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Abstract

Robust combinatorial optimization with budget uncertainty is one of
the most popular approaches for integrating uncertainty into optimization
problems. The existence of a compact reformulation for (mixed-integer)
linear programs and positive complexity results give the impression that
these problems are relatively easy to solve. However, the practical per-
formance of the reformulation is quite poor when solving robust integer
problems, in particular due to its weak linear relaxation.

To overcome this issue, we propose procedures to derive new classes
of valid inequalities for robust combinatorial optimization problems. For
this, we recycle valid inequalities of the underlying deterministic prob-
lem such that the additional variables from the robust formulation are
incorporated. The valid inequalities to be recycled may either be readily
available model constraints or actual cutting planes, where we can benefit
from decades of research on valid inequalities for classical optimization
problems.

We first demonstrate the strength of the inequalities theoretically, by
proving that recycling yields a facet-defining inequality in many cases,
even if the original valid inequality was not facet-defining. Afterwards,
we show in an extensive computational study that using recycled inequal-
ities can lead to a significant improvement of the computation time when
solving robust optimization problems.
Keywords: Robust Optimization, Combinatorial Optimization, Integer
Programming, Polyhedral Combinatorics, Computation
Mathematics Subject Classification: 90C11, 90C17, 90C27, 90C57
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1 Introduction

Uncertain parameters are a common issue in decision-making problems and
should be treated with caution, as a seemingly optimal decision may reveal
itself to be impractical once it is implemented in the real world [7]. A popular
approach for dealing with uncertainties is robust optimization, in which one aims
to optimize against the worst-case of a set of scenarios. Robust optimization
was proposed first by Soyster [32] in the early 1970s. Kouvelis and Yu [27]
considered it for combinatorial optimization problems and discrete uncertainty
sets in the 1990s. The concept was then further analyzed by Ben-Tal and
Nemirovski [5, 6, 7] as well as Bertsimas and Sim [11, 12] at the beginning of
this century. An overview on the topic can be found in [4, 9, 17].

The concept of budgeted uncertainty by Bertsimas and Sim has received
particular attention. This is illustrated by the fact that their paper [12] is the
most cited document in the literature databases Scopus and Web of Science that
contains “robust optimization” in its title, keywords or abstract. However, de-
spite its popularity and the amount of research devoted to solving these kinds of
robust optimization problems, instances of practical size often still pose a con-
siderable challenge for MILP solvers [14]. To help overcoming this challenge, we
propose new classes of valid inequalities for robust combinatorial optimization
problems that are easy to compute and often lead to a significant reduction of
the computation time.

We first define a standard, so called nominal, combinatorial problem without
uncertainties

(NOM)

min
∑
i∈[n]

cixi

s.t. Ax ≤ b, x ∈ {0, 1}n ,

where c ∈ Rn is an objective vector, A ∈ Rm×n a constraint matrix with a right-
hand side b ∈ Rm and [n] = {1, . . . , n}. We now replace the objective coefficients
ci with uncertain coefficients c′i from an interval [ci, ci + ĉi] and say that c′i can
deviate from its nominal value ci by up to the deviation ĉi. In the following,
we call a vector of possible objective coefficients {c′ ∈ Rn|c′i ∈ [ci, ci + ĉi]} a
scenario. Note that for any feasible solution x, the objective value is worst
if all coefficients c′i are equal to their maximum value ci + ĉi. In practice,
however, this extreme scenario is usually very unlikely such that it would be
overly conservative to assume that it actually occurs. To adjust the level of
conservatism, Bertsimas and Sim [12] propose a robust counterpart to NOM,
in which they restrict the set of considered uncertain scenarios by defining a
uncertainty budget Γ ∈ [0, n]. Given such a budget, we only consider these
scenarios in which at most ⌊Γ⌋ coefficients c′i deviate to ci+ ĉi and one coefficient
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deviates to ci + (Γ− ⌊Γ⌋) ĉi. This robust counterpart can be stated as

min
∑
i∈[n]

cixi + max
S∪{t}⊆[n]:
|S|≤⌊Γ⌋,t/∈S

(
(Γ− ⌊Γ⌋) ĉtxt +

∑
i∈S

ĉixi

)

s.t. Ax ≤ b, x ∈ {0, 1}n .

