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In this paper, we propose a new global optimization approach for solving nonconvex optimization problems

in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex

problems can be formulated in this way, such as concave minimization problems, problems with difference

of convex functions in the objective and constraints, and fractional optimization problems. Our approach

leverages two techniques: first, we introduce a new technique, called the Reformulation-Perspectification

Technique (RPT), to obtain a convex approximation of the considered nonconvex continuous optimization

problem. Next, we employ a spatial Branch and Bound scheme, utilizing RPT, to obtain a global optimal

solution. Numerical experiments on three different convex maximization problems, as well as a quadratic

constrained quadratic optimization problem, and a dike height optimization problem demonstrate the

effectiveness of the proposed approach. In particular, our approach solves more instances to global optimality

for the considered problems than BARON and SCIP. Moreover, for large-dimensional problem instances,

our approach outperforms both BARON and SCIP in computation time for most cases, while for smaller

dimensions, BARON overall performs better in terms of computation time.

Key words : Reformulation-Linearization Technique, perspective function, nonconvex optimization, conjugate

function, branch and bound.

1. Introduction

We introduce a novel global optimization approach for nonconvex optimization problems where

the nonconvex elements are sums of products of convex functions. This formulation covers a wide
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range of optimization problems, including nonconvex quadratic optimization, mixed binary linear

optimization, concave minimization, difference of convex programming, and fractional optimization.

For nonconvex quadratic optimization problems and mixed binary linear optimization problems,

hierarchical convex approximations can be obtained from the Reformulation-Linearization Technique

(RLT) (Sherali and Adams, 1999). RLT was introduced in Sherali and Adams (1990), and improved

by many authors (Sturm and Zhang, 2003; Anstreicher, 2009, 2012, 2017; Bao et al., 2011; Yang

and Burer, 2016; Jiang and Li, 2019). RLT is also applicable to mixed binary polynomial and to

continuous nonconvex polynomial optimization problems (Sherali and Adams, 1999), and has been

extended to mixed binary semi-infinite and convex optimization problems (Sherali and Adams,

2009). RLT consists of two steps, those are, a reformulation step and a linearization step. The

reformulation step generates redundant nonconvex constraints from pairwise multiplication of the

existing linear or quadratic inequalities. The linearization step then substitutes each distinct product

of variables by a continuous variable. We also refer to Jiang and Li (2020) for an overview of RLT

approximations for quadratic optimization problems.

We propose an extension of RLT, which we call Reformulation-Perspectification Technique (RPT),

to obtain a convex relaxation of the original nonconvex optimization problem. RPT consists of

a reformulation and a perspectification step. Similarly to RLT, the reformulation step of RPT

generates redundant nonconvex constraints from pairwise multiplication of the existing inequalities.

Where in RLT only multiplications of linear or quadratic inequalities are considered, RPT also

considers pairwise multiplications of not necessarily linear or quadratic convex inequalities, thereby

obtaining tighter approximations than RLT based methods. In the perspectification step, the

nonconvex components are convexified by first reformulating them into their perspective form, and

substitutes each distinct product of variables by a newly introduced continuous variable. Hence,

RPT can handle more types of nonconvexity than RLT based methods.

Moreover, in this paper we use a spatial branch and bound scheme, leveraging RPT and the

eigenvector branching strategy proposed in Anstreicher (2022), to obtain a global optimal solution

of the original nonconvex problem. A branch and bound algorithm was first introduced by Falk and

Soland (1969), addressing optimization problems with continuous nonconvex separable objectives,

and extended by Horst (1976) to non-separable functions, leveraging a different partitioning rule. In

the context of nonconvex quadratically constrained quadratic problems (QCQPs), Al-Khayyal et al.

(1995) develop a method for solving nonconvex QCQPs based on branch and bound, leveraging a

linearization technique. Chen and Burer (2012) develop a branch and bound method, utilizing co-

positive programming, addressing nonconvex quadratic problems over linear constraints. Anstreicher

(2022) develops a spatial branching method termed eigenvector branching in order to strengthen

semidefinite relaxations of problems with a nonconvex quadratic objective and/or constraints,
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leveraging the multiplication of linear with conic quadratic inequalities. In the context of nonlinear

problems (NLPs) and mixed integer nonlinear problems (MINLPs), Ryoo and Sahinidis (1996)

propose the branch-and-reduce algorithm, which is implemented in BARON (Sahinidis, 1996). The

latter uses a branch and bound algorithm, that iteratively solves convex relaxations of the initial

problem and finds tighter variable bounds. BARON has been very successful so far and is in fact

considered a state-of-the-art method for nonconvex optimization problems. Another state-of-the-art

method that utilizes branch and bound, addressing nonconvex problems with an emphasis on integer

problems, is the global optimization algorithm SCIP, developed by Achterberg (2009).

Although the idea of using branch and bound to obtain the global optimal solution of nonconvex

optimization problems has thus been already present, in this paper we deviate from previous works

in the implementation of it. Namely, we propose a spatial branch and bound scheme that leverages

RPT and the eigenvector branching strategy proposed in Anstreicher (2022), which we refer to as

RPT-BB, standing for Reformulation-Perspectification Technique - Branch and Bound.

For the problem of maximizing a twice continuously differentiable convex function over a convex

compact feasible region, Selvi et al. (2022) develop an algorithm based on adjustable robust

optimization, which can be shown to be a special case of our RPT approach. Additionally, Ben-Tal

and Roos (2022) develop an algorithm called CoMax, which is based on gradient ascent. The latter

is also applicable to integer optimization problems where the feasible set is a polytope. While

both methods can find high-quality bounds on the optimal solution, neither can guarantee global

optimality. Specifically, Selvi et al. (2022) is limited to problems with only one norm constraint or

multiple linear constraints, while CoMax only obtains a lower bound for the optimal solution and

imposes strict assumptions on the constraints.

Our main contributions can be summarized as follows:

1. We extend the existing RLT approach to a broader class of nonconvex optimization problems,

namely optimization problems in which the nonconvex components are sums of products

of convex functions. The proposed RPT approach can handle multiplication of constraints

that are neither linear nor quadratic, and thereby obtains tighter approximations than RLT.

Moreover, it can also handle more types of nonconvexity than RLT.

2. We introduce a new global optimization approach, by incorporating the RPT framework

within branch and bound, using the eigenvector branching strategy of Anstreicher (2022). We

show that the proposed RPT-BB approach converges to the optimal solution of the original

nonconvex optimization problems in which the nonconvex components are sums of products of

convex functions.

3. We provide several theoretical insights for our approach. We show that using epigraphical

variables for the nonlinear convex components in the nonconvex objective and/or constraints,
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yields an RPT relaxation that is at least as tight as without the introduction of epigraphical

variables. Further, we show that adding linear constraints that are redundant to existing linear

constraints does not tighten the RPT relaxation, while adding linear constraints that are

redundant to existing nonlinear constraints can be useful.

4. We demonstrate the effectiveness of the proposed RPT-BB approach, by conducting numerical

experiments on three different convex maximization problems, a quadratic constraint quadratic

optimization problem, and a dike height optimization problem. We show that our approach

solves more instances to global optimality for the considered problems than BARON and SCIP.

Moreover, for the larger problem instances our approach overall performs better on computation

time than both BARON and SCIP, while for smaller dimension BARON overall outperforms

our approach and SCIP on computation time. In addition, for a convex maximization problem

that allows for a mixed integer reformulation, we show that RPT-BB outperforms MOSEK for

most problem instances when considering a nonlinear convex feasible region. Finally, for the

quadratic constraint quadratic optimization problem with convex feasible region, we show that

both RPT-BB and CPLEX are comparable on computation time.

This paper is structured as follows: In Section 2, we describe the generic nonconvex optimization

problem we consider. In Section 3, we describe the RPT-BB approach to obtain a global optimal

solution of the considered nonconvex optimization problem. In Section 4, we demonstrate the

RPT-BB approach on the basis of a simple example. In Section 5, we present several additional ways

to strenghten the RPT-BB approach. In Section 6, we present the convergence analysis. In Section

7, we asses the numerical performance of the approach. We end the paper by a short discussion and

conclude our findings in Section 8.

Notation. We generally use bold faced characters such as a ∈ Rn and A ∈ Rm×n to represent

vectors and matrices, respectively, ai to denote the i-th element of the vector a, Ai ∈ Rm to

denote the i-th column of matrix A, and Aij to denote the entry of A in the i-th row and j-th

column, unless specified otherwise. The calligraphic letters I, J , K, L and the corresponding capital

Roman letters I, J , K, L are reserved for finite index sets and their respective cardinalities, i.e.,

I = {1, . . . , I} etc. The subscript 0 for an index set indicates that the set additionally includes 0,

i.e., I0 = {0, . . . , I} etc. Let Rm×n denote the set of real m×n matrices, and Sn the set of real n×n

symmetric matrices. We use ri(V) to denote the relative interior of a set V ⊆ Rnν . The domain

of a function f :Rnν → [−∞,+∞] is defined as dom(f) = {ν ∈Rnν | f(ν)<+∞}. The function

f is proper if f(ν)>−∞ for all ν ∈Rnν and f(ν)<+∞ for at least one ν ∈Rnν , implying that

dom(f) ̸= ∅. In addition, f is closed if f is lower semicontinuous and either f(ν)>−∞ for all ν ∈Rnν

or f(ν) =−∞ for all ν ∈ Rnν . The conjugate of a function f : Rnν → [−∞,+∞] is the function
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f∗ :Rnν → [−∞,+∞] defined through f∗(w) = supν

{
ν⊤w− f(ν)

}
. The conjugate (f∗)∗ of f∗ is

called the biconjugate of f and is abbreviated as f∗∗. The indicator function δV :Rnν → [−∞,+∞]

of a set V ⊆ Rnν is defined through δV(ν) = 0 if ν ∈ V and δV(ν) = +∞ if ν /∈ V. The support

function δ∗V : Rnν → [−∞,+∞] of a set V ⊆ Rnν is defined through δ∗V(w) = supν∈V {ν⊤w}. The
perspective function of a proper, closed and convex function f : Rnν → (−∞,+∞] is defined as

h(ν, t) = tf(ν/t) if t > 0, and h(ν,0) = δ∗dom(f∗)(ν) for all ν ∈Rnν and t∈R+. For ease of exposition,

we use tf(ν/t) to denote the perspective function h(ν, t) for the rest of this paper.

2. Generic problem formulation

We consider a generic nonconvex optimization problem of the following form:

min
x

f0(x)

s.t. fk(x)≤ 0, k ∈K,
x∈X ,

(1)

where fk :Rnx→ [−∞,∞] is a sum of convex times convex (SCC) function for all k ∈K0, that is,

fk(x) = c0k(x)+
∑
i∈Ik

rik(x)cik(x),

and c0k, rik, cik :Rnx→ (−∞,+∞], are proper, closed and convex functions for every i∈ I, k ∈K0.

The set X ⊆Rnx is defined by:

X = {x∈Rnx |A⊤x≤ b, P⊤x= s, h(x)≤ 0},

where A∈Rnx×m1 , P ∈Rnx×m2 , b∈Rm1 , s∈Rm2 , h(x) = [h0(x) h1(x) · · · hJ(x)]
⊤, and hj :Rnx→

(−∞,+∞] are proper, closed and convex for every j ∈J0. We make the following assumptions.

Assumption 1. The set X is nonempty and compact.

Assumption 2. If rik and cik are both nonlinear, then rik(x)≥ 0 and cik(x)≥ 0 for all x∈X , for
every i∈ I and k ∈K0. If rik is linear and cik is nonlinear, then rik(x)≥ 0 for all x∈X , for every

i ∈ I and k ∈K0. If both rik and cik are linear, then we do not impose any assumption on these

functions.

Observe that we can reformulate an SCC function in the following way:

c0k(x)+
∑
i∈Ik

rik(x)cik(x)≤ 0 ⇐⇒


c0k(x)+

∑
i∈Ik

τikcik(x)≤ 0,

rik(x)≤ τik, if rik and cik are nonlinear,

rik(x) = τik, if rik is linear.

Hence in the remainder we can assume, without loss of generality, that the functions fk in (1) are

sum of linear times convex (SLC) functions for all k ∈K0, that is,

fk(x) = c0k(x)+
∑
i∈Ik

(
qik−d⊤

ikx
)
cik(x), (2)
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and qik ∈R, dik ∈Rnx , and c0k, cik :Rnx→ (−∞,+∞] are proper, closed and convex for every i∈ I,

and k ∈K0.

We now present some examples of functions that are SLC or can be equivalently written as an

SLC function.

Example 1 (Difference of convex functions). Consider the Difference of Convex (DC)

function fk(x) = c0k(x)−c1k(x)≤ 0, where c0k, c1k :Rnx→ (−∞,+∞] are proper, closed and convex

for some k ∈ K0. We can then reformulate the corresponding constraint function into an SLC

function using the biconjugate reformulation (Rockafellar, 1970) and obtain

fk(x)≤ 0 ⇐⇒ inf
y∈dom(c∗

1k
)
{c0k(x)−x⊤y+ c∗1k(y)} ≤ 0

⇐⇒ ∃y ∈ dom(c∗1k) : c0k(x)−x⊤y+ c∗1k(y)≤ 0, (3)

as long as the infimum is attained, since we can then remove the inf operator. In case the infimum is

not attained we refer to Appendix A. We note that for many important classes of convex functions,

their conjugates and domains are readily available from the literature. We summarize several of

them in Table 1. We note that DC functions constitute an important class of SLC representable

functions. For example, every twicely differentiable continuous function has a DC decomposition

(Hartman, 1959) and can therefore be written as an SLC function. Moreover, every concave function

is a DC function, as we can take c0k(x) = 0.

Table 1 Example of functions f(·) and their corresponding conjugates. For the functions in #8, we assume that

∩iri(dom(gi)) ̸= ∅.

# f dom(f∗) f∗

1 f(x, x̄) = ∥x∥2− x̄ {(y, ȳ) : ∥y∥2 ≤ 1, ȳ= 1} f∗(y, ȳ) = 0
2 f(x) = x log (x) {y : y ∈R} f∗(y) = exp(y− 1)
3 f(x) =− log (x) {y : y < 0} f∗(y) =− log (−y)− 1
4 f(x) =

√
x {y : y < 0} f∗(y) =− 1

4y

5 f(x) =maxi xi {y : y≥ 0,
∑

i yi = 1,∀k} f∗(y) = 0
6 f(x) =

∑
imaxk∈Ki

xi {{yi}i : yi ≥ 0,
∑

k∈Ki
yik = 1,∀i} f∗(y) = 0

7 f(x) = log (
∑

i exp (xi)) {y : y≥ 0,
∑

i yi = 1} f∗(y) =
∑

i yi log(yi)
8 f(x) =

∑
i gi(x) {{yi}i :

∑
i yi = y,yi ∈ dom(g∗i ),∀i} f∗(y) =min{yi}i

∑
i g

∗
i (yi)

Example 2 (Fractional optimization). Consider the following fractional function

f(x) =
∑
i∈I

ci(x)

ri(x)
,

where ci :Rnx→R+ is convex and ri :Rnx→R++ is concave for every i∈ I. Then f is not necessarily

convex or concave. However, the function is SCC, since 1/ri(x) is convex and nonnegative. □
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Example 3 (Some examples of SLC functions). In Table 2, we give some more examples

of SLC functions that are generally nonconvex and satisfy Assumption 2. Hence, our proposed

approach can deal with Problem (1) containing (sum of) such nonconvex components. □

# f c (q−d⊤x) Perspectification Assumptions

1
√
q−d⊤x (q−d⊤x)

−1/2
q−d⊤x

(
q−d⊤x

)√ q−d⊤x

q2− 2qd⊤x+d⊤Xd
d⊤x≤ q

2 (q−d⊤x)
θ

(q−d⊤x)
θ−1

q−d⊤x
(
q−d⊤x

)(q2− 2qd⊤x+d⊤Xd

q−d⊤x

)θ−1

θ ∈ [0,1] & d⊤x≤ q

3 − (q−d⊤x)
θ − (q−d⊤x)

θ−1
q−d⊤x −

(
q−d⊤x

)(q2− 2qd⊤x+d⊤Xd

q−d⊤x

)θ−1

θ ∈ [1,2] & d⊤x≤ q

4 − (q1−d⊤
1 x) ln (q2−d⊤

2 x) − ln (q2−d⊤
2 x) (q1−d⊤

1 x) −
(
q1−d⊤

1 x
)
ln

(
q1q2− q1d⊤

2 x− q2d⊤
1 x+d⊤

1Xd2

q1−d⊤
1 x

)
d⊤
i x≤ qi, i∈ {1,2}

5 x⊤Qx (Qx)i xi Tr(XQ) -

6 (q−d⊤x)x⊤Qx x⊤Qx (q−d⊤x) (qx−Xd)⊤Q(qx−Xd)

(q−d⊤x)
d⊤x≤ q & Q⪰ 0

Table 2 Examples of SLC representable functions.

3. Reformulation-Perspectification Technique and Branch and Bound

In this section, we describe our new approach, called RPT-BB, to obtain a global optimal solution

of (1). Our approach comprises five steps:

Step 1: Preprocessing. Introduce epigraphical variables for every nonlinear convex component

c0k, k ∈K0, in the nonconvex SLC functions.

Step 2: Reformulation and perspectification. Generate additional redundant nonconvex

constraints from pairwise multiplication of the existing convex inequalities in (1). Next, convexify all

nonconvex components in (1) and all nonconvex components in the additional generated constraints

by reformulating them in their perspective form and subsequently linearizing all product terms.

Step 3 (Optional): SDP relaxation. Add an additional LMI inequality from the SDP relaxation

of the linearization of all product terms.

Step 4: Obtaining upper bounds. Solve the convex RPT relaxation. From the solution of the

RPT relaxation, construct a set of candidate solutions for (1), substitute these candidate solutions

in Problem (1) and choose the best upper bound obtained.

Step 5: Branch and bound. Solve Problem (1) to optimality by means of a spatial branch and

bound method. In the next sections, we describe each of these steps in more detail.
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3.1. Preprocessing step

We introduce epigraphical variables for the convex component in the nonconvex SLC functions

of (1), and from (2) we have

min
x,τ

τ0 +
∑
i∈Ik

(
qi0−d⊤

i0x
)
ci0(x)

s.t. τk +
∑
i∈Ik

(
qik−d⊤

ikx
)
cik(x)≤ 0, k ∈K,

(x,τ )∈ T ,

(4)

where T = {(x,τ ) ∈ Rnx ×RK+1 | x ∈ X , c0(x) ≤ τ}, and c0(x) = [c00(x) c01(x) · · · c0K(x)]⊤ ⊆

(−∞,+∞]K+1. As we will see later in Theorem 1, we can multiply these extra epigraphical constraints

with the existing convex constraints to obtain a tighter convex relaxation.

3.2. Reformulation and perspectification

Now we are ready to explain the core idea of RPT. We will first explain the core idea of RPT

on the univariate case. The intuition is as follows: Consider the convex function c : R→ R and

the nonconvex constraint set X = {x∈R+ : x c(x)≤ 0}. The constraint set can be written as

X =
{
(x,x′)∈R+×R+ : x c

(
x′

x

)
≤ 0, x′ = x2

}
. Observe that the new set X is also nonconvex due

to the constraint x′ = x2. However, observe that for x≥ 0, the function h(x,x′) = x c
(

x′

x

)
is the

perspective function of c(·) and therefore it is jointly convex in x and x′. Thus, by either completely

relaxing x′ = x2 and adding the hitherto redundant x′ ≥ 0, or by relaxing it as x′ ≥ x2 to preserve

convexity (and nonnegativity), one obtains a convex outer approximation of X .

Remark 1. Observe that the RLT approach is a sub-case of this, assuming the function c(·) is

linear. Since the perspective of a linear function is the function itself the perspectification step

is not needed in RLT. However, for nonlinear functions this is not the case and therefore the

perspectification step is necessary.

In the general case, let f be an SLC function as given by (2), that satisfies Assumption 2. Then we

can perspectify the generally nonconvex function f by first multiplying and dividing the argument

of ci by (qi−d⊤
i x) for every i∈ I to obtain the following equivalent reformulation of f :

f(x) = c0(x)+
∑
i∈I

(qi−d⊤
i x)ci

(
qix−xx⊤di

qi−d⊤
i x

)
.

Then, the quadratic terms xx⊤ in the argument of the reformulated f can be linearized by

substituting xx⊤ with X ∈ Snx to obtain the following sum of perspective functions:∑
i∈I

(qi−d⊤
i x)ci

(
qix−Xdi

qi−d⊤
i x

)
, (5)
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which is jointly convex in (x,X) because ci is convex if and only if its perspective is convex

(Rockafellar, 1970). Observe that if Assumption 2 is not satisfied, i.e., qi−d⊤
i x≤ 0 for some x∈X

and i∈ I, then the above sum of perspective functions might not be convex. We obtain the following

convex relaxation:

min
x,τ ,X

τ0 +
∑
i∈Ik

(qi0−d⊤
i0x)ci0

(
qi0x−Xdi0

qi0−d⊤
i0x

)
s.t. τk +

∑
i∈Ik

(qik−d⊤
ikx)cik

(
qikx−Xdik

qik−d⊤
ikx

)
≤ 0, k ∈K,

(x,τ )∈ T .

(6)

By pairwise multiplying inequalities in the set T , we can obtain additional redundant SLC constraints,

which can then be convexified in a manner similar to what was described above. Once convexified,

these SLC constraints are no longer redundant and actually serve as bounds on the newly introduced

variables corresponding to the product terms. We can pairwise multiply the linear inequality

constraints in the set T , similar to the approach in RLT, to derive bounds on the newly introduced

variables X ∈ Snx . However, with RPT, we can incrementally improve this approximation by also

considering the pairwise multiplication of the linear and convex constraints in the set T , followed

by the pairwise multiplication of the convex inequalities in the set T .

To be more precise, by considering the following cases of pairwise multiplication of the constraints

in the set T , we incrementally improve the convex relaxation of (1) derived from RPT:

Linear inequality × Linear inequality. This is well-known in RLT: we multiply the constraints

A⊤x≤ b of (1) with A⊤x≤ b, and obtain the redundant constraints:

bx⊤A+A⊤xb⊤ ≤A⊤xx⊤A+ bb⊤.

Since the (i, j)-th constraint is exactly the (j, i)-th constraint, we only consider the upper triangular

of the matrix equations; so m1(m1 +1)/2 constraints instead of m2
1. Next, the nonlinear quadratic

terms xx⊤ are linearized by substituting them withX ∈ Snx . We then obtain the following additional

convex constraints:

bx⊤A+A⊤xb⊤ ≤A⊤XA+ bb⊤. (7)

Moreover, we include the additional constraints

Xii ≥ 0, i∈ {1, . . . , nx},

since x2
i ≥ 0 for all i∈ {1, . . . , nx}.
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Linear inequality × Convex inequality. By multiplying each ℓ-th linear inequality A⊤
ℓ x≤ bℓ

of (1) with the convex constraints c0(x)≤ τ and h(x)≤ 0, we obtain m1(J +K +2) redundant

SLC constraints of the form

(bℓ−A⊤
ℓ x)c0 (x)≤ (bℓ−A⊤

ℓ x)τ and (bℓ−A⊤
ℓ x)h (x)≤ 0 ℓ∈ {1, . . . ,m1}.

Next, the redundant SLC constraints can be reformulated into:

(bℓ−A⊤
ℓ x)h (x)≤ 0 ⇐⇒ (bℓ−A⊤

ℓ x)h

(
bℓx−xx⊤Aℓ

bℓ−A⊤
ℓ x

)
≤ 0 and

(bℓ−A⊤
ℓ x)c0 (x)≤ (bℓ−A⊤

ℓ x)τ ⇐⇒ (bℓ−A⊤
ℓ x)c0

(
bℓx−xx⊤Aℓ

bℓ−A⊤
ℓ x

)
≤ (bℓ−A⊤

ℓ x)τ .

Finally, the nonlinear quadratic terms xx⊤ and the bilinear terms τx⊤ are linearized by substituting

them with X ∈ Snx and V ∈R(K+1)×nx , to obtain the following additional convex constraints:

(bℓ−A⊤
ℓ x)h

(
bℓx−XAℓ

bℓ−A⊤
ℓ x

)
≤ 0 and (bℓ−A⊤

ℓ x)c0

(
bℓx−XAℓ

bℓ−A⊤
ℓ x

)
≤ bℓτ −V Aℓ.

Linear equality × Convex inequality. When multiplying a linear equality constraint with a

convex inequality constraint, the denominator and coefficient of the resulting perspective function

are zero. Fortunately, all additional nonlinear constraints resulting from multiplying a linear equality

constraint with a convex inequality constraint are redundant as long as we consider the pairwise

multiplication of the linear equality constraints with all variables (see Lemma 1). For quadratic

problems, a similar observation was first mentioned by Sherali and Adams (1999, Remark 8.1).

Before we formally prove Lemma 1, we first define redundant constraints.

Definition 1 (Redundant equality constraints). An equality constraint f(x) = 0, where

f :Rnx→ (−∞,+∞], is redundant to the nonempty set X ⊆Rnx , if X ⊆ {x | f(x) = 0}.

Lemma 1. Let d⊤x = q be an equality constraint, where d ∈ Rnx and q ∈ R. If the function f :

Rnx → (−∞,+∞] is proper, closed and convex, then the constraint (q − d⊤x)f
(

qx−Xd

q−d⊤x

)
= 0 is

redundant to
{
(x,X) | d⊤x= q, Xd= qx

}
.

Proof. Since d⊤x= q, Xd= qx, and f :Rnx→ (−∞,+∞] is proper, closed and convex, it then

follows from the definition of the perspective function that

(q−d⊤x)f

(
qx−Xd
q−d⊤x

)
= δ∗dom(f∗)(0).

If dom(f∗) is nonempty, then δ∗dom(f∗)(0) = 0. The set dom(f∗) is indeed nonempty because of the

properness of f∗ (Rockafellar, 1970, p. 24), which is implied by Theorem 12.2 of Rockafellar (1970)

thanks to the properness and convexity of f . □
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Thanks to Lemma 1, it suffices to multiply each ℓ-th linear equality constraint P⊤
ℓ x= sℓ with x

and τ respectively. We then obtain m2nx +m2nτ redundant SLC constraints of the form

(sℓ−P⊤
ℓ x)x= 0 and (sℓ−P⊤

ℓ x)τ = 0 ℓ∈ {1, . . . ,m2}.

Finally, the nonlinear quadratic terms xx⊤ and the bilinear terms τx⊤ are linearized by substituting

them withX ∈ Snx and V ∈R(K+1)×nx . Including all additional constraints from pairwise multiplying

the linear constraints with the linear and nonlinear convex constraints in Problem (6) we obtain

the following convex relaxation:

min
x,τ ,X,V

τ0 +
∑
i∈Ik

(qi0−d⊤
i0x)ci0

(
qi0x−Xdi0

qi0−d⊤
i0x

)
s.t. τk +

∑
i∈Ik

(qik−d⊤
ikx)cik

(
qikx−Xdik

qik−d⊤
ikx

)
≤ 0, k ∈K,

bx⊤A+A⊤xb⊤ ≤A⊤XA+ bb⊤,
Xii ≥ 0, i∈ {1, . . . , nx},

(bℓ−A⊤
ℓ x)h

(
bℓx−XAℓ

bℓ−A⊤
ℓ x

)
≤ 0, ℓ∈ {1, . . . ,m1},

(bℓ−A⊤
ℓ x)c0

(
bℓx−XAℓ

bℓ−A⊤
ℓ x

)
≤ bℓτ −V Aℓ, ℓ∈ {1, . . . ,m1},

sℓx−XPℓ = 0, ℓ∈ {1, . . . ,m2},
sℓτ −V Pℓ = 0, ℓ∈ {1, . . . ,m2},
(x,τ )∈ T .

(8)

Note that there are m1(J +1+ m1+1
2

)+(m1+1)(K+1)+(m2 + 1)nx+m2nτ additional constraints

and n2
x +(nx +1)(K +1) additional variables in (8) compared to (1).

The following theorem demonstrates that introducing epigraphical variables for the convex

components of the SLC functions in (1) (as is done in the preprocessing step of RPT; see (4)), can

result in a potentially tighter RPT relaxation.

Theorem 1. The convex relaxation (8) obtained from RPT with the preprocessing step is at least

as tight as the relaxation obtained from RPT without the preprocessing step.

Proof. By applying RPT without the preprocessing step, one can obtain the following relaxation

of (1):

min
x,X

c00(x)+
∑
i∈Ik

(qi0−d⊤
i0x)ci0

(
qi0x−Xdi0

qi0−d⊤
i0x

)
s.t. c0k(x)+

∑
i∈Ik

(qik−d⊤
ikx)cik

(
qikx−Xdik

qik−d⊤
ikx

)
≤ 0, k ∈K,

bx⊤A+A⊤xb⊤ ≤A⊤XA+ bb⊤,
Xii ≥ 0, i∈ {1, . . . , nx},

(bℓ−A⊤
ℓ x)h

(
bℓx−XAℓ

bℓ−A⊤
ℓ x

)
≤ 0, ℓ∈ {1, . . . ,m1},

sℓx−XPℓ = 0, ℓ∈ {1, . . . ,m2},
x∈X .

(9)
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It can be directly verified that from any feasible solution (x′,X ′) to (9), there exists a (τ ′,V ′),

where τ ′ = c0(x
′) and V ′ = τ ′x′⊤, such that (x′,τ ′,X ′,V ′) is feasible to (8), and attains the same

objective value. □

The following example shows that introducing epigraphical variables for the nonlinear convex

components in the preprocessing step tightens the RPT relaxation.

Example 4 (Effectiveness of preprocessing). Consider the following convex maximization

problem:

max
x

x1x2− (x2−2)2

4

s.t. 0≤ x1 ≤ 1.
(10)

In the following we compare two convex relaxations of (10) obtained from (i) applying RPT

without the epigraphical reformulation, and (ii) applying RPT with the epigraphical reformulation,

respectively,

max
x,X

X12− (x2−2)2

4

s.t. 0≤ x1 ≤ 1,
X11− 2x1 +1≥ 0,
X11 ≥ 0,

and

max
x,X,τ,t

X12− τ
s.t. 0≤ x1 ≤ 1,

X11− 2x1 +1≥ 0,
X11 ≥ 0,
(x2− 2)2

4
≤ τ,

(X12− 2x1)
2

4x1

≤ t,
(x2− 2−X12 +2x1)

2

4− 4x1

≤ τ − t.

Note that the maximum objective value of the convex relaxation without the epigraphical reformu-

lation is ∞ with x⋆
1 ∈ [0,1], x⋆

2 = 2, X⋆
11 =∞, and that of the epigraphical reformulation is 3 with

(x⋆
1, x

⋆
2,X

⋆
12, τ

⋆, t⋆) = (1,4,4,1,1). □

However, as demonstrated in the following lemma, introducing epigraphical variables for the

linear components does not enhance the convex relaxation obtained from RPT.

Lemma 2. Introducing epigraphical variables for the linear components in the preprocessing step of

RPT does not result in a tighter convex relaxation.

Proof. Suppose c0k :Rnx→R is a linear function in (1) for some k ∈K0. In the preprocessing

step of RPT, one can introduce an epigraphical variable τk for the linear component c0k and consider

the linear equality τk = c0k(x) in the constraints. From Lemma 1, we know that it suffices to

consider the multiplication of this constraint by x and τ to obtain the convex relaxation from RPT.

Specifically, from the reformulation and perspectification step of RPT, we obtain:

Vki =xic0k

(
Xi

xi

)
, i∈ {1, . . . , nx}, and Tkk′ = τk′c0k

(
(V ⊤)k′

τk′

)
, k′ ∈K0,
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where Vk and Tk are variables introduced to linearize the product terms τkx and τkτ , respectively.

Since Vk and Tk do not appear anywhere else but in these linear equalities in the convex relaxation

from RPT, these equalities exactly determine Vk and Tk and are therefore redundant. □

Convex inequality × Convex inequality. Just multiplying a nonlinear convex constraint hj(x)≤

0 with another nonlinear convex constraint hj′(x)≤ 0 results in a constraint −hj(x)hj′(x)≤ 0 for

which the constraint function is not an SCC function, since in this case −hj(x) is concave instead

of convex. However, sometimes rewriting the constraints, and then multiplying the left-hand sides

and right-hand sides of the constraints yields convexifiable constraints. Consider for example the

following two exponential constraints:

exp(x1)≤ x2 and exp(x3)≤ x4.

We can then multiply the left-hand sides and the right-hand sides, and multiply the right-hand

side of each constraint with the other exponential constraint to obtain the following convexified

constraints: 
exp(x1 +x3)≤X24,

x4 exp

(
X14

x4

)
≤X24,

x2 exp

(
X23

x2

)
≤X24.

Also, several ways of obtaining a convexifiable constraint from pairwise multiplication of conic

quadratic constraints are readily available in the literature (Yang and Burer, 2016; Anstreicher,

2017; Jiang and Li, 2019).

3.3. Additional SDP relaxation

In order to further tighten the convex relaxation, effective SDP cuts can be considered. In the

perspectification step of RPT, the nonconvex quadratic terms xx⊤ are linearized by a symmetric

matrix X. Such a linearization based relaxation for the nonconvex quadratic equality X =xx⊤ may

be significantly improved by the SDP relaxation X ⪰xx⊤, which can be equivalently reformulated

as an LMI by using Schur complement (Boyd and Vandenberghe, 2004):(
X x
x⊤ 1

)
⪰ 0. (11)

Because we also have epigraphical constraints, we can consider including the following LMI:X V ⊤ x
V T τ
x⊤ τ⊤ 1

⪰ 0,
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where T ∈ SK+1 denotes the matrix that substitutes the quadratic terms ττ⊤. Although including

the LMI might tighten the convex RPT relaxation, it can significantly increase computation time.

Hence, this step is optional. Observe that if the above LMI is included, the additional constraints

Xii ≥ 0, i∈ {1, . . . , nx}, are redundant to the LMI.

3.4. Obtaining upper bounds

Let (x∗,τ ∗,X∗,V ∗) be the solution of the convex RPT relaxation (8). We propose to construct the

set X ′ =
{
x∗,xX

1 , . . . ,x
X
nx
,xV

1 , . . . ,x
V
nτ

}
of candidate solutions for (1), where

xX
i =

{
x∗ if x∗

i = 0,
X∗

i
x∗i

otherwise,
and xV

j =

x
∗ if τ ∗j = 0,

(V ∗⊤)j
τ∗j

otherwise,
for all i∈ {1, . . . , nx}, j ∈ {1, . . . , nτ}.

Note that by definition x∗ ∈X is always satisfied.

Lemma 3. If X includes the non-negativity constraints x≥ 0, then X ′ ⊂X .

Proof. By construction, if x∗
i ̸= 0, it follows from x∗

i ≥ 0 and xX
i =

X∗
i

x∗i
that


A⊤X∗

i ≤ x∗
i b

P⊤X∗
i = x∗

i s

x∗
ih
(

X∗
i

x∗i

)
≤ 0

=⇒


A⊤X∗

i
x∗i
≤ b

P⊤X∗
i

x∗i
= s

h
(

X∗
i

x∗i

)
≤ 0.

Otherwise, if x∗
i = 0, we have xX

i =x∗, hence xX
i ∈X . Therefore, xX

i ∈X for every i∈ {1, . . . , nx}.

Analogously, one can show that xV
j ∈X for every j ∈ {1, . . . , nτ}. This concludes the proof. □

In cases where all constraints are convex (i.e., K= ∅), substituting the candidate solutions into

the original Problem (1) yields upper bounds corresponding to each candidate solution, allowing us

to choose the best upper bound obtained. However, if x is not assumed to be nonnegative, or if we

also have nonconvexity in the constraints, then the candidate solutions in X ′ obtained from the

RPT relaxation may not be feasible for Problem (1). In such scenarios, to determine the best upper

bound, we propose considering only those candidate solutions that are feasible for Problem (1).

Observe that if we have nonconvexities in the constraints, it is possible that none of the candidate

solutions is feasible. Furthermore, note that if only some of the xi, i ∈ {1, · · · , nx}, are assumed

to be nonnegative, it is possible to obtain an upper bound by considering only those candidate

solutions
X∗

i
x∗i

where the indices i correspond to positive x∗
i . This can be proved similarly to the

proof of Lemma 3.

The obtained feasible solutions could also be used as warm starts for existing algorithms, to

improve the upper bound. Namely, we can use a local optimization algorithm, such as the Ipopt

solver (Waechter et al., 2009), initialized at the candidate feasible solution, to obtain a local
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optimum. We then replace the candidate solution in X ′ by the obtained local optimum. Note that

we can also initialize it from an infeasible solution, and if the solver finds a feasible solution, we

also add the solution to X ′′. Moreover, for the problem of minimizing a concave or a difference of

convex function, using the biconjugate reformulation, the problem can be formulated as a disjoint

bilinear optimization problem, where the bilinear function is in fact an SLC function (see Example

1). Hence, we can leverage the mountain climbing algorithm by (Tao and An, 1997), to find a local

optimum of (1), see Appendix B.

3.5. Spatial branch and bound method

We can solve the original Problem (1) to optimality using the following branch and bound scheme:

At the root node, denoted by N0, we solve an RPT relaxation of Problem (1) and obtain upper and

lower bounds to Problem (1). If the lower bound does not equal the upper bound, we search for a

hyperplane that cuts the feasible region into two parts. We use the branching strategy proposed by

Anstreicher (2022). The intuition behind the branching strategy stems from Saxena et al. (2010).

Let {c1, ..,cn} be any collection of mutually orthogonal unit vectors in Rn. Then, Saxena et al.

(2010) showed that{
(x,X) |X =xx⊤}= {(x,X) |X −xx⊤ ⪰ 0

}
∩
{
(x,X) | c⊤j Xcj ≤

(
c⊤j x

)2
, ∀j = 1, .., n

}
.

We take the eigenvectors of the matrix X −xx⊤ as the collection {c1, ..,cn}. Observe that if a is a

unit eigenvector of X −xx⊤, with corresponding eigenvalue λ, then it satisfies(
X −xx⊤)a= λa =⇒ a⊤ (X −xx⊤)a= λ.

Now observe that we want to have

c⊤j
(
X −xx⊤)cj ≤ 0, ∀j = 1, .., n.

Therefore, the maximum infeasibility corresponds to the eigenvector associated with the maximum

eigenvalue of the matrix X −xx⊤. The branching strategy is as follows: Suppose we solve the RPT

relaxation at a node and obtain an optimal solution (x∗,X∗). Then, unless we are at the optimal

solution we have X∗ ̸=x∗(x∗)⊤. We then compute the eigenvector f that corresponds to the largest

eigenvalue of the matrix X∗−x∗(x∗)⊤. Let l= f⊤x∗, and H =
{
x | f⊤x= l

}
be the hyperplane.

After solving the RPT relaxation at the root node and computing the hyperplane H, we create

two new “child” nodes N1 and N2 from the root-node N0, where at each child node we solve Problem

(1) with its feasible region X intersected with one of the closed half spaces of the hyperplane H, i.e.,

X 0
l =

{
x∈X | f⊤x≤ l

}
,

X 0
r =

{
x∈X | f⊤x≥ l

}
.
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The proposed branching strategy is summarized in pseudocode in Algorithm 1, where XN denotes

the feasible region of node N .

Subsequently, we apply RPT to each child node and obtain a lower and an upper bound for each

child node. If for the child node with the lowest lower bound of the two child nodes it holds that it

equals the upper bound, we have found the optimal solution. If not, we can repeat this procedure for

each child node, i.e., for each constructed child node Nk, we solve the RPT relaxation and then find

a hyperplane Hk as described earlier to create again two new child nodes, and repeat the process.

A key element of the branch and bound algorithm is pruning parts of the tree in order to speed

up the method. The condition that we use for pruning is when a lower bound is greater than the

current best upper bound. Another important aspect is which node to select from the unexplored

ones. We propose picking the one with the smallest lower bound. In Algorithm 2, we summarize

the described spatial branch and bound procedure via RPT to obtain a global optimal solution to

Problem (1).

Finally, note that if we introduce additional epigraphical variables τ , then branching can be

performed based on the eigenvectors of the matrix

(
X V
V ⊤ T

)
− (x,τ ) (x,τ )

⊤
, where (x,τ ) denotes

the vector formed by stacking x and τ .

Algorithm 1 Branching strategy

Input: (N,XN).

Output: (N1,N2).

1: Solve RPT relaxation at N and obtain optimal solutions (x∗,X∗)

2: Take f as the eigenvector corresponding to the largest eigenvalue of X∗−x∗(x∗)⊤

3: Take l= f⊤x∗

4: Take N1 as
{
x∈XN | f⊤x≤ l

}
5: Take N2 as

{
x∈XN | f⊤x≥ l

}
6: return N1,N2

4. A simple example

In this section we demonstrate the approach by solving the following toy problem:

min
x1,x2,x3

3x1− 3x2 +3x3 +(x1 +x2 +1)exp (x1)+ (x1 +x2 +1)exp (x3)

s.t. x1 +x2 ≥−1,
xi ≤ 10, i∈ {1,2,3},
exp (x2−x3)≤ x1,

2exp
(−x1

2

)
+2exp

(−x2
2

)
≤ 2+ exp(−1).

(12)
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Algorithm 2 Branch and bound via RPT

Input: (N0,Lb
0, Ub0, δ).

Output: (x∗,Lb,Ub).

1: Lb← Lb0

2: Ub←Ub0

3: ACTIVE ←{N0}

4: while Ub−Lb> δ do

5: j← argmini∈ACTIVELb
i

6: Partition node Nj into two child nodes Nj1 ,Nj2 by applying Algorithm 1

7: for i= 1,2 do

8: Solve Nji by applying steps 1-4 and obtain Lbji and Ubji .

9: end for

10: Ub←min{Ubj,Ubj1 ,Ubj2}

11: for i= 1,2 do

12: if Lbji <Ub then

13: ACTIVE ← ACTIVE ∪{ji}

14: end if

15: end for

16: Lb ←min{Lbj1 ,Lbj2}

17: ACTIVE←ACTIVE \ {j}

18: end while

Let XT denote the feasible set of toy problem (12), consisting of a linear constraint and two convex

exponential constraints. The objective is nonconvex, however it is SLC, hence we can apply the

proposed framework to find the global optimum.

Linear × Linear. First, we perspectify the SLC objective. Next, the following constraints are

generated:

(x1 +x2 +1)2 = x2
1 +x2

2 +2x1x2 +2x1 +2x2 +1≥ 0,

(xi− 10)(xi′ − 10) = xixi′ − 10xi− 10xi′ +100≥ 0, i≤ i′ ∈ {1,2,3},

(10−xi)(x1 +x2 +1)= 10x1 +10x2 +10−xix1−xix2−xi ≥ 0, i∈ {1,2,3},

x2
i ≥ 0, i∈ {1,2,3}.

Finally, the product of variables x2
1, x

2
2, x

2
3, x1x2, x1x3 and x2x3 in both the perspectified objective

as well as the additional generated constraint are substituted by continuous variables X11, X22,
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X33, X12, X13, and X23 ∈R respectively to obtain the following convex relaxation:

min
x,X

3x1− 3x2 +3x3 +(x1 +x2 +1)exp
(

X11+X12+x1
x1+x2+1

)
+(x1 +x2 +1)exp

(
X13+X23+x3

x1+x2+1

)
s.t. x∈XT,

X11 +2X12 +X22 +2x1 +2x2 +1≥ 0,

Xii′ − 10xi− 10xi′ +100≥ 0, i≤ i′ ∈ {1,2,3},
10x1 +10x2 +10−Xi1−Xi2−xi ≥ 0, i∈ {1,2,3},
Xii ≥ 0, i∈ {1,2,3}.

(13)

The solution of (13) appears to be

x′ =

 1
1.10
1.10

 and X ′ =

X ′
11 X

′
12 X

′
13

X ′
21 X

′
22 X

′
23

X ′
31 X

′
32 X

′
33

=

 12.94 −48.08 −41.10
−48.08 78.01 −40.07
−41.10 −40.07 0

 ,
with objective value 3, which constitutes a lower bound on the optimal value of (12). Since XT

consists of only convex constraints, the obtained x′ is contained in the set of feasible candidate

solutions to (12), and its corresponding objective value is 20.796, which constitutes an upper bound

on the optimal value of (12).

Linear × Convex. Let XTLL denote the feasible set of (13). We pairwise multiply the linear with

the nonlinear constraints and obtain the SLC constraints

(x1 +x2 +1)exp(x2−x3)≤ (x1 +x2 +1)x1,

(x1 +x2 +1)2exp

(
−x1

2

)
+(x1 +x2 +1)2exp

(
−x2

2

)
≤ (x1 +x2 +1)(2+ exp(−1)),

(10−xi) exp(x2−x3)≤ (10−xi)x1, i∈ {1,2,3},

(10−xi)2 exp

(
−x1

2

)
+(10−xi)2 exp

(
−x2

2

)
≤ (10−xi)(2+ exp(−1)), i∈ {1,2,3}.

Next, the nonconvex components in the LHS of the above SLC constraints can be reformulated as:

(x1 +x2 +1)exp(x2−x3) = (x1 +x2 +1)exp

(
x1x2−x1x3 +x2

2−x2x3 +x2−x3

x1 +x2 +1

)
,

(x1 +x2 +1)2exp

(
−x1

2

)
= 2(x1 +x2 +1)exp

(
−x2

1−x1x2−x1

2(x1 +x2 +1)

)
,

(x1 +x2 +1)2exp

(
−x2

2

)
= 2(x1 +x2 +1)exp

(
−x1x2−x2

2−x2

2(x1 +x2 +1)

)
,

(10−xi) exp(x2−x3) = (10−xi) exp

(
10x2− 10x3−xix2 +xix3

10−xi

)
, i∈ {1,2,3},

(10−xi)2 exp

(
−x1

2

)
= 2(10−xi) exp

(
−10x1 +xix1

2(10−xi)

)
, i∈ {1,2,3},

(10−xi)2 exp

(
−x2

2

)
= 2(10−xi) exp

(
−10x2 +xix2

2(10−xi)

)
, i∈ {1,2,3}.
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Finally, all the product of variables x2
1, x

2
2, x

2
3, x1x2, x1x3 and x2x3 are substituted with newly

introduced variables X11, X22, X33, X12, X13, and X23 respectively. The convex relaxation that

results from the RPT approach is therefore:

min
x,X

3x1− 3x2 +3x3 +(x1 +x2 +1)exp

(
X11 +X12 +x1

x1 +x2 +1

)
+ (x1 +x2 +1)exp

(
X13 +X23 +x3

x1 +x2 +1

)
s.t. x∈XTLL,

(x1 +x2 +1)exp

(
X12−X13 +X22−X23 +x2−x3

x1 +x2 +1

)
≤X11 +X12 +x1,

2(x1 +x2 +1)exp

(
−X11−X12−x1

2(x1 +x2 +1)

)
+2(x1 +x2 +1)exp

(
−X12−X22−x2

2(x1 +x2 +1)

)
≤ (2+ exp(−1))(x1 +x2 +1),

(10−xi) exp

(
10x2− 10x3−X2i +X3i

10−xi

)
≤ 10x1−X1i, i∈ {1,2,3},

2(10−xi) exp

(
−10x1 +X1i

2(10−xi)

)
+2(10−xi) exp

(
−10x2 +X2i

2(10−xi)

)
≤ (2+ exp(−1))(10−xi), i∈ {1,2,3}.

(14)

The solution of (14) is

x′ =

1.170.93
0.77

 and X ′ =

X ′
11 X

′
12 X

′
13

X ′
21 X

′
22 X

′
23

X ′
31 X

′
32 X

′
33

=

1.77 0.75 0.23
0.75 1.16 1.31
0.23 1.31 0.57

 ,
with objective value 19.778, which constitutes a tighter lower bound on the optimal value of (12)

than (13). The obtained x′ is contained in the set of feasible candidate solutions to (12), and its

corresponding objective value is 19.809, which constitutes a tighter upper bound on the optimal

value of (12) than (13).

Set of candidate solutions. We have the following candidate solutions:

x′ =

1.17
0.93
0.77

 , xX
1 =

1.51
0.64
0.20

 , xX
2 =

0.81
1.25
1.22

 , xX
3 =

0.30
1.47
0.61

 .

Observe that only x′ is feasible, hence the set of candidate feasible solutions is given by X ′′ = {x′}.

Branch and Bound. We have Ub0 = 19.809 and Lb0 = 19.778 and x0 =x′,X0 =X ′. The eigenvec-

tor corresponding to the largest eigenvalue of the matrix X0−x0(x0)⊤ is f = (0.62,−0.54,−0.56)⊤.

We have l= f⊤x0 =−0.21 and we obtain the hyperplane H = {x∈R3 | 0.62x1− 0.54x2− 0.56x3 =

−0.21}. Hence we create two child nodes N1 and N2 from the root-node N0 such that N1 represents

Problem (12) in which the feasible region XT is intersected with X 0
l = {x∈XT | 0.62x1− 0.54x2−
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0.56x3 ≤−0.21} and N2 represents Problem (12) in which the feasible region XT is intersected with

X 0
r = {x∈XT | 0.62x1− 0.54x2− 0.56x3 ≥−0.21}. We apply steps 1-4 on N1 and N2 and obtain:

Lb1 = 19.787, Ub1 = 19.788 , Lb2 = 19.790, Ub2 = 19.790.

We set UB=min{Ub0,Ub1,Ub2}=19.788. Moreover, node N1 becomes active, node N2 remains

inactive, since Lb1 >Ub, and we delete node N0 from the list of active nodes, i.e., ACTIVE= {N1}.

We set LB=min{Lb1,Lb2}= 19.787.

Since UB - LB = 0.001> δ, we select node N2 from the list of active nodes. Let (x1,X1) denote

the optimal solution at node N1. The eigenvector corresponding to the largest eigenvalue of the

matrix X1 − x1(x1)⊤ is f = (0.78,−0.58,−0.22)⊤. We have l = f⊤x1 = 0.23 and we obtain the

hyperplane H = {x∈R3 | 0.78x1− 0.58x2− 0.22x3 = 0.23}. Hence we create two child nodes N3 and

N4 from N1 such that N3 represents Problem (12) in which the feasible region X is intersected

with X 1
l = {x∈X 0

l | 0.78x1− 0.58x2− 0.22x3 ≤ 0.23} and N4 represents Problem (12) in which the

feasible set X is intersected with X 1
r = {x∈X 0

l | 0.78x1− 0.58x2− 0.22x3 ≥ 0.23}. We apply steps

1-4 on N3 and N4 and obtain:

Lb3 = 19.787, Ub3 = 19.787 , Lb4 = 19.787, Ub4 = 19.787.

We set UB= 19.787 and LB= 19.787 and therefore obtain the optimal solution

x′ =

1.180.92
0.75

 and X ′ =

X ′
11 X

′
12 X

′
13

X ′
21 X

′
22 X

′
23

X ′
31 X

′
32 X

′
33

=

1.41 1.09 0.89
1.09 0.85 0.69
0.89 0.69 0.56

 ,
with optimal objective value 19.787.

5. Improving the RPT-BB approach

In this section, we describe several ways to strengthen the RPT-BB approach.

5.1. Multiplying with redundant linear constraints

We show that adding linear constraints that are redundant to existing linear constraints does not

tighten the RPT relaxation, while adding linear constraints that are redundant to existing nonlinear

constraints might be useful.

Definition 2 (Redundant inequality constraints). An inequality constraint f(x) ≤ 0,

where f :Rnx→ (−∞,+∞], is redundant to a nonempty set X ⊆Rnx , if X ⊆ {x | f(x)≤ 0}.
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Theorem 2. Let the linear constraint d⊤x≤ q, where d∈Rnx with d ̸= 0 and q ∈R, be redundant

to {x |B⊤x ≤ p} ≠ ∅, where B ∈ Rnx×L and p ∈ RL. Then, the constraints d⊤x ≤ q, 2qd⊤x ≤
d⊤Xd+ q2, and (q−d⊤x)f

(
qx−Xd

q−d⊤x

)
≤ 0, are redundant to(x,X)

∣∣∣∣∣
B⊤x≤ p
px⊤B+B⊤xp⊤ ≤B⊤XB+pp⊤

(pℓ− b⊤ℓ x)f
(

pℓx−Xbℓ
pℓ−b⊤

ℓ
x

)
≤ 0, ℓ∈L

 .

Here, f :Rnx→ (−∞,+∞] is proper, closed and convex; bℓ is the ℓ-th column of the matrix B; and

the last two inequalities result from pairwise multiplication of the linear constraints pℓ− b⊤ℓ x with

itself and f(x)≤ 0, respectively.

Proof. Assume that d⊤x≤ q is redundant to {x |B⊤x≤ p}, then the optimal values of

min
x

q−d⊤x

s.t. B⊤x≤ p
and

max
y≥0

q−p⊤y

s.t. By= d

coincide and both are nonnegative thanks to the strong duality of linear optimization and the

redundancy of d⊤x ≤ q to {x |B⊤x ≤ p}, which implies that there exists a y ∈ RL
+ such that

d⊤x≤ q is redundant to {x | b⊤y x≤ py}, where by =By = d and py = p
⊤y ≤ q. Then, for any x

that satisfies b⊤y x≤ py and f(x)≤ 0, we have that

(q−d⊤x)f

(
(q−d⊤x)x

q−d⊤x

)
≤ 0 and (py − b⊤y x)f

(
(py − b⊤y x)x
py − b⊤y x

)
≤ 0.

Moreover, for any X ∈ Snx we have

(q−d⊤x)f

(
qx−Xd
q−d⊤x

)
≤ 0 ⇐⇒ (py − b⊤y x)f

(
pyx−Xby
py − b⊤y x

)
≤ 0,

because by = d so that xx⊤d=xx⊤by and Xd=Xby. Notice that

(pℓ− b⊤ℓ x)f
(
pℓx−Xbℓ
pℓ− b⊤ℓ x

)
≤ 0, ℓ∈L =⇒

∑
ℓ∈L

θℓ(pℓ−a⊤
ℓ x)f

(
pℓx−Xbℓ
pℓ− b⊤ℓ x

)
≤ 0

=⇒

(∑
ℓ∈L

θℓ(pℓ− b⊤ℓ x)

)
f

(∑
ℓ∈L θℓ(pℓx−Xbℓ)∑
ℓ∈L θℓ(pℓ− b⊤ℓ x)

)
≤ 0

=⇒ (py − b⊤y x)f
(
pyx−Xby
py − b⊤y x

)
≤ 0,

where θℓ = yℓ/
∑

ℓ∈L yℓ for all ℓ ∈ L (note that θ ∈ RL
+ and

∑
ℓ∈L θℓ = 1). Here, the second impli-

cation follows from the convexity of the perspective functions. Therefore, the constraint (q −
d⊤x)f

(
qx−Xd

q−d⊤x

)
≤ 0 is redundant to{

x

∣∣∣∣ b⊤y x≤ py, (pℓ− b⊤ℓ x)f (pℓx−Xbℓpℓ− b⊤ℓ x

)
≤ 0, ℓ∈L

}
.

Thus, the claim follows. □
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Note that adding linear constraints that are redundant to existing nonlinear constraints might be

useful, as is demonstrated in Example 5.

Example 5. Consider the following nonconvex problem:

min
x1,x2

2x1 +3x2− 5x1x2− (x1 +2) ln(x1 +2)

s.t. x1 +x2 ≤ 1,
exp(−x1)+ exp(−x2)≤ 1+ exp(−1).

(15)

Note that ln(x1 + 2) is well defined if x1 > −2, which is ensured by the second inequality. The

objective contains a sum of two SLC functions, those are, −5x1x2 and −(x1 +2) ln(x1 +2). The

obtained convex relaxation of Problem (15) from RPT without the optional SDP relaxation has an

objective value of −35.17. The obtained optimal solution x′ = (1,0)⊤ is a feasible solution to (15),

and its corresponding objective value is 1.30, which constitutes an upper bound on the optimal

value of (15).

The linear constraints x1 ≥−1 and x2 ≥−1 are redundant to the second inequality. However,

adding those constraints to (15) and subsequently applying RPT results in a convex relaxation of

Problem (15) with objective value of −4.47. Again, the obtained optimal solution x′ = (0.5,0.5)⊤

is a feasible solution to (15), and its corresponding objective value is −1.04, which constitutes

an upper bound on the optimal value of (15). Hence, by adding the redundant linear constraints

x1 ≥−1 and x2 ≥−1, we obtain a tighter lower- and upper bound on the optimal objective value of

(15). □

5.2. Handling biconvex problems with convex constraints

We consider the following generic instance of (1):

min
x,y

c0(x)+
∑

k rk(y)ck(x)

s.t. x∈X ,y ∈Y,
(16)

where the functions rk(·) and ck(·) are assumed to be convex, and rk(y), ck(x)≥ 0. We show that

the constraints in the RPT relaxation of (16) resulting from pairwise multiplication in the same set,

i.e., either in X or in Y, are redundant as long as the LMI as given in Section 3.3 is not included.

Lemma 4. The additional constraints in the RPT relaxation of (16) resulting from pairwise multi-

plication in X ×X and Y ×Y are redundant, if the additional constraints resulting from pairwise

multiplication in X ×Y are included, and the following LMIX U x
U⊤ Y y
x⊤ y⊤ 1

⪰ 0,

where xx⊤, xy⊤ and yy⊤ are linearized by X, U ∈Rnx×ny and Y ∈Rny×ny , respectively, is not

included in the RPT relaxation.
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Proof. Notice that any feasible solution for the problem involving all constraint multiplications

is also feasible for the one involving only those in X ×Y . On the other hand, if a solution is feasible

for the problem involving only the multiplications in X ×Y, since we are not using the LMI, we

can take X =xx⊤, Y = yy⊤ and therefore have a feasible solution for the problem involving all

multiplications. Therefore, we conclude that the two formulations are equivalent, which shows that

the constraint multiplications in X ×X and Y ×Y are redundant. □

Observe that the problem of minimizing a DC function is a special case of (16) where Y =dom(c∗1)

and both rk and ck are linear, as a result of the biconjugate reformulation as explained in Example 1.

Finally, we have the following remark in terms of branching, when we solve Problem (16) with

Algorithm 2.

Remark 2. When we apply Algorithm 2 to minimization problems of the form (16) in which we

include the LMI, we typically generate hyperplanes by computing the eigenvector corresponding to

the largest eigenvalue of X −xx⊤, i.e., we only generate hyperplanes in the x-space. Alternatively,

hyperplanes can be generated in the xy-space by considering the eigenvectors of the matrix(
X U
U⊤ Y

)
− (x,y) (x,y)

⊤
,

where (x,y) denotes the vector formed by stacking x and y. We observe that also generating

hyperplanes in the y-space adds many more constraints in each branch-and-bound iteration, which

can increase the computation time at each successive child node. On the other hand, generating

hyperplanes in the y-space might reduce the total number of hyperplanes that need to be generated,

potentially decreasing the overall computation time. The question of whether generating hyperplanes

in the y-space could be beneficial is left for future research. Finally, we note that when we apply

Algorithm 2 to minimization problems of the form (16) in which we do not include the LMI, one

can branch based on the left and right eigenvalues of U . □

5.3. Strengthening upper bounds with eigenvectors of the optimal solution

At optimality we will always have X = xx⊤. If we multiply both sides with x we obtain Xx=

(x⊤x)x. Therefore, we notice that x is an eigenvector of X with corresponding eigenvalue x⊤x.

Hence, we can add the eigenvectors of X to the set of candidate feasible solutions X ′, as described

in Section 3.4. Example 6 illustrates a case where the tightest upper bound can be obtained from

an eigenvector of X.

Example 6. Consider the following toy problem:

min
x

(x1 +x2 +1)exp(x2)

s.t. x1 +x2 +1≥ 0,
x1x2 ≥−1.

(17)
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The optimal solution of (17) is (−1,0) with optimal value 0. After applying RPT we obtain the

following relaxation

min
x

(x1 +x2 +1)exp
(

X12+X22+x2
x1+x2+1

)
s.t. x1 +x2 +1≥ 0,

X12 ≥−1,
X11 +X22 +2X12 +2x1 +2x2 +1≥ 0.

(18)

The optimal solution of (18) is

x∗ =

[
0.71
−1.57

]
and X∗ =

[
2.73 −1.00
−1.00 0.00

]
,

with optimal value 0, which gives us a lower bound for the optimal value of (17). We have the

following candidate vectors

xX
1 =

X∗
1

x∗
1

=

[
3.85
−1.41

]
, xX

2 =
X∗

2

x∗
2

=

[
0.64
0.00

]
.

The eigenvectors of X∗ are

xEV
3 =

[
−0.31
−0.95

]
, xEV

4 =

[
−0.95
0.31

]
.

We observe that x∗ is infeasible as x∗
1x

∗
2 =−1.11<−1. Moreover, xX

1 is infeasible as (xX
1 )1(x

X
1 )2 =

−5.44<−1 and xX
3 is infeasible as (xEV

3 )1 +(xEV
3 )2 +1=−0.26< 0. Finally, we notice that xX

2 is

feasible and gives an upper bound of 1.64, while xEV
4 is also feasible and gives an upper bound of

0.49. Therefore, in this example the tightest upper bound is obtained from the second eigenvector

of X∗. □

6. Convergence analysis of the RPT-BB approach

In the spatial B&B approach the feasible region in each leaf is becoming smaller and smaller.

However, for convergence we need that the feasible region of that leaf is becoming smaller and

smaller in each coordinate direction. Indeed, adding cuts via the eigenvector branching strategy

does not necessarily decreases the feasible region in each coordinate direction. Suppose, for example

that we constantly add hyperplanes that are more or less parallel to one of the constraints. Hence,

for convergence we need additional cutting planes, and that is stated in the following adaptation to

Algorithm 2.

Adaptation A: For a leaf in depth j ∈ J̄ of the B&B tree, where J̄ = {1d, 2d, · · · , Jd} and

d∈Z++, we calculate the corresponding range of x by solving xmax
i =maxxi and x

min
i =minxi, for

all i∈ {1, . . . , nx}, subject to the feasible region of this leaf. We then separate the feasible region

of this leaf by adding the hyperplane xi′ =
1
2
(xmax

i′ + xmin
i′ ), where i′ is the entry of x for which

the value is the largest, i.e., i′ =maxi∈{1,...,nx} x
max
i +xmin

i , instead of the hyperplane proposed in

Section 3.5. We apply this adaptation to all the leaves in depth j of the B&B tree for every j ∈ J̄ .
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Note that the index set J̄ contains integers that are multiples of d∈Z++. Thanks to Assumption 1,

there exists a nx-dimensional box that contains the feasible region of each leaf in depth j of the

B&B tree for every j ∈ J̄ .

Theorem 3. If for each i ∈ I and k ∈K0, the function cik and its corresponding recession func-

tion δ∗dom(c∗
ik

) are Lipschitz continuous, then the spatial B&B Algorithm 2 with Adaptation A converges

to a global optimal solution of Problem (1).

Proof. The proof consists of three steps:

Step 1) We first show that as j→∞, the feasible region of each leaf in depth j of the B&B tree

becomes smaller and smaller. Indeed, it follows from Adaptation A that the feasible region of a leaf

in depth j of the B&B tree is contained in a nx-dimensional box:

{x : ∥x−α∥∞ ≤ ϵ}, (19)

for α= 1
2
(xmax +xmin) and ϵ=maxi{xmax

i −xmin
i }. Note that ϵ→ 0 as j→∞, as we branch along

a given coordinate. Initially, we may continue branching along this coordinate for several iterations.

However, after a finite number of iterations, we switch to branching along a different coordinate.

Step 2) In this step we show that

|Xij −xixj| ≤ 4ϵ(|αj|+ ϵ). (20)

To prove this, first observe that for i, j ∈ {1, . . . , nx}, we have

xi−αi ≤ ϵ (21)

xi−αi ≥−ϵ (22)

xj −αj ≥−ϵ (23)

xj −αj ≤ ϵ. (24)

Clearly, Constraints (21) – (24) are redundant with respect to the corresponding feasible region of

the leaf of the B&B tree. It follows from Theorem 2 that the inequalities that are obtained after

multiplying these redundant constraints and perspectification are also redundant. We multiply the

inequalities (22) and (23) and apply perspectification to obtain:

0≤ (xi−αi + ϵ)(xj −αj + ϵ) =Xij −αixj + ϵxj +(xi−αi + ϵ)(−αj + ϵ).

From this inequality we obtain

Xij−xixj ≥ (αi−xi)xj−ϵxj−(xi−αi+ϵ)(−αj+ϵ)≥−2ϵ(|αj|+ϵ)−(ϵ+ϵ)(|αj|+ϵ) =−4ϵ(|αj|+ϵ).
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By multiplying (22) and (24) we can prove in a similar way:

Xij −xixj ≤ 4ϵ(|αj|+ ϵ).

Hence, we obtain (20).

Step 3) In this step we prove that also the perspective approximation of the linear × convex function

converges to the right value. Since each function cik is Lipschitz continuous with Lipschitz constant

Lik, we have when qik−d⊤
ikx> 0,

f̃k(x,X
′)− f̃k(x,X ′′) =

∑
i

(qik−d⊤
ikx)

(
cik

(
qikx−X ′dik

qik−d⊤
ikx

)
− cik

(
qikx−X ′′dik

qik−d⊤
ikx

))

≤
∑
i

(qik−d⊤
ikx)Lik

∥∥∥∥∥qikx−X ′dik− qikx+X ′′dik

qik−d⊤
ikx

∥∥∥∥∥
=
∑
i

Lik∥(X ′−X ′)dik∥

≤
∑
i

Lik∥X −X ′′∥∥dik∥

≤ L̃k∥X ′−X ′′∥,

where L̃k =
∑

iLik∥dik∥. In particular if we take X ′ =X and X ′′ =xx⊤, and using (20) we get

f̃k(x,X)− f̃k(x,xx⊤)≤ L̃k∥X −xx⊤∥ ≤ 4ϵn(α̃+ ϵ)L̃k,

where α̃ = maxj |αj|. This means that f̃k(x,X)→ f̃k(x,xx
⊤) when ϵ→ 0. Analogously, when

qik−d⊤
ikx= 0, a similar result can be obtained by using the fact the recession function is assumed

to be Lipschitz continuous. □

For the theorem we need Lipschitz continuity for the recession functions of cik. The following

example shows that convergence may not hold without this assumption:

c(x) = xex, x≥ 0.

The perspective approximation is:

c̃(x,x′) = xex
′/x.

Now take x= 0. Even if x′ ≥ 0 is very close to x= 0, we have c̃(0, x′) =∞.

7. Known convex reformulations and relaxations obtained via RPT

In this section, we show that several convex reformulations and relaxations for several classes of

nonconvex problems derived in the literature can also be obtained via RPT.
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7.1. Disjunctive optimization

A linear description of the convex hull of the union of convex sets can be derived by using RPT.

It follows from the definition that the convex hull of the union of nonempty, compact convex sets

Xk = {x | hk(x)≤ 0}, k ∈K is:

conv

(⋃
k∈K

Xk

)
=

{
x

∣∣∣∣ ∃xk ∈Xk,λ≥ 0 :x=
∑
k∈K

λkxk,
∑
k∈K

λk = 1

}
,

where hk(x) = [h1k(x) h2k(x) · · · hJk(x)]
⊤, and hjk :Rnx→ (−∞,+∞] is proper, closed and convex

for every j ∈J , k ∈K. This description is nonlinear and nonconvex, since it contains products of

variables λkxk, k ∈K. One can apply RPT to obtain the following convex relaxation{
x

∣∣∣∣ ∃uk :x=
∑
k∈K

uk,
∑
k∈K

λk = 1, λ≥ 0, λkhk(uk/λk)≤ 0, k ∈K

}
.

This convex relaxation is exact according to Gorissen et al. (2014, Lemma 1), which applies

because Xk, k ∈K, are nonempty, compact and convex sets. We now use this observation to derive

convex relaxation for disjunctive optimization problems with general convex sets. In Sherali and

Adams (2005, Section 4), the authors derive similar result for disjunctive optimization problems

with a linear objective function and polyhedral sets Xk, k ∈ K. Consider a generic disjunctive

optimization problem

min
x

f(x)

s.t. x∈
⋃
k∈K

Xk,
(DP)

where f :Rnx→ (−∞,+∞] is proper, closed and convex. Disjunctive optimization problems are in

general nonconvex because its feasible region constitutes a union of convex sets Xk. By applying

RPT to the feasible region of (DP), we obtain the following convex relaxation:

min
y,{uk}k

f

(∑
k∈K

uk

)
s.t. ykhk(uk/yk)≤ 0, k ∈K,∑

k∈K

yk = 1,

yk ≥ 0, k ∈K,

which is often refered to as the hull relaxation (Grossmann and Lee, 2003). Note that this hull

relaxation is tight if f(·) is a linear function, and Xk, k ∈K, are nonempty, compact and convex

sets.
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7.2. Generalized linear optimization

Consider a generalized linear optimization problem of the following form (Dantzig, 1963, p. 434):

min
y,{xk}k

c⊤y

s.t.
∑
k∈K0

xkyk ≤ b,

y≥ 0,
xk ∈Xk, k ∈K0,

(GLP)

where Xk = {x | hk(x)≤ 0}, k ∈K0, and hk :Rnx→ (−∞,+∞]J is a vector of J proper, closed and

convex functions for each k ∈K0. The partial RPT relaxation of (GLP) is:

min
y,{uk}k

c⊤y

s.t.
∑
k∈K0

uk ≤ b,

ykhk(uk/yk)≤ 0, k ∈K0,
y≥ 0.

The convex problem is in general a convex relaxation of (GLP), which has the same optimal value

as (GLP) if one of the following regularity conditions is satisfied : (i) Xk is bounded for each k ∈K0

(Gorissen et al., 2014, Lemma 1); (ii) there exists a (y,{xk}k) with y> 0 that is feasible for (GLP)

(Zhen et al., 2023, Lemma 6). While for a special case where Xk, k ∈K, are (nonempty) boxes, the

corresponding linear relaxation of (GLP) is exact due to Dantzig (1963).

7.3. Convex hull representation for 0-1 mixed-integer convex programs

Consider the following mixed-integer 0-1 constrained set (Sherali and Adams, 2009):

X =

x≡ (xB,xC)
hk(x)≤ 0, k ∈K
xj ∈ {0,1}, j ∈B
0≤ xj ≤ 1, j ∈ C

 ,

where the vector x∈Rnx is expressed as the concatenation of the binary vector xB ∈ {0,1}|B| and

the continuous vector xC ∈ [0,1]|C|, with nx = |B|+ |C| and B ∩C = ∅. Moreover, hk :Rnx→R are

bounded-valued, convex, and differentiable functions and the set {x | hk(x)≤ 0} is nonempty and

compact for every k ∈K. Similarly as in Sherali and Adams (2009), we can define the polynomial

factors

FJ (xB) =
∏
j∈J

xj

∏
j∈B\J

(1−xj),

where J ⊆B, and linearize them by a newly introduced variable λJ . We can apply partial RPT in

which we generate additional redundant nonconvex constraints by multiplying each of the defining
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inequalities in X by each λJ , for J ⊆B. We then obtain the following representation where the

binary restrictions on xj for j ∈B are now relaxed

XR =

x∈Rnx ,λ∈R2|B|
λJhk(x)≤ 0, k ∈K,J ⊆B
λJ ≥ 0, J ⊆B
0≤ xjλJ ≤ λJ , j ∈ C,J ⊆B

 . (25)

Subsequently convexifying all nonconvex components in XR by reformulating them in their perspec-

tive form and linearizing all product terms we obtain

XRPT =

λ∈R2|B|
,y ∈Rnx·2|B|

λJhk

(
yJ
λJ

)
≤ 0, k ∈K,J ⊆B

λJ ≥ 0, J ⊆B
0≤ (yJ )j ≤ λJ , j ∈ C,J ⊆B

 , (26)

where xjλJ is linearized by (yJ )j for j ∈ C, J ⊆B, and for all j ∈B, J ⊆B, we have

(yJ )j =

{
λJ if j ∈J , J ⊆B
0 otherwise,

since in this case x2
j = xj. Observe that

∑
J⊆B FJ (xB) = 1. To see this, define J ′ = {j | (xB)j =

1}. As xB are binary variables, FJ (xB) takes the value 1 only when J = J ′ and 0 otherwise.

Hence,
∑

J⊆B λJ = 1. Adding this constraint to XRPT, together with x=
∑

J⊆B yJ , which follows

from
∑

J⊆B λJ = 1 and yJ =xλJ , we obtain

Xconv =


x∈Rnx

λJhk

(
yJ
λJ

)
≤ 0, k ∈K,J ⊆B

λJ ≥ 0, J ⊆B
0≤ yJ j ≤ λJ , j ∈ C,J ⊆B∑

J⊆B λJ = 1
x=

∑
J⊆B yJ


, (27)

which is precisely the convex hull of X as given in Sherali and Adams (2009). This demonstrates

that by iteratively applying the proposed RPT approach (without Branch and Bound), where we

consider all |B| combinations of the constraints 0≤ xj ≤ 1 for j ∈B, we construct the convex hull of

the 0-1 mixed-integer convex set X .

7.4. Approximate S-Lemma for quadratically constrained quadratic optimization

Consider a quadratically constrained quadratic optimization problem with only one (quadratic)

constraint:

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤A1x+2b⊤1 x+ c1 ≤ 0,
(QCQP)

where Ak ∈Rnx×nx , bk ∈Rnx and ck ∈R for each k ∈ {0,1}. It is well-known that such a problem

admits a convex reformulation via the S-lemma. In the following, we show that the dual of the
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obtained convex reformulation from the S-lemma can be interpreted as an RPT relaxation. Suppose

that there exists an x∈Rnx with x⊤A1x+2b⊤1 x+ c1 < 0, then we have

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤A1x+2b⊤1 x+ c1 ≤ 0
⇐⇒

max
λ≥0,γ

γ

s.t.

[
A0

1
2
b0

1
2
b⊤0 c0

]
⪰ γ

[
O 0
0⊤ 1

]
−λ

[
A1

1
2
b1

1
2
b⊤1 c1

]
,

where O ∈Rnx×nx is a matrix of all zeros. Here the ”⇐⇒ ” holds due to the S-lemma (Boyd and

Vandenberghe, 2004, Appendix B). The dual of the obtained semi-definite problem is

min
X,x

Tr(A0X)+ 2b⊤0 x+ c0

s.t. Tr(A1X)+ 2b⊤1 x+ c1 ≤ 0,[
X x
x⊤ 1

]
⪰ 0,

which is clearly an RPT relaxation of (QCQP). Consider now a generic quadratically constrained

quadratic optimization problem with more than one quadratic inequality constraint:

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤Akx+2b⊤k x+ ck ≤ 0 k ∈K,

where Ak ∈Rnx×nx , bk ∈Rnx and ck ∈R for each k ∈K0. Similarly, the dual of the convex relaxation

obtained from using the approximate S-lemma coincides with the convex relaxation from RPT:

min
X,x

Tr(A0X)+ 2b⊤0 x+ c0

s.t. Tr(AkX)+ 2b⊤k x+ ck ≤ 0, k ∈K,[
X x
x⊤ 1

]
⪰ 0.

Note that here the obtained relaxation is not tight in general, and for more details on the approximate

S-lemma, we refer to Ben-Tal et al. (2002).

7.5. Fractional optimization

Consider the following generic fractional optimization problem

min
x

f(x)

g(x)
s.t. hk(x)≤ 0 k ∈K,

(FP)

where f : Rnx → R+ is convex and nonnegative, g : Rnx → R++ is concave and positive, and hk :

Rnx→ (−∞,+∞] is proper, closed and convex for every k ∈K. By first introducing an epigraphical

variable τ for the positive convex function 1/g(x), we obtain the SLC constraint τg(x)≥ 1, and

then apply RPT to obtain:
min
x,τ

τf(v/τ)

s.t. τg(v/τ)≥ 1,
τhk(v/τ)≤ 0, k ∈K.

The obtained convex problem is an exact convex reformulation of (FP) (Schaible, 1974).
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8. Numerical experiments

In this section, we demonstrate the efficiency and effectiveness of our RPT-BB approach on several

nonconvex optimization problems, including a sum-of-max-of-linear-terms maximization problem, a

Euclidean norm maximization problem, a log-sum-exp maximization problem, a linear multiplicative

optimization problem, a quadratically constrained quadratic optimization problem, and a dike

height optimization problem. Using the biconjugate reformulation, we show that the first four

nonconvex optimization problems can be formulated as bilinear optimization problems subject to

convex and nonconvex, though SLC, constraints. The latter two nonconvex optimization problems

are already in generic form (1). In the implementation of RPT-BB, all problems are assumed to be

minimization problems, by switching to the minus of the objective if necessary. Moreover, in all

problems that we address, except for the linear multiplicative optimization problem, the conditions

for convergence of RPT-BB are satisfied.

Numerical experiments are performed on one Intel i9 2.3GHz CPU core with 16 GB RAM. All

computations for RPT-BB and SCIP are conducted with MOSEK version 9.2.45 (MOSEK ApS,

2020), Gurobi version 9.0.2 (Gurobi Optimization, 2019), SCIP version 8.0.2 (Achterberg, 2009),

and implemented using Julia 1.5.3 and the Julia package JuMP.jl version 0.21.6. All computations

for BARON are conducted with BARON version 20.10.16 (Sahinidis, 1996) implemented using

the Python package pyomo version 6.4.1. Finally, all computations for CPLEX are conducted with

CPLEX version 22.1.0 (ILOG,Inc., 2017) and implemented using the Python package docplex

version 2.23.222. Inside RPT-BB, we use Gurobi for the linear optimization problems and MOSEK

for the nonlinear optimization problems. In all branch and bound implementations the optimality gap

is set to 10−4. We compare our approach, when applied with (RPT-SDP-BB) and without the LMI

(RPT-BB), with BARON, and with SCIP, applied either on the direct formulation (BARON-Dir,

SCIP-Dir) or the biconjugate reformulation (BARON-Bic, SCIP-Bic), where applicable.

In the remainder of this section, in the tables depicting the results, we use the abbreviations

“Opt”, “Gen Hyp”, and “Time” to represent the optimal value, the total number of hyperplanes

generated during branch and bound, and the computation time in seconds, respectively. Moreover,

we set the maximum time limit equal to 3600 seconds, hence if the computation time equals 3600∗,

the optimum cannot be found within 3600 seconds and all approaches return the best value they

can obtain within 3600 seconds. ∗∗ denotes that some of the instances were solved within one hour,

while others were not and returned the best value obtained. ∗ ∗ ∗ denotes that no feasible solution

was found and just the lower bound was returned. Finally, a “-” indicates that no solution was

returned after one hour. To bridge the gap between theory and practice, we have made our code

freely available on GitHuba.

a https://github.com/ThKoukouv/RPT_BB

https://github.com/ThKoukouv/RPT_BB
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8.1. Sum-of-max-linear-terms maximization over convex and nonconvex constraints

We consider the following generic sum-of-max-linear-terms maximization problem from Zhen et al.

(2022) and Selvi et al. (2022):

max
x∈X

∑
ℓ∈L

max
j∈Jℓ

{A⊤
j x+ bj}, (28)

where A ∈ Rnx×ny , b ∈ Rny . We consider three cases of X , those are, a set defined by linear

constraints, a set defined by an additional geometric constraint, and a set defined by an additional

nonconvex constraint, i.e., X =X1, X =X2, and X =X3, where

X1 = {x∈Rnx
+ |D⊤x≤ d},

X2 =

{
x∈X1

∣∣∣∣ log
(

nx∑
i=1

exp(xi)

)
≤ a

}
,

X3 =

{
x∈X1

∣∣∣∣∥∥x∥∥2 + nx∑
i=1

√
xi ≤ c

}
.

Here D ∈Rnx×m and d∈Rm. Since the objective of (28) is a closed convex function, we can replace

it by its biconjugate function and obtain the following equivalent maximization problem:

max
x∈X
y∈Y

(A⊤x+ b)⊤y, (29)

where Y equals the domain of the conjugate function of the objective of (28), i.e.,

Y =

{
y ∈Rny

+

∣∣∣∣∑
j∈Jℓ

yj = 1, ℓ∈L

}
.

Note that ny =
∑

ℓ∈L |Jℓ|. We compare RPT-BB, RPT-SDP-BB, and BARON. Furthermore, for

X =X1 and X =X2, we also compare them with the exact mixed integer optimization reformulation

(MIR), given by

max
λ,z

∑
ℓ∈L

λℓ

s.t. λℓ ≤A⊤
j x+ bj +M(1− zj), j ∈Jℓ, ℓ∈L,∑

j∈Jℓ

zj = 1, ℓ∈L,

z ∈ {0,1}ny .

(30)

We solve Problem (30) with Gurobi for X1 and Mosek for X2. We refer to Appendices C.1 and D.1

for the convex RPT relaxation and problem instances, respectively. The results are illustrated in

Table 3.

From Table 3, we observe that for X =X1, MIR is able to solve all instances the fastest, except for

instances 5 and 5a, for which RPT-BB has the lowest computation time. We notice that BARON

finds the optimum for instances 3, 3a, 5, and 5a, but cannot prove optimality within the time limit.
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X #
RPT-BB RPT-SDP-BB BARON GUROBI/MOSEK

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 23.29 0.03 0 23.29 0.06 0 23.29 0.05 23.29 0.01
1a 22.72 0.03 0 22.72 0.06 0 22.72 0.05 22.72 0.01
2 233.94 0.32 0 233.94 1.49 0 233.94 0.28 233.94 0.04
2a 211.87 0.65 0.2 211.87 1.47 0 211.87 1.08 211.87 0.06

X1
3 1081.62 562.13 104 1081.62 42.32 0 1081.62 3600∗ 1081.62 1.63
3a 1159.90 296.77 47.7 1159.90 88.29 0.3 1159.90 3600∗ 1159.90 1.53
4 113.71 0.09 0 113.71 0.14 0 113.71 4.01 113.71 0.01
4a 83.78 0.52 0.5 83.78 0.19 0 83.78 4.09 83.78 0.02
5 3002.44 6.57 1 3002.44 213.93 1 3002.44 3600∗ 3002.44 647.18
5a 2898.05 44.36 7.8 2898.05 238.14 1.3 2898.05 3600∗ 2898.05 734.65

1 14.58 0.06 0 14.58 0.08 0 14.58 0.09 14.58 0.04
1a 14.54 0.09 0 14.54 0.11 0 14.54 0.07 14.54 0.04
2 136.22 5.43 1 136.22 3.43 0 136.22 3600∗ 136.22 778.65
2a 122.21 8.84 2.6 122.21 9.21 0.8 122.21 3600∗ 122.21 977.05

X2
3 837.94 3600∗ 283 837.94 201.34 0 837.94 3600∗ 837.94 3600∗

3a 890.07 3600∗ 278.3 890.07 616.93 0.6 890.07 3600∗ 886.41 3600∗

4 33.73 4.95 7 33.73 3.15 2 33.73 75.44 33.73 0.09
4a 31.81 2.35 2.7 31.81 1.69 0.8 31.81 39.33 31.81 0.11
5 1610.69 3600∗ 286 1610.69 3600∗ 9 1610.69 3600∗ 1610.69 3600∗

5a 1670.92 3600∗ 291.3 1670.92 3600∗ 9.6 1670.92 3600∗ 1670.92 3600∗

1 13.44 98.51 441 13.44 13.19 6 13.44 0.31
1a 15.02 862.32 1165.7 15.02 13.43 8.7 15.02 0.13
2 140.89 146.74 241 140.89 101.04 4 140.89 8.48
2a 129.31 442.59 739.1 129.31 103.44 3.9 129.31 417.41

X3
3 768.96 855.87 43 768.96 3600∗ 3 768.96 3600∗

3a 805.95 1369.82 66.4 805.95 3600∗ 4.1 805.95 3600∗

4 45.34 218.51 123 45.34 133.29 36 45.34 114.87
4a 43.79 2336.64∗∗ 677.1 44.97 352.84 67.9 44.97 97.11
5 2256.91 3600∗ 136 - 3600∗ 4 1700.68 3600∗

5a 2353.19 3600∗ 228.7 - 3600∗ 4.3 2000.09 3600∗

Table 3 Results for Problem (29) over the feasible regions X1,X2, and X3. The exact mixed integer reformulation

is solved with Gurobi for X =X1 and MOSEK for X =X2.

For X =X2, MIR still finds the optimum within the lowest computation time for instances 1, 1a,

and 4. Further, for instances 2, 2a, 3, 3a, and 4a our approach achieves the lowest computation

time. Finally, for instances 5 and 5a all methods find the optimum, however they are not able to

prove optimality within the time limit.

For X =X3, MOSEK cannot solve the instances because of the nonconvex constraint. For instances

1, 1a, 2, 2a, and 4, all approaches find the optimum. For instances 1, 1a, 2, and 4, BARON has the

lowest computation time, while for instance 2a RPT-SDP-BB has the lowest computation time.

Moreover, RPT-BB solves the problem to optimality for instances 3 and 3a, while BARON could

only find the optimum but not prove optimality within the time limit. BARON has the lowest

computation time for instance 4a. Finally, for instances 5 and 5a, RPT-BB is able to compute a

better bound than BARON within one hour.
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8.2. Log-sum-exp maximization over linear constraints

We consider the log-sum-exp maximization problem subject to linear constraints:

max
x∈X

log

(
nx∑
i=1

exp(xi)

)
, (31)

where X = {x ∈Rnx
+ |D⊤x≤ d}, D ∈Rnx×L′

and d ∈RL′
. Since the objective of (31) is a closed

convex function, we can replace it by its biconjugate function and obtain the following equivalent

maximization problem:

max
x∈X

(y,w)∈Y

x⊤y+

nx∑
i=1

wi, (32)

where Y equals the domain of the conjugate function of the objective of (31), i.e.,

Y =

{
y ∈Rnx

+ , w ∈Rnx

∣∣∣∣∣ yi exp
(
wi

yi

)
≤ 1, i∈ {1, . . . , nx},

nx∑
i=1

yi = 1

}
.

Observe that here we make use of case 7 in Table 1 and introduce epigraphical variables wi for every

i∈ {1, . . . , nx}. We refer to Appendices C.2 and D.2 for the convex RPT relaxation and problem

instances, respectively. The results are illustrated in Table 4.

X #
RPT-BB RPT-SDP-BB BARON-Dir SCIP-Dir BARON-Bic SCIP-Bic

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time Opt Time Opt Time

1 10.01 0.14 0 10.01 0.48 0 10.01 0.06 10.01 0.07 6.48 3600∗ 10.01 3600∗

2 40.00 1.51 0 40.00 158.44 0 40.00 360.65 3.69 3600∗ 30.27 3600∗ - 3600∗

3 6.09 28.22 7.4 6.09 11.07 2.1 6.09 0.12 6.09 0.17 5.46 3600∗ 6.08 3600∗

4 21.96 0.96 0 21.96 3.37 0 21.78 1082.38∗∗ 19.31 2520.37∗∗ 5.88 3600∗ 20.09 3600∗

5 34.76 13.46 0 34.76 368.69 0 34.76 1450.84∗∗ 15.43 3600∗ - 3600∗ 31.91 3600∗

Table 4 Results for Problem (31).

From Table 4 we observe that both RPT-BB and RPT-SDP-BB find the optimum for all instances,

whereas BARON could not find the optimum for some of the generated instances in 4 and 5,

and SCIP could not find the optimum for some of the generated instances in 4 and for all of the

generated instances in 2 and 5 within one hour. Observe that while BARON-Dir is not able to

prove optimality within the time limit for instance 5, it does find the optimum, whereas for instance

4 it does not. For instances 1 and 3, BARON-Dir performs best on computation time, while for

instances 2, 4, and 5, RPT-BB has the lowest computation time. Moreover, we notice that in all

instances BARON-Bic and SCIP-Bic cannot find the optimum within one hour. Hence, if we had

started with Problem (32), our approach would have significantly outperformed both BARON

and SCIP for all instances. We further observe that RPT-BB has lower computation time than

RPT-SDP-BB in all instances except for instance 3, in which case more hyperplanes are needed

during branch and bound when the LMI is not included.
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8.3. Linear multiplicative optimization

We consider the following linear multiplicative optimization problem from Ryoo and Sahinidis

(1996):

min
x∈X

ny∏
i=1

A⊤
i x+ bi, (33)

where A ∈ Rnx×ny , b ∈ Rny , X = {x ∈ Rnx
+ | D⊤x ≤ d, A⊤

i x+ bi ≥ 0}, D ∈ Rnx×L, and b ∈ RL.

Without loss of generality we assume A⊤
i x+ bi > 0 for all i∈ I. Utilizing a log transformation, as

in Ryoo and Sahinidis (1996), Problem (33) can be equivalently reformulated as

min
x∈X

ny∑
i=1

log
(
A⊤

i x+ bi
)
. (34)

Since the objective of (34) is a closed concave function, we can replace it by its biconjugate function

and obtain the following equivalent maximization problem:

max
x∈X

(y,w)∈Y

−(A⊤x+ b)⊤y−
ny∑
i=1

wi, (35)

where Y equals the domain of the conjugate function of the objective of (34), i.e.,

Y =
{
y ∈Rny

+ ,w ∈Rny
∣∣ exp(−wi− 1)≤ yi, i∈ {1, . . . , ny}

}
.

Observe that here we make use of case 3 in Table 1 and introduce epigraphical variables wi for every

i∈ {1, . . . , ny}. Moreover, observe that Y is not bounded. Hence, the conditions for convergence of

RPT-BB are not satisfied. We refer to Appendices C.3 and D.3 for the convex RPT relaxation and

problem instances, respectively. The results are illustrated in Table 5.

X #
RPT-BB RPT-SDP-BB BARON-Dir SCIP-Dir BARON-Bic SCIP-Bic

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time Opt Time Opt Time

1 12.14 8.90 35.0 12.14 9.18 20.9 12.14 0.23 12.14 0.35 12.14 42.16 12.14 2889.96∗∗

2 23.47 75.99 103.1 23.47 83.49 41.6 23.47 3600∗ 33.65 3600∗ 23.47 2766.69 33.17 2284.53∗∗

3 20.96 1141.31 516.7 20.96 160.08 55.6 20.96 2526.99 32.93 3240.03∗∗ 20.96 2288.78 20.96 3600∗

4 18.99 3600∗ 2338.3 18.99 648.59 78.2 18.99 3600∗ 28.20 3240.49∗∗ 18.99 3442.49∗∗ 18.99 3600∗

5 8.89 3600∗ 453.3 8.89 723.38 43.1 8.89 466.13 8.89 0.76 8.89 67.94 8.90 3600∗

Table 5 Results for Problem (33).

From Table 5, we observe that our approach often outperforms BARON and SCIP on linear

multiplicative optimization problems. Specifically, in instances 2, 3, and 4, which correspond to

the multiplication of 10, 9, and 8 linear terms, respectively, RPT-BB or RPT-SDP-BB achieve the

best computation times. However, in instances 1 and 5, which involve 5 and 40 variables, and 5

and 4 linear terms in the objective, respectively, both BARON and SCIP solve the problems faster

than RPT-BB and RPT-SDP-BB. We notice that BARON achieves the best computation time in

instance 1 and SCIP in instance 5.
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8.4. Quadratic constraint quadratic optimization

We consider the following quadratic constraint quadratic optimization problem:

min
x∈X1

x⊤P0x+ q⊤0 x+ r0

s.t. x⊤Pkx+ q⊤k x+ rk ≤ 0, k ∈K,
(36)

where Pk ∈Rnx×nx , k ∈K0, are not necessarily positive semi-definite and as a result Problem (36)

is not necessarily convex. However, the nonconvex quadratic functions are SLC, hence we can apply

RPT. In the first five instances involving nonconvex QPs over linear constraints, we also compare

with CPLEX, which has a specialized algorithm for these problems. We refer to Appendices C.4 and

D.4 for the convex RPT relaxation and problem instances, respectively. The results are illustrated

in Table 6.

X #
RPT-BB RPT-SDP-BB BARON CPLEX

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 394.75 0.35 1 394.75 0.55 1 394.75 0.19 394.75 0.11
2 884.75 0.31 1 884.75 0.43 1 884.75 0.21 884.75 0.08
3 6888.78 0.03 0 6888.78 0.05 0 6888.78 0.11 6888.78 0.07
4 98382.63 2.86 0 98382.63 3.77 0 98382.63 3600∗ 98382.63 1.32
5 774482.38 18.14 0 774482.38 67.51 0 774482.38 3600∗ 774482.38 13.25
6 1717.80 0.52 0 1717.80 0.16 0 1717.80 0.14
7 4507.75 0.22 5 4507.75 0.21 1 4507.75 0.32
8 17084.82 0.37 6 17084.82 0.39 1 17084.82 0.33
9 52557.99 3600∗ 5924 46632.36 35.07 26 46632.36 41.64
10 76929.21 3600∗ 1903 52233.70 211.22 51 52233.70 3600∗

Table 6 Results for Problem (36). Instances 1-5 contain only linear constraints, while instances 5-10 contain

additional nonconvex quadratic constraints.

From Table 6 we observe that for instances 1-3, 6-8, all approaches find the optimum in less than

a second. CPLEX is in general better for instances 1-5. Moreover, for instances 6,8 BARON is

faster, while for instance 7 RPT-SDP-BB is faster. Further, for instances 9 and 10 RPT-SDP-BB

achieves the best computation time, while RPT-BB is not able to find the optimum within an hour.

Finally, we notice that RPT-SDP-BB is able to solve all instances, while BARON is not able to

prove optimality for instances 4, 5, and 10.

8.5. Dike height optimization

Eijgenraam et al. (2017) develop a model to optimize the dike heightening in the Netherlands. The

authors show that the optimal solution is periodic, i.e., the dike is heightened with the same amount

every t years, and explicit expressions are derived for t and the optimal heightenings. However, in

practice there are several reasons to deviate from the periodic solution. For example, it is maybe

desired to combine heightenings of several dikes. In this section, we propose to use RPT to solve

the dike heightening problem in which the years that the heightening takes place is fixed and may
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deviate from every t years. Such problems cannot be solved by the approach in Eijgenraam et al.

(2017). We consider the following dike height optimization problem, which is the time truncated

version of the problem in Eijgenraam et al. (2017):

min
x≥0,h

∑
k∈K0

(C + bxk) exp (λhk− δtk)︸ ︷︷ ︸
Investment costs

+
∑
k∈K0

S0

βδ

(exp (βδtk+1)− exp (βδtk)) exp (−θhk)︸ ︷︷ ︸
Expected damage costs

+
S0

δ
exp (βδT − θhK)︸ ︷︷ ︸

Future damage costs

,

(DHO)

where t is the vector of all moments in time at which the dike height is increased, t0 = 0, x is the

vector of all increases in dike height, where xk is the increment of the dike height at time tk, hk

is the increase in dike height after tk years, i.e., hk =
∑k

i=0 xi, hK =
∑

k∈K0
xk and βδ, δ, θ, λ, b,C,T

and S0 are constants, which are explained in more detail in Appendix D.5. Observe that the feasible

region is not compact. However, we can add redundant upper bounds on x such that we obtain

a compact feasible region. Moreover, since C > 0, the conditions for convergence of RPT-BB, as

specified in Theorem 3, are satisfied.

The objective of (DHO) is to minimize the sum of investment costs and the total expected cost

of flooding, both as a result of heightening dikes, see Eijgenraam et al. (2017) for a full description.

Since t is fixed, the objective of (DHO) is SLC, as it consists of two convex terms (expected damage

costs and future damage costs) and a sum of linear times convex functions, hence we can apply

RPT-BB. We compare RPT-BB, RPT-SDP-BB, and BARON. We refer to Appendices C.5 and D.5

for the convex RPT relaxation and problem instances, respectively. The results for the homogeneous

dike rings 10, 15 and 16 in the Netherlands are shown in Table 7.

t #
RPT-BB RPT-SDP-BB BARON

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time

tir

10 61.98 3600∗ 1373 61.98 0.41 0 61.98 110.70
15 608.74 3600∗ 2231 608.74 0.29 0 608.74 3600∗

16 1268.11 3600∗ 922 1268.11 0.29 0 1268.11 3600∗

t25

10 61.31 3600∗ 2197 61.31 0.49 0 61.31 1680.36
15 609.92 3600∗ 1308 609.92 1.15 0 609.92 3600∗

16 1269.63 3600∗ 1897 1269.63 0.88 0 1269.63 3600∗

t50

10 55.50 3600∗ 6680 55.50 0.16 0 55.50 1.32
15 545.23 3600∗ 724 545.23 0.27 0 545.23 1.81
16 1100.07 3600∗ 1225 1100.07 0.22 0 1100.07 3600∗

Table 7 Results for Problem (DHO), for dike rings 10, 15, and 16 in the Netherlands.

From Table 7 we observe that RPT-SDP-BB outperforms RPT-BB and BARON, since it finds the

global optimal solution for every instance in the root node, in about a second. On the other hand,

RPT-BB finds the optimal solution for every case, but is not able to prove optimality. Moreover,

BARON is not able to prove optimality in each case for dike ring 16 and for 2 out of the 3 cases for
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dike ring 15. Finally, for dike ring 16, BARON is able to achieve a smaller optimality gap than

RPT-BB, as can be seen in Table 8.

t #
RPT-BB BARON

UB LB Time UB LB Time

tir 1268.11 1255.58 3600∗ 1268.11 1266.79 3600∗

t25 1269.63 1256.84 3600∗ 1269.63 1267.98 3600∗

t50 1100.07 1090.56 3600∗ 1100.07 1100 3600∗

Table 8 Upper and lower bounds obtained for RPT-BB and BARON, within one hour for dikerings 16. We set the

maximum time limit equal to 3600 seconds, hence if the computation time equals 3600∗, the optimum cannot be found

within 3600 seconds and all approaches return the best upper and lower bounds they can obtain within 3600 seconds.

9. Discussion and conclusion

In summary, we develop a method for globally solving nonconvex optimization problems involving

SLC functions. We introduce the RPT framework, which enables us to obtain a convex relaxation

of the original nonconvex problem, while introducing additional variables and constraints. We then

incorporate it in spatial branch and bound in order to solve the initial problem to optimality by

sequentially partitioning the feasible region in smaller regions. In the numerical experiments, we

demonstrate that the proposed method stands well against the current state of the art global

optimization methods. Overall, we observe that for the considered problem instances, RPT-BB and

RPT-SDP-BB are able to solve most problems by generating a few hyperplanes. This, together

with the efficiency of MOSEK for solving conic optimization problems, is what drives the speed of

the method.

A key limitation of the RPT-BB method is its reduced tractability when applied to problems with a

large number of variables and constraints. This issue arises because the method involves squaring the

number of variables and performing pairwise multiplications across all linear and convex constraints

within the feasible region. To enhance scalability, future research could explore methodological

adaptations designed to manage larger problem instances more efficiently. Potential adaptations

might include employing partial constraint multiplications and selectively generating variable

products. An iterative constraint generation approach could also be beneficial. This would involve

initially solving the RPT relaxation with a subset of constraints, then progressively incorporating

additional constraints based on whether the solutions violate any remaining constraints. Assessing

the efficiency of this iterative approach, considering it requires multiple resolutions of the RPT

relaxation, would be essential.

Finally, it would be interesting to investigate the potential of RPT-BB beyond the scope discussed

in this paper, by applying RPT-BB also to nonconvex optimization problems in other fields,
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such as mixed integer nonlinear optimization, robust optimization, adaptive robust optimization,

distributionally robust optimization, polynomial optimization, and bilevel optimization.
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Appendix

A. When infimum is not attained

If the infimum of (3) is not attained, we assume that (1) satisfies the following regularity condition.

Assumption 3. There exists a vector xS ∈ ri(∩k∈K0
dom(fk)) such that fk(x

S) < 0 for all k ∈
K, A⊤x< b and h(xS)< 0.

Note that Assumption 3 implies that xS resides in the sets ∩ k∈K0
i∈I0

ri(dom(cik)) and ∩j∈J0
ri(dom(hj))

thanks to Proposition 2.42 in Rockafellar and Wets (2009), and thus, xS is a strict Slater point

of (1). Furthermore, there exists a (τ S,XS,V S) such that (xS,τ S,XS,V S) is a strict Slater point

of the corresponding RPT relaxation (8) of (1) with fk(x)≤ 0 is replaced byc0k(x)− sup
y∈dom(c∗

1k
)

{x⊤y− c∗1k(y)} ≤ 0

y ∈ dom(c∗1k).
(37)

Finally, thanks to Remark 1 and the proof of Theorem 6(iii) of Zhen et al. (2023), the inf operator

in the constraint of (8) can be merged with the inf operator (instead of min operator because the

optimal y may not be obtained) in the objective function without affecting the infimum of (8).

B. Mountain climbing procedure

We use a mountain climbing (MC) procedure based on the algorithm from Tao and An (1997), to

find an upper bound for problems involving the biconjugate. The MC procedure takes as input X ′′,

the list of candidate vectors obtained from the solution of the RPT relaxation (see Section 3.4)

and returns a local optimum. The procedure is summarized in Algorithm 3, for the problem of

maximizing a function f(x,y) over X ×Y, where X and Y are disjoint sets. For X =X3 we only

apply it for the candidate vectors that are feasible. Note that it is possible that X ′′ = ∅, in which

case MC cannot be applied. Moreover, for X =X2 and X =X3 in the numerical experiments we

alternate between maximizing for x,z ∈X and maximizing for y ∈Y and vice versa.

C. RPT-SDP formulations of the numerical experiments

Throughout the experiments we consider five cases of the feasible set X , those are X =X1, X =X2,

X =X3, X =X4, and X =X5, where

X1 = {x∈Rnx
+ |D⊤x≤ d}

X2 =

{
x∈X1

∣∣∣∣ log
(

nx∑
i=1

exp(xi)

)
≤ a

}

X3 =

{
x∈X1

∣∣∣∣ ∥∥x∥∥2 + nx∑
i=1

√
xi ≤ c

}
X4 =

{
x∈X1

∣∣A⊤
i x+ bi ≥ 0, i∈ {1, . . . , ny}

}
X5 =

{
x∈X1

∣∣x⊤Pkx+ q⊤k x+ rk ≤ 0, k ∈KC

}
.
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Algorithm 3 Mountain climbing procedure

Input: X ′, L= ∅.

1: for x∈X ′ do

2: y← argmax
y∈Y

f(x,y)

3: ε← 1

4: while ε > 0.001 do

5: Lb ← f(x,y)

6: x← argmax
x∈X

f(x,y)

7: y← argmax
y∈Y

f(x,y)

8: Lbx ← f(x,y)

9: ε← Lbx−Lb

10: end while

11: L←L∪{(x,y)}

12: end for

13: (x⋆,y⋆)← argmax(x,y)∈L f(x,y)

14: Lb⋆ = f(x⋆,y⋆)

15: return (Lb⋆,x⋆,y⋆)

We notice that both X2 and X3 are not in conic form, but they can be reformulated as such, in

the following way. First, for X2 we observe that log (
∑nx

i=1 exp(xi))≤ a ⇐⇒
∑nx

i=1 exp(xi− a)≤ 1.

Using epigraphical variables zi we obtain the following equivalent form:

X2 =

{
x∈X1,z ∈Rnx

∣∣∣∣∣zi ≥ exp (xi− a) ,
nx∑
i=1

zi ≤ 1

}
.

Regarding X3 we first reformulate the nonconvex constraint via the biconjugate and obtain the

equivalent set

X3 =

{
x∈X1

∣∣∣∣∣∥∥x∥∥2 +
nx∑
i=1

1

4zi
+x⊤z ≤ 0

}
.

We introduce epigraphical variables for the convex component of the SLC constraint. Since the

convex component of the SLC constraint consists of a sum of two basic cone functions we introduce

an epigraphical variable for each basic cone function. Subsequently, we reformulate every convex

constraint in terms of one of the basic cone constraints. Next, we convexify the SLC constraint,
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such that we obtain the following relaxed set of constraints

X ∗
3 =


x∈X1,V ∈Rnx×nx ,z ∈Rnx

++, t∈Rnx
++, s∈R, p∈R++

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ p+

nx∑
i=1

Vii ≤ c∥∥x∥∥
2
≤ s

nx∑
i=1

ti ≤ p∥∥∥(zi− ti,1)⊤∥∥∥
2
≤ zi + ti, i∈ {1, . . . , nx}


.

We choose c to be large enough such that (29) with X =X3 satisfies Assumption 2.

In the formulations for the numerical experiments we encounter several products of variables.

These are linearized as follows: We linearize xx⊤ by X, yy⊤ by Y , zz⊤ by Z, ww⊤ by W , tt⊤

by T , xy⊤ by U , xz⊤ by V , xw⊤ by Q, xt⊤ by F , yz⊤ by R, yw⊤ by P , yt⊤ by G, zw⊤ by

K, zt⊤ by H, sx by α, sy by β, sz by γ, st by ϕ, s2 by σ, px by λ, py by µ, pz by ν, pt by ψ,

ps by ρ and p2 by π.

C.1. RPT-SDP formulation of Problem (28)

Replacing the objective function with the biconjugate function in (28) we obtain the following

equivalent maximization problem

max
x∈X
y∈Y

(Ax+ b)⊤y,
(CMB)

where Y is given by

Y =

{
y ∈Rny

+ |
∑
j∈Jℓ

yj = 1, ℓ∈L

}
.

X =X 1. The RPT-SDP formulation is given by

max
x,y,U ,X,Y

Tr(UA)+ b⊤y

s.t. D⊤Xi−dxi ≤ 0, i∈ [nx], (38a)

D⊤Uj −dyj ≤ 0, j ∈ [ny], (38b)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (38c)∑
j∈Jℓ

yj = 1, ℓ∈L, (38d)∑
j∈Jℓ

Uj −x= 0, ℓ∈L, (38e)∑
j∈Jℓ

Yj −y= 0, ℓ∈L, (38f)

X,Y ,U ≥ 0, (38g)X U x
U⊤ Y y
x⊤ y⊤ 1

⪰ 0, (38h)
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where constraints (38a) - (38g) result from pairwise multiplication of the linear constraints and

constraint (38h) results from the additional SDP relaxation.

Observe that x ∈ X1 is redundant. The constraint D⊤x≤ d is redundant by (38e), (38d) and

(38b):

D⊤x≤ d ⇐⇒ D⊤
∑
j∈Jℓ

Uj −d≤ 0 ⇐⇒ D⊤
∑
j∈Jℓ

Uj −d
∑
j∈Jℓ

yj ≤ 0 ⇐⇒
∑
j∈Jℓ

(
D⊤Uj −dyj

)
≤ 0.

The non-negativity constraint x≥ 0 is redundant by (38e) and (38g). Moreover, the non-negativity

constraint y≥ 0 is redundant by (38f) and (38g). Hence, these constraints are not included in the

above formulation.

In the RPT-SDP formulation we hence obtain nx|L|+ ny|L|+ nxny + L′ny + nx(nx + 1)/2 +

L′(L′ +1)/2+nxL
′ +ny(ny +1)/2 additional linear constraints, one additional SDP constraint and

nx(nx +1)/2+ny(ny +1)/2+nxny extra variables.

X =X 2. The RPT-SDP formulation is given by

max
x,y,z
U,V ,R
X,Y ,Z

Tr(UA)+ b⊤y

s.t. (38a)− (38g)
nx∑
i=1

zi ≤ 1, (39a)

nx∑
i=1

Vi−x≤ 0, (39b)

nx∑
i=1

Ri−y≤ 0, (39c)

D⊤x−D⊤
nx∑
i=1

Vi ≤ d(1−
nx∑
i=1

zi), (39d)

nx∑
i,j=1

Zij − 2

nx∑
i=1

zi +1≥ 0, (39e)

exp(xi− a)≤ zi, i∈ [nx], (39f)

xj exp

(
Xij − axj

xj

)
≤ Vji, i, j ∈ [nx], (39g)

yj exp

(
Uij − ayj

yj

)
≤Rji, i∈ [nx], j ∈ [ny], (39h)

(
dℓ−D⊤

ℓ x
)
exp

(
dℓxi− adℓ−D⊤

ℓ Xi + aD⊤
ℓ x

dℓ−D⊤
ℓ x

)
≤ dℓzi−D⊤

ℓ Vi, i∈ [nx], ℓ∈ [L′], (39i)(
1−

nx∑
j=1

zj

)
exp

(
xi− a−

∑nx

j=1 Vij + a
∑nx

j=1 zj

1−
∑nx

j=1 zj

)
≤ zi−

nx∑
j=1

Zji, i∈ [nx], (39j)

exp (xi +xj − 2a)≤Zij , i≤ j ∈ [nx], (39k)

zj exp

(
Vij − azj

zj

)
≤Zij , i≤ j ∈ [nx], (39l)
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∑
j∈Jk

Rj − z = 0, k ∈K, (39m)

X U V x
U⊤ Y R y
V ⊤ R⊤ Z z
x⊤ y⊤ z⊤ 1

⪰ 0, (39n)

where constraints (39b) - (39e) result from pairwise multiplication of the new linear constraint

over z with the previous linear constraints (39g) - (39l) result from pairwise multiplication of the

exponential constraint with the linear inequalities and itself, constraint (39m) results from pairwise

multiplication of the initial linear constraint over y with z and constraint (39n) results from the

additional SDP relaxation.

In the RPT-SDP formulation we hence obtain 2nx|L|+ ny|L|+ nxny + L′ny + nx(nx + 1)/2 +

L′(L′ + 1)/2 + nxL
′ + ny(ny + 1)/2 + ny + nx + L′ + 1 additional linear constraints, nxny + n2

x +

L′nx + nx(nx + 1) + nx additional exponential constraints, one additional SDP constraint and

nx(nx +1)+ny(ny +1)/2+2nxny +n2
x extra variables.

X =X 3.

The pairwise multiplication of the linear constraints gives us the following constraints:

(38a)− (38g)

s+ p+

nx∑
i=1

Vii ≤ c, (40a)

nx∑
i=1

ti ≤ p, (40b)

D⊤Vi ≤ zid, i∈ [nx], (40c)

D⊤Fi ≤ tid, i∈ [nx], (40d)

D⊤λ≤ pd, (40e)∑
j∈Jℓ

rj − z = 0, ℓ∈L, (40f)∑
j∈Jℓ

gj − t= 0, ℓ∈L, (40g)∑
j∈Jℓ

γj − s= 0, ℓ∈L, (40h)∑
j∈Jℓ

µj − p= 0, ℓ∈L, (40i)

nx∑
i=1

Fi ≤λ, (40j)

nx∑
i=1

Gi ≤µ, (40k)

nx∑
i=1

Hi ≤ ν, (40l)
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nx∑
i=1

Ti ≤ψ, (40m)

nx∑
i=1

ψi ≤ π, (40n)

nx∑
i=1

dℓti−D⊤
ℓ Fi ≤ pdℓ−D⊤

ℓ λ, ℓ∈ [L′], (40o)

π− 2

nx∑
i=1

ψi +

nx∑
i,j=1

Tij ≥ 0, (40p)

V ,F ,R,G,H,Z,T ≥ 0, (40q)

λ,µ,ν,ψ, σ, π≥ 0. (40r)

Further, the pairwise multiplications of the non-linear ones result in the following constraints:

∥∥x∥∥
2
≤ s, (41a)∥∥∥(zi− ti,1)⊤∥∥∥

2
≤ zi + ti, i∈ [nx], (41b)∥∥Xi

∥∥
2
≤ αi, i∈ [nx], (41c)∥∥Ui

∥∥
2
≤ βi, ı∈ [ny], (41d)∥∥Vi

∥∥
2
≤ γi, i∈ [nx], (41e)∥∥Fi

∥∥
2
≤ ϕi, i∈ [nx], (41f)∥∥λ∥∥

2
≤ ρ, (41g)∥∥dℓx−XDℓ

∥∥
2
≤ sdℓ−D⊤

ℓ α, ℓ∈ [L′], (41h)∥∥λ− nx∑
i=1

Fi

∥∥
2
≤ ρ−

nx∑
i=1

ϕi, (41i)∥∥X∥∥
F
≤ σ, (41j)∥∥ (Vji−Fji, xj)

∥∥
2
≤ Vji +Fji, i, j ∈ [nx], (41k)∥∥ (Rji−Gji, yj)

∥∥
2
≤Rji +Gji, i∈ [nx], j ∈ [ny], (41l)∥∥ (Zji−Hji, zj)

∥∥
2
≤Zji +Hji, i, j ∈ [nx], (41m)∥∥ (Hij −Tij , tj)

∥∥
2
≤Hij +Tij , i, j ∈ [nx], (41n)∥∥ (νi−ψi, p)

∥∥
2
≤ νi +ψi, i∈ [nx], (41o)∥∥(dℓ(zi− ti)+D⊤

ℓ (Fi−Vi) , dℓ−D⊤
ℓ x
)∥∥

2
≤ dℓ(zi + ti)−D⊤

ℓ (Fi +Vi), ℓ∈ [L′], (41p)∥∥ (Vi−Fi,x)
∥∥
2
≤ γi +ϕi, i∈ [nx], (41q)∥∥(νi−ψi−

nx∑
j=1

Hij +

nx∑
j=1

Tij , p−
nx∑
j=1

tj

)∥∥
2
≤ νi +ψi−

nx∑
j=1

Hij −
nx∑
j=1

Tij , i∈ [nx], (41r)∥∥∥∥(Zij −Hij −Hji +Tij zi− ti
zj − tj 1

)∥∥∥∥
2

≤Zij +Hij +Hji +Tij , i, j ∈ [nx], (41s)
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X U V F α λ x
U⊤ Y R G β µ y
V ⊤ R⊤ Z H γ ν z
F⊤ G⊤ H⊤ T ϕ ψ t
α⊤ β⊤ γ⊤ ϕ⊤ σ ρ s
λ⊤ µ⊤ ν⊤ ψ⊤ ρ π p
x⊤ y⊤ z⊤ t⊤ s p 1


⪰ 0. (41t)

In the RPT-SDP formulation we hence obtain (3|L|+2L+7)nx +(|L|+1)ny +3nxny +L′ny +

3nx(nx+1)/2+3n2
x+L

′(L′+1)/2+nxL
′+ny(ny+1)/2+2|L|+2L′+6 additional linear constraints,

5n2
x + nxny + 5nx + ny + 2L′ + 3 additional second order cone constraints, one additional SDP

constraint, and 3nx(nx +1)/2+3n2
x +ny(ny +1)/2+3nxny +6nx +2ny +3 extra variables.

C.2. RPT-SDP formulation of Problem (31)

Replacing the objective function with the biconjugate function in (31) we obtain the following

equivalent maximization problem

max
x∈X1

(y,w)∈Y

x⊤y+

nx∑
i=1

wi, (LSEMB)

where Y is given by

Y =

{
y ∈Rnx

+ , w ∈Rnx

∣∣∣∣∣ yi exp
(
wi

yi

)
≤ 1, i∈ [nx],

nx∑
i=1

yi = 1

}
.

The RPT-SDP formulation is given by

max
x,y,w,

X,Y ,W ,
U,Q,P

Tr(U)+

nx∑
i=1

wi

s.t. x∈X1, (42a)

(y,w)∈Y, (42b)

X,Y ,U ≥ 0, (42c)

D⊤Xi−dxi ≤ 0, i∈ [nx], (42d)

D⊤Ui−dyi ≤ 0, i∈ [nx], (42e)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (42f)∑
i∈[nx]

Ui =x, (42g)

∑
i∈[nx]

Yi = y, (42h)

∑
i∈[nx]

(P )⊤i =w, (42i)

Uji exp

(
Qji

Uji

)
≤ xj , i, j ∈ [nx], (42j)

Yij exp

(
Pji

Yij

)
≤ yj , i, j ∈ [nx], (42k)
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(
dℓyi−D⊤

ℓ Ui

)
exp

(
dℓwi−D⊤

ℓ Vi

dℓyi−D⊤
ℓ Ui

)
≤ dℓ−D⊤

ℓ x, i∈ [nx], ℓ∈L, (42l)

Yij exp

(
Pji +Pij

Yij

)
≤ 1, i≤ j ∈ [nx], (42m)X U Q x

U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0, (42n)

where constraints (42c) - (42i) result from pairwise multiplication of the linear constraints. Note that

we only multiply the linear equality constraint with the variables (see Theorem 1). Constraints (42j)

- (42l) result from pairwise multiplication of the linear inequality constraints with the exponential

cone constraints, constraint (42m) results from pairwise multiplication of the exponential cone

constraints with each other, and constraint (42n) results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain nx(nx+1)+n2
x+(2L+3)nx+L(L+1)/2 additional

linear constraints, 2n2
x +Lnx +nx(nx +1)/2 additional exponential cone constraints, one additional

SDP constraint and 3nx(nx +1)/2+3n2
x additional variables.

Observe that we could exclude the non-negativity constraints from the above reformulation, since

from constraints (42b), (42g), and (42h) it follows that they are redundant.

C.3. RPT-SDP formulation of Problem (33)

Replacing the objective function with the biconjugate function in (33) we obtain the following

equivalent maximization problem

max
x∈X

(y,w)∈Y

−(A⊤x+ b)⊤y−
∑
i∈[ny ]

wi, (CMB)

where Y is given by

Y =
{
y ∈Rny

+ ,w ∈Rny
∣∣ exp(−wi− 1)≤ yi, i∈ [ny]

}
.

The RPT-SDP formulation is given by

max
x,y,w,

X,Y ,W ,
U ,Q,P

Tr(UA)+ b⊤y+

ny∑
i=1

wi

s.t. D⊤x≤ d, (43a)

X,Y ,U ≥ 0, (43b)

D⊤Xi−dxi ≤ 0, i∈ [nx], (43c)

D⊤Uj −dyj ≤ 0, j ∈ [ny], (43d)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (43e)

exp(−wi− 1)≤ yi, i∈ [ny], (43f)
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xj exp

(
−Qji−xj

xj

)
≤Uji, i∈ [ny], j ∈ [nx], (43g)

yj exp

(
−Pji− yj

yj

)
≤ Yij, i, j ∈ [ny], (43h)

(dj −D⊤
j x) exp

(
D⊤

j x− dj −widj +D
⊤
j Qi

dj −D⊤
j x

)
≤ djyi−D⊤

j Ui, i∈ [ny], j ∈ [L], (43i)

exp(−wi−wj − 2)≤ Yij, i≤ j ∈ [ny], (43j)X U Q x
U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0, (43k)

where constraints (43b) - (43d) result from pairwise multiplication of the linear constraints, con-

straints (43g) - (43j) result from pairwise multiplication of the exponential constraints with the

linear and constraint (43k) results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain nx(nx +1)/2+ny(ny +1)/2+nxny +L(nx +ny)+

L(L+1)/2 additional linear constraints, nxny+n
2
y+Lny+ny(ny+1)/2 additional exponential cone

constraints, one additional SDP constraint and nx(nx +1)/2+ny(ny +1)+2nxny +n2
y additional

variables.

C.4. RPT-SDP formulation of Problem (36)

The convex quadratic constraints (C) are reformulated as second order cone constraints, that

is
∥∥P 1/2

i x
∥∥
2
≤ −ri − q⊤i x. The nonconvex quadratic constraints (NC) are linearized as follows:

tr(PiX)+ q⊤i x+ ri ≤ 0. The RPT-SDP formulation is given by

min
x,X

Tr(P0X)+ q⊤0 x+ r0

s.t. x∈X1, (44a)

D⊤Xi−dxi ≤ 0, i∈ [nx], (44b)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (44c)

Tr(PkX)+k⊤
0 x+ rk ≤ 0, k ∈NC, (44d)∥∥P 1/2

k x
∥∥
2
≤−rk− q⊤k x, k ∈ C, (44e)∥∥P 1/2

i XP
1/2
j

∥∥
2
≤ rirj + riq

⊤
j x+ rjq

⊤
i x+ q⊤i Xqj, i, j ∈ C, (44f)∥∥dℓP 1/2

k x−P 1/2
k XDℓ

∥∥
2
≤−rkdℓ + rkD

⊤
ℓ x− dℓq⊤k x+ q⊤kXDℓ, k ∈ C, ℓ∈L, (44g)∥∥P 1/2

k Xj

∥∥≤−rkxj − q⊤kXj, k ∈ C, j ∈ [nx], (44h)

X ≥ 0, (44i)(
X x
x⊤ 1

)
⪰ 0, (44j)
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where constraints (44b) - (44c) and (44i) result from pairwise multiplication of the linear constraints,

constraints (44f) - (44h) result from pairwise multiplication of the convex quadratic constraints

with the linear constraints and each other and constraint (44j) results from the additional SDP

relaxation.

In the RPT-SDP formulation we hence obtain Lnx+nx(nx+1)/2+L(L+1)/2+ |NC| additional

linear constraints, (nx +L+ 1)|C|+ |C|(|C|+ 1)/2 additional second order cone constraints, one

additional SDP constraint and nx(nx +1)/2 additional variables.

C.5. RPT-SDP formulation of Problem (DHO)

We introduce the following epigraphical variables: We use zk for the nonconvex terms in the objective

(C + bxk) exp
(
λ
∑k

i=0 xi− δtk
)
, and wk for exp

(
−θ
∑k

i=0 xi

)
. The RPT-SDP formulation is given

by

min
x,u,v,z,
q,X,V ,
S,w,W

∑
k∈K

zk +
∑
k∈K0

S0

βδ

(exp (βδtk+1)− exp (βδtk))wk +
S0

δ
exp (βδT )wK

s.t. (C + bxk) exp

(
λChk +λb

∑k

i=0Xik− δtk(C + bxk)

C + bxk

)
≤ zk, k ∈K0, (45a)

D⊤x≤ d, (45b)

exp

(
−θ

k∑
i=0

xi

)
≤wk, k ∈K0, (45c)

D⊤Xk ≤xkd, k ∈K0, (45d)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (45e)

(dℓ−D⊤
ℓ x) exp

(
−θdℓ

∑k

i=0 xi + θ
∑k

i=0D
⊤
ℓ Xi

dℓ−D⊤
ℓ x

)
≤ dℓwk−D⊤

ℓ Qk, k ∈K0, ℓ∈L, (45f)

xj exp

(
−θ
∑k

i=0Xij

xj

)
≤Qjk, k, j ∈K0, (45g)

exp

(
−θ

k∑
i=1

xi− θ
j∑

i=1

xi

)
≤Wjk, j, k ∈K0, (45h)

wj exp

(
−θ
∑k

i=1Qkj

wj

)
≤Wjk, j, k ∈K0, (45i)

x,X ≥ 0, (45j)X Q x
Q⊤ W w
x⊤ w⊤ 1

⪰ 0, (45k)

where constraint (45b) represents the upper bounds on x such that we obtain a compact feasible

region, (45d) - (45f) result from pairwise multiplication of (45b) with all other constraints, (45g)
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results from pairwise multiplication of (45c) with the nonnegativity constraint x≥ 0, (45h) - (45i)

result from pairwise multiplication of the exponential constraint with itself, (45j) results from

pairwise multiplication of the nonnegativity constraints, and constraint (45k) results from the

additional SDP relaxation.

In the RPT-SDP formulation we hence obtain |K0|+L(L+1)/2+ |K0|(|K0|+1)/2 additional

linear inequalities, (L+1)|K0|+2|K0|2 additional exponential cone inequalities, and one additional

LMI.

D. Data generation of numerical experiments

D.1. Data generation of numerical experiments of Problem (28)

We use the data generated by Selvi et al. (2022, Appendix F.5). Instances 1 - 5 refer to the instances

1, 2, 3, 7, and 11 in Selvi et al. (2022, Appendix F.5) respectively. In every problem, every max-term

has the same number of elements, i.e., |Jℓ|= |Jℓ′ | for every ℓ, ℓ′ ∈L.

Problem instance 1: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 2: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 3: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 4: Aij ∼ [−5,5], bj ∼ [−10,10],Dij ∼ [0,1], di ∼ [5,15],

Problem instance 5: Aij ∼ [−5,10], bj ∼ [−10,10], and D and d are given by :

D=



−3 7 0 −5 1 1 0 2 −1 1
7 0 −5 1 1 0 2 −1 −1 1
0 −5 1 1 0 2 −1 −1 −9 1
−5 1 1 0 2 −1 −1 −9 3 1
1 1 0 2 −1 −1 −9 3 5 1
1 0 2 −1 −1 −9 3 5 0 1
0 2 −1 −1 −9 3 5 0 0 1
2 −1 −1 −9 3 5 0 0 1 1
−1 −1 −9 3 5 0 0 1 7 1
−1 −9 3 5 0 0 1 7 −7 1
−9 3 5 0 0 1 7 −7 −4 1
3 5 0 0 1 7 −7 −4 −6 1
5 0 0 1 7 −7 −4 −6 −3 1
0 0 1 7 −7 −4 −6 −3 7 1
0 1 7 −7 −4 −6 −3 7 0 1
1 7 −7 −4 −6 −3 7 0 −5 1
7 −7 −4 −6 −3 7 0 −5 1 1
−7 −4 −6 −3 7 0 −5 1 1 1
−4 −6 −3 7 0 −5 1 1 0 1
−6 −3 7 0 −5 1 1 0 2 1



, and d=



−5
2
−1
−3
5
4
−1
0
9
40


,

respectively. The values for the parameters of each distinct problem instance are given in Table 9.
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Instance nx |L| |Jℓ| a c M
1 5 1 5 3 6 100
2 5 10 5 3 6 100
3 20 10 10 11 25 1000
4 10 2 5 3 7 1000
5 20 10 10 5 30 1000

Table 9 Problem (29) parameters for each instance. nx refers to the number of variables, |L| to the number of

max linear terms, |Jℓ| to the number of elements within a max-term, a to the parameter used in X2, c to the

parameter used in X3 and M to the big M parameter used in Problem (30).

D.2. Data generation of numerical experiments of Problem (31)

The problem instances are adopted from Selvi et al. (2022) and can be summarized as follows: In

instances 1 and 2 the linear constraints are defined as

− i
n
≤ xi ≤

i

n
,

in instance 3 as

xi ≤ 8, xi +xj ≤ uij,

where uij ∼ [5,15]. Finally, for the last two we have

Problem instance 4: Dij ∼ [0,1], di ∼ [10,30],

Problem instance 5: Dij ∼ [0,1], di ∼ [20,60].

The parameters describing each instance are summarized in Table 10.

Table 10 Problem (31) parameters for each instance. nx refers to the number of variables and L to the number of

linear constraints.

Instance nx L
1 10 20
2 40 80
3 10 100
4 20 20
5 50 50

D.3. Data generation of numerical experiments of Problem (33)

The problem instances were generated in the same way as in BARON (Ryoo and Sahinidis, 1996).

Namely, the constraint coefficients were generated as Dij ∼ [−100,0], di ∼ [−100,0] and the linear

terms as Aij ∼ [0,10], bi ∼ [0,10]. The parameters describing each instance are summarized in Table

11.
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Table 11 Problem (33) parameters for each instance. nx refers to the number of variables, L to the number of

linear constraints, and ny to the number of linear multiplications in the objective.

Instance nx L ny

1 5 5 5
2 7 7 10
3 10 10 9
4 20 20 8
5 40 40 4

D.4. Data generation of numerical experiments of Problem (36)

The first 5 problem instances are adopted from Selvi et al. (2022) and can be summarized as follows:

In instances 1 and 2 the objectives are f(x) = − 1
2

∑20

i=1(xi − 2)2 and f(x) = − 1
2

∑20

i=1(xi + 5)2

respectively and the linear constraints are as in instance 11 for problem (28). Instances 3, 4 and 5

are defined by the linear constraints D⊤x≤ d, x≤ xue, where

Problem instance 3: Dij ∼ [0,1], di ∼ [20,60], xu = 5,

Problem instance 4: Dij ∼ [0,1], di ∼ [30,60], xu = 3,

Problem instance 5: Dij ∼ [0,1], di ∼ [80,120], xu = 2.

Instances 6, 7, 8, 9 and 10 were adopted from Al-Khayyal et al. (1995). Each matrix Pi ∈Rnx×nx in

both the objective and the constraints has integer entries uniformly at random between -10 and

10 and further in each row, half of the entries are randomly set to 0. Each vector qi ∈Rnx is also

generated with integer entries between -10 and 10 and each ri is set to 0. The parameters describing

each instance are summarized in Table 12.

Table 12 Problem (36) parameters for each instance. nx refers to the number of variables, L to the number of

linear constraints and nc-q to the number of nonconvex quadratic constraints.

Instance nx L nc− q
1 20 10 0
2 20 10 0
3 10 15 0
4 50 62 0
5 100 130 0
6 8 8 4
7 12 12 6
8 16 16 8
9 30 30 15
10 40 40 20
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D.5. Data generation of numerical experiments of Problem (DHO)

The linear constraints are defined as xi ≤ 300. Moreover, the time periods in each instance are:

t25 = (0,25,50,75,100,125,150,175,200,225,250,275)⊤,

t50 = (0,50,100,150,200,250)⊤,

tir = (0,20,50,90,130,155,180,210,255,270)⊤.

In each instance, the number of variables nx is equal to the number of time periods. The parameters

describing each instance are summarized in Table 13. Moreover, we have θ= α− ζ, βδ = αη+ γ− δ.

Table 13 Problem (DHO) parameters for each instance.

Instance α C b λ ζ η S0 γ δ T
10 0.033027 16.6939 0.6258 0.0014 0.003774 0.32 0.68938 0.02 0.04 300
15 0.0502 125.6422 1.1268 0.0098 0.003764 0.76 16.2008 0.02 0.04 300
16 0.0574 324.6287 2.1304 0.01 0.002032 0.76 25.0071 0.02 0.04 300
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