting the size of the capacity obligation taken on by suppliers, accurate accreditation can

complement financial incentives and enable system operators to ensure system reliability despite constraints

on non-delivery penalties. With increasing penetration of variable renewable resources and more frequent

extreme weather events, the complexity of capacity accreditation has grown. When the grid was largely

composed of dispatchable generators, resources were derated based on an equivalent forced outage rate

(EFORd), which measures the expected generator availability across all hours for which there is demand on

the unit. This approach is ill-suited for variable renewable energy (VRE) and battery-based energy storage,

for which there is demand in almost all hours of the year (Wang et al., 2022; Schlag et al., 2020; Parks,

2019). Using EFORd also overestimates the reliability contributions of thermal resources by drawing from

too large a sample of performance hours. If system stress were driven purely by high demand, this too-

large sample could still give a reasonable estimate of the conditional expectation of resource performance in
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scarcity hours. In situations where system stress is driven by supply outages, however, it leads to too-high

estimates of resource availability in the most severe stress events (Murphy et al., 2019, 2020; Dison et al.,

2022). This overestimation is particularly important when plant outages are correlated. During Winter

Storm Elliot, for example, the outage rate for gas generators reached 38% (Bryson et al., 2023), much

higher than the EFORd in use at the time. A potential improvement on EFORd is to assess generator

performance over a set of deterministic performance assessment hours (PAHs). Commonly, these PAHs are

set to align with peak load but can also reflect historical hours in which load-shedding or tight operating

conditions occurs. For instance, SPP currently accredits wind and solar resources by calculating the 60th

percentile capacity value using the top three percent of historical monthly peak load hours (Federal Energy

Regulatory Commission, 2022) while MISO accredits solar over RA hours corresponding to historically tight

margin conditions (Stenclik, 2023; Midcontinent Independent System Operator (MISO), 2023). However,

these designated PAHs are almost certainly not the hours in which shortages will occur in the future: since

instances of severe system stress are rare by design, the set of PAHs used is often much larger than the set

of likely scarcity hours. Further, accreditation over historical peak load hours can fail to capture the shift

to dual or winter peaking systems (Keskar et al., 2023) and neglects the growing divergence between peak

gross load and peak net load.

The above approaches to accreditation have been shown to cause significant economic inefficiency com-

pared to an optimal benchmark consistent with marginal effective load-carrying capability (ELCC) (Bothwell

and Hobbs, 2017). First coined by Garver (1966), the ELCC of a generator measures its expected perfor-

mance during scarcity hours. While a significant conceptual improvement over past methodologies, ELCC

has been plagued by inconsistency both in terminology and in implementation. Broadly speaking, ELCC is

calculated by comparing system reliability with and without the resource in question. Per the definitions in

Schlag et al. (2020) and Stenclik (2023), the system is calibrated to a reliability standard (typically 1-day-in-

10 year LOLE) and measures the increase in system load that can be accommodated by the added resource

while maintaining the same reliability level. Different methods using the name “ELCC” can lead to signifi-

cantly different accreditation values (Amelin, 2009), with a key distinction made in recent industry reforms

being the difference between average and marginal ELCC (PJM Resource Adequacy Planning Dept., 2024).

Average ELCC considers the contribution of the entire fleet of a particular resource type, while marginal

ELCC evaluates the incremental reliability contribution of a small additional amount of a resource. Average

ELCC tends to overvalue resources when there is already a significant amount of that resource type in the

system.

The goals of this paper are to clarify several debates in the design of resource adequacy mechanisms

and to chart a direction for their reform. At a high level, our diagnosis suggests two potential routes to

addressing the reliability threats currently facing capacity markets. The first would pair stronger prices

with stronger performance bond or credit requirements for suppliers, with amounts corresponding to their

non-performance risk. The second, more administrative approach would be through refined accreditation

methods. Our central argument is that, given the significant roadblocks to determination and adoption of

efficient accreditation values, the first of these routes is more promising. The main complication with this

approach is the financial risk it implies for suppliers of capacity. Beyond the higher risk premia that would

likely result from stronger penalties (Shu and Mays, 2023), this approach could stifle competition and lead

to market power concerns if only a few companies are able to post the collateral required. Accreditation in

this context would remain useful in ensuring that suppliers have credible physical backing for their financial

positions. The paper begins with a general overview of the theory behind resource adequacy, accreditation,
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and the translation of adequacy metrics into market mechanisms. Section 2 clarifies terminology surrounding

RA and Section 3 establishes the theoretical basis for marginal ELCC. Also in Section 3, we present a basic

numerical example mimicking the situation in PJM, showing the consequences of alternative accreditation

strategies and reliability targets. With this framework established, Section 4 discusses several issues that

complicate accreditation studies, calling into question the ability of systems relying on them to guarantee

reliability and efficiency. Section 5 highlights the implications that different market design choices have for

financial risk of both suppliers and load-serving entities, and Section 6 concludes.

2 Defining Resource Adequacy

Resource adequacy (RA) refers to the ability of a portfolio of resources to limit involuntary loss of load

in the system to a level deemed acceptable by regulators. For semantic clarity, we first distinguish three

separate concepts related to RA: the RA metric, the risk measure, and the reliability standard. The

RA metric refers to how individual shortage events are measured and aggregated within a given assessment

period, usually one year of simulated operations. The risk measure refers to how this metric, computed

across many simulated years, is converted into a single value. Lastly, the reliability standard refers to the

target value against which the calculated risk measure is compared.

To formalize these concepts, let H denote the set of all hours in a year (assumed to be constant across

years), D the set of all days, and Ω the set of all possible year-long scenarios for the system under study,

assumed to be finite. We construct a probability space (Ω,F ,P) where F represents the σ-algebra of events

on Ω and P is a probability measure defined on F satisfying standard measure-theoretic properties. Let

X : Ω → R be a random variable representing our RA metric for any given scenario.

For each generator g in the set of resources G, let xg ∈ R+ represent its installed capacity. There

is no storage, and the generation resources are assumed to have no intertemporal operating constraints.

We define Ag : H × Ω → [0, 1] as a stochastic process representing the generator’s availability, where

Agτω denotes its realization in hour τ of scenario ω. The total available capacity x̂, firm load D, and

unserved load L are stochastic processes on H × Ω → R+, with realizations x̂τω =
∑

g∈G(xgAgτω) and

Lτω = max{Dτω − x̂τω, 0}. Below, we illustrate how common RA metrics aggregate unserved load across

time. Foreshadowing the complications that come with inclusion of storage and intertemporal operating

constraints in RA frameworks, we note that these calculations rely entirely on physical availability and not

on operational decisions made within each scenario.

• Loss of Load Hours (LOLH) measures the total number of hours in which shortfall occurs:

LOLH(ω) =
∑
τ∈H

1{Lτω > 0}.

• Loss of Load Events (LOLE) is the total number of days in which there is at least one hour of lost

load where Hd is the set of hours in day d:

LOLE(ω) =
∑
d∈D

1{max
τ∈Hd

Lτω > 0}.

• Unserved Energy (UE) is the total magnitude of shortfall:

UE(ω) =
∑
τ∈H

Lτω.
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Given a RA metric that quantifies the degree of shortfall risk in a single realization ω, the risk measure can

be formally defined as a functional ρ that maps from the space of random variables defined on a probability

space (Ω,F ,P) to R, transforming the RA metric to a single real number for comparison against the reliability

standard. Two commonly used risk measures, both of which are coherent in the sense of Artzner et al. (1999)

and thus have favorable properties for inclusion in an optimization problem like the one formulated in the

next section, are expected value and CVaR. The former takes a probability-weighted mean of the RA metric

across all scenarios, and the latter evaluates the shortfall in the worst-case scenarios beyond a specified

threshold level. These risk measures are defined below with respect to a general RA metric X:

• Expected Value (EV): The expected value risk measure is defined as

ρEV (X) = E[X] =
1

|Ω|
∑
ω∈Ω

X(ω),

where the second equality holds if the set of scenarios is finite and equally probable.

• Conditional Value-at-Risk (CVaR): For a given confidence level α ∈ (0, 1), the CVaR risk measure

is defined as

ρCVaRα
(X) = inf

t∈R

{
t+

1

1− α
E [max {X − t, 0}]

}
.

In the case of a finite, equally probable set of scenarios, CVaR can be calculated as

ρCV aRα
(X) =

1

|Ω|(1− α)

∑
ω∈Ω

max{X(ω)− V aRα(X), 0},

where V aRα(X) is the α-quantile of the distribution of X, i.e., the smallest value x such that P (X ≤
x) ≥ α.

In light of the above definitions, a reliability standard is a constraint on the maximum acceptable level

of system-wide shortfall risk, as measured by a chosen risk measure applied to a specific RA metric. For

example, consider the traditional “one day in 10 years” reliability standard, which can be expressed using

the expected value risk measure applied to the LOLE metric:

ρEV (LOLE) ≤ 0.1.

This constraint requires that the expected number of days with loss of load events (LOLE) should not exceed

0.1 days per year, which is equivalent to one day in 10 years. More generally, a reliability standard can be

defined as

ρ(X) ≤ R,

where R is the maximum acceptable level of risk. By setting a reliability standard, regulators and system

planners seek to ensure that the system is designed and operated to maintain an adequate level of reliability,

as assessed by the chosen RA metric and risk measure. The choice of RA metric and risk measure should

reflect the specific reliability concerns and priorities of regulators, stakeholders, and the system operator,

while the reliability standard should be based on consideration of the costs and benefits of maintaining

different levels of reliability. The next sections will elucidate several considerations in constructing this

standard and its relationship with capacity accreditation.
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3 Accreditation Theory and Practice

In a balancing area consisting of many utilities and private investors, the resource adequacy challenge is to

construct a framework in which the overall portfolio of resources will achieve a shared reliability standard. In

liberalized markets, this framework typically includes a resource adequacy product and associated payment

for contributions to reliability. Even in systems composed of multiple vertically integrated entities, operators

must assess the contributions made by each participant to ensure that the collective reliability target is

achieved. This section develops a principled approach to accreditation by integrating the above definition of

resource adequacy into a generalized capacity expansion framework.