Bertsimas and Sim [12] also show that we can resolve the non-linearity of the
above problem by dualizing the inner maximization problem, which results in
the compact robust problem

(ROB)

min Γz +
∑
i∈[n]

(cixi + pi)

s.t. (x, p, z) ∈ PROB, x ∈ {0, 1}n

with

PROB =

(x, p, z)

∣∣∣∣∣∣∣
Ax ≤ b

pi + z ≥ ĉixi ∀i ∈ [n]

x ∈ [0, 1]
n
, p ∈ Rn

≥0, z ∈ R≥0

 .

Unfortunately, the formulation PROB is quite weak, potentially leading to much
higher computation times for solving ROB compared to NOM. In fact, the in-
tegrality gap of the formulation PROB, that is the relative difference between
the values of an optimal fractional solution and an optimal integer-feasible so-
lution, may be arbitrarily large, even if the integrality gap of the corresponding
nominal problem is zero. This is shown in the following example from [14].

Example 1. Consider the easy problem of selecting the cheapest of n elements

min
∑
i∈[n]

cixi

s.t.
∑
i∈[n]

xi = 1, x ∈ {0, 1}n .

The integrality gap of the above problem is zero for all c ∈ Rn. However, if we
consider an instance of the uncertain counterpart ROB with c ≡ 0, ĉ ≡ 1, and
Γ = 1

min z +
∑
i∈[n]

pi

s.t.
∑
i∈[n]

xi = 1

pi + z ≥ xi ∀i ∈ [n]

x ∈ {0, 1}n , p ∈ Rn
≥0, z ∈ R≥0,

then (x, p, z) =
(
1
n , . . . ,

1
n , 0, . . . , 0,

1
n

)
is the unique optimal fractional solution

of value 1
n , while the objective value of an optimal integer solution is 1. Hence,

the integrality gap is 1−1/n
1/n = n− 1, and thus unbounded if n→∞.
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The above example shows that optimal continuous solutions for ROB tend
to be highly fractional, as small values of xi allow for covering all right-hand
sides ĉixi in the constraints pi+z ≥ ĉixi with a small value of z, while choosing
pi = 0. On the one hand, such solutions are exactly what we aim for when
striving for robustness, as we distribute the risk as much as possible. On the
other hand, highly fractional optimal solutions for the linear relaxation imply
the need for much branching, and thus a high computational effort when solving
ROB.

In the past, several approaches to solve ROB have been developed and eval-
uated. Bertsimas et al. [10] as well as Fischetti and Monaci [16] tested the prac-
tical performance of the compact reformulation PROB compared to a separation
approach using an alternative formulation with exponentially many inequali-
ties, each one modeling a scenario from the uncertainty set. Unfortunately,
the alternative formulation is, despite its size, as weak as PROB and performs
worse for robust integer problems (but better for continuous problems). Joung
and Park [26] propose cuts that dominate the classic scenario inequalities and
can be separated by considering the robustness term as a submodular function
and greedily solving a maximization problem over the corresponding polyma-
troid. Atamtürk [3] addresses the issue by proposing four different problem-
independent strong formulations. The strongest of these is theoretically as
strong as possible, as it preserves the integrality gap of the nominal problem.
However, the four formulations are very large and are thus computationally
outperformed by the standard formulation PROB, as shown in [14].

A famous approach to completely avoid the issues arising from the weak for-
mulation PROB is to solve ROB via resorting to its nominal counterpart. Bert-
simas and Sim [11] show that there always exists an optimal solution (x, p, z)
to ROB such that z ∈ {0, ĉ1, . . . , ĉn}. Furthermore, solving ROB for a fixed
z is equivalent to solving its nominal counterpart with different objective val-
ues. Hence, ROB can be solved by solving |{0, ĉ1, . . . , ĉn}| ≤ n + 1 nominal
problems. Álvarez-Miranda et al. [2] as well as Park and Lee [30] showed in-
dependently that it is sufficient to solve only n + 2 − Γ, or n + 1 − Γ nominal
problems respectively. Lee and Kwon [28] even improved these results later,
showing that solving

⌈
n−Γ
2

⌉
+ 1 nominal problems already suffices. Still, the

computational effort of this approach is too high if n is large. To address this,
Hansknecht et al. [24] propose a divide and conquer approach, in which one also
solves nominal problems, but reduces the computational effort by pruning many
non-optimal values for z using bounds on the respective optimal objective value.
In [14], we proposed a branch and bound approach, in which non-optimal val-
ues for z are pruned even more efficiently. The branch and bound makes use of
structural insights and strong linearizations derived from the following bilinear
formulation

PBIL =

(x, p, z)

∣∣∣∣∣∣∣
Ax ≤ b

pi + xiz ≥ ĉixi ∀i ∈ [n]

x ∈ [0, 1]
n
, p ∈ Rn

≥0, z ∈ R≥0

 .
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This bilinear formulation strengthens the original robustness constraints pi +
z ≥ ĉixi by multiplying z with xi. This is valid, as the bilinear inequality is
equivalent to pi+z ≥ ĉixi for xi = 1 and pi ≥ 0 for xi = 0. While the bilinearity
is rather hindering for practical purposes, PBIL is theoretically very strong. In
fact, there exists no polyhedral formulation P for ROB with P ⊊ PBIL [14].

Contribution In this paper, we use the bilinear formulation PBIL as a
foundation for the new class of recycled inequalities. To obtain these, we combine
the strength of the bilinear inequalities with the structural properties provided
by valid inequalities for the nominal problem NOM. By doing so, we can use
valid inequalities for NOM a second time to improve the formulation PROB.

In its simplest and most effective version, our recycling relies on the under-
lying valid inequality to be a knapsack inequality. We will show that in this
case the corresponding recycled inequality often defines a facet of the convex
hull of integer-feasible solutions

CROB = conv
({

(x, p, z) ∈ PROB
∣∣x ∈ {0, 1}n}) .

Additionally, we show how to efficiently separate such recycled inequalities in a
branch and cut algorithm. We also discuss how to recycle inequalities that are
not of the knapsack type, to make use of a wider range of valid inequalities.

In an extensive computational study on robust versions of both classical
combinatorial problems and real-world instances from MIPLIB 2017 [20], we
verify that recycled inequalities can substantially strengthen the formulation
PROB, which is expressed by drastic reductions of the integrality gap. Together
with the efficient separation of recycled inequalities, this leads to a significant
improvement of solving times.

All implemented algorithms and generated test instances are published, to-
gether with a package of algorithms for solving robust combinatorial optimiza-
tion problems [18] and benchmark instances [19].

Note that this is an extended version of a paper that appeared in the pro-
ceedings of IPCO 2023 [13].

Outline In Section 2, we show how to derive the new class of recycled
inequalities from valid knapsack inequalities. In Section 3, we characterize in-
equalities for which the corresponding recycled inequality is facet-defining. In
Section 4, we discuss different efficient approaches of separating recycled in-
equalities. In Section 5, we show how to recycle non-knapsack inequalities.
Finally, in Section 6, we conduct our computational study.

2 Recycling Valid Inequalities

As already mentioned, the bilinear inequalities pi+xiz ≥ ĉixi play a crucial role
for our recycled inequalities. To understand their strength intuitively, we recall
our observations from Example 1. There, we noticed that choosing fractional
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values for xi is tempting, as we are then able to meet the inequalities pi+z ≥ ĉixi

with a small value of z and pi = 0. However, this advantage vanishes for the
bilinear inequalities pi + xiz ≥ ĉixi, as we always have z ≥ ĉi for xi ̸= 0 and
pi = 0. To make use of this in practice, it would be beneficial to carry over the
strength of the bilinear inequalities to a linear formulation.

Multiplying linear inequalities with variables as an intermediate step in or-
der to achieve a stronger linear formulation is not a new approach. For the
Reformulation-Linearization-Technique by Sherali and Adams [31], one multi-
plies constraints with variables and linearizes the resulting products afterwards
via substitution with auxiliary variables. When taken to the extreme, where
all constraints are multiplied with all possible combinations of variables, one
obtains a formulation with exponentially many variables and constraints, whose
projection on the original variables equals CROB. Our approach is different in
the sense that we don’t directly linearize the bilinear inequalities, and thus don’t
create auxiliary variables. Instead, we combine several of the bilinear inequali-
ties in order to estimate the non-linear terms against a linear term, using a valid
inequality for the corresponding nominal problem. From now on, let

CNOM = conv ({x ∈ {0, 1}n|Ax ≤ b})

be the convex hull of all integer nominal solutions. Then we combine the bilinear
inequalities and valid inequalities for CNOM as follows.

Theorem 1. Let
∑

i∈[n] πixi ≤ π0 be a valid inequality for CNOM with π ∈
Rn+1

≥0 . Then the inequality

π0z +
∑
i∈[n]

πipi ≥
∑
i∈[n]

πiĉixi (1)

is valid for CROB.

Proof. Summing the bilinear constraints pi + xiz ≥ ĉixi, each with a weight of
πi, we obtain ∑

i∈[n]

πipi +
∑
i∈[n]

πixiz ≥
∑
i∈[n]

πiĉixi,

which is a valid inequality for CROB due to π ≥ 0. Now, since z ≥ 0 holds, we
have

∑
i∈[n] πixiz ≤ π0z, and thus the validity of (1).

As we reuse the valid inequality
∑

i∈[n] πixi ≤ π0 to strengthen the formu-

lation PROB, we call Inequality (1) the recycled inequality of
∑

i∈[n] πixi ≤ π0.

In accordance with the requirements of Theorem 1, we call
∑

i∈[n] πixi ≤ π0

recyclable if it is valid for CNOM and π ≥ 0. In the following, we will only
consider nominal inequalities

∑
i∈[n] πixi ≤ π0 consisting exclusively of vari-

ables with uncertain objective coefficients, i.e., with ĉi > 0 for all i ∈ [n] with
πi ̸= 0. We call inequalities and their corresponding coefficients π with this
property uncertainty-exclusive. Note that uncertainty-exclusive inequalities are
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the only interesting ones for recycling, because we can always drop variables
xi with ĉi = 0. The resulting nominal inequality is weaker, and thus valid for
CNOM, but the corresponding recycled inequality becomes stronger by removing
πipi from the left-hand side, while the right-hand side does not change due to
πiĉixi = 0. By focusing on uncertainty-exclusive inequalities, we obtain the
following statement.

Proposition 1. Let π ∈ Rn+1 be uncertainty-exclusive. If π0z +
∑

i∈[n] πipi ≥∑
i∈[n] πiĉixi is valid for CROB, then

∑
i∈[n] πixi ≤ π0 is a recyclable inequality.

Proof. First, note that the validity of π0z +
∑

i∈[n] πipi ≥
∑

i∈[n] πiĉixi al-
ready implies π ≥ 0, since p and z are unbounded, while the right-hand side∑

i∈[n] πiĉixi is not. Now, assume that
∑

i∈[n] πixi ≤ π0 is invalid, i.e., there ex-

ists a vector x̃ ∈ CNOM with
∑

i∈[n] πix̃i > π0. Then there exists an index j ∈ [n]

with ĉj x̃j > 0 and we define (x̃, p̃, z̃) ∈ CROB with z̃ = min {ĉi|i ∈ [n] , ĉix̃i > 0}
as well as p̃i = (ĉi − z̃)

+
x̃i for all i ∈ [n]. Note that we write (y)

+
= max {y, 0}

for arbitrary y ∈ R. Then we have z̃ > 0 and πip̃i = πi (ĉi − z̃) x̃i for all i ∈ [n],
which implies

π0z̃ +
∑
i∈[n]

πip̃i = z̃

π0 −
∑
i∈[n]

πix̃i

+
∑
i∈[n]

πiĉix̃i <
∑
i∈[n]

πiĉix̃i,

and thus proves that π0z +
∑

i∈[n] πipi ≥
∑

i∈[n] πiĉixi cannot be valid.

The above shows that we can actually obtain all relevant valid inequalities of
the form π0z+

∑
i∈[n] πipi ≥

∑
i∈[n] πiĉixi by recycling a valid nominal inequal-

ity. We also get a first understanding of the strength of the recycling approach.
If there exists an inequality of the same form as the Recycled Inequality (1)
that is better than the recycled one, then this does not mean that the recycling
procedure is weak, but that there exists a better nominal inequality to recycle.

In order to see in which cases recycled inequalities are useful, let us consider
how they compare to the bilinear inequalities over the course of their construc-
tion. First, note that the sum of the bilinear inequalities is weaker than the
bilinear inequalities themselves. Hence, when separating a recycled inequality
to cut off a fractional solution (x̃, p̃, z̃) ∈ PNOM, our inequality to be recycled
should only support indices i ∈ [n] with πi > 0 for which the bilinear inequal-
ity p̃i + x̃iz̃ ≥ ĉix̃i is violated or tight. A second potential weakening occurs
when applying the estimation

∑
i∈[n] πixiz ≤ π0z. This implies that recycling∑

i∈[n] πixi ≤ π0 is especially interesting if it is binding for (x̃, p̃, z̃).

Reconsider Example 1, for which we can recycle the valid inequality
∑

i∈[n] xi ≤
1 implied by

∑
i∈[n] xi = 1. The recycled inequality z +

∑
i∈[n] pi ≥

∑
i∈[n] xi

yields z +
∑

i∈[n] pi ≥ 1, and thus the optimal objective value of the linear re-
laxation is now equal to the optimal integer objective value. This intuitively
highlights the strength of the recycled inequalities in the case where both proper-
ties, a binding recyclable valid inequality and the violation of supported bilinear
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inequalities, coincide. In the next section, we will investigate the strength of
recycled inequalities from a polyhedral point of view.

3 Facet-Defining Recycled Inequalities

In this section, we show that recycled inequalities often define facets of the con-
vex hull of the robust problem CROB. Formally, for a polytope P ⊆ Rn, each

valid inequality
∑

i∈[n] πix ≤ π0 defines a face F (π) =
{
x ∈ P

∣∣∣∑i∈[n] πix = π0

}
of P . A face F (π) is called a facet if dim (F (π)) = dim (P ) − 1 holds, where
the dimension of a polytope P is defined as the maximum number of affinely
independent points within P minus one [15]. We say that an inequality is facet-
defining if its face is a facet. Facet-defining inequalities are highly interesting,
as they are the best inequalities to describe a polytope P in the sense that a
minimal representation

P =

{
x ∈ Rn

∣∣∣∣∣A=x = b=

A<x ≤ b<

}
,

with as few constraints as possible, consists of n − dim (P ) equations A=x =
b= and otherwise only proper inequalities A<x ≤ b<, all of which are facet-
defining [15].

In order to prove that recycled inequalities can be facet-defining, we first
determine the dimension of CROB. For the sake of simplicity, we assume for the
rest of this paper that the solution sets CNOM and CROB are non-empty.

Lemma 1. We have dim
(
CROB

)
= dim

(
CNOM

)
+ n+ 1.

Proof. For a polytope P ⊆ Rn, the number n − dim (P ) equals the maximum
number of linearly independent equations that are met by all vectors in P . Let∑

i∈[n] (ωixi + ωn+ipi)+ω2n+1z = ω0 be satisfied by all (x, p, z) ∈ CROB. Since p

and z can be raised arbitrarily and CROB ̸= ∅, we have ωn+1 = · · · = ω2n+1 = 0,
and thus

∑
i∈[n] ωixi = ω0. Hence, the equations that are met by all (x, p, z) ∈

CROB are exactly the equations that are met by all x ∈ CNOM, which implies

dim
(
CROB

)
= 2n+ 1−

(
n− dim

(
CNOM

))
= dim

(
CNOM

)
+ n+ 1.

Knowing the dimension of CROB, we are now able to study facet-defining
recycled inequalities. Remember that we only consider uncertainty-exclusive
inequalities, as these are the only interesting ones. The following theorem states
the dimension of a recycled inequality’s face, based on the projection of the
nominal inequality’s face on the supported variables. Together with Lemma 1,
this yields a characterization of facet-defining recycled inequalities.
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Theorem 2. Let
∑

i∈[n] πixi ≤ π0 be a recyclable, uncertainty-exclusive in-

equality and S = {i ∈ [n]|πi > 0}. Then the face of the Recycled Inequality (1)
has dimension

dim (projS (F (π))) + dim
(
CNOM

)
+ 1 + n− |S| ,

where projS is the projection on the supported variables {xi|i ∈ S}.
Hence, the Recycled Inequality (1) is facet-defining for CROB if and only if

dim (projS (F (π))) = |S| − 1

holds.

Proof. There always exist dim
(
CNOM

)
+1+n−|S| affinely independent vectors

(x, p, z) ∈ CROB satisfying (1) with equality. To see this, let
{
x0, . . . , xdim(CNOM)

}
⊆

CNOM be affinely independent. For each j ∈
{
0, . . . ,dim

(
CNOM

)}
, we choose(

xj , ĉ⊙ xj , 0
)
, where ĉ ⊙ xj refers to the component-wise multiplication, i.e.,(

ĉ⊙ xj
)
i
= ĉix

j
i . By definition,

(
xj , ĉ⊙ xj , 0

)
is within CROB and we have

π00 +
∑
i∈[n]

πi

(
ĉ⊙ xj

)
i
=
∑
i∈[n]

πiĉix
j
i .

Additionally, we choose
(
x0, ĉ⊙ x0 + ej , 0

)
for each j ∈ [n] \ S, with ej ∈ Rn

being the j-th unit vector. Again, this vector is within CROB and due to πj = 0
it follows

π00 +
∑
i∈[n]

πi

(
ĉ⊙ x0 + ej

)
i
= πj +

∑
i∈[n]

πiĉix
0
i =

∑
i∈[n]

πiĉix
0
i .

Let
(
x̃j , p̃j , z̃j

)
j∈[k]

be a maximal extension, consisting of a maximum num-

ber of additional vectors in CROB that satisfy the recycled inequality with equal-
ity and are affinely independent of the vectors above. It remains to show that
k = dim (projS (F (π))) + 1 holds. For this, we show that an extension is valid
if and only if the following four properties hold:

1. p̃ji =
(
ĉi − z̃j

)
x̃j
i for all j ∈ [k], i ∈ S,

2. z̃j > 0 for all j ∈ [k],

3.
{
projS

(
x̃j
)∣∣j ∈ [k]

}
are affinely independent,

4.
{
x̃j
∣∣j ∈ [k]

}
⊆ F (π).

Note that Properties 3 and 4 already imply k ≤ dim (projS (F (π)))+1. For the
other direction, it will then be sufficient to show that there always exist vectors{(

x̃j , p̃j , z̃j
)∣∣j ∈ {0, . . . ,dim (projS (F (π)))}

}
satisfying the first two properties.

Since we can assume without loss of generality that x̃j is binary for all
j ∈ [k], we have p̃ji ≥

(
ĉi − z̃j

)
x̃j
i for all i ∈ [n]. Now, if Property 1 would not
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hold, then there would exist j ∈ [k] and i ∈ S with p̃ji >
(
ĉi − z̃j

)
x̃j
i , and thus

πip̃
j
i > πi

(
ĉi − z̃j

)
x̃j
i . This is a contradiction due to

π0z̃
j +

∑
i∈[n]

πip̃
j
i > π0z̃

j +
∑
i∈[n]

πi

(
ĉi − z̃j

)
x̃j
i

≥
∑
i∈[n]

πix̃
j
i z̃

j +
∑
i∈[n]

πi

(
ĉi − z̃j

)
x̃j
i

=
∑
i∈[n]

πiĉix̃
j
i .

The affine independency of the extension is equivalent to the linear independency
of the dim

(
CNOM

)
+ n vectors obtained from subtracting

(
x0, ĉ⊙ x0, 0

)
of all

others. We write these into the following matrix, assuming that S = {1, . . . , |S|}

. . . xj
1 − x0

1 . . . 0 . . . 0 . . . x̃j
1 − x0

1 . . .
...

...
...

...
. . . xj

n − x0
n . . . 0 . . . 0 . . . x̃j

n − x0
n . . .

. . . ĉ1

(
xj
1 − x0

1

)
. . . 0 . . . 0 . . .

(
ĉ1 − z̃j

)
x̃j
1 − ĉ1x

0
1 . . .

...
...

...
...

... 0 . . . 0
(
ĉ|S| − z̃j

)
x̃j
|S| − ĉ|S|x

0
|S|

... 1 0 p̃j|S|+1 − ĉ|S|+1x
0
|S|+1

...
. . .

...
. . . ĉn

(
xj
n − x0

n

)
. . . 0 1 . . . p̃jn − ĉnx

0
n . . .

. . . 0 . . . 0 . . . 0 . . . z̃j . . .



.

For each i ∈ [n], we subtract row i from row n+ i with factor ĉi and obtain

. . . xj
1 − x0

1 . . . 0 . . . 0 . . . x̃j
1 − x0

1 . . .
...

...
...

...
. . . xj

n − x0
n . . . 0 . . . 0 . . . x̃j

n − x0
n . . .

. . . 0 . . . 0 . . . 0 . . . −z̃j x̃j
1 . . .

...
...

...
...

... 0 . . . 0 −z̃j x̃j
|S|

... 1 0 p̃j|S|+1 − ĉ|S|+1x̃
j
|S|+1

...
. . .

...
. . . 0 . . . 0 1 . . . p̃jn − ĉnx̃

j
n . . .

. . . 0 . . . 0 . . . 0 . . . z̃j . . .



.

We use the middle columns with the unit vectors to eliminate the corresponding

rows. Furthermore, since x̃j−x0 is linearly dependent of
{
x1 − x0, . . . , xdim(CNOM) − x0

}
10



due to the dimension of CNOM, we can eliminate the first n rows in the last k
columns and obtain

. . . xj
1 − x0

1 . . . 0 . . . 0 . . . 0 . . .
...

...
...

...
. . . xj

n − x0
n . . . 0 . . . 0 . . . 0 . . .

. . . 0 . . . 0 . . . 0 . . . −z̃j x̃j
1 . . .

...
...

...
...

... 0 . . . 0 −z̃j x̃j
|S|

... 1 0 0

...
. . .

...
. . . 0 . . . 0 1 . . . 0 . . .
. . . 0 . . . 0 . . . 0 . . . z̃j . . .



.

These columns are linearly independent if and only if z̃j ̸= 0 holds for all j ∈
[k] and

{
projS

(
x̃j
)∣∣j ∈ [k]

}
are affinely independent. Thus, given Property 1,

the affine independency of the extension is equivalent to Properties 2 and 3.
Furthermore, given Properties 1 and 2, we have

π0z̃
j +

∑
i∈[n]

πip̃
j
i =

∑
i∈[n]

πiĉix̃
j
i ⇔ π0z̃

j =
∑
i∈[n]

πiz̃
j x̃j

i ⇔ π0 =
∑
i∈[n]

πix̃
j
i ,

and thus
{
x̃j
∣∣j ∈ [k]

}
⊆ F (π). Hence, Property 4 holds if and only if

(
x̃j , p̃j , z̃j

)
j∈[k]

fulfill the Recycled Inequality (1) with equality. Overall, this shows that the
validity of the extension is equivalent to Properties 1 to 4.

Now, let
{
x̃j
∣∣j ∈ {0, . . . ,dim (projS (F (π)))}

}
⊆ F (π) be affinely indepen-

dent in the components {xi|i ∈ S}. As stated above, it suffices to construct vec-
tors

(
x̃j , p̃j , z̃j

)
satisfying Properties 1 and 2. For each j ∈ {0, . . . ,dim (projS (F (π)))},

we choose
(
x̃j , p̃j , z̃

)
with z̃ = min {ĉi|i ∈ [n] , ĉi > 0} and p̃ji = (ĉi − z̃)

+
x̃j
i for

all i ∈ [n]. Then
(
x̃j , p̃j , z̃

)
is by definition within CROB and satisfies z̃ > 0.

Since
∑

i∈[n] πixi ≤ π0 is uncertainty-exclusive, we have πi = 0 for all ĉi < z̃,

and thus p̃ji = (ĉi − z̃) x̃j
i for all i ∈ S. Therefore,

(
x̃j , p̃j , z̃

)
satisfies both

properties, which completes the proof.

A powerful implication of Theorem 2 is that recycling an uncertainty-exclusive
inequality yields always a facet-defining inequality if dim (F (π)) = n− 1 holds.
This is because there exist n affinely independent vectors satisfying

∑
i∈[n] πix =

π0, of which |S| must be affinely independent when projected on the variables
{xi|i ∈ S}. Note that dim (F (π)) = n−1 holds if F (π) is either a facet of a full-
dimensional polytope CNOM or if

∑
i∈[n] πix ≤ π0 is actually an equation with

F (π) = CNOM and dim
(
CNOM

)
= n − 1. This is summarized in the following

corollary.
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Corollary 1. Let
∑

i∈[n] πixi ≤ π0 be a recyclable, uncertainty-exclusive in-

equality. The Recycled Inequality (1) is facet-defining for CROB if one of the
following holds:

• CNOM is full-dimensional and F (π) is a facet of CNOM,

• dim
(
CNOM

)
= n− 1 and F (π) = CNOM.

Contrary to first intuition, it is also possible to obtain facet-defining in-
equalities by recycling weaker inequalities that are neither facet-defining nor
equations. This is because the dimension of the face F (π) can shrink by less
than n − |S| when projected on {xi|i ∈ S}. Thus, inequalities defining low-
dimensional faces can also yield facet-defining recycled inequalities if πi = 0
holds for many i ∈ [n]. For example, consider an independent set problem on a
graph with vertices V = [n] and let Q ⊆ V be a clique. Then the clique inequal-
ity
∑

i∈Q xi ≤ 1 dominates all inequalities
∑

i∈Q′ xi ≤ 1 with Q′ ⊊ Q and is
facet-defining if and only if Q is a maximal clique with respect to inclusion [15].
However, the recycled inequality z +

∑
i∈Q′ pi ≥

∑
i∈Q′ ĉixi is facet-defining

for all cliques Q′ ⊆ Q, since the projection projQ′ (F (π)), that is S = Q′, has

dimension |Q′| − 1, with
{
ej
∣∣j ∈ Q′} being the corresponding affinely indepen-

dent vectors. Other examples include odd hole inequalities for the independent
set problem [29] and minimal cover inequalities for the knapsack problem [15].
These are in general not facet-defining for their respective polytope, but yield
facet-defining recycled inequalities for the robust counterpart.

One now might raise the question whether recycling dominated inequalities
is actually of practical interest or whether these do not matter due to the special
structure of the objective function, with all pi having an objective coefficient of
1. The following example demonstrates that it can be beneficial to weaken an
inequality before it is recycled.

Example 2. Consider the robust problem

min 2z +
∑
i∈[5]

−xi + pi

s.t. 3x5 +
∑
i∈[4]

xi ≤ 3

z + pi ≥ xi ∀i ∈ [5]

x ∈ {0, 1}5 , p ∈ R5
≥0, z ∈ R≥0.

Choosing x =
(
3
4 , . . . ,

3
4 , 0
)
, p = 0, and z = 3

4 yields an optimal solution for the
linear relaxation with objective value − 3

2 . Recycling constraint 3x5+
∑

i∈[4] xi ≤
3 yields 3z + 3p5 +

∑
i∈[4] pi ≥ 3x5 +

∑
i∈[4] xi. After adding the recycled in-

equality, an optimal solution is given by x =
(
3
4 , . . . ,

3
4 , 0
)
, p =

(
0, . . . , 0, 1

4

)
,

and z = 3
4 , with an objective value of − 5

4 . Note that we now choose p5 > 0
even though x5 = 0 holds. Since the bilinear inequality p5 + x5z ≥ ĉ5x5 now
has a slack of 1

4 , our observation from the last section suggests that it may be

12



beneficial to drop x5 from the valid inequality for recycling. In fact, when re-
cycling the dominated inequality

∑
i∈[4] xi ≤ 3 instead of the model constraint,

we obtain 3z +
∑

i∈[4] pi ≥
∑

i∈[4] xi and an optimal solution is now given by

x = (1, 1, 1, 0, 0), p = 0, and z = 1, which yields an objective value of −1.

After discussing the strong implications of Theorem 2, let us now consider
its limitations. The next example shows that it is indeed necessary that the
inequality to be recycled is uncertainty-exclusive.

Example 3. Consider the full-dimensional polytope

CROB = conv

({
(x, p, z) ