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In this paper, we propose a new global optimization approach for solving nonconvex optimization problems

in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex

problems can be written in this way, such as concave minimization problems, difference of convex problems,

and fractional optimization problems. Our approach exploits two techniques: first, we introduce a new

technique, called the Reformulation-Perspectification Technique (RPT), to obtain a convex approximation

of the considered nonconvex continuous optimization problem. Next, we develop a spatial Branch and

Bound scheme, leveraging RPT, to obtain a global optimal solution. Numerical experiments on four different

convex maximization problems, a quadratic constrained quadratic optimization problem, and a dike height

optimization problem demonstrate the effectiveness of the proposed approach. In particular, our approach

solves more instances to global optimality for the considered problems than BARON and SCIP. Moreover, for

problem instancdes of larger dimension our approach outperforms both BARON and SCIP on computation

time for most problem instances, while for smaller dimension BARON overall performs better on computation

time.

Key words : Reformulation-Linearization Technique, perspective function, nonconvex optimization, conjugate

function, branch and bound.

1. Introduction

In this paper, we propose a new global optimization approach for solving nonconvex optimization

problems in which the nonconvex components are sums of products of convex functions. A broad

class of nonconvex problems can be written in this way, such as nonconvex quadratic optimization
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problems, mixed binary linear optimization problems, concave minimization (or equivalently, convex

maximization) problems, difference of convex problems, and fractional optimization problems.

For nonconvex quadratic optimization problems and mixed binary linear optimization problems,

hierarchical convex approximations can be obtained from the Reformulation-Linearization Technique

(RLT). RLT was introduced in Sherali and Adams (1990), and improved by many authors (Sturm

and Zhang, 2003; Anstreicher, 2009, 2012, 2017; Bao et al., 2011; Yang and Burer, 2016; Jiang and

Li, 2016, 2019). RLT is also applicable to mixed binary polynomial and to continuous, nonconvex

optimization problems (Sherali and Adams, 1999), and has been extended to mixed binary semi-

infinite and convex optimization problems (Sherali and Adams, 1994a). RLT consists of two steps,

those are, a reformulation step and a linearization step. The reformulation step generates redundant

nonconvex constraints from pairwise multiplication of the existing linear or quadratic inequalities.

The linearization step then substitutes each distinct product of variables by a continuous variable. We

also refer to Jiang and Li (2020) for an overview of RLT approximations for quadratic optimization

problems.

We propose an extension of RLT, which we call Reformulation-Perspectification Technique (RPT),

to obtain a convex relaxation of the original nonconvex optimization problem. RPT consists of

a reformulation and a perspectification step. Similarly to RLT, the reformulation step of RPT

generates redundant nonconvex constraints from pairwise multiplication of the existing inequalities.

Where in RLT only multiplications of linear or quadratic inequalities are considered, RPT also

considers pairwise multiplications of not necessarily linear or quadratic convex inequalities, thereby

obtaining tighter approximations than RLT based methods. In the perspectification step, the

nonconvex components are convexified by first reformulating them into their perspective form, and

substitutes each distinct product of variables by a newly introduced continuous variable. Hence,

RPT can handle more types of nonconvexity than RLT based methods.

Moreover, in this paper we propose a spatial branch and bound scheme, levering RPT, to obtain

a global optimal solution of the original nonconvex problem. A branch and bound algorithm was

first introduced by Falk and Soland (1969), addressing optimization problems with continuous

nonconvex separable objectives, and extended by Horst (1976) to non-separable functions, leveraging

a different partitioning rule. In the context of nonconvex quadratically constrained quadratic

problems (QCQPs), Al-Khayyal et al. (1995) develop a method for solving nonconvex QCQPs based

on branch and bound, leveraging a linearization technique. More recently, Chen and Burer (2012)

develop a branch and bound method, utilizing co-positive programming, addressing nonconvex

quadratic problems over linear constraints. In the context of nonlinear problems (NLPs) and mixed

integer nonlinear problems (MINLPs), Ryoo and Sahinidis (1996) propose the branch-and-reduce

algorithm, which is implemented in BARON (Sahinidis, 1996). The latter uses a branch and bound
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algorithm, that iteratively solves convex relaxations of the initial problem and finds tighter variable

bounds. BARON has been very successful so far and is in fact considered a state-of-the-art method

for nonconvex optimization problems. Later, Achterberg (2009) develops the global optimization

algorithm SCIP, addressing nonconvex problems, with an emphasis on integer problems, utilizing

branch and bound.

Although the idea of using branch and bound to obtain the global optimal solution of nonconvex

optimization problems has thus been already present, in this paper we deviate from previous works

in the implementation of it. Namely, we present a novel way for obtaining convex relaxations as

well as a novel partitioning scheme leveraging the solution of the latter. We refer to our approach

by RPT-BB, standing for Reformulation Perspectification Technique - Branch and Bound.

For the problem of maximizing a twice continuously differentiable convex function over a convex

compact feasible region, Selvi et al. (2020) develop an algorithm based on adjustable robust

optimization and Ben-Tal and Roos (2022) develop an algorithm, called CoMax, based on gradient

ascent. The latter is also applicable in integer optimization problems, where the feasible set is

a polytope. While both methods can find high quality bounds on the optimal solution, there is

no guarantee about convergence to the global optimum. Moreover, both methods cannot handle

nonconvex constraints.

Our main contributions can be summarized as follows:

1. We extend the existing RLT approach to a broader class of nonlinear optimization problems.

The proposed RPT approach can handle multiplication of constraints that are neither linear

nor quadratic, and thereby obtains tighter approximations than RLT. Moreover, it can also

handle more types of nonconvexity than RLT.

2. We introduce a new global optimization approach, by incorporating the RPT framework within

branch and bound. The proposed RPT-BB approach can obtain the global optimal solution of

nonconvex optimization problems in which the nonconvex components are sums of products of

convex functions.

3. We demonstrate the effectiveness of the proposed RPT-BB approach, by conducting numerical

experiments on four different convex maximization problems, a quadratic constraint quadratic

optimization problem, and a dike height optimization problem. We show that the RPT-BB

approach solves more instances to global optimality for the considered problems than BARON

and SCIP. Moreover, for the larger problem instances our approach overall performs better

on computation time than both BARON and SCIP, while for smaller dimension BARON

overall outperforms our approach and SCIP on computation time. In addition, for a convex

maximization problem that allows for a mixed integer reformulation, we show that RPT-BB

outperforms MOSEK for most problem instances when considering a nonlinear convex feasible
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region. Finally, for the quadratic constraint quadratic optimization problem with convex

feasible region, we show that both RPT-BB and CPLEX find the global optimal solution and

are comparable on computation time.

This paper is structured as follows: In Section 2, we describe the generic nonconvex optimization

problem we consider. In Section 3, we describe the RPT-BB approach to obtain a global optimal

solution of the considered nonconvex optimization problem. In Section 4, we demonstrate the

RPT-BB approach on the basis of a simple example. In Section 5, we present several additional ways

to strenghten the RPT-BB approach. In Section 6, we present the convergence analysis. In Section

7, we asses the numerical performance of the approach. We end the paper by a short discussion and

conclude our findings in Section 8.

Notation. The calligraphic letters I, J , K, L and the corresponding capital Roman letters I, J ,

K, L are reserved for finite index sets and their respective cardinalities, i.e., I = {1, . . . , I} etc.
The subscript 0 for an index set indicates that the set additionally includes 0, i.e., I0 = {0, . . . , I}
etc. Let Rm×n denote the set of real m × n matrices, and Sn the set of real n × n symmetric

matrices. We use ri(V) to denote the relative interior of a set V ⊆Rnν . The domain of a function

f :Rnν → [−∞,+∞] is defined as dom(f) = {ν ∈Rnν | f(ν)<+∞}. The function f is proper if

f(ν)>−∞ for all ν ∈ Rnν and f(ν)<+∞ for at least one ν ∈ Rnν , implying that dom(f) ̸= ∅.
In addition, f is closed if f is lower semicontinuous and either f(ν) > −∞ for all ν ∈ Rnν or

f(ν) = −∞ for all ν ∈ Rnν . The conjugate of a function f : Rnν → [−∞,+∞] is the function

f∗ :Rnν → [−∞,+∞] defined through f∗(w) = supν

{
ν⊤w− f(ν)

}
. The conjugate (f∗)∗ of f∗ is

called the biconjugate of f and is abbreviated as f∗∗. The indicator function δV :Rnν → [−∞,+∞]

of a set V ⊆ Rnν is defined through δV(ν) = 0 if ν ∈ V and δV(ν) = +∞ if ν /∈ V. The support

function δ∗V : Rnν → [−∞,+∞] of a set V ⊆ Rnν is defined through δ∗V(w) = supν∈V {ν⊤w}. The
perspective function of a proper, closed and convex function f : Rnν → (−∞,+∞] is defined as

h(ν, t) = tf(ν/t) if t > 0, and h(ν,0) = δ∗dom(f∗)(ν) for all ν ∈Rnν and t∈R+. For ease of exposition,

we use tf(ν/t) to denote the perspective function h(ν, t) for the rest of this paper.

2. Generic problem formulation

We consider a generic nonconvex optimization problem of the following form:

min
x

f0(x)

s.t. fk(x)≤ 0, k ∈K,
x∈X ,

(1)

where fk :Rnx→ [−∞,∞] is a sum of convex times convex (SCC) function for all k ∈K0, that is,

fk(x) = c0k(x)+
∑
i∈I

rik(x)cik(x),
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and c0k, rik, cik :Rnx→ (−∞,+∞], k ∈K0, are proper, closed and convex functions for every i∈ I.
The set X ⊆Rnx is defined by:

X = {x∈Rnx |Ax≤ b, Px= s, h(x)≤ 0},

where A∈RL1×nx , P ∈RL2×nx , b∈RL1 , s∈RL2 , h(x) = [h0(x) h1(x) · · · hJ(x)]
⊤ ⊆ [−∞,+∞]J+1,

and hj : Rnx → (−∞,+∞] is proper, closed and convex for every j ∈ J0. We make the following

assumptions.

Assumption 1. The set X is nonempty and compact.

Assumption 2. If rik and cik are both nonlinear, then rik(x)≥ 0 and cik(x)≥ 0 for all x∈X , for
every i∈ I and k ∈K0. If rik is linear and cik is nonlinear, then rik(x)≥ 0 for all x∈X , for every

i∈ I and k ∈K0.

If both rik and cik are linear, then we do not impose any assumption on these functions.

Observe that we can reformulate an SCC function in the following way:

c0k(x)+
∑
i∈I

rik(x)cik(x)≤ 0 ⇐⇒


c0k(x)+

∑
i∈I

τikcik(x)≤ 0,

rik(x)≤ τik, if rik and cik are nonlinear,

rik(x) = τik, if rik is linear.

Hence in the remainder we can assume, without loss of generality, that the functions fk in (1) are

sum of linear times convex (SLC) functions for all k ∈K0, that is,

fk(x) = c0k(x)+
∑
i∈I

(
qik−d⊤

ikx
)
cik(x), (2)

and qik ∈R, dik ∈Rnx , and c0k, cik :Rnx→ (−∞,+∞] are proper, closed and convex for every i∈ I,
and k ∈K0.

We now present some examples of functions that are SLC or can be equivalently written as an

SLC function.

Example 1 (Difference of convex functions). An important class of SLC representable

functions are difference of convex (DC) functions. For example, every twicely differentiable continuous

function has a DC decomposition (see Hartman (1959)) and can therefore be written as an

SLC function. If the constraint in (1) contains a difference of convex function, that is, fk(x) =

c0k(x)− c1k(x)≤ 0, where c0k, c1k :Rnx→ (−∞,+∞] are proper, closed and convex for some k ∈K0,

then we can reformulate the corresponding constraint function into an SLC function using the

biconjugate reformulation (Rockafellar, 1970) and obtain

fk(x)≤ 0 ⇐⇒ inf
y∈dom(c∗

1k
)
{c0k(x)−x⊤y+ c∗1k(y)} ≤ 0

=⇒

{
c0k(x)−x⊤y+ c∗1k(y)≤ 0

y ∈ dom(c∗1k),
(3)
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as long as the infimum is attained, since we then can delete the inf operator. In case the infimum is

not attained we refer to Appendix A. Observe that if the DC function appears in the objective

instead of in the constraints, then using the biconjugate reformulation we can rewrite the objective

as a bilinear function analogously.

For many important classes of convex functions, their conjugates and domains are readily available

from the literature. Table 1 lists several convex functions and their conjugates and domains.

Table 1 Example of functions f(·) and their corresponding conjugates. For the function in line 8, we assume that

∩iri(dom(fi)) ̸= ∅.

# f dom(f∗) f∗

1 f(x, x̄) = ∥x∥2− x̄ {(y, ȳ) : ∥y∥2 ≤ 1, ȳ= 1} f∗(y, ȳ) = 0
2 f(x) = x log (x) {y : y ∈R} f∗(y) = exp(y− 1)
3 f(x) =− log (x) {y : y < 0} f∗(y) =− log (−y)− 1
4 f(x) =

√
x {y : y < 0} f∗(y) =− 1

4y

5 f(x) =maxi xi {y : y≥ 0,
∑

i yi = 1,∀k} f∗(y) = 0
6 f(x) =

∑
kmaxi∈Ik xi {yk : yk ≥ 0,

∑
i yki = 1,∀k} f∗(w) = 0

7 f(x) = log (
∑

i exp (xi)) {y : y≥ 0,
∑

i yi = 1} f∗(y) =
∑

i yi log(yi)
8 f(x) =

∑
i fi(x) {{yi}i :

∑
i yi = y,yi ∈ dom(f∗

i ),∀i} f∗(y) =min{yi}i
∑

i f
∗
i (yi)

In the case that the constraint functions do not admit a closed form conjugate, often one can

write the conjugate function as an infimum over some additional variables, see for more detail Roos

et al. (2020).

Example 2 (Fractional optimization). Consider the following fractional function

f(x) =
∑
i∈I

ci(x)

ri(x)
,

where ci :Rnx→R+ is convex and ri :Rnx→R++ is concave for every i∈ I. Then f is not necessarily

convex or concave. However, the function is SCC, since 1/ri(x) is convex and nonnegative. □

Example 3 (Some examples of SLC functions). In Table 2, we give some more examples

of SLC functions that are generally nonconvex and satisfy Assumption 2. Hence, the approach

proposed in this paper can deal with Problems (1) containing (sum of) such nonconvex components.

□
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Table 2 Examples of SLC representable functions.

# f c (q−d⊤x) Perspectification Assumptions
1 −x lnx − lnx x −x ln(u/x) x≥ 0

2
√
x x−1/2 x x

√
x/u x≥ 0

3 xθ xθ−1 x x(u/x)θ−1 θ ∈ [0,1] & x≥ 0
4 −xθ −xθ−1 x −x(u/x)θ−1 θ ∈ [1,2] & x≥ 0
5 −x1 lnx2 − lnx2 x1 −x1 ln(u12/x1) x1, x2 ≥ 0
6 x⊤Qx (Qx)i xi Tr(UQ) -

7 (q−d⊤x)x⊤Qx x⊤Qx (q−d⊤x) (qx−Ud)⊤Q(qx−Ud)

(q−d⊤x)
d⊤x≤ q & Q⪰ 0

3. Reformulation-Perspectification Technique and Branch and Bound

In this section, we describe our new approach, called RPT-BB, to obtain a global optimal solution

of (1). Our approach comprises five steps:

Step 1: Preprocessing. Introduce epigraphical variables for every convex component c0k, k ∈K0,

in the nonconvex SLC functions.

Step 2: Reformulation and perspectification. Generate additional redundant nonconvex

constraints from pairwise multiplication of the existing convex inequalities in (1). Next, convexify all

nonconvex components in (1) and all nonconvex components in the additional generated constraints

by reformulating them in their perspective form and subsequently linearizing all product terms.

Step 3 (Optional): SDP relaxation. Add an additional LMI inequality from the SDP relaxation

of the linearization of all product terms.

Step 4: Obtaining upper bounds. Solve the convex RPT relaxation. From the solution of the

RPT relaxation, construct a set of candidate solutions for (1), substitute these candidate solutions

in problem (1) and choose the best upper bound obtained.

Step 5: Branch and bound. Solve problem (1) to optimality by means of a spatial branch and

bound method. In the next sections, we describe each of these steps in more detail.

3.1. Preprocessing step

We introduce epigraphical variables for every convex component in the nonconvex SLC functions

of (1), and from (2) we have

min
x,τ

τ0 +
∑
i∈I

(
qi0−d⊤

i0x
)
ci0(x)

s.t. τk +
∑
i∈I

(
qik−d⊤

ikx
)
cik(x)≤ 0, k ∈K,

(x,τ )∈ T ,
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where T = {(x,τ ) ∈ Rnx ×RK+1 | x ∈ X , c0(x) ≤ τ}, and c0(x) = [c00(x) c01(x) · · · c0K(x)]⊤ ⊆

(−∞,+∞]K+1. As we will see later, we can multiply these extra epigraphical constraints with the

existing convex constraints to obtain a tighter convex relaxation.

3.2. Reformulation and perspectification

Now we are ready to explain the core idea of RPT. Let f be an SLC function as given by (2),

that satisfies Assumption 2. Then we can perspectify the generally nonconvex function f by first

multiplying and dividing the argument of ci by (qi−d⊤
i x) for every i∈ I to obtain the following

equivalent reformulation of f :

f(x) = c0(x)+
∑
i∈I

(qi−d⊤
i x)ci

(
qix−xx⊤di

qi−d⊤
i x

)
.

Then, the quadratic terms xx⊤ in the argument of the reformulated f can be linearized by

substituting xx⊤ with U ∈ Snx to obtain the following sum of perspective functions:∑
i∈I

(qi−d⊤
i x)ci

(
qix−Udi

qi−d⊤
i x

)
, (4)

which is jointly convex in (x,U) because ci is convex if and only if its perspective is convex

(Rockafellar, 1970). Observe that if Assumption 2 is not satisfied, i.e., qi−d⊤
i x≤ 0 for some x∈X

and i∈ I, then the above sum of perspective functions might not be convex. We obtain the following

convex relaxation:

min
x,τ ,U

τ0 +
∑
i∈I

(qi0−d⊤
i0x)ci0

(
qi0x−Udi0

qi0−d⊤
i0x

)
s.t. τk +

∑
i∈I

(qik−d⊤
ikx)cik

(
qikx−Udik

qik−d⊤
ikx

)
≤ 0 k ∈K

(x,τ )∈ T .

(5)

By pairwise multiplying inequalities in the set T , we can obtain additional redundant SLC constraints

which can then be convexified in a similar manner as described above. The convexified SLC

constraints are then not redundant anymore and actually serve as bounds on the newly introduced

variables for the product terms. We can pairwise multiply the linear inequality constraints in the set

T , similarly as in RLT, to obtain bounds on the newly introduced variables U ∈ Snx . However, with

RPT we can adaptively improve this approximation by also considering pairwise multiplication

of the linear and convex constraints in the set T and subsequently pairwise multiplication of the

convex inequalities in the set T . To be more precise, by considering the following cases of pairwise

multiplying the constraints in the set T , we adaptively improve the convex RPT approximation of

(1):
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Linear inequality × Linear inequality. This is well-known in RLT: we multiply the constraints

Ax≤ b of (1) with Ax≤ b, and obtain L1(L1 +1)/2 redundant constraints:

bx⊤A⊤ +Axb⊤ ≤Axx⊤A⊤ + bb⊤,

since the (i, j)-th constraint is exactly the (j, i)-th constraint. Hence, we only consider the upper

triangular of the matrix equations; so L1(L1 +1)/2 constraints instead of L2
1. Next, the nonlinear

quadratic terms xx⊤ in (1) and the additional redundant constraints are linearized by substituting

them with U ∈ Snx . We then obtain the convex relaxation

min
x,τ ,U

τ0 +
∑
i∈I

(qi0−d⊤
i0x)ci0

(
qi0x−Udi0

qi0−d⊤
i0x

)
s.t. τk +

∑
i∈I

(qik−d⊤
ikx)cik

(
qikx−Udik

qik−d⊤
ikx

)
≤ 0 k ∈K

bx⊤A⊤ +Axb⊤ ≤AUA⊤ + bb⊤

(x,τ )∈ T .

(6)

Linear inequality × Convex inequality. By multiplying each ℓ-th linear inequality a⊤
ℓ x≤ bℓ

of (1) with the convex constraints c0(x)≤ τ and h(x)≤ 0, we obtain L1(J +K +2) redundant

SLC constraints of the form

(bℓ−a⊤
ℓ x)c0 (x)≤ (bℓ−a⊤

ℓ x)τ and (bℓ−a⊤
ℓ x)h (x)≤ 0 ℓ∈L1.

Next, the redundant SLC constraints can be reformulated into:

(bℓ−a⊤
ℓ x)h (x)≤ 0 ⇐⇒ (bℓ−a⊤

ℓ x)h

(
bℓx−xx⊤aℓ

bℓ−a⊤
ℓ x

)
≤ 0 and

(bℓ−a⊤
ℓ x)c (x)≤ (bℓ−a⊤

ℓ x)τ ⇐⇒ (bℓ−a⊤
ℓ x)c

(
bℓx−xx⊤aℓ

bℓ−a⊤
ℓ x

)
≤ (bℓ−a⊤

ℓ x)τ .

Finally, the nonlinear quadratic terms xx⊤ and the bilinear terms xτ⊤ are linearized by substituting

them with U ∈ Snx and V ∈Rnx×(K+1), to obtain the following additional convex constraints:

(bℓ−a⊤
ℓ x)h

(
bℓx−Uaℓ

bℓ−a⊤
ℓ x

)
≤ 0 and (bℓ−a⊤

ℓ x)c

(
bℓx−Uaℓ

bℓ−a⊤
ℓ x

)
≤ bℓτ −V ⊤aℓ.

Moreover, we include the additional constraints

uii ≥ 0, i∈ [nx],

since x2
i ≥ 0 for all i∈ [nx].

Linear equality × Convex inequality. When multiplying a linear equality constraint with a

convex inequality constraint, the denominator and coefficient of the resulting perspective function
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are zero. Fortunately, all additional nonlinear constraints resulting from multiplying a linear equality

constraint with a convex inequality constraint are redundant as long as we consider the pairwise

multiplication of the linear equality constraints with all variables (see Lemma 1). While for quadratic

problems, a similar observation was first mentioned by Sherali and Adams (1999, Remark 8.1).

Before we formally prove Lemma 1, we first define redundant constraints.

Definition 1 (Redundant constraints). A constraint f(x)≤ 0 or f(x) = 0, where f :Rnx→
(−∞,+∞], is redundant to a nonempty set X ⊆Rnx if X ⊆ {x | f(x)≤ 0} or X ⊆ {x | f(x) = 0},
respectively.

Lemma 1. Let d⊤x = q be an equality constraint, where d ∈ Rnx and q ∈ R. If the function f :

Rnx → (−∞,+∞] is proper, closed and convex, then the constraint (q − d⊤x)f
(

qx−Ud

q−d⊤x

)
= 0 is

redundant to
{
(x,U) | d⊤x= q, Ud= qx

}
.

Proof. Since d⊤x= q, Ud= qx, and f :Rnx→ (−∞,+∞] is proper, closed and convex, it then

follows from the definition of the perspective function that

(q−d⊤x)f

(
qx−Ud
q−d⊤x

)
= δ∗dom(f∗)(0).

If dom(f∗) is nonempty, then δ∗dom(f∗)(0) = 0. The set dom(f∗) is indeed nonempty because of the

properness of f∗ (Rockafellar, 1970, p. 24), which is implied by Theorem 12.2 of Rockafellar (1970)

thanks to the properness and convexity of f . □

Thanks to Lemma 1, it suffices to multiply each ℓ-th linear equality constraint p⊤
ℓ x= sℓ with x

and τ respectively. We then obtain L2nx +L2nτ redundant SLC constraints of the form

(sℓ−p⊤
ℓ x)x= 0 and (sℓ−p⊤

ℓ x)τ = 0 ℓ∈L2.

Finally, the nonlinear quadratic terms xx⊤ and the bilinear terms xτ⊤ are linearized by substituting

them withU ∈ Snx and V ∈Rnx×(K+1). Including all additional constraints from pairwise multiplying

the linear constraints with the convex constraints in Problem (6) we obtain the following convex

relaxation:

min
x,τ ,U ,V

τ0 +
∑
i∈I

(qi0−d⊤
i0x)ci0

(
qi0x−Udi0

qi0−d⊤
i0x

)
s.t. τk +

∑
i∈I

(qik−d⊤
ikx)cik

(
qikx−Udik

qik−d⊤
ikx

)
≤ 0, k ∈K,

bx⊤A⊤ +Axb⊤ ≤AUA⊤ + bb⊤,
uii ≥ 0, i∈ [nx]

(bℓ−a⊤
ℓ x)h

(
bℓx−Uaℓ

bℓ−a⊤
ℓ x

)
≤ 0, ℓ∈L1,

(bℓ−a⊤
ℓ x)c0

(
bℓx−Uaℓ

bℓ−a⊤
ℓ x

)
≤ bℓτ −V ⊤aℓ, ℓ∈L1,

sℓx−Upℓ = 0, ℓ∈L2,
sℓτ −V pℓ = 0, ℓ∈L2,
(x,τ )∈ T .

(7)
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Note that there are L1(J +1+ L1+1
2

)+ (L1 +1)(K +1)+ (L2 + 1)nx +L2nτ additional constraints

and n2
x +(nx +1)(K +1) additional variables in (7) compared to (1).

Remark 1. We remark that introducing epigraph variables for the nonlinear convex components in

the prepocessing step tightens the RPT approximation. To demonstrate this, consider the following

convex maximization problem:

max
x

x1x2− (x2−2)2

4

s.t. 0≤ x1 ≤ 1.
(8)

In the following we compare two convex relaxations of (8) obtained from (i) applying RPT

without the epigraphical reformulation, and (ii) applying RPT with the epigraphical reformulation,

respectively,

max
x,U

u12− (x2−2)2

4

s.t. 0≤ x1 ≤ 1,
u11− 2x1 +1≥ 0,
u11 ≥ 0,

and

max
x,Uτ,t

u12− τ
s.t. 0≤ x1 ≤ 1,

u11− 2x1 +1≥ 0,
u11 ≥ 0,
(x2− 2)2

4
≤ τ,

(u12− 2x1)
2

4x1

≤ t,
(x2− 2−u12 +2x1)

2

4− 4x1

≤ τ − t.

Note that the maximum of the convex relaxation without the epigraphical reformulation is ∞ with

x⋆
1 ∈ [0,1], x⋆

2 = 2, u⋆
11 =∞, and that of the epigraphical reformulation is 3 with (x⋆

1, x
⋆
2, u

⋆
12, τ

⋆, t⋆) =

(1,4,4,1,1). □

Remark 2. If the objective or a constraint function is a sum of several nonlinear convex functions,

we can introduce epigraphical variables for each convex function. In this way, we can pairwise

multiply these epigraphical constraints with each other and all other constraints in the set T to

obtain tighter bounds on the newly introduced variables. □

Convex inequality × Convex inequality. Just multiplying a nonlinear convex constraint hj(x)≤

0 with another nonlinear convex constraint hj′(x)≤ 0 results in a constraint −hj(x)hj′(x)≤ 0 for

which the constraint function is not an SCC function, since in this case −hj(x) is concave instead

of convex. However, sometimes rewriting the constraints, and then multiplying the left-hand-sides

and right-hand sides of the constraints yields convexifiable constraints. Consider for example the

following two exponential constraints:

exp(x1)≤ x2 and exp(x3)≤ x4.
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We can then multiply the left-hand sides and the right-hand sides, and multiply the right-hand

side of each constraint with the other exponential constraint to obtain the following convexified

constraints: 
exp(x1 +x3)≤ u24,

x4 exp

(
u14

x4

)
≤ u24,

x2 exp

(
u23

x2

)
≤ u24.

Also, several ways of obtaining a convexifiable constraint from pairwise multiplication of conic

quadratic constraints are readily available in the literature (Yang and Burer, 2016; Anstreicher,

2017; Jiang and Li, 2016).

3.3. Additional SDP relaxation

In order to further tighten the convex relaxation, effective SDP cuts can be considered. In the

perspectification step of RPT, the nonconvex quadratic terms xx⊤ are linearized by a symmetric

matrix U . Such a linearization based relaxation for the nonconvex quadratic equality U =xx⊤ may

be significantly improved by the SDP relaxation U ⪰xx⊤, which can be equivalently reformulated

as an LMI by using Schur complement (Boyd and Vandenberghe, 2004):(
U x
x⊤ 1

)
⪰ 0. (9)

Because we also have epigraphical constraints, we can consider including the following LMI: U V x
V ⊤ T τ
x⊤ τ⊤ 1

⪰ 0,

where T ∈ SK+1 denotes the matrix that substitutes the quadratic terms ττ⊤. Although including

the LMI might tighten the convex RPT relaxation, it can significantly increase computation time.

Hence, this step is optional.

Observe that if the above LMI is included, the additional constraints uii ≥ 0, i ∈ [nx], are

redundant to the LMI.

Remark 3. Several convex reformulations and relaxations of several classes of nonconvex problems

derived in the literature can also be obtained via RPT or RPT including the SDP relaxation (RPT-

SDP). In Appendix B this is shown for disjunctive optimization, generalized linear optimization,

the approximate S-lemma for quadratically constrained quadratic optimization, and fractional

optimization. □
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3.4. Obtaining upper bounds

Since RPT is a conservative approximation, it yields a lower bound for the optimal objective value for

problem (1). We can also obtain upper bounds in the following way. Let (x∗,τ ∗,U ∗,V ∗) be the solu-

tion of the convex RPT relaxation. Then we can construct the set X ′ =
{
x∗,xU

1 , . . . ,x
U
nx
,xV

1 , . . . ,x
V
nτ

}
of candidate solutions for (1), where

xU
i =

{
x∗ if x∗

i = 0,
U∗

i
x∗i

otherwise,
and xV

j =

{
x∗ if τ ∗j = 0,
V ∗
j

τ∗j
otherwise,

for all i∈ [nx], j ∈ [nτ ].

Observe that if the nonconvexity is only in the objective, i.e., there are no SLC constraints in (1),

we have x∗ ∈ X . If x is assumed to be nonnegative, i.e., the constraint x≥ 0 is included in the

original set of constraints, then X ′ ⊆X , as is shown by the following lemma:

Lemma 2. Let X = {x∈Rnx
+ |Ax≤ b,Px= s,h(x)≤ 0}, where A∈RL1×nx , P ∈RL2×nx , b∈RL1 ,

s ∈ RL2, h(x) = [h0(x) h1(x) · · · hJ(x)]
⊤ ⊆ (−∞,+∞]J+1, and hj : Rnx → (−∞,+∞] is proper,

closed and convex for every j ∈ J0. Then the set of candidate solutions X ′ is contained in the

original feasible set X .

Proof. Let gℓ(x) = bℓ−A⊤
ℓ x for ℓ ∈ L1. If x> 0, we have U > 0 and thus

U∗
i

x∗i
> 0. Moreover,

we have

x∗
igℓ

(
U ∗

i

x∗
i

)
≤ 0 =⇒ gℓ

(
U ∗

i

x∗
i

)
≤ 0, ℓ∈L1 and x∗

ih

(
U ∗

i

x∗
i

)
≤ 0 =⇒ h

(
U ∗

i

x∗
i

)
≤ 0.

Finally, we also have

x∗
iP
U ∗

i

x∗
i

= sx∗
i =⇒ P

U ∗
i

x∗
i

= s.

Observe that if x∗
i = 0 we have xU

i = x∗, hence x∗ ∈ X . Therefore xU
i ∈ X for every i ∈ [nx]. In a

similar way we can prove xV
j ∈X for every j ∈ [nτ ]. This concludes the proof. □

Hence, by substituting the candidate solutions in the original problem (1) we obtain upper bounds

corresponding to each candidate solution and we can choose the best upper bound obtained.

However, if x is not assumed to be nonnegative, or if we also have nonconvexity in the constraints,

then X ′ ̸⊆ X , since for the latter the solution from the RPT relaxation might not be feasible for (1).

Therefore, to compute the best upper bound, we select the set of candidate solutions in X ′ that

satisfy all constraints in the set X , such that we obtain the finite set

X ′′ =

{
x∈X ′

∣∣∣∣∣ x∈X
}
.

Observe that if we have nonconvexity in the constraints, it is possible that X ′′ = ∅, in which case

we cannot find a feasible solution.
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The obtained feasible solutions could also be used as warm starts for existing algorithms, to

improve the upper bound. Namely, we can use a local optimization algorithm, such as the Ipopt

solver Waechter et al. (2009), initialized at the candidate feasible solution, to obtain a local optimum.

We then replace the candidate solution in X ′ by the obtained local optimum. Note that we can

also initialize it from an infeasible solution, and if the solver finds a feasible solution, we also add

the solution to X ′′. Moreover, for the problem of minimizing a concave or a difference of convex

function, using the biconjugate reformulation, the problem can be written as a disjoint bilinear

optimization problem, where the bilinear function is in fact an SLC function (see Example 1).

Hence, we can leverage the mountain climbing algorithm by (Tao and An, 1997), to find a local

optimum of (1), see Appendix C.

3.5. Spatial branch and bound method

We can solve the original problem (1) to optimality using the following branch and bound scheme:

At the root node, denoted by N0, we solve an RPT relaxation of problem (1) and obtain an upper

and lower bound to problem (1). If the lower bound does not equal the upper bound, we search

for a hyperplane that separates the candidate solutions for N0 as described in Section 3.4, that

is, we search for a hyperplane H =
{
x | f⊤x= l

}
such that f⊤xi ≤ l for i ∈ I1, and f⊤xi ≥ l for

i ∈ I2, where I1, I2 ⊆ [nx] and I1 ∪ I2 = X ′. Ideally, we want this hyperplane to cut the feasible

region into two equally spaced sub regions. Hence, we require the hyperplane to pass through the

analytic center, i.e., f⊤xac = l. The analytic center is defined as a point that maximizes the product

of the slacks of the constraints. Assuming a generic optimization problem with convex constraints

gi(x)≤ 0, the analytic center can be computed as the solution of the following problem:

xac = argmax
x

∑
i

ln(−gi(x))

s.t. gi(x)≤ 0.

(10)

Although the analytic center is not the geometric center of the feasible region, we choose the former

as it is easier to calculate.

Ideally, the sets I1 and I2 contain about the same number of candidate solutions, since if we

would split the region such that all candidate solutions are in one of the two subregions it might

take longer to improve the bounds. This is demonstrated in for example Zhen et al. (2022). Here,

a disjoint bilinear problem over a polyhedral feasible set is reformulated as a two-stage robust

optimization problem and a convex relaxation is obtained by imposing linear decision rules. It is

shown in this paper that one can equivalently obtain a convex relaxation using RLT. The critical

points in this case are the worst-case scenarios. If the region was split such that all worst-case

scenarios were in one of the two subregions, it was possible to end up with the same worst-case
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scenarios and thus no improvement. Therefore, it makes sense to try to split the critical points,

which in our case are the candidate solutions, as much as possible over the two regions. Hence, we

search for a hyperplane that is of maximum margin, that is, it separates the points as much as

possible. Since the distance of a point x from the hyperplane equals |f⊤x− l|/∥f∥, we can find

a maximum margin hyperplane that passes through the analytic center by solving the following

problem
min
f ,l,z

∥∥f∥∥
s.t. f⊤xac = l,

f⊤xi ≤ l+M(1− zi), i∈ I,
f⊤xi ≥ l−Mzi, i∈ I,∑
i∈I

zi = |I1|,∑
i∈[nx]

fi ≥ 1,

zi ∈ {0,1},

(11)

where
∥∥ · ∥∥ denotes any norm. We further add the constraint

∑
i∈[nx]

fi ≥ 1 to avoid the trivial

hyperplane (f , l) = (0,0). Hence, the hyperplane H is given by H0 =
{
x | f⊤

0 x= l0
}
, where (f0, l0)

represents the optimal solution of problem (11). If problem (11) is infeasible we can reduce the set

I1 and increase the set I2 or the other way around. We remark that in case the set of candidate

solutions is not contained in the original feasible set, i.e., X ′ ̸⊆ X , some of the candidate solutions

might not be inside the feasible region. Nevertheless, since the hyperplane passes through the

analytic center, the hyperplane still cuts the feasible region further.

Next, we create two new “child” nodes N1 and N2 from the root-node N0, where at each child

node we solve problem (1) with its feasible region X intersected with one of the closed half spaces

of the hyperplane H, i.e.,

X 0
l =

{
x∈X | f⊤

0 x≤ l0
}
,

X 0
r =

{
x∈X | f⊤

0 x≥ l0
}
.

Subsequently, we apply RPT to each childnode and obtain a lower and upper bound for each

child node. If for the child node with the lowest lower bound of the two child nodes it holds that it

equals the upper bound, we have found the optimal solution. If not, we can repeat this procedure

for each child node, i.e., for each constructed child node Nk, we can search for a maximum margin

hyperplane Hk that passes through the analytic center and separates the candidate solutions of Nk

to create again two new child nodes, and so on.

A key element of the branch and bound algorithm is pruning parts of the tree in order to speed

up the method. The main condition that we use for pruning is when a lower bound is greater than

the current best upper bound. In problems where we use the mountain climbing algorithm for
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obtaining upper bounds, we also prune nodes that result in worst upper bounds than the root node

as they lead towards worst local optima. Another important aspect is which node to select from the

unexplored ones. We propose picking the one with the smallest lower bound. In Algorithm 1, we

summarize the described spatial branch and bound procedure via RPT to obtain a global solution

to problem (1).

Remark 4. For minimization problems containing concave or difference of convex functions, i.e.,

f(x) = c0(x)− c1(x), where c0 and c1 proper, closed, and convex, and c0(x) = 0 in case of a concave

function, either in the objective or in the constraints, we use the biconjugate reformulation in order

to obtain a minimization problem in generic form (1). We then subsequently obtain a bilinear

objective or constraint, i.e., we obtain a term x⊤y in the objective or constraint, where x∈X and

y ∈ dom(c∗1). We remark that in this case we only generate hyperplanes by separating the candidate

solutions in the set X ′, i.e., we only generate hyperplanes in the x-space. If we also generate

hyperplanes in the y-space, we obtain much more constraints in each branch and bound iteration,

increasing the computation time in each successive childnode. On the other hand, generating

hyperplanes in the y-space might reduce the number of hyperplanes that need to be generated,

which could also reduce the computation time. We leave the question if you could benefit from also

generating hyperplanes in the y-space to future research. □

4. A Simple Example

In this section we demonstrate the approach by solving the following toy problem:

min
x1,x2,x3

3x1− 3x2 +3x3 +(x1 +x2 +1)exp (x1)+ (x1 +x2 +1)exp (x3)

s.t. x1 +x2 ≥−1,
xi ≤ 10, i∈ {1,2,3},
exp (x2−x3)≤ x1,

2exp
(−x1

2

)
+2exp

(−x2
2

)
≤ 2+ exp(−1).

(12)

Let XT denote the feasible set of toy problem (12), consisting of a linear constraint and two convex

exponential constraints. The objective is nonconvex, however it is SLC, hence we can apply the

proposed framework to find the global optimum.

Linear × Linear. First, we perspectify the SLC objective. Next, the following constraints are

generated:

(x1 +x2 +1)2 = x2
1 +x2

2 +2x1x2 +2x1 +2x2 +1≥ 0,

(xi− 10)(xi′ − 10) = xixi′ − 10xi− 10xi′ +100≥ 0, i≤ i′ ∈ {1,2,3},

(10−xi)(x1 +x2 +1)= 10x1 +10x2 +10−xix1−xix2−xi ≥ 0, i∈ {1,2,3},

x2
i ≥ 0, i∈ {1,2,3}.
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Algorithm 1 Branch and bound via RPT

Input: (N0,Lb
0, Ub0, δ).

Output: (x∗,Lb,Ub).

1: Lb← Lb0

2: Ub←Ub0

3: ACTIVE ←{N0}

4: while Ub−Lb> δ do

5: j← argmini∈ACTIVELb
i

6: Partition node Nj into two child nodes Nj1 and Nj2 by solving problem (11)

7: for i= 1,2 do

8: Solve Nji by applying steps 1-4 and obtain Lbji and Ubji .

9: end for

10: Ub←min{Ubj,Ubj1 ,Ubj2}

11: for i= 1,2 do

12: if Lbji <Ub then

13: ACTIVE ← ACTIVE ∪{ji}

14: end if

15: end for

16: Lb ←min{Lbj1 ,Lbj2}

17: ACTIVE←ACTIVE \ {j}

18: end while

Finally, the product of variables x2
1, x

2
2, x

2
3, x1x2, x1x3 and x2x3 in both the perspectified objective

as well as the additional generated constraint are substituted by continuous variables u11, u22, u33,

u12, u13, and u23 ∈R respectively to obtain the following convex relaxation:

min
x,U

3x1− 3x2 +3x3 +(x1 +x2 +1)exp
(

u11+u12+x1
x1+x2+1

)
+(x1 +x2 +1)exp

(
u13+u23+x3
x1+x2+1

)
s.t. x∈XT

u11 +2u12 +u22 +2x1 +2x2 +1≥ 0,

uii′ − 10xi− 10xi′ +100≥ 0, i≤ i′ ∈ {1,2,3},
10x1 +10x2 +10−ui1−ui2−xi ≥ 0, i∈ {1,2,3},
uii ≥ 0, i∈ {1,2,3}.

(13)

The solution of (13) appears to be

x′ =

 1
1.10
1.10

 and U ′ =

u′
11 u

′
12 u

′
13

u′
21 u

′
22 u

′
23

u′
31 u

′
32 u

′
33

=

 12.94 −48.08 −41.10
−48.08 78.01 −40.07
−41.10 −40.07 0

 ,
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with objective value 3, which constitutes a lower bound on the optimal value of (12). Since X
consists of only convex constraints, the obtained x′ is contained in the set of feasible candidate

solutions to (12), and its corresponding objective value is 20.796, which constitutes an upper bound

on the optimal value of (12).

Linear × Convex. Let XTLL denote the feasible set of (13). We pairwise multiply the linear with

the nonlinear constraints and obtain the SLC constraints

(x1 +x2 +1)exp(x2−x3)≤ (x1 +x2 +1)x1,

(x1 +x2 +1)2exp

(
−x1

2

)
+(x1 +x2 +1)2exp

(
−x2

2

)
≤ (x1 +x2 +1)(2+ exp(−1)),

(10−xi) exp(x2−x3)≤ (10−xi)x1, i∈ {1,2,3},

(10−xi)2 exp

(
−x1

2

)
+(10−xi)2 exp

(
−x2

2

)
≤ (10−xi)(2+ exp(−1)), i∈ {1,2,3}.

Next, the nonconvex components in the LHS of the above SLC constraints can be reformulated as:

(x1 +x2 +1)exp(x2−x3) = (x1 +x2 +1)exp

(
x1x2−x1x3 +x2

2−x2x3 +x2−x3

x1 +x2 +1

)
,

(x1 +x2 +1)2exp

(
−x1

2

)
= 2(x1 +x2 +1)exp

(
−x2

1−x1x2−x1

2(x1 +x2 +1)

)
,

(x1 +x2 +1)2exp

(
−x2

2

)
= 2(x1 +x2 +1)exp

(
−x1x2−x2

2−x2

2(x1 +x2 +1)

)
,

(10−xi) exp(x2−x3) = (10−xi) exp

(
10x2− 10x3−xix2 +xix3

10−xi

)
, i∈ {1,2,3},

(10−xi)2 exp

(
−x1

2

)
= 2(10−xi) exp

(
−10x1 +xix1

2(10−xi)

)
, i∈ {1,2,3},

(10−xi)2 exp

(
−x2

2

)
= 2(10−xi) exp

(
−10x2 +xix2

2(10−xi)

)
, i∈ {1,2,3}.

Finally, all the product of variables x2
1, x

2
2, x

2
3, x1x2, x1x3 and x2x3 are substituted with newly

introduced variables u11, u22, u33, u12, u13, and u23 respectively. The convex relaxation that results

from the RPT approach is therefore:

min
x1,x2

u11,u12,u22

3x1− 3x2 +3x3 +(x1 +x2 +1)exp
(

u11+u12+x1
x1+x2+1

)
+(x1 +x2 +1)exp

(
u13+u23+x3
x1+x2+1

)
s.t. x∈XTLL,

(x1 +x2 +1)exp
(

u12−u13+u22−u23+x2−x3
x1+x2+1

)
≤ u11 +u12 +x1,

2(x1 +x2 +1)exp
(

−u11−u12−x1
2(x1+x2+1)

)
+2(x1 +x2 +1)exp

(
−u12−u22−x2
2(x1+x2+1)

)
≤ (2+ exp(−1))(x1 +x2 +1),

(10−xi) exp
(

10x2−10x3−u2i+u3i
10−xi

)
≤ 10x1−u1i, i∈ {1,2,3},

2(10−xi) exp
(

−10x1+u1i
2(10−xi)

)
+2(10−xi) exp

(
−10x2+u2i
2(10−xi)

)
≤ (2+ exp(−1))(10−xi), i∈ {1,2,3}.

(14)
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The solution of (14) is

x′ =

1.170.93
0.77

 and U ′ =

u′
11 u

′
12 u

′
13

u′
21 u

′
22 u

′
23

u′
31 u

′
32 u

′
33

=

1.77 0.75 0.23
0.75 1.16 1.31
0.23 1.31 0.57

 ,
with objective value 19.778, which constitutes a tighter lower bound on the optimal value of (12)

than (13). The obtained x′ is contained in the set of feasible candidate solutions to (12), and its

corresponding objective value is 19.809, which constitutes a tighter upper bound on the optimal

value of (12) than (13).

Set of candidate solutions. We have the following candidate solutions:

x′ =

1.17
0.93
0.77

 , xU
1 =

1.51
0.64
0.20

 , xU
2 =

0.81
1.25
1.22

 , xU
3 =

0.30
1.47
0.61

 .

Observe that only x′ is feasible, hence the set of candidate feasible solutions is given by X ′′ = {x′}.

Branch and Bound. We have Ub0 = 19.809 and Lb0 = 19.778. The analytic center of the feasible

region is xac = (6.59,2.47,2.70). The maximum margin hyperplane that passes through the analytic

center is given by H = {x∈R3 | −0.28x1+0.70x2+0.57x3 = 1.46}. Hence we create two child nodes

N1 and N2 from the root-node N0 such that N1 represents problem (12) in which the feasible region

XT is intersected with X 0
l = {x∈XT | −0.28x1 +0.70x2 +0.57x3 ≤ 1.46} and N2 represents problem

(12) in which the feasible region XT is intersected with X 0
r = {x∈XT | −0.28x1 +0.70x2 +0.57x3 ≥

1.46}. We apply steps 1-4 on N1 and N2 and obtain:

Lb1 = 23.202, Ub1 = 23.202 , Lb2 = 19.785, Ub2 = 19.798.

We set Ub=min{Ub0,Ub1,Ub2}= 19.798. Moreover, node N2 becomes active, node N1 remains

inactive, since Lb1 >Ub, and we delete node N0 from the list of active nodes, i.e., ACTIVE= {N2}.

We set Lb=min{Lb1,Lb2}= 19.785.

Since Ub - Lb = 0.013> δ, we select nodeN2 from the list of active nodes. The analytic center of the

new feasible region is xac = (5.71,5.14,5.84). The maximum margin hyperplane that passes through

the analytic center is given by H = {x∈R3 | 2.24x1 +3.65x2− 4.89x3 = 2.97}. Hence we create two

child nodes N3 and N4 from N2 such that N3 represents problem (12) in which the feasible region

X is intersected with X 1
l = {x∈X 0

l | 2.24x1 +3.65x2− 4.89x3 ≤ 2.97} and N4 represents problem

(12) in which the feasible set X is intersected with X 1
r = {x∈X 0

l | 2.24x1 +3.65x2− 4.89x3 ≥ 2.97}.

We apply steps 1-4 on N3 and N4 and obtain:

Lb3 = 19.946, Ub3 = 19.946 , Lb4 = 19.787, Ub4 = 19.787.
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We set Ub = 19.787. Then, node N3 becomes inactive, since Lb3 >Ub. We set Lb = 19.787 and

therefore obtain the optimal solution

x′ =

1.180.92
0.75

 and U ′ =

u′
11 u

′
12 u

′
13

u′
21 u

′
22 u

′
23

u′
31 u

′
32 u

′
33

=

1.41 1.09 0.89
1.09 0.85 0.69
0.89 0.69 0.57

 ,
with optimal objective value 19.787.

5. Strenghtening the RPT-BB approach

In this section, we describe several ways to strenghten the RPT-BB approach.

5.1. Adding redundant linear constraints

We show that adding linear constraints that are redundant to existing linear constraints does not

tighten the RPT relaxation, while adding linear constraints that are redundant to existing nonlinear

constraints might be useful.

Theorem 1. If the linear constraint d⊤x≤ q, where d∈Rnx with d ̸= 0 and q ∈R, is redundant

to {x | Bx ≤ p} ̸= ∅, where B ∈ RL×nx and p ∈ RL, then the constraints d⊤x ≤ q, 2qd⊤x ≤

d⊤Ud+ q2 and (q−d⊤x)f
(

qx−Ud

q−d⊤x

)
≤ 0 are redundant to(x,U)

∣∣∣∣∣
Bx≤ p
px⊤B⊤ +Bxp⊤ ≤BUB⊤ +pp⊤

(pℓ− b⊤ℓ x)f
(

pℓx−Ubℓ
pℓ−b⊤

ℓ
x

)
≤ 0, ℓ∈L

 ,

where f :Rnx→ (−∞,+∞] is proper, closed and convex, and bℓ is the ℓ-th column of the matrix B.

Proof. Assume that d⊤x≤ q is redundant to {x |Bx≤ p}, then the optimal values of

min
x

q−d⊤x

s.t. Bx≤ p
and

max
y≥0

q−p⊤y

s.t. B⊤y= d

coincide and both are nonnegative thanks to the strong duality of linear optimization and the

redundancy of d⊤x≤ q to {x |Bx≤ p}, which implies that there exists a y ∈RL
+ such that d⊤x≤ q

is redundant to {x | b⊤y x ≤ py}, where by =B⊤y = d and py = p
⊤y ≤ q. Then, for any x that

satisfies b⊤y x≤ py and f(x)≤ 0, we have that

(q−d⊤x)f

(
(q−d⊤x)x

q−d⊤x

)
≤ 0 and (py − b⊤y x)f

(
(py − b⊤y x)x
py − b⊤y x

)
≤ 0.

Moreover, for any U ∈ Snx we have

(q−d⊤x)f

(
qx−Ud
q−d⊤x

)
≤ 0 ⇐⇒ (py − b⊤y x)f

(
pyx−Uby
py − b⊤y x

)
≤ 0,
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because by = d so that xx⊤d=xx⊤by and Ud=Uby. Notice that

(pℓ− b⊤ℓ x)f
(
pℓx−Ubℓ
pℓ− b⊤ℓ x

)
≤ 0, ℓ∈L =⇒

∑
ℓ∈L

θℓ(pℓ−a⊤
ℓ x)f

(
pℓx−Ubℓ
pℓ− b⊤ℓ x

)
≤ 0

=⇒

(∑
ℓ∈L

θℓ(pℓ− b⊤ℓ x)

)
f

(∑
ℓ∈L θℓ(pℓx−Ubℓ)∑
ℓ∈L θℓ(pℓ− b⊤ℓ x)

)
≤ 0

=⇒ (py − b⊤y x)f
(
pyx−Uby
py − b⊤y x

)
≤ 0,

where θℓ = yℓ/
∑

ℓ∈L yℓ for all ℓ ∈ L (note that θ ∈ RL
+ and

∑
ℓ∈L θℓ = 1). Here, the second impli-

cation follows from the convexity of the perspective functions. Therefore, the constraint (q −

d⊤x)f
(

qx−Ud

q−d⊤x

)
≤ 0 is redundant to

{
x

∣∣∣∣ b⊤y x≤ py, (pℓ− b⊤ℓ x)f (pℓx−Ubℓpℓ− b⊤ℓ x

)
≤ 0, ℓ∈L

}
.

Thus, the claim follows. □

Note that adding linear constraints that are redundant to existing nonlinear constraints might be

useful, as is demonstrated in Example 4.

Example 4. Consider the following nonconvex problem:

min
x1,x2

2x1 +3x2− 5x1x2− (x1 +2) ln(x1 +2)

s.t. x1 +x2 ≤ 1,
exp(−x1)+ exp(−x2)≤ 1+ exp(−1).

(15)

Note that ln(x1 + 2) is well defined if x1 > −2, which is ensured by the second inequality. The

objective contains a sum of two SLC functions, those are, −5x1x2 and −(x1 +2) ln(x1 +2). The

obtained convex relaxation of Problem (15) from RPT without the optional SDP relaxation has an

objective value of −35.17. The obtained optimal solution x′ = (1,0)⊤ is a feasible solution to (15),

and its corresponding objective value is 1.30, which constitutes an upper bound on the optimal

value of (15).

The linear constraints x1 ≥−1 and x2 ≥−1 are redundant to the second inequality. However,

adding those constraints to (15) and subsequently applying RPT results in a convex relaxation of

Problem (15) with objective value of −4.47. Again, the obtained optimal solution x′ = (0.5,0.5)⊤

is a feasible solution to (15), and its corresponding objective value is −1.04, which constitutes

an upper bound on the optimal value of (15). Hence, by adding the redundant linear constraints

x1 ≥−1 and x2 ≥−1, we obtain a tighter lower- and upper bound on the optimal objective value of

(15).
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5.2. Removing redundant constraints when using the biconjugate reformulation

In this subsection, we consider the specific case in which we have a minimization problem with

concave or difference of convex objective and convex constraints. As described in Example 1, we

can equivalently write this problem as the following disjoint bilinear optimization problem using

the biconjugate reformulation:

min
x

c0(x)−x⊤y+ c∗1(x)

s.t. x∈X
y ∈ dom(c∗1),

(16)

where c0 and c1 are proper, closed, and convex, and c0 = 0 in case of a concave objective. Observe,

that by definition of a convex function, dom(c∗1) is convex. Let dom(c∗1) be given by

dom(c∗1) = {y :Ayy≤ by,Pyy= sy, gj(y)≤ 0, j ∈J } ,

where Ay ∈RLy×ny , Py ∈RLy×ny , by ∈RLy , sy ∈RLy , and gj :Rnx → (−∞,+∞] is proper, closed

and convex for every j ∈J .

The following Lemma shows that the constraints in the RPT relaxation of (16) resulting from

pairwise multiplication in the same set, i.e., either in X or in dom(c∗1), are redundant as long as the

LMI in Step 3 is not incuded.

Lemma 3. The additional constraints in the RPT relaxation of (16) resulting from pairwise mul-

tiplication in X ×X and dom(c∗1)× dom(c∗1) are redundant as long as the additional constraints

resulting from pairwise multiplication in X × dom(c∗1) are included and the following LMI U W x
W⊤ Y y
x⊤ y⊤ 1,


where xy⊤ and yy⊤ are linearized by W ∈Rnx×ny and Y ∈Rny×ny respectively, is not included in

the RPT relaxation.

Proof. Notice that any feasible solution for the problem involving all constraint multiplications

is also feasible for the one involving only those in X ×dom(c∗1). On other other hand, if a solution

is feasible for the problem involving only the multiplications in X ×dom(c∗1), since we are not using

the LMI, we can take U =xx⊤, Y = yy⊤ and therefore have a feasible solution for the problem

involving all multiplications. Therefore, we conclude that the two formulations are equivalent, which

shows that the constraint multiplications in X ×X and dom(c∗1)×dom(c∗1) are redundant.
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5.3. Directly applying RPT versus biconjugate reformulation

It can happen that a function has both an SLC representation as well as a biconjugate reformulation

resulting in a different SLC representation. In this case, the question arises whether it is better

to apply RPT directly on the SLC function or apply RPT to the biconjugate reformulation. The

following example shows that directly applying RPT in this case might be better than applying

RPT to the biconjugate reformulation.

Example 5. Consider the following nonconvex optimization problem

max
x

√
x

s.t. 1≤ x≤ 2.
(17)

Observe that
√
x can be written as x 1√

x
. Since 1√

x
is convex and its domain is given by R++,

√
x

has a SLC representation, see case 1 in Table 2. However, it can also be equivalently written as

infy≥0{−xy+ 1
4y
} using the biconjugate reformulation. In the following we compare two convex

relaxations of (17) obtained from (1) applying RPT to the SLC representation, and (2) applying

RPT to the biconjugate reformulation, respectively,

max
x,u

x
√

x
u

s.t. 1≤ x1 ≤ 2,
u− 2x+1≥ 0,

u− 4x+4≥ 0,

3x−u− 2≥ 0,

and

max
x,u,v,t

−v+ t

s.t. y≥ 0
0≤ x1 ≤ 1,

v− y≥ 0,

2y− v≥ 0,∥∥(y− t,1)⊤∥∥
2
≥ y+ t,∥∥(v− θ− y+ t, x− 1)⊤

∥∥
2
≤ v+ θ− y+ t,∥∥(2y− 2t− v+ θ,2−x)⊤
∥∥
2
≤ 2y+2t− v− θ,

where in (2) we use an epigraph variable t such that 1
4y
≤ t and subsequently write it as a second

order cone constraint. Moreover, observe that because of Lemma 3 we only pairwise multiply

constraints containing an x variable with constraints containing a y variable. The optimal objective

value of the convex relaxation in (1) is 1, which is also the optimal solution to (17), while in (2) v

is unbounded below, hence the optimal objective value of the problem in (2) is −∞.

We could not find an example for which the biconjugate reformulation yields better RPT results

than using the SLC representation. However, we could not prove that this is always the case. When

considering RPT-BB, in Section 7.2, where we consider a Euclidean norm maximization over convex

constraints, we show that for some instances RPT-BB on the biconjugate reformulation has a lower

computation time than RPT-BB in which we use the SLC representation.
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5.4. Strengthening upper bounds with eigenvectors of the optimal solution

At optimality we will always haveU =xx⊤. If we multiply both sides with x we obtainUx= (x⊤x)x.

Therefore, we notice that x is an eigenvector of U with corresponding eigenvalue x⊤x. Hence,

we can add the eigenvectors of U to the set of candidate feasible solutions X ′, as described in

Section 3.4. Example 6 illustrates a case where the tightest upper bound can be obtained from an

eigenvector of U .

Example 6. Consider the following toy problem:

min
x

(x1 +x2 +1)exp(x2)

s.t. x1 +x2 +1≥ 0,
x1x2 ≥−1.

(18)

The optimal solution of (18) is (−1,0) with optimal value 0. After applying RPT we obtain the

following relaxation

min
x

(x1 +x2 +1)exp
(

u12+u22+x2
x1+x2+1

)
s.t. x1 +x2 +1≥ 0,

u12 ≥−1,
u11 +u22 +2u12 +2x1 +2x2 +1≥ 0.

(19)

The optimal solution of (19) is

x∗ =

[
0.71
−1.57

]
and U ∗ =

[
2.73 −1.00
−1.00 0.00

]
,

with optimal value 0 which gives us a lower bound. We have the following candidate vectors

xU
1 =

U ∗
1

x∗
1

=

[
3.85
−1.41

]
, xU

2 =
U ∗

2

x∗
2

=

[
0.64
0.00

]
.

The eigenvectors of U ∗ are

xEV
3 =

[
−0.31
−0.95

]
, xEV

4 =

[
−0.95
0.31

]
.

We observe that x∗ is infeasible as x∗
1x

∗
2 =−1.11<−1. Moreover, xU

1 is infeasible as (xU
1 )1(x

U
1 )2 =

−5.44<−1 and xU
3 is infeasible as (xU

3 )1 + (xU
1 )2 +1 =−0.26< 0. Finally, we notice that xU

2 is

feasible and gives an upper bound of 1.64, while xEV
4 is also feasible and gives an upper bound of

0.49. Therefore, in this example the tightest upper bound is obtained from the second eigenvector

of U ∗. □

6. Convergence analysis of the RPT-BB approach

In the spatial B&B approach the feasible region in each leaf is becoming smaller and smaller.

However, for convergence we need that the feasible region of that leaf is becoming smaller and

smaller in each coordinate direction. Indeed, adding cuts through the analytic center decreases the



Author: A novel algorithm for a broad class of nonconvex optimization problems
25

volume of the feasible region, but not necessarily decreases the feasible region in each coordinate

direction. Suppose, for example that we constantly add hyperplanes that are more or less parallel

to one of the constraints. Hence, for convergence we need additional cutting planes, and that is

stated in the following adaptation to Algorithm 1.

Adaptation A: For a leaf in depth j ∈ J̄ of the B&B tree, where J̄ = {1d, 2d, · · · , Jd} and d∈Z++,

we calculate the corresponding range of x by solving xmax
i = argmaxxi and x

min
i = argminxi, for

all i∈ [nx], subject to the feasible region of this leaf. We then separate the feasible region of this leaf

by adding the hyperplane x= 1
2
(xmax +xmin), instead of the hyperplane proposed in Section 3.5.

We apply this adaptation to all the leaves in depth j of the B&B tree for every j ∈ J̄ .

Note that the index set J̄ contains integers that are multiples of d∈Z++. Thanks to Assumption 1,

there exists a nx-dimensional box that contains the feasible region of each leaf in depth j of the

B&B tree for every j ∈ J̄ .

Theorem 2. If for each i ∈ I and k ∈K0, the function cik and its corresponding recession func-

tion δ∗dom(c∗
ik

) are Lipschitz continuous, then the spatial B&B Algorithm 1 with Adaptation A converges

to a global optimal solution of Problem (1).

Proof. The proof consists of three steps:

Step 1) We first show that as j→∞, the feasible region of each leaf in depth j of the B&B tree

becomes smaller and smaller. Indeed, it follows from Adaptation A that the feasible region of a leaf

in depth j of the B&B tree is contained in a nx-dimensional box:

{x : ∥x−α∥∞ ≤ ϵ}. (20)

for α= 1
2
(xmax +xmin) and ϵ=maxi{xmax

i −xmin
i }. Note that ϵ→ 0 as j→∞.

Step 2) In this step we show that

|Uij −xixj| ≤ 4ϵ(|αj|+ ϵ). (21)

To prove this, first observe that for i, j ∈ [nx], we have

xi−αi ≤ ϵ (22)

xi−αi ≥−ϵ (23)

xj −αj ≥−ϵ (24)

xj −αj ≤ ϵ. (25)
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Clearly, Constraints (22) – (25) are redundant with respect to the corresponding feasible region of

the leaf of the B&B tree. It follows from Theorem 1 that the inequalities that are obtained after

multiplying these redundant constraints and perspectification are also redundant. We multiply the

inequalities (23) and (24) and apply perspectification to obtain:

0≤ (xi−αi + ϵ)(xj −αj + ϵ) =Uij −αixj + ϵxj +(xi−αi + ϵ)(−αj + ϵ).

From this inequality we obtain

Uij−xixj ≥ (αi−xi)xj−ϵxj−(xi−αi+ϵ)(−αj+ϵ)≥−2ϵ(|αj|+ϵ)−(ϵ+ϵ)(|αj|+ϵ) =−4ϵ(|αj|+ϵ).

By multiplying (23) and (25) we can prove in a similar way:

Uij −xixj ≤ 4ϵ(|αj|+ ϵ).

Hence, we obtain (21).

Step 3) In this step we prove that also the perspective approximation of the linear × convex function

converges to the right value. Since each function cik is Lipschitz continuous with Lipschitz constant

Lik, we have when qik−d⊤
ikx> 0,

f̃k(x,U1)− f̃k(x,U2) =
∑
i

(qik−d⊤
ikx)

(
cik

(
qikx−U1dik

qik−d⊤
ikx

)
− cik

(
qikx−U2dik

qik−d⊤
ikx

))
≤
∑
i

(qik−d⊤
ikx)Lik∥

qikx−U1dik− qikx+U2dik

qik−d⊤
ikx

∥

=
∑
i

Lik∥(U1−U2)dik∥

≤
∑
i

Lik∥U1−U2∥∥dik∥

≤ L̃k∥U1−U2∥,

where L̃k =
∑

iLik∥dik∥. In particular if we take U1 =U and U2 = xx⊤, and using (21) we get

f̃k(x,U)− f̃k(x, xx⊤)≤ L̃k∥U −xx⊤∥ ≤ 4ϵn(α̃+ ϵ)L̃k,

where α̃ = maxj |αj|. This means that f̃k(x,U)→ f̃k(x, xx
⊤) when ϵ→ 0. Analogously, when

qik−d⊤
ikx= 0, a similar result can be obtained by using the fact the recession function is assumed

to be Lipschitz continuous. □

For the theorem we need Lipschitz continuity for the recession functions of cik. The following

example shows that convergence may not hold without this assumption:

c(x) = xex, x≥ 0.
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The perspective approximation is:

c̃(x,u) = xeu/x.

Now take x= 0. Even if u≥ 0 is very close to x= 0, we have c̃(0, u) =∞.

We emphasize that if the constraints in (1) contains difference of convex functions, the feasible

region of the biconjugate reformulation, i.e., Problem (B), may not be bounded (see Example 1)

and Theorem 2 does not apply. The following proposition shows that the adapted Algorithm 1

converges if the sets dom(c∗ik) obtained from the biconjugate reformulation are bounded.

Proposition 1. If for each i ∈ I and k ∈ K0, the function cik and its corresponding recession

function δ∗dom(c∗
ik

) are Lipschitz continuous, and the set dom(c∗ik) obtained from the biconjugate

reformulation is bounded, then the spatial B&B Algorithm 1 with Adaptation A converges to a global

optimal solution of Problem (B).

Proof. The proof consists of three steps. Since Steps 1) and 3) are identical to those of Theorem 2,

we omit them here. For the remainder of this proof, it suffices to show that

Tr (V )→x⊤y,

where the variable y is due to the biconjugate reformulation. Because the set dom(c∗ik) is bounded,

for every i∈ [nx], there exists a K ∈R such that

yi ≤K (26)

yi ≥−K. (27)

It follows from Theorem 1 that the inequalities that are obtained after multiplying (22) and (23)

with (26) and (27) and perspectification are redundant. Multiplying constraints (22) and (27) and

perspectification yields:

0≤ (ϵ−xi +αi)(yi +K) =K(ϵ−xi +αi)+ yiϵ−Vii +αiyi.

Starting from this inequality we obtain

Vii−αiyi ≤ yiϵ+K(ϵ−xi +αi)≤Kϵ+K(ϵ+ ϵ) = 3Kϵ,

in which the last inequality follows from (23) and (26). Multiplying constraints (22) and (26) and

perspectification yields:

0≤ (ϵ−xi +αi)(K − yi) =K(ϵ−xi +αi)− yiϵ+Vii−αiyi.
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Starting from this inequality we obtain

Vii−αiyi ≥ yiϵ+K(−ϵ+xi−αi)≥−Kϵ+K(−ϵ− ϵ) =−3Kϵ,

in which the last inequality follows from (23) and (27). Combining these results and using (22),

(23), and (26) finally yields:

|Vii−xiyi|= |Vii−αiyi +αiyi−xiyi|

≤ |Vii−αiyi|+ |(αi−xi)yi|

≤ 3Kϵ+ ϵK

= 4Kϵ.

It follows from triangle inequality that

|Tr(V )−x⊤y| ≤ 4nKϵ.

Finally, because ϵ→ 0 as j→∞, we have that Tr (V )→x⊤y. □

7. Numerical experiments

In this section, we demonstrate the efficiency and effectiveness of our RPT-BB approach on several

nonconvex optimization problems, including a sum-of-max-of-linear-terms maximization problem, a

Euclidean norm maximization problem, a log-sum-exp maximization problem, a linear multiplicative

optimization problem, a quadratically constrained quadratic optimization problem, and a dike

height optimization problem. Using the biconjugate reformulation, we show that the first four

nonconvex optimization problems can be written as bilinear optimization problems subject to

convex and nonconvex, though SLC, constraints. The latter two nonconvex optimization problems

are already in generic form (1). In the implementation of RPT-BB, all problems are assumed to be

minimization problems, by switching to the minus of the objective if necessary. Moreover, in all

problems that we address, except for the linear multiplicative optimization problem, the conditions

for convergence of RPT-BB are satisfied.

Numerical experiments are performed on one Intel i9 2.3GHz CPU core with 16 GB RAM. All

computations for RPT-BB and SCIP are conducted with MOSEK version 9.2.45 (MOSEK ApS,

2020), Gurobi version 9.0.2 Gurobi Optimization (2019), SCIP version 8.0.2 Achterberg (2009),

and implemented using Julia 1.5.3 and the Julia package JuMP.jl version 0.21.6, for BARON are

conducted with BARON version 20.10.16 Sahinidis (1996) implemented using the Python package

pyomo version 6.4.1, and for CPLEX are conducted with CPLEX version 22.1.0 ILOG,Inc. (2017)

implemented using the Python package docplex version 2.23.222. Inside RPT-BB, we use Gurobi

for the linear optimization problems and MOSEK for the nonlinear optimization problems. Finally,

we note that in all branch and bound implementations the optimality gap was set to 10−4.
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7.1. Sum-of-max-linear-terms maximization over convex and nonconvex constraints

We consider the following generic sum-of-max-linear-terms maximization problem from Zhen et al.

(2022) and Selvi et al. (2020):

max
x∈X

∑
k∈K

max
j∈Jk

{A⊤
j x+ bj}, (28)

where A∈Rnx×ny , b∈Rny and J is the union of the mutually disjoint sets Jk, k ∈K. We consider

three cases of X , those are, a set defined by linear constraints, a set defined by an additional

geometric constraint, and a set defined by an additional nonconvex constraint, i.e., X =X1, X =X2,

and X =X3, where

X1 = {x∈Rnx
+ |D⊤x≤ d},

X2 =

x∈X1

∣∣∣∣ ln
∑

i∈[nx]

exp(xi)

≤ a
 ,

X3 =

x∈X1

∣∣∣∣∥∥x∥∥2 + ∑
i∈[nx]

√
xi ≤ c

 .

Here D ∈Rnx×L and d∈RL. Since the objective of (28) is a closed convex function, we can replace

it by its biconjugate function and obtain the following equivalent maximization problem:

max
x∈X
y∈Y

(A⊤x+ b)⊤y, (29)

where Y equals the domain of the conjugate function of the objective of (28), i.e.,

Y =

{
y ∈Rny

+

∣∣∣∣ ∑
j∈Jk

yj = 1, k ∈K

}
.

Observe that ny = |J |. We compare RPT-BB, RPT-SDP-BB and BARON. Furthermore, for X =X1

and X =X2, we also compare them with the exact mixed integer optimization reformulation (MIR),

given by

max
λ,z

∑
k∈K

λk

s.t. λk ≤A⊤
j x+ bj +M(1− zj), j ∈Jk, k ∈K,∑

j∈Jk

zj = 1, k ∈K,

z ∈ {0,1}ny .

(30)

We solve problem (30) with Gurobi for X1 and Mosek for X2. We refer to Appendices D.1 and E.1

for the convex RPT relaxation and problem instances respectively. The results are illustrated in

Table 3.

From Table 3 we observe that for X =X1, MIR is able to solve all instances the fastest, except

for instances 5 and 5a, for which RPT-BB has the lowest computation time. All approaches find
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X #
RPT-BB RPT-SDP-BB BARON GUROBI/MOSEK

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 23.29 0.03 0 23.29 0.06 0 23.29 0.05 23.29 0.01
1a 22.72 0.03 0 22.72 0.06 0 22.72 0.05 22.72 0.01
2 233.94 0.32 0 233.94 1.49 0 233.94 0.28 233.94 0.04
2a 211.87 0.69 0.4 211.87 1.47 0 211.87 1.08 211.87 0.06

X1
3 1081.62 94.02 18 1081.62 42.32 0 1081.62 3600∗ 1081.62 1.63
3a 1159.90 75.11 10.4 1159.90 286.51 0.6 1159.90 3600∗ 1159.90 1.53
4 113.71 0.09 0 113.71 0.14 0 113.71 4.01 113.71 0.01
4a 83.78 6.31 9.6 83.78 0.19 0 83.78 4.09 83.78 0.02
5 3002.44 65.39 6 3002.44 566.65 1 3002.44 3600∗ 3002.44 647.18
5a 2898.05 63.27 7.2 2898.05 1278.26 3.3 2898.05 3600∗ 2898.05 734.65

1 14.58 0.06 0 14.58 0.08 0 14.58 0.09 14.58 0.04
1a 14.54 0.09 0 14.54 0.11 0 14.54 0.07 14.54 0.04
2 136.22 4.46 1 136.22 3.43 0 136.22 3600∗ 136.22 778.65
2a 122.21 12.02 1.8 122.21 25.41 1.3 122.21 3600∗ 122.21 977.05

X2
3 837.94 25.79 1 837.94 201.34 0 837.94 3600∗ 837.94 3600∗

3a 890.07 62.72 3.2 890.07 618.84 0.9 890.07 3600∗ 886.41 3600∗

4 33.73 4.12 7 33.73 6.77 5 33.73 75.44 33.73 0.09
4a 31.81 1.08 1.5 31.81 2.71 0.8 31.81 39.33 31.81 0.11
5 1610.69 14.84 2 1610.69 492.74 1 1610.69 3600∗ 1610.69 3600∗

5a 1670.92 31.79 2.8 1670.92 700.99 1.6 1670.92 3600∗ 1670.92 3600∗

1 13.44 2.97 1 13.44 5.12 1 13.44 0.31
1a 15.02 8.62 2.5 15.02 14.32 6.3 15.02 0.13
2 140.89 21.96 1 140.89 59.31 1 140.89 8.48
2a 129.31 145.92 6.5 129.31 83.31 1.9 129.31 417.41

X3
3 768.96 909.69 4 768.96 1788.87 1 768.96 3600∗

3a 805.95 3600∗ 5.2 805.95 3585.16 2.4 805.95 3600∗

4 45.34 1.08 1 45.34 7.48 1 45.34 114.87
4a 43.79 18.72∗∗ 1.9 44.97 35.41 2.2 44.97 97.11
5 2273.67 3600∗ 35 1711.03∗∗∗ 3600∗ 4 1700.68 3600∗

5a 2307.39 1953.18∗∗ 43.6 1735.74∗∗∗ 3600∗ 4.3 2000.09 3600∗

Table 3 Comparison for the sum-of-max-linear-terms maximization problem of RPT-BB, RPT-SDP-BB, BARON,

and the exact mixed integer reformulation (Gurobi for X =X1 and MOSEK for X =X2) over the feasible regions

X1,X2, and X3, on problem instances 1, 2, 3, 4, and 5. The results for problem instances 1a, 2a, 3a, 4a, and 5a reflect

the average of 10 randomly generated instances corresponding to problems 1, 2, 3, 4, and 5 respectively. Opt

represents the optimal value, Gen Hyp represents the total number of hyperplanes generated during branch and

bound and Time represents the computation time. We set the maximum time limit equal to 3600 seconds, hence if the

computation time equals 3600*, the optimum cannot be found within 3600 seconds and all approaches return the best

value they can obtain within 3600 seconds. ∗∗ denotes that some of the instances were solved within an hour while

others were not and returned the best value obtained. ∗ ∗ ∗ denotes that no feasible solution was found and just the

lower bound was returned.

the optimum for all instances, except for BARON, which cannot find the optimum for instances 3,

3a, 5, and 5a within the time limit.

For X =X2, MIR still finds the optimum within the lowest computation time for instances 1, 1a,

4, and 4a. For instances 2 and 2a, the computation time of MIR is much larger than the computation

time of RPT-BB and RPT-SDP-BB. RPT-BB and RPT-SDP-BB find the optimum for all instances

within the computation limit, while BARON is unable to find the optimum for instances 2, 2a, 3,
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3a, 5, and 5a, and MIR is unable to find the optimum for instances 3, 3a, 5, and 5a within the time

limit of one hour.

For X =X3, MOSEK cannot solve the instances because of the nonconvex constraint. For instances

1, 1a, 2, and 2a, all approaches find the optimum. For instances 1, 1a, and 2, BARON has the

lowest computation time, while for instance 2a RPT-SDP-BB has the lowest computation time.

Moreover, RPT-SDP-BB also finds the optimum for instances 3, 3a, 4, and 4a, whereas RPT-BB

could only find the optimum for instances 3 and 4a, and BARON could only find the optimum for

4, and 4a within a computation time of one hour. For these instances, RPT-SDP-BB has the lowest

computation time, except for instance 4, for which RPT-BB finds the optimum faster. Note that

for instance 3a and 4a, we hence need the SDP relaxation to solve the instances to optimality. For

instance 5, all approaches could not find the optimum within the time limit of one hour, and we

observe that RPT-BB finds a better lower bound than BARON. For instance 5a only RPT-BB

could solve some of the instances within an hour.

7.2. Euclidean norm maximization over convex constraints

We consider the following generic euclidean norm maximization problem subject to convex con-

straints:

max
x∈X

∥∥x∥∥
2
. (31)

We consider two cases of X , that is, X = X1 and X = X2, where X1 and X2 are defined as in

Section 7.1. Observe that the objective of (31) has two different SLC representations. The first SLC

representation results from rewriting the objective of (31) as
∑nx

i=1Uii, where Uii = x2
i for i∈ [nx].

The second SLC representation results from using the biconjugate reformulation. Since the objective

of (31) is a closed convex function, we can replace it by its biconjugate function and obtain the

following equivalent maximization problem:

max
x∈X
y∈Y

x⊤y,
(32)

where Y equals the domain of the conjugate function of the objective of (31), i.e.,

Y =
{
y ∈Rnx

+

∣∣∥∥y∥∥
2
≤ 1
}
.

We compare the proposed approach applied either on the SLC representation resulting from the

biconjugate reformulation (RPT-BB, RPT-SDP-BB) or on the direct SLC representation (RPT-BB-

Dir, RPT-SDP-BB-Dir), with BARON and SCIP. We refer to Sections H.2 and I.2 in the Appendix

for the convex RPT relaxation and problem instances respectively. The results are illustrated in

Table 4.



Author: A novel algorithm for a broad class of nonconvex optimization problems
32

X #
RPT-BB RPT-SDP-BB RPT-BB-Dir RPT-SDP-BB-Dir BARON SCIP

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

X1

1 29.67 0.86 4.7 29.67 0.86 1.6 29.67 0.02 0 29.67 0.08 0 29.67 0.08 29.67 0.38
2 22.83 2.30 4.8 22.83 3.40 4.1 22.83 1.51 3.5 22.83 0.34 0.3 22.83 0.07 22.83 0.18
3 21.79 6.75 3.1 21.79 15.88 3.1 21.79 2.98 1.2 21.79 1.39 0.2 21.79 0.11 21.79 0.41
4 49.66 89.73 7.0 49.66 238.37 5.1 49.66 39.87 2.1 49.66 41.63 1.5 49.66 0.59 49.66 0.73
5 47.93 1027.97 45.8 47.93 817.27 5.2 47.93 175.95 4.1 47.93 248.49 3.8 47.93 1.84 47.93 1.25

X2

1 11.96 2.21 4.8 11.96 3.97 5.7 11.96 0.84 2.1 11.96 0.77 1.9 11.96 0.25 11.96 361.51
2 13.30 5.69 2.9 13.30 10.60 4.1 13.30 2.35 2.1 13.30 2.12 1.7 13.30 2.74 13.30 34.12
3 17.93 7.85 4.1 17.93 15.98 1.1 17.93 19.31 5.8 17.93 12.01 2.7 17.93 1.07 17.90 3.37
4 37.20 115.95 10.3 37.20 692.73 2.1 37.20 122.55 2.2 37.20 227.27 1.9 37.20 3600∗ 35.61 3600∗

5 39.12 118.73 2.2 39.12 1602.32 2.1 39.12 909.75 6.1 39.12 1541.06 5.8 39.12 3600∗ 11.07 3600∗

Table 4 Comparison of RPT-BB, RPT-SDP-BB, BARON, and SCIP for the Euclidean norm maximization

problem over the feasible regions X =X1 and X =X2, for problem instances 1, 2, 3, 4 and 5 which reflect the average

of 10 randomly generated instances. Opt represents the optimal value, Gen Hyp represents the total number of

hyperplanes generated during branch and bound and Time represents the computation time. We set the maximum

time limit equal to 3600 seconds, hence if the computation time equals 3600*, the optimum cannot be found within

3600 seconds and all approaches return the best value they can obtain within 3600 seconds.

From Table 4 we observe that for X = X1, all approaches find the optimum and BARON

outperforms the other approaches on computation time, except for instance 1, for which RPT-BB-

Dir has the lowest computation time and instance 5 for which SCIP has the lowest computation

time. On all instances RPT-BB-Dir and RPT-SDP-BB-Dir have a lower computation time than

RPT-BB and RPT-SDP-BB.

For X =X2 all approaches find the optimum for all instances, except for instances 4 and 5, for

which BARON cannot prove optimality and SCIP cannot find the optimum within the time limit of

one hour. For instances 1 and 3, BARON outperforms the other approaches on computation time,

while for instance 2, RPT-SDP-BB-Dir has the lowest computation time. Moreover, we observe

that using the biconjugate reformulation we find the optimum faster than using the direct SLC

representation for the larger instances 3, 4 and 5, while for the smaller instances we have a lower

computation time using the direct SLC representation.

Finally, we observe that when using the biconjugate reformulation, adding the SDP relaxation

results in a larger computation time for all instances, except instance 5 for X =X1. When using the

direct SLC representation, the SDP relaxation reduces the computational time for both X =X1

and X =X2 in the smaller scale instances, however it increases it in the larger scale ones, those are

instances 4 and 5.

7.3. Log-sum-exp maximization over linear constraints

We consider the log-sum-exp maximization problem subject to linear constraints:

max
x∈X1

log

∑
i∈[nx]

exp(xi)

 , (33)
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where X1 is defined as in Section 7.1. Since the objective of (33) is a closed convex function, we can

replace it by its biconjugate function and obtain the following equivalent maximization problem:

max
x∈X1

(y,w)∈Y

x⊤y+
∑
i∈[nx]

wi, (34)

where Y equals the domain of the conjugate function of the objective of (33), i.e.,

Y =

y ∈Rnx
+ , w ∈Rnx

∣∣∣∣∣∣ yi exp
(
wi

yi

)
≤ 1, i∈ [nx],

∑
i∈[nx]

yi = 1

 .

Observe that here we make use of case 7 in Table 1 and introduce epigraph variables wi for every

i∈ [nx].

We compare RPT-BB, RPT-SDP-BB, BARON, and SCIP. We refer to Sections D.3 and E.3 in

the Appendix for the convex RPT relaxation and problems instances respectively. The results are

illustrated in Table 5.

X #
RPT-BB RPT-SDP-BB BARON SCIP

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 10.01 0.14 0 10.01 0.48 0 10.01 0.06 10.01 0.07
2 40.00 1.51 0 40.00 158.44 0 40.00 360.65 3.69 3600∗

3 6.09 2.89 0.9 6.09 23.02 0.8 6.09 0.12 6.09 0.17
4 21.96 63.65 23.8 21.96 13.51 0.9 21.78 1082.38∗∗ 19.31 2520.37∗∗

5 34.76 61.11 0.7 34.76 368.69 0 34.76 1450.84∗ 15.43 3600∗

Table 5 Comparison of RPT-BB, RPT-SDP-BB, BARON, and SCIP for the log-sum-exp maximization problem

over the feasible region X =X1, for problem instances 1, 2, 3, 4, and 5, which reflect the average of 10 randomly

generated instances. Opt represents the optimal value, Gen Hyp represents the total number of hyperplanes generated

during branch and bound and Time represents the computation time. We set the maximum time limit equal to 3600

seconds, hence if the computation time equals 3600∗, the optimum cannot be found within 3600 seconds and all

approaches return the best value they can obtain within 3600 seconds. ∗∗ denotes that some of the instances were

solved within an hour while others were not and returned the best value obtained.

From Table 5 we observe that both RPT-BB and RPT-SDP-BB find the optimum for all instances,

whereas BARON could not find the optimum for some of the generated instances in 4 and 5,

and SCIP could not find the optimum for some of the generated instances in 4 and for all of the

generated instances in 2 and 5 within the time limit. Observe that while BARON is not able to

prove optimality within the time limit for instance 5, it does find the optimum, whereas for instance

4 it does not. For instances 1 and 3, BARON performs best on computation time, while for instance

2, RPT-BB has the lowest computation time.

When we compare RPT-BB and RPT-SDP-BB, we observe that RPT-BB has the lowest com-

putation time for all instances except for instance 4, since for the latter the number of generated
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hyperplanes is much higher for RPT-BB. Moreover for instances 1 and 2 both methods find the

optimum at the root node, and for instance 5, RPT-SDP-BB also finds the optimum at the root

node.

7.4. Linear multiplicative optimization

We consider the following linear multiplicative optimization problem from Ryoo and Sahinidis

(1996):

min
x∈X

∏
i∈[ny ]

A⊤
i x+ bi (35)

where A ∈ Rnx×ny , b ∈ Rny , X = {x ∈ Rnx
+ | D⊤x ≤ d, A⊤

i x+ bi ≥ 0}, D ∈ Rnx×L, and b ∈ RL.

Without loss of generality we assume A⊤
i x+ bi > 0 for all i∈ I. Utilizing a log transformation, as

in Ryoo and Sahinidis (1996), problem (35) can be equivalently reformulated as

min
x∈X

∑
i∈[ny ]

ln
(
A⊤

i x+ bi
)
. (36)

Since the objective of (36) is a closed concave function, we can replace it by its biconjugate function

and obtain the following equivalent maximization problem:

max
x∈X

(y,w)∈Y

−(A⊤x+ b)⊤y−
∑
i∈[ny ]

wi, (37)

where Y equals the domain of the conjugate function of the objective of (36), i.e.,

Y =
{
y ∈Rny

+ ,w ∈Rny
∣∣ exp(−wi− 1)≤ yi, i∈ [ny]

}
.

Observe that here we make use of case 3 in Table 1 and introduce epigraph variables wi for every

i∈ [ny]. Moreover, observe that Y is not bounded. Hence, the conditions for convergence of RPT-BB

are not satisfied. Nevertheless, we compare RPT-BB, RPT-SDP-BB, BARON, and SCIP. We refer

to sections D.4 and E.4 in the Appendix for the convex RPT relaxation and problem instances

respectively. The results are illustrated in Table 6.

From Table 6 we observe that RPT-BB has an edge over BARON on problems involving a large

number of linear multiplications in the objective. Namely, on instances 3, 4 and 5, corresponding

to 8, 20, and 30 linear multiplications in the objective respectively, we observe that RPT-BB is

able to find the global optimum in seconds, while BARON is unable to prove optimality within one

hour. Ryoo and Sahinidis (1996) mention that BARON can handle LMP problems up to 5 linear

terms in the objective. Although there has been much development in the software from then, it is

still unable to solve problems including more than 10 linear multiplications in the objective. On

the other hand, we observe that RPT-BB can handle problems including up to at least 30 linear

multiplications in the objective.
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X #
RPT-BB RPT-SDP-BB BARON SCIP

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 11.39 7.74 23.5 11.39 3.86 7.1 11.39 0.24 11.39 1.06
2 5.38 1798.90∗∗ 146.4 - 3600∗ 0 5.38 2.34 5.38 10.12
3 22.84 909.15 137.6 22.84 136.39 57.2 22.84 3600∗ 22.84 3600∗

4 44.82 305.15 47.2 44.82 1426.03 46.9 44.82 3600∗ - 3600∗

5 66.16 55.29 5.5 66.16 2323.97 8.1 66.16 3600∗ - 3600∗

Table 6 Comparison of RPT-BB, RPT-SDP-BB, BARON and SCIP for the linear multiplicative optimization

problem instances 1, 2, 3, 4, and 5, which reflect the average of 10 randomly generated instances. Opt represents the

optimal value, Gen Hyp represents the total number of hyperplanes generated during branch and bound and Time

represents the computation time. We set the maximum time limit equal to 3600 seconds, hence if the computation

time equals 3600*, the optimum cannot be found within 3600 seconds and all approaches return the best value they

can obtain within 3600 seconds. ∗∗ denotes that some of the instances were solved within an hour while others were

not and returned the best value obtained A - indicates that no solution was returned after one hour.

However, there is a trade-off between the number of variables and constraints that each method

can handle. We observe that BARON and SCIP are able to solve instance 2, corresponding to 200

variables, 200 linear constraints, and 3 linear multiplications in the objective, in seconds, while

RPT-BB is unable to find the global optimum for some instances within one hour and RPT-SDP-BB

is unable to solve the problem at the root node. The total number of variables and constraints

resulting after the multiplications grows significantly when considering a large number of numerical

variables, hence making the problem intractable. We conclude that RPT-BB can be advantageous

in LMP problems involving a large number of linear multiplications in the objective, while BARON

and SCIP can be advantageous in LMP problems with more variables and constraints and less

linear multiplications in the objective.

7.5. Quadratic constraint quadratic optimization

We consider the following quadratic constraint quadratic optimization problem:

min
x∈X1

x⊤P0x+ q⊤0 x+ r0

s.t. x⊤Pkx+ q⊤k x+ rk ≤ 0, k ∈K,
(38)

where Pk, k ∈K0, are not necessarily positive semi-definite. Hence, problem (38) is not necessarily

convex. However, the nonconvex quadratic functions are SLC, hence we can apply RPT. We compare

RPT-BB, RPT-SDP-BB, and BARON. Moreover, on the first five instances involving nonconvex

QPs over linear constraints we also compare with CPLEX. We refer to Appendices D.5 and E.5 for

the convex RPT relaxation and problem instances respectively. The results are illustrated in Table

7.

From Table 7 we observe that for instances 1-5, all approaches find the optimum for all instances,

except for BARON, which is not able to prove optimality within the computation limit for instance
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X #
RPT-BB RPT-SDP-BB BARON CPLEX

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time Opt Time

1 394.75 0.63 4 394.75 0.55 1 394.75 0.19 394.75 0.11
2 884.75 1.19 5 884.75 0.39 1 884.75 0.21 884.75 0.08
3 6888.78 0.03 0 6888.78 0.03 0 6888.78 0.11 6888.78 0.07
4 98,382.63 2.86 0 98,382.63 3.77 0 98,382.63 3600∗ 98,382.63 1.32
5 774,482.38 12.53 0 774,482.38 67.51 0 774,482.38 3600∗ 774,482.38 13.25
6 3415.62 0.16 3 3415.62 0.41 2 3415.62 0.06
7 16,805.89 0.83 8 16,805.89 0.44 1 16,805.89 0.11
8 15,433.13 0.45 2 15,433.13 0.09 0 15,433.13 0.17

Table 7 Comparison of RPT-BB, RPT-SDP-BB, BARON and CPLEX for the quadratic constraint quadratic

optimization problem over the feasible region X =X5, for problem instances 1, 2, 3, 4, 5, 6, 7 and 8. Opt represents

the optimal value, Gen Hyp represents the total number of hyperplanes generated during branch and bound and Time

represents the computation time. We set the maximum time limit equal to 3600 seconds, hence if the computation

time equals 3600∗, the optimum cannot be found within 3600 seconds and all approaches return the best value they

can obtain within 3600 seconds.

4 and 5. For instances 1, 2, and 4, CPLEX has the lowest computation time, whereas for instances

3 and 5, RPT-BB has the lowest computation time. For instances 6-8, containing also nonconvex

QP constraints, all three approaches are able to find the optimum within one second, with BARON

having the lowest computation time for problem instances 6 and 7, and RPT-SDP-BB for instance

8.

7.6. Dike height optimization

Eijgenraam et al. (2017) develop a model to optimize the dike heightening in the Netherlands. The

authors show that the optimal solution is periodic, i.e., the dike is heightened with the same amount

every t years, and explicit expressions are derived for t and the optimal heightenings. However, in

practice there are several reasons to deviate from the periodic solution. For example, it is maybe

desired to combine heightenings of several dikes. In this section, we propose to use RPT to solve

the dike heightening problem in which the years that the heightening takes place is fixed and may

deviate from every t years. Such problems cannot be solved by the approach in Eijgenraam et al.

(2017). We consider the following dike height optimization problem, which is the time truncated

version of the problem in Eijgenraam et al. (2017):

min
x≥0,h

∑
k∈K0

(C + bxk) exp (λhk− δtk)︸ ︷︷ ︸
Investment costs

+
∑
k∈K0

S0

βδ

(exp (βδtk+1)− exp (βδtk)) exp (−θhk)︸ ︷︷ ︸
Expected damage costs

+
S0

δ
exp (βδT − θhK)︸ ︷︷ ︸

Future damage costs

,

(DHO)

where t is the vector of all moments in time at which the dike height is increased, t0 = 0, x is the

vector of all increases in dike height, where xk is the increment of the dike height at time tk, hk

is the increase in dike height after tk years, i.e., hk =
∑k

i=0 xi, hK =
∑

k∈K0
xk and βδ, δ, θ, λ, b,C,T

and S0 are constants, which are explained in more detail in Appendix E.6. Observe that the feasible
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region is not compact. However, we can add redundant upper bounds on x such that we obtain

a compact feasible region. Moreover, since C > 0, the conditions for convergence of RPT-BB, as

specified in Theorem 2, are satisfied.

The objective of (DHO) is to minimize the sum of investment costs and the total expected cost

of flooding, both as a result of heightening dikes, see Eijgenraam et al. (2017) for a full description.

Since t is fixed, the objective of (DHO) is SLC, as it consists of two convex terms (expected damage

costs and future damage costs) and a sum of linear times convex functions, hence we can apply

RPT-BB. We compare RPT-BB, RPT-SDP-BB, and BARON. We refer to Appendices D.6 and E.6

for the convex RPT relaxation and problem instances respectively. The results for the homogeneous

dike rings 10, 15 and 16 in the Netherlands are shown in Table 8.

t #
RPT-BB RPT-SDP-BB BARON

Opt Time Gen Hyp Opt Time Gen Hyp Opt Time

tir

10 61.98 5.88 7 61.98 0.15 0 61.98 110.70
15 608.74 3600∗ 1769 608.74 0.29 0 608.74 3600∗

16 1268.11 3600∗ 2054 1268.11 0.29 0 1268.11 3600∗

t25

10 61.31 34.78 12 61.31 0.49 0 61.31 1680.36
15 609.92 5.81 3 609.92 1.15 0 609.92 3600∗

16 1269.63 3600∗ 1151 1269.63 0.88 0 1269.63 3600∗

t50

10 55.50 62.12 58 55.50 0.16 0 55.50 1.32
15 545.23 2.94 6 545.23 0.27 0 545.23 1.81
16 1100.07 3600∗ 1256 1100.07 0.22 0 1100.07 3600∗

Table 8 Comparison of RPT-BB, RPT-SDP-BB, and BARON for the dike height optimization problem, for dike

rings 10, 15, and 16 in the Netherlands. Opt represents the optimal value, Gen Hyp represents the total number of

hyperplanes generated during branch and bound and Time represents the computation time. We set the maximum

time limit equal to 3600 seconds, hence if the computation time equals 3600∗, the optimum cannot be found within

3600 seconds and all approaches return the best value they can obtain within 3600 seconds.

From Table 8 we observe that RPT-SDP-BB outperforms RPT-BB and BARON on both the

number of global optimal solutions found and computation time, since it finds the global optimal

solution for every instance in the root node and within less than a second. Both RPT-BB and

BARON find the global optimal solution in each case for dike ring 10 and are not able to prove

optimality in each case for dike ring 16. For dike ring 16, BARON is able to achieve a smaller

optimality gap than RPT-BB as can be seen from Table 9.

Moreover, from Table 8 we observe that RPT-BB can find the global optimal solution for dike

ring 15 for t25 and t50, while BARON is only able to find the global optimal solution for t50. For the

instances that can be solved by both RPT-BB and BARON, BARON has much lower computation

time in the case of t50, while RPT-BB finds the global optimum much faster in case of tir and t25.
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t #
RPT-BB BARON

UB LB Time UB LB Time

t25 1269.63 1256.84 3600∗ 1269.63 1267.98 3600∗

t50 1100.07 1090.56 3600∗ 1100.07 1100 3600∗

tir 1268.11 1255.58 3600∗ 1268.11 1266.79 3600∗

Table 9 Upper and lower bounds obtained for RPT-BB and BARON, within one hour for dikerings 16. We set the

maximum time limit equal to 3600 seconds, hence if the computation time equals 3600∗, the optimum cannot be found

within 3600 seconds and all approaches return the best upper and lower bounds they can obtain within 3600 seconds.

8. Discussion and conclusion

In summary, we develop a method for globally solving nonconvex optimization problems involving

SLC functions. We introduce the RPT framework, which enables us to obtain a convex relaxation

of the original nonconvex problem, while introducing additional variables and constraints. We then

incorporate it in spatial branch and bound in order to solve the initial problem to optimality by

sequentially partitioning the feasible region in smaller regions. In the numerical experiments, we

demonstrate that the proposed method stands well against the current state of the art global

optimization methods. Overall, we observe that, for the considered problem instances, RPT-BB

and RPT-SDP-BB are able to solve most problems by generating a few hyperplanes. This, together

with the efficiency of Mosek for solving conic optimization problems, is what drives the speed of

the method. Since we are multiplying all constraints in the feasible region, the method becomes

less tractable in problems involving a large number of variables and constraints. However, one can

consider to not pairwise multiply every constraint in order to reduce computational effort.

So far we have only considered pairwise multiplication of convex constraints and reformulated

any SLC constraints with RPT. However, in future work one could further consider multiplying the

SLC constraints and convexify the resulting constraints by introducing additional variables.
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Appendix A. When infimum is not attained

If the infimum of (3) is not attained, we assume that (1) satisfies the following regularity condition.

Assumption 3. There exists a vector xS ∈ ri(∩k∈K0
dom(fk)) such that fk(x

S) < 0 for all k ∈

K, Ax< b and h(xS)< 0.

Note that Assumption 3 implies that xS resides in the sets ∩ k∈K0
i∈I0

ri(dom(cik)) and ∩j∈J0
ri(dom(hj))

thanks to Proposition 2.42 in Rockafellar and Wets (2009), and thus, xS is a strict Slater point

of (1). Furthermore, there exists a (τ S,US,V S) such that (xS,τ S,US,V S) is a strict Slater point

of the corresponding RPT relaxation (7) of (1) with fk(x)≤ 0 is replaced byc0k(x)− sup
y∈dom(c∗

1k
)

{x⊤y− c∗1k(y)} ≤ 0

y ∈ dom(c∗1k).
(39)

Finally, thanks to Remark 1 and the proof of Theorem 6(iii) of Zhen et al. (2021), the inf operator

in the constraint of (7) can be merged with the inf operator (instead of min operator because the

optimal y may not be obtained) in the objective function without affecting the infimum of (7).

B. Known convex reformulations and relaxations obtained via RPT

We show that several convex reformulations and relaxations for several classes of nonconvex problems

derived in the literature can also be obtained via RPT.

B.1. Disjunctive optimization

A linear description of the convex hull of the union of convex sets can be derived by using RPT.

It follows from the definition that the convex hull of the union of nonempty, compact convex sets

Xk = {x | hk(x)≤ 0}, k ∈K is:

conv

(⋃
k∈K

Xk

)
=

{
x

∣∣∣∣ ∃xk ∈Xk,λ≥ 0 :x=
∑
k∈K

λkxk,
∑
k∈K

λk = 1

}
,

where hk(x) = [h1k(x) h2k(x) · · · hJk(x)]
⊤, and hjk :Rnx→ (−∞,+∞] is proper, closed and convex

for every j ∈J , k ∈K. This description is nonlinear and nonconvex, since it contains products of

variables λkxk, k ∈K. One can apply RPT to obtain the following convex relaxation{
x

∣∣∣∣ ∃uk :x=
∑
k∈K

uk,
∑
k∈K

λk = 1, λ≥ 0, λkhk(uk/λk)≤ 0, k ∈K

}
.

This convex relaxation is exact according to Gorissen et al. (2014, Lemma 1), which applies

because Xk, k ∈K, are nonempty, compact and convex sets. We now use this observation to derive

convex relaxation for disjunctive optimization problems with general convex sets. In Sherali and
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Adams (1994b, Section 4), the authors derive similar result for disjunctive optimization problems

with a linear objective function and polyhedral sets Xk, k ∈ K. Consider a generic disjunctive

optimization problem
min
x

f(x)

s.t. x∈
⋃
k∈K

Xk,
(DP)

where f :Rnx→ (−∞,+∞] is proper, closed and convex. Disjunctive optimization problems are in

general nonconvex because its feasible region constitutes a union of convex sets Xk. By applying

RPT to the feasible region of (DP), we obtain the following convex relaxation:

min
y,{uk}k

f

(∑
k∈K

uk

)
s.t. ykhk(uk/yk)≤ 0 k ∈K∑

k∈K

yk = 1

yk ≥ 0 k ∈K,

which is often refered to as the hull relaxation (Grossmann and Lee, 2003). Note that this hull

relaxation is tight if f(·) is a linear function, and Xk, k ∈K, are nonempty, compact and convex

sets.

B.2. Generalized linear optimization

Consider a generalized linear optimization problem of the following form (Dantzig, 1963, p. 434):

min
y,{xk}k

c⊤y

s.t.
∑
k∈K0

xkyk ≤ b

y≥ 0, xk ∈Xk k ∈K0,

(GLP)

where Xk = {x | hk(x)≤ 0}, k ∈K0, and hk :Rnx→ (−∞,+∞]J is a vector of J proper, closed and

convex functions for each k ∈K0. The partial RPT relaxation of (GLP) is:

min
y,{vk}k

c⊤y

s.t.
∑
k∈K0

vk ≤ b

ykhk(vk/yk)≤ 0 k ∈K0

y≥ 0.

The convex problem is in general a convex relaxation of (GLP), which has the same optimal value

as (GLP) if one of the following regularity conditions is satisfied : (i) Xk is bounded for each k ∈K0

(Gorissen et al., 2014, Lemma 1); (ii) there exists a (y,{xk}k) with y> 0 that is feasible for (GLP)

(Zhen et al., 2021, Lemma 6). While for a special case where Xk, k ∈K, are (nonempty) boxes, the

corresponding linear relaxation of (GLP) is exact due to Dantzig (1963).
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B.3. Approximate S-Lemma for quadratically constrained quadratic optimization

Consider a quadratically constrained quadratic optimization problem with only one (quadratic)

constraint:

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤A1x+2b⊤1 x+ c1 ≤ 0,
(QCQP)

where Ak ∈Rnx×nx , bk ∈Rnx and ck ∈R for each k ∈ {0,1}. It is well-known that such a problem

admits a convex reformulation via the S-lemma. In the following, we show that the dual of the

obtained convex reformulation from the S-lemma can be interpreted as an RPT relaxation. Suppose

that there exists an x∈Rnx with x⊤A1x+2b⊤1 x+ c1 < 0, then we have

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤A1x+2b⊤1 x+ c1 ≤ 0
⇐⇒

max
λ≥0,γ

γ

s.t.

[
A0

1
2
b0

1
2
b⊤0 c0

]
⪰ γ

[
O 0
0⊤ 1

]
−λ

[
A1

1
2
b1

1
2
b⊤1 c1

]
,

where O ∈Rnx×nx is a matrix of all zeros. Here the ”⇐⇒ ” holds due to the S-lemma (Boyd and

Vandenberghe, 2004, Appendix B). The dual of the obtained semi-definite problem is

min
X,x

Tr(A0X)+ 2b⊤0 x+ c0

s.t. Tr(A1X)+ 2b⊤1 x+ c1 ≤ 0[
X x
x⊤ 1

]
⪰ 0,

which is clearly an RPT relaxation of (QCQP). Consider now a generic quadratically constrained

quadratic optimization problem with more than one quadratic inequality constraint:

min
x

x⊤A0x+2b⊤0 x+ c0

s.t. x⊤Akx+2b⊤k x+ ck ≤ 0 k ∈K,

where Ak ∈Rnx×nx , bk ∈Rnx and ck ∈R for each k ∈K0. Similarly, the dual of the convex relaxation

obtained from using the approximate S-lemma coincides with the convex relaxation from RPT:

min
X,x

Tr(A0X)+ 2b⊤0 x+ c0

s.t. Tr(AkX)+ 2b⊤k x+ ck ≤ 0 k ∈K[
X x
x⊤ 1

]
⪰ 0.

Note that here the obtained relaxation is not tight in general, and for more details on the approximate

S-lemma, we refer to Ben-Tal et al. (2002).

B.4. Fractional optimization

Consider the following generic fractional optimization problem

min
x

f(x)

g(x)
s.t. hk(x)≤ 0 k ∈K,

(FP)
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where f : Rnx → R+ is convex and nonnegative, g : Rnx → R++ is concave and positive, and hk :

Rnx→ (−∞,+∞] is proper, closed and convex for every k ∈K. By first introducing an epigraphical

variable τ for the positive convex function 1/g(x), we obtain the SLC constraint τg(x)≥ 1, and

then apply RPT to obtain:
min
x,τ

τf(y/τ)

s.t. τg(y/τ)≥ 1
τhk(y/τ)≤ 0 k ∈K.

The obtained convex problem is an exact convex reformulation of (FP) (Schaible, 1974).

Appendix C: Mountain climbing procedure

We use a mountain climbing (MC) procedure based on the algorithm from Tao and An (1997),

to find an upper bound for problems involving the biconjugate, for example problem (16). The

MC procedure takes as input X ′′, the list of candidate vectors obtained from the solution of the

RPT relaxation (see Section 3.4) and returns a local optimum. The procedure is summarized in

Algorithm 2, for the problem of maximizing a function f(x,y) over X ×Y, where X and Y are

disjoint sets. For X =X3 we only apply it for the candidate vectors that are feasible. Note that it is

possible that X ′′ =, in which case MC cannot be applied. Moreover, for X =X2 and X =X3 in the

numerical experiments we alternate between maximizing for x,z ∈X and maximizing for y ∈ Y

and vice versa.

Appendix D. RPT-SDP formulations of the numerical experiments

Throughout the experiments we consider five cases of the feasible set X , those are X =X1, X =X2,

X =X3, X =X4, and X =X5 where

X1 = {x∈Rnx
+ |D⊤x≤ d}

X2 =

{
x∈X1

∣∣∣∣ log
(

nx∑
i=1

exp(xi)

)
≤ a

}

X3 =

{
x∈X1

∣∣∣∣ ∥∥x∥∥2 + nx∑
i=1

√
xi ≤ c

}
X4 =

{
x∈X1

∣∣A⊤
i x+ bi ≥ 0, i∈ [ny]

}
X5 =

{
x∈X1

∣∣x⊤Pkx+ q⊤k x+ rk ≤ 0, k ∈KC

}
.

We notice that both X2 and X3 are not in conic form, but they can be reformulated as such, in

the following way. First, for X2 we observe that log (
∑nx

i=1 exp(xi))≤ a ⇐⇒
∑nx

i=1 exp(xi− a)≤ 1.

Using epigraphical variables zi we obtain the following equivalent form:

X2 =

{
x∈X1,z ∈Rnx

∣∣∣∣∣zi ≥ exp (xi− a) ,
nx∑
i=1

zi ≤ 1

}
.
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Algorithm 2 Mountain climbing procedure

Input: X ′, L= ∅.

1: for x∈X ′ do

2: y← argmax
y∈Y

f(x,y)

3: ε← 1

4: while ε > 0.001 do

5: Lb ← f(x,y)

6: x← argmax
x∈X

f(x,y)

7: y← argmax
y∈Y

f(x,y)

8: Lbx ← f(x,y)

9: ε← Lbx−Lb

10: end while

11: L←L∪{(x,y)}

12: end for

13: (x⋆,y⋆)← argmax(x,y)∈L f(x,y)

14: Lb⋆ = f(x⋆,y⋆)

15: return (Lb⋆,x⋆,y⋆)

Regarding X3 we first reformulate the nonconvex constraint via the biconjugate and obtain the

equivalent set

X3 =

{
x∈X1

∣∣∣∣∣∥∥x∥∥2 +
nx∑
i=1

1

4zi
+x⊤z ≤ 0

}
.

We introduce epigraph variables for the convex component of the SLC constraint. Since the convex

component of the SLC constraint consists of a sum of two basic cone functions we introduce an

epigraph variable for each basic cone function. Subsequently, we reformulate every convex constraint

in terms of one of the basic cone constraints. Next, we convexify the SLC constraint, such that we

obtain the following relaxed set of constraints

X ∗
3 =


x∈X1,V ∈Rnx×nx ,z ∈Rnx

++, t∈Rnx
++, s∈R, p∈R++

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ p+

nx∑
i=1

Vii ≤ c∥∥x∥∥
2
≤ s

nx∑
i=1

ti ≤ p∥∥∥(zi− ti,1)⊤∥∥∥
2
≤ zi + ti, i∈ [nx]


.

We choose c to be large enough such that (29) with X =X3 satisfies Assumption 2.

In the formulations for the numerical experiments we encounter several products of variables.

These are linearized as follows: We linearize xx⊤ by X, yy⊤ by Y , zz⊤ by Z, ww⊤ by W , tt⊤
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by T , xy⊤ by U , xz⊤ by V , xw⊤ by Q, xt⊤ by F , yz⊤ by R, yw⊤ by P , yt⊤ by G, zw⊤ by

K, zt⊤ by H, sx by α, sy by β, sz by γ, st by ϕ, s2 by σ, px by λ, py by µ, pz by ν, pt by ψ,

ps by ρ and p2 by π.

D.1. RPT-SDP formulation of Problem (28)

Replacing the objective function with the biconjugate function in (28) we obtain the following

equivalent maximization problem

max
x∈X
y∈Y

(Ax+ b)⊤y,
(CMB)

where Y is given by

Y =

{
y ∈Rny

+ |
∑
j∈Jk

yj = 1, k ∈K

}
.

X =X 1. The RPT-SDP formulation is given by

max
x,y,U ,X,Y

Tr(UA)+ b⊤y

s.t. D⊤Xi−dxi ≤ 0, i∈ [nx], (40a)

D⊤Uj −dyj ≤ 0, j ∈ [ny], (40b)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (40c)∑
j∈Jk

yj = 1, k ∈K, (40d)∑
j∈Jk

Uj −x= 0, k ∈K, (40e)∑
j∈Jk

Yj −y= 0, k ∈K, (40f)

X,Y ,U ≥ 0, (40g)X U x
U⊤ Y y
x⊤ y⊤ 1

⪰ 0, (40h)

where constraints (40a) - (40g) result from pairwise multiplication of the linear constraints and

constraint (40h) results from the additional SDP relaxation.

Observe that x ∈ X1 is redundant. The constraint D⊤x≤ d is redundant by (40e), (40d) and

(40b):

D⊤x≤ d ⇐⇒ D⊤
∑
j∈Jk

Uj −d≤ 0 ⇐⇒ D⊤
∑
j∈Jk

Uj −d
∑
j∈Jk

yj ≤ 0 ⇐⇒
∑
j∈Jk

(
D⊤Uj −dyj

)
≤ 0.

The non-negativity constraint x≥ 0 is redundant by (40e) and (40g). Moreover, the non-negativity

constraint y≥ 0 is redundant by (40f) and (40g). Hence, these constraints are not included in the

above formulation.
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In the RPT-SDP formulation we hence obtain nx|K|+ ny|K|+ nxny + Lny + nx(nx + 1)/2 +

L(L+1)/2+nxL+ny(ny +1)/2 additional linear constraints, one additional SDP constraint and

nx(nx +1)/2+ny(ny +1)/2+nxny extra variables.

X =X 2. The RPT-SDP formulation is given by

max
x,y,z
U,V ,R
X,Y ,Z

Tr(UA)+ b⊤y

s.t. (40a)− (40g)
nx∑
i=1

zi ≤ 1, (41a)

nx∑
i=1

Vi−x≤ 0, (41b)

nx∑
i=1

Ri−y≤ 0, (41c)

D⊤x−D⊤
nx∑
i=1

Vi ≤ d(1−
nx∑
i=1

zi), (41d)

nx∑
i,j=1

Zij − 2

nx∑
i=1

zi +1≥ 0, (41e)

exp(xi− a)≤ zi, i∈ [nx], (41f)

xj exp

(
Xij − axj

xj

)
≤ Vji, i, j ∈ [nx], (41g)

yj exp

(
Uij − ayj

yj

)
≤Rji, i∈ [nx], j ∈ [ny], (41h)

(
dℓ−D⊤

ℓ x
)
exp

(
dℓxi− adℓ−D⊤

ℓ Xi + aD⊤
ℓ x

dℓ−D⊤
ℓ x

)
≤ dℓzi−D⊤

ℓ Vi, i∈ [nx], ℓ∈ [L], (41i)(
1−

nx∑
j=1

zj

)
exp

(
xi− a−

∑nx

j=1 Vij + a
∑nx

j=1 zj

1−
∑nx

j=1 zj

)
≤ zi−

nx∑
j=1

Zji, i∈ [nx], (41j)

exp (xi +xj − 2a)≤Zij , i≤ j ∈ [nx], (41k)

zj exp

(
Vij − azj

zj

)
≤Zij i≤ j ∈ [nx] (41l)∑

j∈Jk

Rj − z = 0, k ∈K, (41m)

X U V x
U⊤ Y R y
V ⊤ R⊤ Z z
x⊤ y⊤ z⊤ 1

⪰ 0, (41n)

where constraints (41b) - (41e) result from pairwise multiplication of the new linear constraint

over z with the previous linear constraints (41g) - (41l) result from pairwise multiplication of the

exponential constraint with the linear inequalities and itself, constraint (41m) results from pairwise

multiplication of the initial linear constraint over y with z and constraint (41n) results from the

additional SDP relaxation.
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In the RPT-SDP formulation we hence obtain 2nx|K|+ ny|K|+ nxny + Lny + nx(nx + 1)/2 +

L(L + 1)/2 + nxL + ny(ny + 1)/2 + ny + nx + L + 1 additional linear constraints, nxny + n2
x +

Lnx + nx(nx + 1) + nx additional exponential constraints, one additional SDP constraint and

nx(nx +1)+ny(ny +1)/2+2nxny +n2
x extra variables.

X =X 3.

The RPT-SDP formulation is given by

The pairwise multiplication of the linear constraints gives us the following constraints:

(40a)− (40g)

s+ p+

nx∑
i=1

Vii ≤ c, (42a)

nx∑
i=1

ti ≤ p, (42b)

D⊤Vi ≤ zid, i∈ [nx], (42c)

D⊤Fi ≤ tid, i∈ [nx], (42d)

D⊤λ≤ pd, (42e)∑
j∈Jk

rj − z = 0, k ∈K, (42f)∑
j∈Jk

gj − t= 0, k ∈K, (42g)∑
j∈Jk

γj − s= 0, k ∈K, (42h)∑
j∈Jk

µj − p= 0, k ∈K, (42i)

nx∑
i=1

Fi ≤λ, (42j)

nx∑
i=1

Gi ≤µ, (42k)

nx∑
i=1

Hi ≤ ν, (42l)

nx∑
i=1

Ti ≤ψ, (42m)

nx∑
i=1

ψi ≤ π, (42n)

nx∑
i=1

dℓti−D⊤
ℓ Fi ≤ pdℓ−D⊤

ℓ λ, ℓ∈L, (42o)

π− 2

nx∑
i=1

ψi +

nx∑
i,j=1

Tij ≥ 0, (42p)

V ,F ,R,G,H,Z,T ≥ 0, (42q)

λ,µ,ν,ψ, σ, π≥ 0. (42r)
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Further, the pairwise multiplications of the non-linear ones result in the following constraints:

∥∥x∥∥
2
≤ s, (43a)∥∥∥(zi− ti,1)⊤∥∥∥

2
≤ zi + ti, i∈ [nx], (43b)∥∥Xi

∥∥
2
≤ αi, i∈ [nx], (43c)∥∥Ui

∥∥
2
≤ βi, ı∈ [ny], (43d)∥∥Vi

∥∥
2
≤ γi, i∈ [nx], (43e)∥∥Fi

∥∥
2
≤ ϕi, i∈ [nx], (43f)∥∥λ∥∥

2
≤ ρ, (43g)∥∥dℓx−XDℓ

∥∥
2
≤ sdℓ−D⊤

ℓ α, ℓ∈L, (43h)∥∥λ− nx∑
i=1

Fi

∥∥
2
≤ ρ−

nx∑
i=1

ϕi, (43i)∥∥X∥∥
F
≤ σ, (43j)∥∥ (Vji−Fji, xj)

∥∥
2
≤ Vji +Fji, i, j ∈ [nx], (43k)∥∥ (Rji−Gji, yj)

∥∥
2
≤Rji +Gji, i∈ [nx], j ∈ [ny], (43l)∥∥ (Zji−Hji, zj)

∥∥
2
≤Zji +Hji, i, j ∈ [nx], (43m)∥∥ (Hij −Tij , tj)

∥∥
2
≤Hij +Tij , i, j ∈ [nx], (43n)∥∥ (νi−ψi, p)

∥∥
2
≤ νi +ψi, i∈ [nx], (43o)∥∥(dℓ(zi− ti)+D⊤

ℓ (Fi−Vi) , dℓ−D⊤
ℓ x
)∥∥

2
≤ dℓ(zi + ti)−D⊤

ℓ (Fi +Vi), ℓ∈L, (43p)∥∥ (Vi−Fi,x)
∥∥
2
≤ γi +ϕi, i∈ [nx], (43q)∥∥(νi−ψi−

nx∑
j=1

Hij +

nx∑
j=1

Tij , p−
nx∑
j=1

tj

)∥∥
2
≤ νi +ψi−

nx∑
j=1

Hij −
nx∑
j=1

Tij , i∈ [nx], (43r)∥∥∥∥(Zij −Hij −Hji +Tij zi− ti
zj − tj 1

)∥∥∥∥
2

≤Zij +Hij +Hji +Tij , i, j ∈ [nx], (43s)

X U V F α λ x
U⊤ Y R G β µ y
V ⊤ R⊤ Z H γ ν z
F⊤ G⊤ H⊤ T ϕ ψ t
α⊤ β⊤ γ⊤ ϕ⊤ σ ρ s
λ⊤ µ⊤ ν⊤ ψ⊤ ρ π p
x⊤ y⊤ z⊤ t⊤ s p 1


⪰ 0. (43t)

In the RPT-SDP formulation we hence obtain (3|K|+2L+7)nx +(|K|+1)ny +3nxny +Lny +

3nx(nx+1)/2+3n2
x+L(L+1)/2+nxL+ny(ny +1)/2+2|K|+2L+6 additional linear constraints,

5n2
x + nxny + 5nx + ny + 2L+ 3 additional second order cone constraints, one additional SDP

constraint and 3nx(nx +1)/2+3n2
x +ny(ny +1)/2+3nxny +6nx +2ny +3 extra variables.
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D.2. RPT-SDP formulation of Problem (31)

Replacing the objective function with the biconjugate function in (31) we obtain the following

equivalent maximization problem

max
x∈X
y∈Y

x⊤y,
(ENMB)

where Y is given by

Y =
{
y ∈Rnx ,

∥∥y∥∥
2
≤ 1
}
.

X =X1

We notice that since we are maximizing x⊤y with x≥ 0, at the optimal solution we will always have

y≥ 0. Therefore we can pairwise multiply every basic cone constraint with yj to further tighten

the RPT relaxation. The formulation of the RPT-SDP relaxation is given by:

max
x,y

X,Y ,U

Tr(U)

s.t. x∈X1, (44a)

y ∈Y, (44b)

X,Y ,U ≥ 0 (44c)

D⊤Xi−dxi ≤ 0, i∈ [nx], (44d)

D⊤Ui−dyi ≤ 0, i∈ [nx], (44e)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (44f)∥∥(U)⊤i
∥∥
2
≤ xi, i∈ [nx], (44g)∥∥Yi

∥∥
2
≤ yi, i∈ [nx], (44h)∥∥dℓy−U⊤Dℓ

∥∥
2
≤ dℓ−D⊤

ℓ x, ℓ∈L, (44i)∥∥Y ∥∥
F
≤ 1, (44j)X U x

U⊤ Y y
x⊤ y⊤ 1

⪰ 0, (44k)

where constraints (44c) - (44f) result from pairwise multiplication of the linear constraints, constraints (44g)

- (44i) result from pairwise multiplication of the linear constraints with the second order cone constraint and

constraint (44k) results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain 2Lnx + nx(nx + 1) + n2
x + L(L+ 1)/2 additional linear

constraints, 2nx + L + 1 additional second order cone constraints, one additional SDP constraint and

nx(nx +1)+n2
x additional variables.

Observe that we could exclude the constraints (44a) and the non-negativity constraint y≥ 0, since from

constraints (44g) - (44i) it follows that both are redundant.
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X =X2

The formulation of the RPT-SDP relaxation is given by:

max
x,y,z

X,Y ,Z
U,V ,R

Tr(U)

s.t. (44a)− (44j),
nx∑
i=1

zi ≤ 1, (45a)

exp(xi− a)≤ zi, i∈ [nx], (45b)∥∥y− nx∑
i=1

Ri

∥∥
2
≤ 1−

nx∑
i=1

zi, (45c)

nx∑
i=1

Vi−x≤ 0, (45d)

nx∑
i=1

Ri−y≤ 0, (45e)

D⊤x−D⊤
nx∑
i=1

Vi ≤ d

(
1−

nx∑
i=1

zi

)
, (45f)

nx∑
i,j=1

Zij − 2

nx∑
i=1

zi +1≥ 0, (45g)

xj exp

(
Xij − axj

xj

)
≤ Vji, i, j ∈ [nx], (45h)

yj exp

(
Uij − ayj

yj

)
≤Rji, i, j ∈ [nx], (45i)

(dℓ−D⊤
ℓ x) exp

(
dℓ(xi− a)−D⊤

ℓ Xi + aDℓx

dℓ−D⊤
ℓ x

)
≤ dℓzi−D⊤

ℓ Vi, i∈ [nx], ℓ∈L, (45j)(
1−

nx∑
j=1

zj

)
exp

(
xi−

∑nx

j=1Vij − a+ a
∑nx

j=1 zj

1−
∑nx

j=1 zj

)
≤ zi−

nx∑
j=1

Zij , i∈ [nx], (45k)

exp(xi +xj − 2a)≤Zij , i≤ j ∈ [nx], (45l)X U V x
U⊤ Y R y
V ⊤ R⊤ Z z
x⊤ y⊤ z⊤ 1

⪰ 0, (45m)

where constraints (45c) - (45g) result from pairwise multiplication of the linear constraint over z,

with the initial constraints and itself, constraints (45h) - (45l) result from pairwise multiplication of

the exponential constraint with the linear constraints and itself and constraint (45m) results from

the additional SDP relaxation. Note that the multiplication of the exponential constraint with the

second order cone constraint yields a trivial constraint, as the left-hand side of the latter is 1.

In the RPT-SDP formulation we hence obtain (2L+2)nx +nx(nx +1)+n2
x +L(L+1)/2+L+1

additional linear constraints, 2nx + L+ 2 additional second order cone constraints, 2n2
x + (L+

1)nx +nx(nx +1)/2 additional exponential cone constraints, one additional SDP constraint and

3nx(nx +1)/2+3n2
x+ additional variables.
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D.3. RPT-SDP formulation of Problem (33)

Replacing the objective function with the biconjugate function in (33) we obtain the following

equivalent maximization problem

max
x∈X1

(y,w)∈Y

x⊤y+

nx∑
i=1

wi, (LSEMB)

where Y is given by

Y =

{
y ∈Rnx

+ , w ∈Rnx

∣∣∣∣∣ yi exp
(
wi

yi

)
≤ 1, i∈ [nx],

nx∑
i=1

yi = 1

}
.

The RPT-SDP formulation is given by

max
x,y,w,

X,Y ,W ,
U,Q,P

Tr(U)+

nx∑
i=1

wi

s.t. x∈X1 (46a)

(y,w)∈Y (46b)

X,Y ,U ≥ 0 (46c)

D⊤Xi−dxi ≤ 0, i∈ [nx], (46d)

D⊤Ui−dyi ≤ 0, i∈ [nx], (46e)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (46f)∑
i∈[nx]

Ui =x, (46g)

∑
i∈[nx]

Yi = y, (46h)

∑
i∈[nx]

(P )⊤i =w, (46i)

Uji exp

(
Qji

Uji

)
≤ xj , i, j ∈ [nx], (46j)

Yij exp

(
Pji

Yij

)
≤ yj , i, j ∈ [nx], (46k)

(
dℓyi−D⊤

ℓ Ui

)
exp

(
dℓwi−D⊤

ℓ Vi

dℓyi−D⊤
ℓ Ui

)
≤ dℓ−D⊤

ℓ x, i∈ [nx], ℓ∈L, (46l)

Yij exp

(
Pji +Pij

Yij

)
≤ 1, i≤ j ∈ [nx], (46m)X U Q x

U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0, (46n)

where constraints (46c) - (46i) result from pairwise multiplication of the linear constraints. Note that we

only multiply the linear equality constraint with the variables (see Theorem 1). Constraints (46j) - (46l)

result from pairwise multiplication of the linear inequality constraints with the exponential cone constraints,
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constraint (46m) results from pairwise multiplication of the exponential cone constraints with each other,

and constraint (46n) results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain nx(nx +1)+n2
x +(2L+3)nx +L(L+1)/2 additional linear

constraints, 2n2
x +Lnx +nx(nx +1)/2 additional exponential cone constraints, one additional SDP constraint

and 3nx(nx +1)/2+3n2
x additional variables.

Observe that we could exclude the non-negativity constraints from the above reformulation, since from

constraints (46b), (46g), and (46h) it follows that they are redundant.

D.4. RPT-SDP formulation of Problem (35)

Replacing the objective function with the biconjugate function in (35) we obtain the following equivalent

maximization problem

max
x∈X

(y,w)∈Y

−(A⊤x+ b)⊤y−
∑

i∈[ny]

wi (CMB)

where Y is given by

Y =
{
y ∈Rny

+ ,w ∈Rny
∣∣ exp(−wi− 1)≤ yi, i∈ [ny]

}
.

The RPT-SDP formulation is given by

max
x,y,w,

X,Y ,W ,
U,Q,P

Tr(UA)+ b⊤y+

ny∑
i=1

wi

s.t. D⊤x≤ d, (47a)

X,Y ,U ≥ 0, (47b)

D⊤Xi−dxi ≤ 0, i∈ [nx], (47c)

D⊤Uj −dyj ≤ 0, j ∈ [ny], (47d)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (47e)

exp(−wi− 1)≤ yi, i∈ [ny], (47f)

xj exp

(
−Qji−xj

xj

)
≤Uji, i∈ [ny], j ∈ [nx], (47g)

yj exp

(
Pji− yj
yj

)
≤ Yij , i, j ∈ [ny], (47h)

(dj −D⊤
j x) exp

(
D⊤

j x− dj −widj +D
⊤
j Qi

dj −D⊤
j x

)
≤ djyi−D⊤

j Ui, i∈ [ny], j ∈ [L], (47i)

exp(−wi−wj − 2)≤ Yij , i≤ j ∈ [ny], (47j)X U Q x
U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0, (47k)

where constraints (47b) - (47d) result from pairwise multiplication of the linear constraints, constraints (47g)

- (47j) result from pairwise multiplication of the exponential constraints with the linear and constraint (47k)

results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain nx(nx+1)/2+ny(ny+1)/2+nxny+L(nx+ny)+L(L+1)/2

additional linear constraints, nxny +n2
y +Lny +ny(ny +1)/2 additional exponential cone constraints, one

additional SDP constraint and nx(nx +1)/2+ny(ny +1)+2nxny +n2
y additional variables.
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D.5. RPT-SDP formulation of Problem (10)

The convex quadratic constraints (C) are reformulated as second order cone constraints, that is
∥∥P 1/2

i x
∥∥
2
≤

−ri−q⊤
i x. The nonconvex quadratic constraints (NC) are linearized as follows: tr(PiX)+ q⊤i x+ ri ≤ 0. The

RPT-SDP formulation is given by

min
x,X

Tr(P0X)+ q⊤
0 x+ r0

s.t. x∈X1, (48a)

D⊤Xi−dxi ≤ 0, i∈ [nx], (48b)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (48c)

Tr(PkX)+k⊤
0 x+ rk ≤ 0, k ∈NC, (48d)∥∥P 1/2

k x
∥∥
2
≤−rk− q⊤

k x, k ∈ C, (48e)∥∥P 1/2
i XP 1/2

j

∥∥
2
≤ rirj + riq

⊤
j x+ rjq

⊤
i x+ q⊤

i Xqj , i, j ∈ C, (48f)∥∥dℓP 1/2
k x−P 1/2

k XDℓ

∥∥
2
≤−rkdℓ + rkD

⊤
ℓ x− dℓq⊤

k x+ q⊤
k XDℓ, k ∈ C, ℓ∈L, (48g)∥∥P 1/2

k Xj

∥∥≤−rkxj − q⊤
k Xj , k ∈ C, j ∈ [nx], (48h)

X ≥ 0, (48i)(
X x
x⊤ 1

)
⪰ 0, (48j)

where constraints (48b) - (48c) and (48i) result from pairwise multiplication of the linear constraints,

constraints (48f) - (48h) result from pairwise multiplication of the convex quadratic constraints with the

linear constraints and each other and constraint (48j) results from the additional SDP relaxation.

In the RPT-SDP formulation we hence obtain Lnx +nx(nx +1)/2+L(L+1)/2+ |NC| additional linear
constraints, (nx +L+1)|C|+ |C|(|C|+1)/2 additional second order cone constraints, one additional SDP

constraint and nx(nx +1)/2 additional variables.

D.6. RPT-SDP formulation of Problem (DHO)

We introduce the following epigraphical variables: We use zk for the nonconvex terms in the objective

(C + bxk) exp
(
λ
∑k

i=0 xi− δtk
)
, and wk for exp

(
−θ
∑k

i=0 xi

)
. The RPT-SDP formulation is given by

min
x,u,v,z,
q,X,V ,
S,w,W

∑
k∈K

zk +
∑
k∈K0

S0

βδ

(exp (βδtk+1)− exp (βδtk))wk +
S0

δ
exp (βδT )wK

s.t. (C + bxk) exp

(
λChk +λb

∑k

i=0Uik− δtk(C + bxk)

C + bxk

)
≤ zk, k ∈K0, (49a)

D⊤x≤ d (49b)

exp

(
−θ

k∑
i=0

xi

)
≤wk, k ∈K0, (49c)

D⊤Xk ≤xkd, k ∈K0, (49d)

dx⊤D+D⊤xd⊤ ≤D⊤XD+dd⊤, (49e)
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(dℓ−D⊤
ℓ x) exp

(
−θdℓ

∑k

i=0 xi + θ
∑k

i=0D
⊤
ℓ Xi

dℓ−D⊤
ℓ x

)
≤ dℓwk−D⊤

ℓ Qk, k ∈K0, ℓ∈L, (49f)

xj exp

(
−θ
∑k

i=0Xij

xj

)
≤Qjk, k, j ∈K0, (49g)

exp

(
−θ

k∑
i=1

xi− θ
j∑

i=1

xi

)
≤Wjk j, k ∈K0 (49h)

wj exp

(
−θ
∑k

i=1Qkj

wj

)
≤Wjk j, k ∈K0 (49i)

x,X ≥ 0, (49j)X Q x
Q⊤ W w
x⊤ w⊤ 1

⪰ 0, (49k)

where constraint (49b) represents the upper bounds on x such that we obtain a compact feasible

region, (49d) - (49f) result from pairwise multiplication of (49b) with all other constraints, (49g)

results from pairwise multiplication of (49c) with the nonnegativity constraint x≥ 0, (49h) - (49i)

result from pairwise multiplication of the exponential constraint with itself, (49j) results from

pairwise multiplication of the nonnegativity constraints, and constraint (49k) results from the

additional SDP relaxation.

In the RPT-SDP formulation we hence obtain |K0|+L(L+1)/2+ |K0|(|K0|+1)/2 additional

linear inequalities, (L+1)|K0|+2|K0|2 additional exponential cone inequalities, and one additional

LMI.

Appendix E. Data generation of numerical experiments

E.1. Data generation of numerical experiments of Problem (28)

We use the data generated by Selvi et al. (2020, Appendix F.5). Instances 1 - 5 refer to the instances

1, 2, 3, 7, and 11 in Selvi et al. (2020, Appendix F.5) respectively. In every problem, every max-term

has the same number of elements, i.e., |Jk|= |Jk′ | for every k, k′ ∈K.

Problem instance 1: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 2: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 3: Aij ∼ [−5,5], bj = 0,D⊤ = I, di = nx/i,

Problem instance 4: Aij ∼ [−5,5], bj ∼ [−10,10],Dij ∼ [0,1], di ∼ [5,15],

Problem instance 5: Aij ∼ [−5,10], bj ∼ [−10,10], and D and d are given by :
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D=



−3 7 0 −5 1 1 0 2 −1 1
7 0 −5 1 1 0 2 −1 −1 1
0 −5 1 1 0 2 −1 −1 −9 1
−5 1 1 0 2 −1 −1 −9 3 1
1 1 0 2 −1 −1 −9 3 5 1
1 0 2 −1 −1 −9 3 5 0 1
0 2 −1 −1 −9 3 5 0 0 1
2 −1 −1 −9 3 5 0 0 1 1
−1 −1 −9 3 5 0 0 1 7 1
−1 −9 3 5 0 0 1 7 −7 1
−9 3 5 0 0 1 7 −7 −4 1
3 5 0 0 1 7 −7 −4 −6 1
5 0 0 1 7 −7 −4 −6 −3 1
0 0 1 7 −7 −4 −6 −3 7 1
0 1 7 −7 −4 −6 −3 7 0 1
1 7 −7 −4 −6 −3 7 0 −5 1
7 −7 −4 −6 −3 7 0 −5 1 1
−7 −4 −6 −3 7 0 −5 1 1 1
−4 −6 −3 7 0 −5 1 1 0 1
−6 −3 7 0 −5 1 1 0 2 1



, and d=



−5
2
−1
−3
5
4
−1
0
9
40


,

respectively. The values for the parameters of each distinct problem instance are given in Table 10.

Instance nx |K| |Jk| a c M
1 5 1 5 3 6 100
2 5 10 5 3 6 100
3 20 10 10 11 25 1000
4 10 2 5 3 7 1000
5 20 10 10 5 30 1000

Table 10 Problem (29) parameters for each instance. nx refers to the number of variables, |K| to the number of

max linear terms, |Jk| to the number of elements within a max-term, a to the parameter used in X2, c to the

parameter used in X3 and M to the big M parameter used in Problem (30).

E.2. Data generation of numerical experiments of Problem (31)

The data for each problem instance are generated as follows:

Problem instance 1: Dij ∼ [0,1], di ∼ [5,20],

Problem instance 2: Dij ∼ [0,1], di ∼ [10,30],

Problem instance 3: Dij ∼ [0,1], di ∼ [10,30],

Problem instance 4: Dij ∼ [0,1], di ∼ [30,70],

Problem instance 5: Dij ∼ [0,1], di ∼ [30,70].

The parameters describing each instance are summarized in Table 11.
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Instance nx L a
1 6 3 8
2 10 10 8
3 20 20 13
4 40 40 20
5 50 50 25

Table 11 Problem (31) parameters for each instance. nx refers to the number of variables, L to the number of

linear constraints and a to the parameter used in X2.

E.3. Data generation of numerical experiments of Problem (33)

The problem instances are adopted from Selvi et al. (2020) and can be summarized as follows: In

instances 1 and 2 the linear constraints are defined as

− i
n
≤ xi ≤

i

n
,

in instance 3 as

xi ≤ 8, xi +xj ≤ uij,

where uij ∼ [5,15]. Finally, for the last two we have

Problem instance 4: Dij ∼ [0,1], di ∼ [10,30],

Problem instance 5: Dij ∼ [0,1], di ∼ [20,60].

The parameters describing each instance are summarized in Table 12.

Table 12 Problem (33) parameters for each instance. nx refers to the number of variables and L to the number of

linear constraints.

Instance nx L
1 10 20
2 40 80
3 10 100
4 20 20
5 50 50

E.4. Data generation of numerical experiments of Problem (35)

The problem instances were generated in the same way as in BARON (Ryoo and Sahinidis, 1996).

Namely, the constraint coefficients were generated as Dij ∼ [−100,0], di ∼ [−100,0] and the linear

terms as Aij ∼ [0,10], bi ∼ [0,10]. The parameters describing each instance are summarized in Table

13.
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Table 13 Problem (35) parameters for each instance. nx refers to the number of variables, L to the number of

linear constraints, and ny to the number of linear multiplications in the objective.

Instance nx L ny

1 5 5 5
2 200 200 3
3 20 20 8
4 30 20 20
5 40 10 30

E.5. Data generation of numerical experiments of Problem (10)

The first 5 problem instances are adopted from Selvi et al. (2020) and can be summarized as follows:

In instances 1 and 2 the objectives are f(x) = − 1
2

∑20

i=1(xi − 2)2 and f(x) = − 1
2

∑20

i=1(xi + 5)2

respectively and the linear constraints are as in instance 11 for problem (28). Instances 3, 4 and 5

are defined by the linear constraints D⊤x≤ d, x≤ xue, where

Problem instance 3: Dij ∼ [0,1], di ∼ [20,60], xu = 5,

Problem instance 4: Dij ∼ [0,1], di ∼ [30,60], xu = 3,

Problem instance 5: Dij ∼ [0,1], di ∼ [80,120], xu = 2.

Instances 6, 7 and 8 were adopted from Al-Khayyal et al. (1995). Each matrix Pi ∈Rnx×nx in both

the objective and the constraints has integer entries uniformly at random between -10 and 10 and

further in each row, half of the entries are randomly set to 0. Each vector qi ∈Rnx is also generated

with integer entries between -10 and 10 and each ri is set to 0. The parameters describing each

instance are summarized in Table 14.

Table 14 Problem (10) parameters for each instance. nx refers to the number of variables, L to the number of

linear constraints and nc-q to the number of nonconvex quadratic constraints.

Instance nx L nc− q
1 20 10 0
2 20 10 0
3 10 15 0
4 50 62 0
5 100 130 0
6 8 8 4
7 12 12 6
8 16 16 8
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E.6. Data generation of numerical experiments of Problem (DHO)

The linear constraints are defined as xi ≤ 300. Moreover, the time periods in each instance are:

t25 = (0,25,50,75,100,125,150,175,200,225,250,275)⊤,

t50 = (0,50,100,150,200,250)⊤,

tir = (0,20,50,90,130,155,180,210,255,270)⊤.

In each instance, the number of variables nx is equal to the number of time periods. The parameters

describing each instance are summarized in Table 15. Moreover, we have θ= α− ζ, βδ = αη+ γ− δ.

Table 15 Problem (DHO) parameters for each instance.

Instance α C b λ ζ η S0 γ δ T
10 0.033027 16.6939 0.6258 0.0014 0.003774 0.32 0.68938 0.02 0.04 300
15 0.0502 125.6422 1.1268 0.0098 0.003764 0.76 16.2008 0.02 0.04 300
16 0.0574 324.6287 2.1304 0.01 0.002032 0.76 25.0071 0.02 0.04 300
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