3.1 Reliability Constrained Generation Expansion

Building on the prior RA framework, we introduce an extensive form stochastic program describing a

simplified generation expansion planning problem (GEP). The formulation excludes binary unit commitment

variables, power flow laws, and intertemporal physical constraints, each of which poses additional challenges

for accreditation methodology to be discussed in Section 4. Let T represent the hours in our planning

horizon, L the set of demand segments, and consider the probability space (Ω,F ,P) defined previously, with

scenario probabilities Pr(ω) representing realizations of the measure P. We formulate the social planning

problem (SP) as follows:

(SP) Maximize −
∑

g∈G CINV
g xg +

∑
ω∈Ω Pr(ω)

(∑
l∈L
∑

τ∈T Bldlτω −
∑

g∈G
∑

τ∈T COP
gτωpgτω

)
s. t.

∀τ ∈ T , ω ∈ Ω :
∑

l∈L dlτω =
∑

g∈G pgτω [λτω] (Energy Balance)

∀l ∈ L, τ ∈ T , ω ∈ Ω : dlτω ≤ Dlτω [µlτω] (Demand Limits)

∀g ∈ G, τ ∈ T , ω ∈ Ω : pgτω ≤ Agτωxg [θgτω] (Generation Limits)∑
ω∈Ω Pr(ω)

∑
τ∈T (D0τω − d0τω) ≤ EUEmax [δ] (Reliability Constraint)

∀l ∈ L, τ ∈ T , ω ∈ Ω, g ∈ G : dlτω, pgτω, xg ≥ 0 [0] (Non-negativity)

The objective maximizes expected surplus across scenarios ω ∈ Ω given probabilities Pr(ω), with uncertainty

in generator availability Agτω, demand levels Dlτω, and marginal production costs COP
gτω. In a market setting,

the choice of expected value in the objective corresponds to an assumption of complete markets in risk and

the presence of at least one risk-neutral agent in the market (Ferris and Philpott, 2022). Each scenario spans

a year-long planning horizon, with 8760 hours indexed by t ∈ T . The decision variables include the capacity

mix x = (xg)g∈G with annualized investment costs CINV
g , generation levels pgτω, and demand served dlτω in

each segment l ∈ L with corresponding value Bl. We designate l = 0 as fixed demand with B0 representing

the value of lost load (VoLL), while other segments represent flexible demand. Apart from standard energy

balance, demand limit, generation limit, and non-negativity constraints, we constrain the expected unmet

fixed demand to be below EUEMAX .

The relevant Karush-Kahn-Tucker (KKT) conditions, which are derived in Appendix A, allow a descrip-

tion of theoretically efficient prices in the market. From the complementary slackness on the demand limit

constraint, we derive the expression for λτω (the marginal value of meeting demand) during scarcity hours:

λτω = Pr(ω)× (B0 + δ) if D0τω − d0τω > 0 (1)

For ease of notation, we write the price of electricity as πτω = λτω

Pr(ω) where we normalize the dual value
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by the weight of the scenario ω in the objective. In any hour with unserved firm load, the scarcity price

is B0 + δ. As such, if the reliability constraint is binding and δ > 0, then the implied price in these hours

is greater than the assumed VoLL. We call the implied price B0 + δ the implied VoLL. Here, the dual

multiplier of the reliability constraint δ is an “adder” that provides revenue sufficiency for the system to

meet its RA requirement. From the KKT conditions in Appendix A, it is straightforward to see that we can

write an equivalent formulation of our social optimization problem by removing the reliability constraint and

instead substituting B0 with B0 + δ in the objective. The idea that a tighter reliability standard directly

induces a higher endogenous scarcity price is important, as it forms the basis for the economic interpretation

of ELCC.

In the context of the previous section, we note that the reliability standard is set relative to the expected

value of unserved energy (EUE), which is continuous rather than a binary “loss of load”-type metric. This

choice yields an intuitive, economically-aligned derivation of optimal accreditation values, explaining why

it has become a de facto standard for accreditation even in systems nominally using the “1-in-10” LOLE

standard. We address the implications of using alternative RA metrics and risk measures in Appendix B.

3.1.1 Deriving an Idealized Capacity Payment

As per standard duality arguments, a generator produces at its maximum available capacity whenever the

price is above the variable cost of production; otherwise, it is off or marginal:

0 ≤ (Agτω × xg − pgτω) ⊥ πτω − COP
gτω ≥ 0. (2)

The long-run equilibrium conditions for capacity investment under perfect competition, with each technology

making zero net profit in expectation, can be written as follows:

0 ≤ xg ⊥ ∂L

∂xg
≥ 0 ∀g ∈ G (3)

⇒ 0 ≤ xg ⊥ −CINV
g +

∑
ω∈Ω

∑
τ∈T

θgτω ×Agτω ≥ 0 (4)

⇒ 0 ≤ xg ⊥
∑
ω∈Ω

∑
τ∈T

Pr(ω)
[
Agτω(πτ − COP

gτω)1{πτ − COP
gτω > 0}

]
− CINV

g ≥ 0. (5)

Note that the term from which we subtract the investment cost in Eq. (5) corresponds to the expected

per-unit annual operating profit of generator g. Given prices π∗ corresponding to the optimal dual values in

the solution to (SP), the resulting ideal operating profits η in each year-long scenario are given by:

ηIDEAL
gω =

∑
τ∈T

Agτω(π
∗
τω − COP

gτω)1{π∗
τω − COP

gτω > 0}. (6)

Under a suboptimal remuneration policy where price suppression occurs, restoring a socially optimal capacity

mix x∗ requires compensating generators for missing revenue. A clear example of how such suppression can

arise is apparent from problem (SP): since spot markets do not include a constraint corresponding to long-

run reliability targets, there is no way for the reliability adder δ to be incorporated in the spot price.

More generally, spot price formation depends on algorithmic decisions made in real-time operations, such

that the prices arising in real-world systems can differ from the idealized analysis Mays (2024). Without

detailing the mechanism by which spot price formation occurs, an idealized capacity payment to a generator
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operating at 100% availability would be the total revenue difference between the price π∗ that it receives in

the socially-optimal case and the price π̂ that it receives in practice:

CAP 100 =
∑
ω∈Ω

∑
τ∈T

Pr(ω) [(π∗
τω − π̂τω)1{(π∗

τω − π̂τω) > 0}] (7)

Here, we will assume that price suppression only occurs when both π∗ and π̂ are greater than the variable

costs of any generator so that under both remuneration policies, generators are “on” at the same time.

To allocate the capacity payment to different technologies, we discount the above based on the generator’s

availability during times of price suppression:

CAP IDEAL
g =

∑
ω∈Ω

∑
τ∈T

Pr(ω) [Agτω(π
∗
τω − π̂τω)1{(π∗

τω − π̂τω) > 0}] . (8)

3.2 Economic Accreditation

As previously shown, generation resources in a system with a binding reliability constraint need to be

paid prices higher than the assumed VoLL during scarcity conditions. To determine in an economic sense

the degree to which each generator contributes to reliability, we can compare the idealized capacity payment

received by each technology to the payment that would be made to a unit of perfect capacity. This aligns

with the standard notion of accreditation as a means to determine the equivalent firm capacity value of each

resource. Taking the ratio of Eq. (8) over Eq. (7) results in an economic definition of ELCC, which can be

interpreted as expected availability weighted by the degree of price-suppression at each time:

ELCCIDEAL
g =

∑
ω∈Ω

∑
τ∈T Pr(ω) [Agτω(π

∗
τω − π̂τω)1{(π∗

τω − π̂τω) > 0}]∑
ω∈Ω

∑
τ∈T Pr(ω) [(π∗

τω − π̂τω)1{(π∗
τω − π̂τω) > 0}]

(9)

This ELCC calculation essentially determines probabilistic PAHs that are a function of the socially-

optimal capacity mix, such that the assessment of generator performance is restricted to when price sup-

pression occurs. Note that in the objective of (SP), we fix the value of inelastic demand at B0, setting an

administrative VoLL that functions as a price cap in the spot market. If prices are capped at this value,

the system needs to compensate generators for missing revenues up to the level of the optimal implied VoLL

B∗
0 = B0 + δ. In a simplified setting in which spot prices are suppressed only in instances of unmet demand,

and at each time the magnitude of suppression is the uniform difference δ between B∗
0 and B0, the optimal

ELCC values given by Eq. (9) can simply be expressed as the expected generator availability over all shortfall

hours, where the expectation is taken over all time-scenario pairs:

ELCCIDEAL
g = E[Ag|D0 − d0 > 0] (10)

The expression in Eq. (10) corresponds to the conditional expectation of resource availability during scarcity

hours, commonly treated as a shorthand description of accreditation value. However, given the potential

misuse of this shorthand, it is worth specifying that Eqs. (9) and (10) are only equivalent when price

suppression is uniform and occurs only during shortfall hours. In practice, given non-convexity, uncertainty,

and other pricing challenges, this assumption is not satisfied in practice Mays (2024). The consequences of

relaxing this assumption for capacity accreditation are the subject of ongoing work. The numerical example

in this paper omits these price formation complications outside of scarcity, making the simplified expression

in Eq. (10) a reasonable approximation.
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3.3 Numerical Example

Since solving a capacity expansion model using all scenarios ω ∈ Ω would be impractical, for the numerical

examples we shift to a sample problem with S scenarios and denote the resulting model (SPS). While we avoid

introducing additional notation to make the distinction explicit, it should be understood that ELCC and

other outputs from model (SPS) will be estimates. We return the topic of sampling error in Section 4.1.1, here

focusing instead on the different competitive equilibria that would be expected to arise under various market

configurations. In the example, we construct a stylized instance of the PJM market with three representative

generation technologies: wind turbines, combined cycle gas turbines (CCGTs), and nuclear generators. The

nominal load, surface temperature, and wind-speed are derived from seven years of baseline historical data

in the PJM region from 2007–2013. Table 1 provides a summary of key parameters for each technology. Note

that for simplicity, operating costs are fixed. To simulate potential correlated, weather-dependent thermal

outages for the CCGT and nuclear resources, failures are sampled from a non-homogenous Markov chain,

constructed using techniques outlined in Murphy et al. (2019). For each historical year, five distinct CCGT

and nuclear availability profiles are drawn, resulting in 35 year-long scenarios that are assumed to occur with

equal likelihood. Wind availability and fixed load are directly derived from values in the historical weather

year corresponding to each scenario. In the context of this paper, availability refers to the percent of the

total installed capacity of a given resource type that is available. To model thermal outages, we split the

total installed capacity xg of each technology across N identical units with size xg/N . For an individual

thermal plant, a generator at time τ in scenario s is either 100% available or derated with 0% availability.

Each of the N generators in a fleet is assumed to have identical characteristics, with the total resource-level

availability Agτs given by the average of N binary values. With this in mind, the number of generators of

each resource type N serves as a proxy for the degree of inter-fleet correlation, with N = 1 implying perfect

correlation. In the following experiments, we first explore the effects of these correlation assumptions in

an unrestricted system and subsequently assess the impact of binding EUE targets. In this subsection, all

market equilibria implicitly assume “full-strength” prices, i.e., that embed the δ price adder discussed earlier.

The administrative VoLL is set to $10,000/MWh, twice as high as the $5,000/MWh value currently used in

ERCOT. Additionally, up to 10GW of flexible demand can be served, partitioned into five 2GW segments

with linearly declining value.

Metric
Generation Technologies

NUC CCGT WIND
Investment Cost (CINV

g ) 350,000 70,000 120,000

Operating Cost (COP
g ) 10 50 0

Availability (Agτs) Simulated Simulated Historical

Table 1: Model parameters for three representative types of generation (costs are per MW of installed
capacity and per MWh of production/consumption)

3.3.1 Generator Correlation and the Seasonality of Risk

First, Table 2 presents results for a benchmark system in which the reliability constraint is fully relaxed

under various values of N . Comparing the equilibria that arise, it is evident that the degree of inter-fleet

correlation significantly impacts the optimal resource mix and the system’s reliability. As the number of

generators decreases, the risk of correlated thermal failures increases, resulting in higher shortfall risk across

all selected RA metrics (EUE, LOLH, LOLE) and necessitating more installed capacity across all resource
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types. Using N = 5 as worst-case benchmark for the objective function value (i.e. the system-wide financial

surplus, with lost load penalized at the administrative VoLL of $10,000/MWh), we see that correlated

failures introduce significant financial loss. At N = 5 generators, the total EUE is 0.009% of fixed demand;

at N = 100 generators this number falls to 0.002%, approximating the target established in the Australian

National Electricity Market (Australian Energy Market Operator (AEMO), 2022). In all cases, LOLE is well

above the traditional target of 0.1. At the same time, LOLH is well below the estimate of 30 PAHs per year

used by PJM to calculate non-performance charges in its capacity market (Ming, 2022). To take a closer look

at when unmet demand occurs throughout the year, Figure 1 compares the distribution of unserved energy

(shown as an average across scenarios) over time for a system with high and low inter-fleet correlation. When

correlation is very mild, scarcity events occur primarily in the summer when gross demand peaks. However,

if thermal outages are highly correlated, widespread gas failures in the winter significantly shift the system’s

risk seasonality.

Generators NUC CCGT WIND ∆ Surplus ($B/yr) EUE LOLH LOLE
5 78.19 90.99 13.64 Benchmark 92.72 11.34 7.69
10 75.94 86.20 13.01 1.00 48.64 8.20 4.46
20 75.61 83.64 11.24 1.40 33.54 6.86 2.89
50 75.93 82.41 9.80 1.60 25.83 6.54 2.17
100 74.82 80.42 10.77 1.90 21.66 6.11 1.83

Table 2: RA Metrics for varying levels of generators at administrative VoLL = $10,000/MWh (no reliability
constraint)

Figure 1: Expected lost load over time at high (N = 5) and low (N = 100) inter-fleet correlation

3.3.2 Reliability Targets and Implied Prices

Assuming a system with a high degree of inter-fleet correlation (N = 5), we now examine the impact of

varying EUE-based reliability standards on system performance and resource composition. Table 3 presents

key evaluation metrics for different target EUEs, while Figure 2 illustrates the temporal distribution of

shortages. As the reliability standard becomes stricter, we observe a substantial increase in the implied

VoLL, rising from $55,921/MWh at a standard of 25 GWh/yr to $529,198/MWh at 5 GWh/yr. As such,

the example confirms that enforcing tight reliability standards, especially in a system with significant risk

of correlated outages, implies prices substantially higher than typical estimates of VoLL (cf. Zhao et al.

(2018); Murphy et al. (2020)). This increase is accompanied by increased capacity investments across all
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generation types. The system’s risk profile also undergoes a shift, with winter accounting for ∼77% of EUE

at 5 MWh/yr EUE compared to ∼44% in the unconstrained case.

EUE Implied VoLL
NUC CCGT WIND

∆ Surplus
LOLH LOLE

(GWh/yr) ($/MWh) ($B/yr)
5.0 529,198 94.27 114.64 22.94 -4.00 0.49 0.49
10.0 202,560 86.46 114.96 23.09 -2.40 1.09 0.97
15.0 120,860 84.89 111.91 16.57 -1.60 1.57 1.37
20.0 79,154 82.78 109.62 16.46 -1.20 2.23 1.83
25.0 55,921 81.64 107.35 16.01 -0.90 2.86 2.29

Table 3: RA Metrics under Varying Levels of EUE Reliability Standard (GWh/yr) given high inter-fleet
correlation

Figure 2: Expected lost load over time for tight vs moderate reliability standard given high inter-fleet
correlation.

3.4 Commoditization and Reserve Formulation

The numerical results in Table 3 highlight the practical difficulty of achieving strict reliability targets

in an energy-only market, as it can entail that prices be allowed to go well above the level acceptable to

stakeholders. The primary alternative in practice has been to cap prices in the energy market, replacing the

resulting “missing money” through a separate resource adequacy product. This subsection shows that ELCC

values derived from the equilibrium capacity mix at a target EUE level can, in principle, be used in this

setting to restore a socially optimal equilibrium under a system with a price cap. ELCC values determine the

ability of resources in the system to provide the resource adequacy product, in effect acting as an “exchange

rate” between different resource types.

In the following reserve-constrained formulation (RES), we mandate that the ELCC-derated sum of

installed capacities be at least the expected demand served during designated shortfall hours. We note the

contrast between this specification and the traditional definition of a planning reserve margin (PRM) relative

to expected peak demand. Instead, achieving the reliability target at least cost requires that the margin

requirement be based on the same “endogenous PAHs” used in the calculation of the economic ELCC values,

i.e., when D0τs − d∗0τs > 0, where (∗) signals that a value optimally solves (SPS). Assuming that there is at
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least one hour with shortfall, we formulate the reserve-constrained model as follows:

(RES) Maximize −
∑

g∈G CINV
g xg +

∑
s∈S Pr(s)

(∑
l∈L
∑

τ∈T Bldlτs −
∑

g∈G
∑

τ∈T COP
gτspgτs

)
s.t.

∀τ ∈ T , s ∈ S :
∑

l∈L dlτs =
∑

g∈G pgτs [λτs] (Energy Balance)

∀l ∈ L, τ ∈ T , s ∈ S : dlτs ≤ Dlτs [µlτs] (Demand Limits)

∀g ∈ G, τ ∈ T , s ∈ S : pgτs ≤ Agτsxg [θgτs] (Generation Limits)∑
g∈G ELCCg × xg ≥ E [d∗0 | D0 − d∗0 > 0] [γ] (Reserve Margin)

∀l ∈ L, τ ∈ T , s ∈ S, g ∈ G : dlτs, pgτs, xg ≥ 0. [0] (Non-negativity)

Below, we demonstrate that an appropriately calibrated reserve margin requirement, coupled with efficient

accreditation, restores optimal levels of capacity investment in a market with a capped VoLL B0 < B∗
0 .

Assuming the optimal solution x∗ to (SPS) is known, we first establish that this mix is also feasible for

(RES) in Lemma 1, the proof of which is given in Appendix C.

Lemma 1. Suppose x∗ is an optimal solution to (SPS), that shortfall occurs in at least one modeled hour

(i.e., there exists at least one (τ, s) pair where D0τs − d∗0τs > 0), and that ELCC is defined as expected

availability during shortfall as in Eq. (10). Then x∗ is feasible for (RES).

In the statement of Lemma 1, each generator’s ELCC is assumed to reflect its expected availability during

scarcity. As a result, it is straightforward to see that the reserve margin constraint is satisfied with equality

under x∗ - this is detailed in Appendix C. Building on this feasibility result, we can establish optimality under

stronger conditions. The following theorem, with proof also in Appendix C, formalizes this relationship:

Theorem 1. Suppose x∗ is an optimal solution to (SPS), that shortfall occurs in at least one modeled hour

(i.e., there exists at least one (τ, s) pair where D0τs − d∗0τs > 0), that price suppression only occurs during

scarcity hours (i.e., π∗
τs − π̂τs > 0 if and only if D0τs − d∗0τs > 0), and that price suppression is uniform in

magnitude (i.e., there exists δ > 0 such that π∗
τs− π̂τs = δ whenever D0τs−d∗0τs > 0). Then x∗ is an optimal

solution to (RES).

In Appendix C, the KKT conditions for (RES) are derived and proven to be satisfied by the following

set of dual variables:

γ = (B∗
0 −B0)NS

λτs = λ∗
τs − (B∗

0 −B0) if D0τs − d∗0τs > 0

λτs = λ∗
τs otherwise

µlτs = Pr(s)×Bl − λτs

θgτs = θ∗gτs −
γ Pr(s)

NS
1 {D0τs − d∗0τs > 0} .

Note that NS =
∑

t∈T

∑
s∈S Pr(s)1 {D0τs − d∗0τs > 0} is the optimal expected annual shortfall hours (i.e.

the expected LOLH). Solving (RES) with x∗, the ideal capacity payment to a unit of perfect capacity

corresponds exactly to the optimal dual value of the margin constraint γ∗. This value is given in Eq. (11)

below and is analogous to the economic capacity payment CAP 100 in Section 3.1.1.

γ∗ =
∑
τ∈T

∑
s∈S

Pr(s)(B∗
0 −B0)1 {D0τs − d∗0τs > 0} (11)
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Thus, the proposed economic ELCC, in combination with an appropriately calibrated margin requirement,

can efficiently restore resource-adequate levels of capacity investment via optimal pricing of reserves. How-

ever, achieving near-optimal results from a PRM approach in practice requires a great deal of attention to

the means of accreditation. Extending our numerical example to solve for a reserve-constrained equilibrium

using (RES), the following results will examine the consequences of a miscalibrated margin requirement.

3.5 Correlated Failures and Mis-accreditation

In Section 3.3, we first evaluated the competitive equilibrium for varying levels of inter-fleet correlation

without a reliability requirement and then did the same for a highly correlated system with increasingly

stringent EUE targets. From solving (SPS) for each market setting, we proceed to calculate the corresponding

economic ELCCs and compare them with two cases of inefficient accreditation. In the first suboptimal case,

all resources are accredited by their expected availability over annual PAHs. As per past PJM practices

(Ming, 2022), we use the top thirty hours of peak net load for thermal generators and the top 200 hours

of gross load for wind. In the second case, only wind is accredited using PAHs, and thermal generators

are derated by their EFORd (as has traditionally been the case across multiple RTOs). To inform the

construction of an optimal margin constraint in (RES), we also compute the ideal level of resources, given

by the expected demand served, or equivalently, the expected maximum available capacity during shortfall

hours. Tables 4 and 5 present the empirical capacity credits and the optimal reserve requirements for the

unconstrained and EUE-constrained configurations respectively. Across both sets of results, EFORd and

PAH consistently overestimate the capacity value of thermal resources, particularly for Combined Cycle Gas

Turbine (CCGT) units. Conversely, these methodologies mostly underestimate the capacity value of wind

resources across all scenarios. While EFORd is completely invariant to the reliability of the system, the PAH

approach assumes a direct connection between system stress and peak net or gross load. Our experiments

highlight instances where the latter assumption is largely erroneous.

Taking a closer look at Table 4, as correlated thermal outages become the primary driver of load-shedding,

the economic ELCC values and ideal reserve levels reflect the shift in risk seasonality towards winter months.

However, the alternative accreditation values fail to follow suit, with the gap between the PAH-based ELCC

and the efficient valuations widening with increased correlation. As can be seen by the decline in the

minimum required effective capacity, shortfall risk becomes increasingly decoupled with load peaks. On the

flip side, if there is little to no correlation, then unserved demand coincides almost directly with peak summer

demand, which means wind would have a lower valuation than what is implied by the PAH approach. A more

pronounced misalignment occurs when an upper limit on EUE is enforced in a highly-correlated system. As

we have seen, the risk seasonality shifts even further into the winter under more stringent reliability targets.

In Table 5 the economic ELCC values suggest that with a stricter reliability target, shortfalls in the test

system are predominantly caused by widespread gas outages during cold temperatures with relatively lower

risk of nuclear outages and stronger wind production. At an EUE of 5 GWh/yr, the PAH accreditation

for CCGT exceeds the efficient value by more than three-fold, while the credited value of wind is less than

half of what is optimal. Such prominent divergence in accreditation values challenges the notion that a

PAH-based derating over a sufficiently narrow set of hours is a suitable estimate of a resource’s marginal

reliability contribution.

3.6 Implications of Mis-accreditation for Procurement

Recall that the reserve constraint as constructed in (RES) restores optimality in a price-capped market if

both the ELCC and the margin requirement are optimal. If instead the system operator used the described
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N
Min. Effective

Capacity
NUC CCGT WIND

ELCC∗ PAH EFORd ELCC∗ PAH EFORd ELCC∗ PAH
5 120.08 85.27% 86.27% 97.11% 56.43% 73.09% 94.21% 17.15% 10.51%
10 134.01 90.14% 93.91% 97.11% 74.11% 86.32% 94.22% 13.73% 10.51%
20 142.89 92.46% 92.94% 94.19% 84.48% 90.67% 94.19% 10.77% 10.51%
50 147.16 94.15% 94.96% 97.10% 89.51% 92.50% 94.19% 9.10% 10.51%
100 148.91 94.59% 95.51% 97.10% 96.09% 97.54% 97.62% 8.13% 10.51%

Table 4: Capacity credit values for varying levels of inter-fleet correlation, with entries marked as green if
they exceed the economic accreditation (ELCC∗) and red otherwise.

Max
EUE

Min. Effective
Capacity

NUC CCGT WIND
ELCC∗ PAH EFORd ELCC∗ PAH EFORd ELCC∗ PAH

5 112.65 85.27% 91.71% 97.11% 24.26% 79.68% 94.21% 24.60% 10.51%
10 111.85 83.87% 91.50% 97.11% 29.99% 78.72% 94.21% 24.42% 10.51%
15 114.09 84.32% 91.41% 97.11% 35.06% 78.36% 94.21% 22.74% 10.51%
20 115.97 84.10% 88.99% 97.11% 38.97% 81.94% 94.21% 22.02% 10.51%
25 116.98 84.06% 89.68% 97.11% 42.01% 79.90% 94.21% 21.38% 10.51%

Table 5: Capacity credit values for varying EUE targets in a highly correlated system (N = 5), with entries
marked as green if they exceed the economic accreditation (ELCC∗) and red otherwise.

sub-optimal accreditation methods to derate each resource, what would be the financial and reliability

impacts? For the same highly-correlated system with N = 5 generators, we solve (RES) to determine the

reserve-constrained equilibrium resource mix and relevant evaluation metrics for both variants of inefficient

accreditation. Since PAH and EFORd over-value the contributions of thermal generators, an added margin

(defined as a percentage of the efficient reserve level in the first row of Table 4) may be applied to meet

EUE targets. Table 6 empirically demonstrates the implications of PAH-based accreditation for increasing

margin requirements. The price cap is set at $2,000/MWh and rows are sorted in order of decreasing EUE,

with the socially optimal equilibria highlighted for comparison. Foreseeably, without mandating additional

procurement on top of the effective reserve level, the margin constraint is non-binding. If the goal is to

restore an unconstrained social optima with an EUE of ∼92 GWh/yr, an appropriate margin should be

set at 10-15% for the PAH method and 35-40% for the EFORd method. At this relaxed EUE target, the

sub-optimality of alternative accreditations is not apparent and differences in the capacity mix are relatively

minor. However, as we approach a stricter reliability requirement, the superiority of the economic ELCC

becomes more apparent. For a target of 25 GWh/yr EUE, a ∼30% margin would be needed in the PAH case

with at least a $400M/yr loss in financial surplus compared to optimal values. When the target is raised to

10 GWh/yr EUE, the corresponding margin for the PAH approach would need to exceed 70%, resulting in

$3.3B/yr in financial loss and a ∼65% overbuild of CCGTs. Such distortion of the resource mix is likely to

be exacerbated if thermal resources are accredited using EFORd. Evidently, it becomes increasingly costly

and inefficient to counter poor accreditation with over-procurement as the reliability standard tightens. As

per Table 6, the EUE improvement declines as the margin increases, such that it is impractical to achieve a

5 GWh/yr EUE target through PAH accreditation.

4 Accreditation Challenges

In the stylized analysis of Section 3, we are able to restore a socially optimal resource mix using economic

accreditation values and an optimal margin requirement. This result, however, relies on several assumptions
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Margin NUC CCGT WIND ∆ Surplus ($B) EUE LOLH LOLE
None 74.93 78.72 15.17 -1.20 303.32 32.46 17.57
5% 75.61 81.67 14.01 -0.70 233.59 26.09 14.97
10% 76.55 89.07 12.06 -0.10 129.17 15.37 9.94
* 78.19 90.99 13.64 Benchmark 92.72 11.34 7.69

15% 76.93 96.99 11.10 -0.10 76.57 8.83 6.37
20% 76.96 105.25 10.70 -0.40 50.08 5.71 4.43
25% 76.96 113.53 10.39 -0.80 34.58 3.71 2.86
30% 76.88 121.87 10.34 -1.30 26.05 2.57 2.03
* 81.64 107.35 16.01 -0.90 25.00 2.86 2.29

35% 76.79 130.21 10.33 -1.80 21.17 1.89 1.57
* 82.78 109.62 16.46 -1.20 20.00 2.23 1.83

40% 76.71 138.54 10.31 -2.10 17.74 1.60 1.34
45% 76.66 146.84 10.23 -2.90 15.46 1.17 0.97
* 84.89 111.91 16.57 -1.60 15.00 1.57 1.37

50% 76.63 155.12 10.20 -3.50 13.96 0.97 0.86
55% 76.58 163.42 10.19 -4.00 12.77 0.86 0.74
60% 76.56 171.68 10.14 -4.60 11.75 0.77 0.71
65% 76.56 179.92 10.07 -5.10 10.92 0.71 0.66
70% 76.57 188.16 9.99 -5.70 10.15 0.66 0.60
* 86.46 114.96 23.09 -2.40 10.00 1.09 0.97
* 94.27 114.64 22.94 -4.00 5.00 0.49 0.49

Table 6: RA Metrics for PAH Accreditation with Varying Margins (5 Generators)

and modeling simplifications. Even with these simplifications, implementation of improved accreditation

methods could bring significant benefits relative to the status quo. However, several issues are likely to affect

the ability of systems to deliver a targeted level of reliability within the accreditation framework described

in Section 3. This section describes these challenges, several of which have become more consequential with

rapid growth of wind, solar, storage, and other new technologies.

4.1 Computational Challenges

It is widely understood that incorporating variable and energy-limited resources entails additional mod-

eling complexity, e.g., to address intertemporal operating constraints and flexibility needs (Stenclik, 2023).

In some cases, it may be relatively straightforward to address this additional complexity through software

improvements and increased computing resources. In other cases, the challenge may be more epistemic than

computational. For example, many systems are currently debating how to determine fair accreditation val-

ues for aggregations of distributed energy resources. Here we focus on two challenges related to computing

high-quality ELCC estimates.

4.1.1 Scenario Construction and Sampling

In Section 3.3.1, we showed that assumptions about the correlation between generators within a resource

class significantly impacted the equilibrium resource mix and system reliability metrics. This finding is

particularly relevant given recent winter storms that revealed how historical underestimation of weather-

dependent outage risks and other potential sources of correlation resulted in over-accreditation, leaving the

grid vulnerable to widespread failures.

More generally, any RA framework that relies on accurate accreditation is sensitive to how supply and

demand uncertainties are represented in the analysis. Ideally, input modeling should reflect a range of possi-
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ble future system conditions and consider the potential impacts of climate change on both demand patterns

and resource availability. This requires comprehensive analysis of factors affecting resource capability during

system stress events. Physical infrastructure constraints present one set of challenges: for thermal resources,

particularly natural gas plants, fuel insecurity during extreme weather can have prolonged and wide-reaching

reliability impacts. However, modeling fuel availability requires assessing risks associated with gas produc-

tion and transport during extreme cold snaps, the details of which are typically excluded from electricity

system models. Technological evolution introduces another layer of complexity: for storage resources, long-

term degradation effects and rapid improvement in battery technologies complicate the valuation of their

reliability contribution. The inclusion of aggregated distributed energy resources in accreditation adds fur-

ther challenges, since the specific elements and locations within an aggregation may not be known far in

advance.

Introducing greater detail into the representation of system uncertainty increases the computational

intensity of assessing reliability in a large number of scenarios. As such, there is an inherent trade-off between

model fidelity and tractability, introducing a significant risk of sampling error, particularly in capturing rare

but consequential shortage events that are critical to resource adequacy assessments. Techniques such as

importance sampling or moment-matching methods could potentially improve the representation of tail

events without excessive computational overhead but require careful calibration to avoid introducing bias.

Another approach might involve two-stage modeling, where a larger set of scenarios is used to identify critical

periods, followed by more detailed analysis of these periods. Ultimately, the challenge lies in balancing the

need for computational efficiency with the imperative to accurately represent the full spectrum of possible

system conditions, particularly those that stress the system and reveal the true reliability contribution of

different resources. The impact of sampling error highlights the importance of sensitivity analyses and the

potential need for adaptive scenario selection techniques to ensure robust ELCC estimates.

4.1.2 Dependence on the Resource Mix

In Section 3, accreditation values in (RES) are based on the optimal capacity mix found in (SPS). In order

to enable planning, system operators attempt to announce resource accreditation values well in advance of

the relevant operating period. For example, the PJM capacity market nominally occurs three years ahead

of time. This gap implies that accreditation values will be based on an incorrect resource mix. When

accreditation values based on this projected resource mix are used as an input into the capacity auction, a

different equilibrium resulting in different accreditation values will arise, implying that the system might no

longer meet its reliability target.

One potential response to this issue is to compress the timeline between accreditation and the perfor-

mance interval, e.g., by moving the capacity market from a three-year-forward construct to a prompt-month

construct. However, such a shift could weaken the effectiveness of capacity markets in terms of financial risk

reduction and market power mitigation. A second potential response, proposed by the PJM Independent

Market Monitor Monitoring Analytics, LLC (2023), is to formulate the capacity market along the lines of

model (SPS) rather than model (RES), leading to endogenous determination of accreditation values within

the auction. The major disadvantage of this approach is that computational limitations would severely

limit the number of hours able to be included in the auction relative to the number typically included in

accreditation studies.
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4.2 Structural Challenges

While the previous category of challenges can be considered more narrowly technical and thus more

straightforward to address with current capacity market frameworks, a second category is more fundamental

in the sense that resolving them may not be possible without more significant market design changes.

4.2.1 Non-scarcity Missing Money

The idealized ELCC in Eq. (8) uses the difference between optimal prices π∗ (from (SP)) and the suboptimal

prices π̂ formed in real-world markets. The logic of accreditation based on availability during scarcity relies

on the assumption that price suppression will be most salient in these intervals. As discussed in Mays (2024),

this assumption can be questioned due to price formation challenges arising from non-convexity, variability,

and uncertainty. As a consequence, the conditions of Theorem 1 are not met in real-world markets and

accreditation based on availability during scarcity intervals does not necessarily restore an optimal resource

mix. While we leave a more complete discussion of this issue to future work, it is worth highlighting that

the growth of storage could increasingly strain the assumption of no price suppression outside of scarcity

intervals. Since storage offers into markets on the basis of opportunity costs, a suppressed price during load

shedding will backpropagate into suppressed prices in all periods leading up to potential load shedding. As

such, efficient accreditation would need to assess resource performance in a larger number of assessment

hours.

4.2.2 Capacity Deliverability

RA studies typically include only a coarse representation of the transmission network, defining a small

number of zones and assuming that resources are interchangeable within each zone. This simplification can

lead to reliability challenges if operators are unable to resolve non-modeled transmission constraints that

become binding in real-time operations. To address this issue, system operators in the U.S. conduct a series

of studies to assess “deliverability” before certifying a resource as eligible to contribute to resource adequacy.

By conducting these studies, and potentially requiring the construction of network upgrades identified in the

studies, system operators hope to limit the risk arising from non-modeled constraints. While an accepted

practice, it is not clear how transferable the results of deliverability studies are to RA studies, and the

current process likely leads either to unforeseen reliability risks and/or inefficient investment in network

upgrades. Further, the need to incorporate deliverability has been identified as a major barrier in efficient

interconnection of new resources (Mays, 2023).

4.2.3 Operational Incentives

The contribution of generation resources in scarcity events is not only driven by exogenous factors, but also

by operational decisions that depend on market rules. For example, the availability of a battery is not just a

function of its mechanical status but also its state of charge, which depends on prior operating decisions. The

optimal battery dispatch strategy may vary significantly based on system conditions, market structures, and

the battery’s participation in multiple service markets. As Zachary et al. (2022) and Gonzato et al. (2023)

demonstrate, differing storage dispatch strategies can significantly impact LOLE without affecting system

costs. A greedy dispatch policy has been proven to be EUE-minimizing (Zachary et al., 2021), providing a

unique upper bound on storage’s capacity credit that does not require foresight - an approach implemented

in NREL’s PRAS tool (Stephen, 2021). However, Stephen et al. (2022) shows that this upper bound can sig-
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nificantly exceed storage’s actual reliability contribution when dispatch follows economic signals, particularly

in cases of high supply variability and limited foresight. A similar issue applies to dual-fuel resources making

fuel inventory decisions to prepare for potential natural gas supply interruptions. In the ISO-NE capacity

market, for example, stop-loss provisions prevent generators from accruing more than approximately 1.5

hours worth of losses in a given month (ISO New England, 2022). As such, generators have less incentive to

hold enough fuel to sustain operations through cold weather leading to high demand and supply disruptions

that last several days or longer. Accurate accreditation in this context requires an assumption about the

commercial strategies that will be taken by market participants given diluted economic incentives.

4.3 Administrative Challenges

An accreditation approach also requires that system operators update market rules and conduct accredi-

tation studies quickly and accurately. It is not clear that RTOs, as they are currently structured, are capable

or willing to do this. Despite the theoretical superiority of marginal ELCC, U.S. systems have been slow

to adopt accreditation based on that approach. A 2022 jurisdictional survey by Newell et al. (2022) found

significant misalignment in methodology across RTOs. Since the Brattle survey was published, the direction

of reform has varied widely. While PJM has implemented marginal ELCC for all resource classes as of

its 2025/2026 capacity auction (PJM Interconnection, 2024), the California Independent System Operator

(CAISO) has reverted to an exceedance-based methodology (California Independent System Operator, 2024).

Institutional inertia is particularly evident in the inconsistent treatment between renewable and conventional

resources. For wind and solar resources, ISO-NE and NYISO have adopted a variant of the marginal ap-

proach called Marginal Reliability Improvement that is conceptually identical to marginal ELCC and should

yield the same accreditation values (LeeVanSchaick and Coscia, 2021; Zhao, 2022), while SPP and MISO

have retained average ELCC (Midcontinent Independent System Operator, 2022; Southwest Power Pool,

2022). However, the outdated methods for accrediting thermal resources outlined in Newell et al. (2022)

remain largely unchanged. The fragmented landscape of capacity accreditation is a reflection of the fact that

adoption of improved methods is not merely a technical question, but also requires stakeholder consensus

within regulatory structures that can struggle to keep pace with technological and methodological changes.

Thus, even though there is relative consensus that marginal ELCC is the correct approach, disagreement

about which method to apply and implementation delays may reflect administrative or governance challenges.

Because RTOs use sector-weighted voting, they often require a supermajority to adopt major changes, and

the changes that they do adopt often reflect the preferences of stakeholders that possess strong governance

rights (Yoo and Blumsack, 2018). In addition, because many proposals are first developed in subcommittees

but then have to be voted on by a larger stakeholder group, they have to pass through multiple veto points.

In PJM, for example, ELCC reforms were first voted on by the Planning Committee, which met twenty-five

times to discuss the reforms. The reforms then had to pass a Members Committee vote, at which point PJM

submitted the reforms for FERC approval (Chmielewski, 2023). In other words, to improve accreditation

methods, RTOs have to build consensus among stakeholders, some of whom might not benefit from resource

adequacy reforms.

5 Financial Incentives, Risk Transfer, and Socialization

Given the challenges discussed in Section 4, this paper argues that the most promising direction of capac-

ity market reform is to reduce reliance on accreditation by strengthening prices or penalties. The underlying

economic issue necessitating a robust accreditation process is that the financial incentives provided to market
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participants are not consistent with their contributions to system reliability. With stronger financial incen-

tives, manifesting as some combination of higher price caps (the assumed VoLL B0 in the notation above)

or stronger non-performance penalties (incorporating the effect of the price adder δ), suppliers would bear

the financial consequences of a failure to deliver on contracts. In that idealized setting, market participants

would not have an incentive to overstate the level of obligation they were capable of taking on.

Building on the numerical example in Section 3, this section describes the primary roadblock to such

reform efforts, namely, the increased financial risk it implies for both buyers and sellers in the wholesale

market. We describe the financial impact of three different market design configurations. The first is an

energy-only design in which wholesale market prices are allowed to rise to the VoLL implied by the selected

reliability standard. The second and third are archetypal forms of the installed capacity market design,

capacity payments and reliability options. Capacity payments award generators with a lump-sum

amount based on an estimate of their available capacity, as determined through an administrative process. In

the modeled capacity payment, generators receive compensation based on their assumed performance across

all modeled scarcity events, rather than for their actual performance during specific scarcity events. This

approach provides a stable revenue stream that is largely decoupled from energy market outcomes, shifting

performance risk from generators to consumers. With reliability options, on the other hand, generators

receive a fixed premium in exchange for agreeing to pay back the difference between the market price and a

pre-defined strike price during scarcity events. This structure effectively creates a price cap for consumers

(up to their procured quantity) while maintaining suppliers’ incentives to be available during high-price

periods. In practice, most capacity mechanisms fall somewhere between these two ends of the spectrum,

with energy prices and non-performance penalties creating a combined signal that falls short of the implied

VoLL. Below, we present results from the example system demonstrating the financial implications of the

three mechanisms for consumers and suppliers. In the case of the capacity payment, energy prices are capped

at $10,000/MWh; in the case of the reliability option, the same value is used as a strike price.

For purposes of these calculations, we assume that the market converges on the same socially optimal,

risk-neutral equilibrium regardless of the profit distribution. With risk aversion and costs associated with

hedging, the differences in risk socialization and allocation implied by the different designs could have

significant real-world implications Shu and Mays (2023).

5.1 The Cost of Reliability for Consumers

To quantify the financial implications of these remuneration mechanisms for consumers, we analyze the

distribution of electricity prices across the 35 modeled operating years under varying EUE standards. Table 7

presents these results for the set of sampled year-long scenarios, assuming the optimal resource mix given high

inter-fleet correlation. As expected, the mean price increases with more stringent reliability targets across

all three approaches, reflecting the added cost of improved reliability. Unhedged, energy-only prices are the

most volatile, which becomes more pronounced as the implied VoLL rises. The increasing values of skew and

kurtosis under this design indicate the salience of extreme price spikes as reliability requirements tighten.

For instance, under the strictest EUE target of 5 MWh/yr, full-strength prices show a standard deviation

of $107.21/MWh, with the maximum annual price reaching $523.30/MWh. By contrast, capacity payments

demonstrate the lowest volatility and yield a more symmetrical, light-tailed cost distribution. For example,

under the 5 MWh/yr EUE target, capacity payments have a standard deviation of only $4.77/MWh. Since

the lump sum capacity payment occurs in all years, it results in a relatively high minimum cost of electricity

even in years where no shortages occur. Reliability options present an intermediate case, with much lower
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standard deviations than the energy-only design but leaving consumers exposed to high scarcity prices if

they consume more than the volume of options procured.

Statistic Mean Median Std Dev Min Max Skewness Kurtosis
EUE Target: 5 MWh/yr
Energy Only 67.19 24.58 107.21 20.31 523.30 3.11 9.41
Capacity Payments 67.19 65.82 4.77 61.55 81.30 1.15 0.96
Reliability Options 67.19 62.94 13.15 58.67 130.84 3.57 14.09
EUE Target: 10 MWh/yr
Energy Only 64.87 31.87 67.52 25.99 332.09 2.43 5.79
Capacity Payments 64.87 62.30 6.46 57.91 83.70 1.28 0.84
Reliability Options 64.87 61.36 10.06 55.77 97.21 1.64 2.03
EUE Target: 15 MWh/yr
Energy Only 63.75 46.26 48.41 28.87 213.41 1.77 2.10
Capacity Payments 63.75 60.37 7.56 55.59 83.56 1.18 0.39
Reliability Options 63.75 59.04 9.78 53.69 87.70 1.03 -0.06
EUE Target: 20 MWh/yr
Energy Only 63.02 43.66 43.60 31.04 186.88 1.62 1.43
Capacity Payments 63.02 59.75 8.68 54.10 84.44 1.20 0.32
Reliability Options 63.02 58.15 10.67 52.50 88.54 1.11 -0.01
EUE Target: 25 MWh/yr
Energy Only 62.51 43.87 40.03 32.52 169.53 1.52 1.02
Capacity Payments 62.51 58.26 10.07 52.73 86.69 1.24 0.32
Reliability Options 62.51 56.82 11.82 51.29 89.65 1.16 0.07

Table 7: Price distribution statistics for the consumer cost of electricity ($/MWh) across modeled operating
years under varying EUE reliability standards.

5.2 Financial Implications of Capacity Penalties and Payments

Turning to the generator perspective, Table 8 describes the distribution of operating profit (i.e., revenue

minus operating cost) for different technologies at the generator level under a strict reliability standard

(5 MWh/year EUE). Since each of the thermal generation types is modeled as 5 identical units, their

operating profit distribution is across 35 · 5 = 175 modeled years. Given the assumption of risk neutrality,

the expected operating profit in equilibrium equals the investment cost in 1 under each market design.

However, the results reveal significant differences in operating profit profiles across generator types and

remuneration mechanisms. In the energy-only design, all generator types experience high revenue volatility.

The volatility is most pronounced for CCGTs, which experience a coefficient of variation of 3.43. During

a year with low peak net load and no shortfalls, an individual CCGT could have zero operating profit.

Capacity payments substantially reduce revenue volatility for all generator types, with minimum revenues

quite close to annualized investment costs such that major financial losses are largely averted. By contrast,

non-delivery penalties under a reliability options regime make it possible for individual generators to earn

negative revenues in years with significant shortages, introducing significant concerns of bankruptcy and

default.

The energy-only design preserves the market volatility necessary for efficient resource participation but

leaves market participants more exposed to price spikes. Reliability options enable some risk sharing between

buyers and sellers, but create significant non-performance risk for suppliers. Capacity payments mitigate

price volatility for consumers and revenue instability for generators, effectively socializing some of the risk

created by the fundamental volatility of electricity prices. As such, implementing this design preconditions
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Statistic Mean ($k) Median ($k) CV Min ($k) Max ($k) Skewness Kurtosis

NUC

Energy Only 350.00 99.36 1.93 67.60 3351.41 3.19 9.56
Capacity Payments 350.00 339.68 0.10 307.93 452.32 1.11 0.64
Reliability Options 350.00 338.97 0.46 -288.81 914.78 -0.27 7.15

CCGT

Energy Only 70.00 0.00 3.43 0.00 2098.34 4.83 30.48
Capacity Payments 70.00 68.38 0.07 68.38 108.18 4.48 25.36
Reliability Options 70.00 68.38 2.83 -587.19 1405.08 1.75 15.61

WIND

Energy Only 120.00 46.96 2.03 41.36 1420.41 4.58 21.39
Capacity Payments 120.00 116.29 0.08 110.70 156.45 2.11 4.52
Reliability Options 120.00 116.11 1.27 -298.88 824.91 2.50 14.75

Table 8: Revenue distribution statistics by generator with EUE standard = 5 MWh/year, implied VoLL =
$529,197.63 and administrative VoLL = $10,000. Note that all wind turbines in the fleet are assumed to
have the same availability in each scenario.

the risk that market participants must manage through contracting, financial markets, or other means, at

the expense of introducing problems of moral hazard.

The experience of the PJM after Winter Storm Elliott illustrates this trade-off. Despite being relatively

weak compared to the theoretical ideal, non-performance penalties were strong enough to cause several

issues that highlight the complexities of practical implementation. The possibility of defaulting on capacity

obligations dilutes the incentives that high non-performance penalties are intended to create. Furthermore,

the process of defining excuses and retroactive replacement transactions introduces administrative complexity

and subjective elements, leading to market uncertainty about penalty enforcement (Monitoring Analytics,

LLC, 2023). These challenges led the PJMMarket Monitor to propose eliminating non-performance penalties

altogether, instead relying on ex-ante accreditation of capacity resources (Monitoring Analytics, LLC, 2023).

6 Conclusion

Recent events have called into question the ability of capacity markets to address resource adequacy

challenges. This paper discusses several challenges that could prevent capacity mechanisms from achieving

their intended aim of ensuring reliability and efficiency. The paper demonstrates how optimal accreditation

values emerge naturally from price formation in idealized markets, while also highlighting the complex inter-

actions between accreditation, financial risk, and market structure that must be managed in practice. The

conceptual accreditation framework constructed in Sections 2 and 3 provides an economic basis for assessing

resources’ contributions to reliability, but more importantly, highlights the assumptions that must hold for

this optimal accreditation to hold. In our stylized numerical example, “missing money” is merely the differ-

ence between an administrative price cap (the assumed VoLL) and the price implicit in resource adequacy

targets (the implied VoLL). In this setting, both an idealized capacity mix and efficient marginal ELCC

values—equal to resources’ expected availability given shortfall—can be derived from a social optimization

problem. However, this idealized framework is unlikely to translate directly to real-world markets, given the

computational, structural, and administrative complications detailed in Section 4.

This paper argues that clearest direction of reform given these challenges is to reduce reliance on adminis-

trative valuations of resource reliability. Instead of being a central input into market outcomes, accreditation

would serve as a backstop to stronger market prices and performance incentives. With that said, the analysis

also highlights the primary challenge of a move toward stronger price signals. As demonstrated in Section 5,
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such reforms could significantly increase the financial risk faced by market participants. As such, reforms in

this direction would require careful attention to credit risk, insurability, and the enforceability of penalties.

Recognizing that some resource failures are inevitable in extreme weather events, an additional challenge is

to differentiate between bad luck versus mismanagement in assessing penalties to avoid raising risk premia

without materially improving reliability.

The analysis suggests two promising avenues for further research. First, each of the challenges described in

Section 4 corresponds to an opportunity for theoretical and computational improvements that would reduce

the consequences that mis-accreditation can have on reliability and efficiency. There is significant scope to

extend the framework developed here to more realistic system representations with transmission constraints,

ramping limitations, storage, and demand response. The framework established in this paper, which ties

optimal accreditation values to the difference between ideal and realized prices, provides a foundation for

these extensions. Second, the paper identifies a fundamental tension in the choices available to policymakers:

either they can keep low non-performance penalties, in which case generators will not have sufficiently strong

incentives, or they can increase non-performance penalties, in which case generators that are unable to pay

the penalties will default on their obligations. Both options allow generators to avoid fully bearing the

costs of a failure to deliver on capacity obligations. Accordingly, a key challenge in resource adequacy

mechanisms is how to avoid moral hazard given the potential for under-penalization of non-performance.

While it may be possible to address this challenge with stronger performance bond, insurance, or credit

requirements, more work is needed to understand the different forms that such requirements could take. As

power systems continue their transformation toward greater shares of variable and distributed resources,

long-term resource adequacy will require mechanisms that facilitate effective risk sharing while preserving

efficient investment signals—a challenge that extends well beyond the computational details of accreditation

methods to fundamental questions about the organization of electricity markets.
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Appendices

Appendix A Optimality Conditions (EUE-constrained GEP)

The Lagrangian and relevant Karush-Kahn-Tucker (KKT) conditions for model (SP) can be written as

follows:

L(x, p, d, λ, θ, µ, ρ) =−
∑
g∈G

CINV
g xg +

∑
ω∈Ω

Pr(ω)

∑
l∈L

∑
τ∈T

Bldlτω −
∑
g∈G

∑
τ∈T

COP
gτωpgτω


+
∑
ω∈Ω

∑
τ∈T

λτω

∑
g∈G

pgτω −
∑
l∈L

dlτω


+
∑
g∈G

∑
ω∈Ω

∑
τ∈T

θgτω(Agτωxg − pgτω)

+
∑
l∈L

∑
ω∈Ω

∑
τ∈T

µlτω(Dlτω − dlτω)

+ ρ

(
EUEmax −

∑
ω∈Ω

Pr(ω)
∑
τ∈T

(D0τω − d0τω)

)
.

FOC with respect to xg (capacity):

∂L

∂xg
= −CINV

g +
∑
ω∈Ω

∑
τ∈T

θgτω ×Agτω = 0 (1)

⇒ CINV
g =

∑
ω∈Ω

∑
τ∈T

θgτω ×Agτω. (2)

FOC with respect to pgτω (generation):

∂L

∂pgτω
= −Pr(ω)× COP

gτω + λτω − θgτω = 0 (3)

⇒ θgτω = λτω − Pr(ω)× COP
gτω. (4)

FOC with respect to d0τω (fixed demand served):

∂L

∂d0τω
= Pr(ω)×B0 − λτω − µ0τω + ρ× Pr(ω) = 0 (5)

⇒ µ0τω = Pr(ω)× (B0 + ρ)− λτω. (6)

FOC with respect to dlτω, l ̸= 0:

∂L

∂dlτω
= Pr(ω)×Bl − λτω − µ;τω = 0 (7)

⇒ µlτω = Pr(ω)×Bl − λτω. (8)

Complementary slackness conditions:

0 ≤ (Agτω × xg − pgτω) ⊥ θgτω ≥ 0 (9)
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0 ≤ (Dlτω − dlτω) ⊥ µlτω ≥ 0 (10)

0 ≤ ρ ⊥ EUEmax −
∑
ω∈Ω

Pr(ω)
∑
τ∈T

(D0τω − d0τω) ≥ 0. (11)

From Eqs. (3), (10), and (11), we see that the dual multiplier on the reliability standard ρ is added to

B0 during scarcity hours, and that it is only non-zero when the EUE constraint is binding. Additionally,

Eqs. (1), (3), and (9) are used in the construction of the long-run equilibrium condition in section 3.1.

Appendix B Implications of Alternative Reliability Metrics

In Section 3, we presented a general economic accreditation using an EUE-based reliability target. Under

restrictive assumptions, the resulting ELCC corresponds to the intuitive notion of accreditation as the

expected availability in any hour with shortfall. If the social planner assumed an alternative RA metric,

enforcing a reliability constraint would induce a different set of optimal prices π∗, leading to alternative

computations of the economic ELCC. To elucidate the relationship between the RA metric and accreditation,

we analyze the implications of using metrics like Loss of Load Expectation (LOLE), Loss of Load Hours

(LOLH), and Conditional Value at Risk of Unserved Energy (CVaR(UE)).

B.1 Limitations of LOLE and LOLH

LOLE and LOLH are binary metrics that count the number of periods (typically days for LOLE and

hours for LOLH) in which any amount of load is unserved. While these metrics are widely used in industry,

they create problems in the context of capacity accreditation. Intuitively, any difference in available firm

capacity during an hour with unmet demand should have a measurable impact on system reliability, as it

mitigates the extent of load-shedding. However, this is not true under an LOLE/LOLH reliability standard.

A model will only attribute reliability value to a resource under LOLE/LOLH if it can completely eliminate a

shortfall, not reduce its size. To formalize this observation, let ∆Cτω be a small increase in available capacity

in hour τ of scenario ω, and let Iτω be an indicator function for a loss of load event. If ∆Cτω < Dτω − dτω,

where Dτω is the fixed demand and dτω is the served demand, then the value of Iτω will not change with

the increased capacity. Under LOLE/LOLH, an hour with 1 MWh of lost load would be treated the same

as an hour with 1000 MWh of lost load, despite the significant difference in unserved energy.

In the context of model (SP), substituting a binary metric for EUE would imply an MILP with a constraint

on
∑

ω∈Ω

∑
τ∈T Pr(ω)Iτω. By deriving optimal dual values from a linearized form with fixed Iτω, it would

be possible to define an economic ELCC along the lines of Section 3. However, in this formulation, an

even smaller number of hours would have a non-zero marginal value of reliability. These are hours in which

demand is perfectly equal to the available firm capacity in the system and a marginal change in supply would

change the value of Iτω, i.e.,
∑

g∈G Ag,τωxg = Dτω. Not only is completely omitting shortfall hours from

consideration counterintuitive, an ELCC calculated over such a small set of events would be highly prone

to sampling error and extremely sensitive to input assumptions. Likely for this reason, even systems that

nominally plan to an LOLE target nevertheless base accreditation on a larger set of hours than would be

strictly implied by LOLE.

Debates about which RA metric is most appropriate to use often invoke ex post evaluations of historical

scarcity events to highlight the implications of the different options. More relevant for accreditation, however,

are the forward-looking simulation studies performed by market operators. In Figure 3, we observe that

LOLH and LOLE closely track EUE across varying levels of correlation in our example system, and that

both metrics increase almost linearly as the EUE standard relaxes. To the extent such a tight correlation
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holds, even if LOLE or LOLH is the preferred target, the best approach from a modeling perspective could

be to use EUE and modulate the target until the desired LOLE or LOLH is achieved. This approach could

yield more easily interpretable and less error-prone accreditation values.

Figure 3: Behaviour of RA Metrics at varying levels of inter-fleet correlation (left) and behaviour of
LOLE/LOLH at varying EUE standards (right).

B.2 Applying an Averse Risk Measure

What if instead of a different RA metric, the social planner applies an alternative risk measure across

scenarios? Conditional Value at Risk of Unserved Energy (CVaR(UE)) is a risk-averse measure focusing

on the expected value of the worst outcomes. If (SP) is modified such that the reliability constraint limits

CVaR(UE) instead of EUE, the reliability adder ρω will only have a non-zero value within the α-tail:

ρω =

ρ∗ if UE(ω) ≥ VaRα(UE)

0 otherwise
(12)

Where ρ∗ is the optimal reliability adder in the CVaR-constrained problem and VaRα(UE) is the Value

at Risk at confidence level α. As only tail scenarios have an impact on the assessed shortfall risk, the ELCC

for generator g under CVaR(UE) becomes:

ELCCCVaR
g =

E
[∑

τ∈T Agτω1{D0τω − d0τω > 0} | UE(ω) ≥ VaRα(UE)
]

E
[∑

τ∈T 1{D0τω − d0τω > 0} | UE(ω) ≥ VaRα(UE)
] (13)

In this formulation, we are essentially taking the expected availability given shortfall over a risk-adjusted

probability measure Q with scenario-specific probabilities Pr′(ω):

Pr′(ω) =


Pr(ω)
1−α if UE(ω) ≥ VaRα(UE)

0 otherwise
(14)

To restore the risk-averse equilibrium under a CVaR reliability standard, the margin requirement in

(RES) would also need to be calibrated using risk-adjusted weights as follows:∑
g∈G

ELCCCVaR
g × xg ≥ EQ [d∗0 | D0 − d∗0 > 0] [γRA]. (15)

The equivalent risk-neutral capacity payment in any year is given below, with γ∗
RA being the optimal dual
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value of the modified reserve margin constraint in Eq. (15):

CAPCVaR
g = ELCCCVaR

g · γ∗
RA · (1− α) (16)

While this formulation provides a theoretically sound extension of our economic ELCC framework to

incorporate risk aversion, its implementation faces both theoretical and practical challenges. As discussed

in Dent et al. (2023), extreme events appear rarely in historical records, providing very few samples for

estimating VaRα(UE). Moreover, the changing resource mix alters which weather conditions would stress the

system, so identifying the periods in which future extreme events are likely to occur is difficult. For capacity

products that include non-performance penalties, there is no practical way to determine in real time that the

current year lies in the α-tail, making penalty assessment problematic. The narrower the confidence interval

selected for CVaR calculation, the fewer hours contribute to ELCC evaluation—analogous to the sampling

challenges identified with LOLE and LOLH. Following Dent et al. (2023), we conclude that while risk-averse

extensions to the economic ELCC framework are theoretically appealing, the derived accreditation values

may be inherently speculative, particularly in renewable-heavy systems.

Appendix C Optimality of Reserve-constrained Form

C.1 Proof of Lemma 1

Proof. Given that x∗ is optimal for (SPS), we know all primal feasibility conditions except the reserve margin

constraint are guaranteed to be satisfied. To check feasibility, we begin by expanding both sides of the reserve

margin constraint: ∑
g∈G

ELCCgxg ≥ E [d∗0 | D0 − d∗0 > 0]

∑
g∈G

E [Ag1 {D0 − d∗0 > 0}]
Pr (D0 − d∗0 > 0)

xg ≥ E [d∗0 · 1 {D0 − d∗0 > 0}]
Pr (D0 − d∗0 > 0)

.

Since the probability of shortage Pr (D0 − d∗0 > 0) is independent of g and assumed to be non-zero, the

denominator on both sides of the expression cancel out and we can write the numerator in terms of the

nominal probabilities Pr(s):

∑
t∈T

1

|T |
∑
s∈S

Pr(s)
∑
g∈G

Agτsxg1 {D0τs − d∗0τs > 0} ≥
∑
t∈T

1

|T |
∑
s∈S

Pr(s)d∗0τs · 1 {D0τs − d∗0τs > 0}

Assuming x∗, if there is unmet demand in a time-scenario pair in (SPS), shortfall will also occur in (RES).

By the complementary slackness condition on the generation limit constraint, which is identical to that in

(SPS), we produce at max available capacity in shortfall hours since the scarcity price is assumed to be

higher than any marginal cost of production:

∑
t∈T

1

|T |
∑
s∈S

Pr(s)
∑
g∈G

pgτs1 {D0τs − d∗0τs > 0} ≥
∑
t∈T

1

|T |
∑
s∈S

Pr(s)d∗0τs · 1 {D0τs − d∗0τs > 0} .
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To further simplify the LHS, we know that no flexible demand will be met during scarcity hours so the total

energy produced is equal to the fixed demand served in all shortfall hours by the energy balance constraint:

∑
t∈T

1

|T |
∑
s∈S

Pr(s)d0τs1 {D0τs − d∗0τs > 0} ≥
∑
t∈T

1

|T |
∑
s∈S

Pr(s)d∗0τs1 {D0τs − d∗0τs > 0} .

We can then multiply both sides in the previous expression by |T | and then subtract both sides from the

expected total demand during shortage hours
∑

t∈T

∑
s∈S Pr(s)D0τs1 {D0τs − d∗0τs > 0}:

∑
t∈T

∑
s∈S

Pr(s)(D0τs − d0τs)1 {D0τs − d∗0τs > 0} ≤
∑
t∈T

∑
s∈S

Pr(s)(D0τs − d∗0τs)1 {D0τs − d∗0τs > 0}∑
t∈T

∑
s∈S

Pr(s)(D0τs − d0τs)1 {D0τs − d∗0τs > 0} ≤ EUE∗

Evidently, if we solve (RES) with x∗, this constraint is satisfied with equality.

C.2 Proof of Theorem 1

Proof. For the proof, we construct a set of dual variables that, together with x∗, satisfy the optimality

conditions for (RES). First, we derive the following Lagrangian and Karush-Kuhn-Tucker (KKT) conditions

for (RES):

L(x, p, d, λ, θ, µ, ρ) =−
∑
g∈G

CINV
g xg +

∑
s∈S

Pr(s)

∑
l∈L

∑
τ∈T

Bldlτs −
∑
g∈G

∑
τ∈T

COP
gτspgτs


+
∑
s∈S

∑
τ∈T

λτs

∑
g∈G

pgτs −
∑
l∈L

dlτs


+
∑
g∈G

∑
s∈S

∑
τ∈T

θgτs(Agτsxg − pgτs)

+
∑
l∈L

∑
s∈S

∑
τ∈T

µlτs(Dlτs − dlτs)

+ γ

∑
g∈G

ELCCg × xg − E [d∗0 | D0 − d∗0 > 0]


FOC with respect to xg (capacity):

∂L

∂xg
= −CINV

g +
∑
s∈S

∑
τ∈T

θgτs ×Agτs + γ × ELCCg = 0 (17)

⇒ CINV
g =

∑
s∈S

∑
τ∈T

θgτs ×Agτs + γ × ELCCg (18)

⇒ CINV
g =

∑
s∈S

∑
τ∈T

θgτs ×Agτs + γ

∑
t∈T

∑
s∈S Pr(s)Agτs1 {D0τs − d∗0τs > 0}∑

t∈T

∑
s∈S Pr(s)1 {D0τs − d∗0τs > 0}

(19)

FOC with respect to pgτs (generation):

∂L

∂pgτs
= −Pr(s)× COP

gτs + λτs − θgτs = 0 (20)
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⇒ θgτs = λτs − Pr(s)× COP
gτs (21)

FOC with respect to dlτs (demand served):

∂L

∂dlτs
= Pr(s)×Bl − λτs − µlτs = 0 (22)

⇒ µlτs = Pr(s)×Bl − λτs (23)

Complementary slackness conditions:

0 ≤ (Agτs × xg − pgτs) ⊥ θgτs ≥ 0 (24)

0 ≤ (Dlτs − dlτs) ⊥ µlτs ≥ 0 (25)

0 ≤ γ ⊥
∑
g∈G

ELCCg × xg − E [d∗0 | D0 − d∗0 > 0] ≥ 0 (26)

From Eq. (18), we can see that in place of a reliability adder in the prices, generators receive a lump-sum

capacity payment γ derated by the ELCC in addition to the expected operating revenue. Let us denote the

optimal expected annual shortfall hours as NS =
∑

t∈T

∑
s∈S Pr(s)1 {D0τs − d∗0τs > 0} and re-write Eq. (19)

as the following:

CINV
g =

∑
s∈S

∑
τ∈T

θgτs ×Agτs + γ

∑
t∈T

∑
s∈S Pr(s)Agτs1 {D0τs − d∗0τs > 0}

NS

⇒ CINV
g =

∑
s∈S

∑
τ∈T

×Agτs

(
θgτs +

γ Pr(s)

NS
1 {D0τs − d∗0τs > 0}

)
.

Let us define dual variables θ′ that include revenues from both the spot market and the reserve payment

such that Eq. (19) takes the same form as the first-order optimality condition for xg from (SPS):

θ′gτs = θgτs +
γ Pr(s)

NS
1 {D0τs − d∗0τs > 0}

⇒ CINV
g =

∑
s∈S

∑
τ∈T

Agτsθ
′
gτs.

We know that the FOC w.r.t to xg is satisfied by θ′ = θ∗, and thus can identify a corresponding value of γ:

γ Pr(s)

NS
1 {D0τs − d∗0τs > 0} = θ∗gτs − θgτs.

Substituting Eq. (21) and the analogous expression in (SPS) into the above:

γ Pr(s)

NS
1 {D0τs − d∗0τs > 0} = (λ∗

gτs − Pr(s)× COP
gτs )− (λgτs − Pr(s)× COP

gτs ).

= λ∗
gτs − λgτs.
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Normalizing both sides w.r.t nominal scenario probabilities, the RHS gives us the difference in electricity

prices between (RES) and (SPS):

γ

NS
1 {D0τs − d∗0τs > 0} = π∗

gτs − πgτs.

Under the same capacity mix x∗, prices in (RES) and (SPS) only differ during shortfall. By Eqs. (23)

and (26), πgτs = B0 when D0τs − d0τs > 0, which in this case is the same as when D0τs − d∗0τs > 0. Thus,

we can derive an optimal γ for x∗ as follows:

γ

NS
1 {D0τs − d∗0τs > 0} = (B∗

0 −B0)1 {D0τs − d∗0τs > 0}

γ = (B∗
0 −B0)NS

Per the above, it is straightforward to identify a set of dual variables that satisfy the stationarity conditions

for (RES). We have already derived dual multipliers γ and θ that satisfy the FOC w.r.t x, and from θ, can

directly compute λ and µ from Eqs. (21) and (23):

γ = (B∗
0 −B0)NS

λτs = λ∗
τs − (B∗

0 −B0) if D0τs − d∗0τs > 0

λτs = λ∗
τs otherwise

µlτs = Pr(s)×Bl − λτs

θgτs = θ∗gτs −
γ Pr(s)

NS
1 {D0τs − d∗0τs > 0} .

Finally, we verify that this set of dual variables, together with x∗, satisfy the remaining KKT conditions of

the transformed reliability-constrained problem:

1. Primal feasibility: verified in Lemma 1.

2. Dual feasibility: We know that γ is non-negative and since it always holds that Pr(s)×Bl ≥ λτs ≥ 0,

it is easily verifiable that all other proposed dual variables are non-negative, as required.

3. Complementary slackness:

• Given B0 < B∗
0 , γ is positive and the reserve constraint is binding under x∗.

• The complementary slackness condition on θ is identical to that in (SPS) and known to be satisfied

by θ∗ during non-shortfall hours. Since the capped VoLL is greater than all variable production

costs, the condition is also satisfied during shortfall hours.

• Given primal solution x∗, shortfall in (RES) coincides with shortfall in the solution to (SPS), thus

the complementary slackness on µ holds.

Therefore, x∗, together with the proposed set of dual variables, satisfies all KKT conditions of the trans-

formed reliability-constrained problem. Since the problem is convex, these KKT conditions are sufficient for

optimality. Note that the uniqueness of the optimal solution to (RES) is not guaranteed.
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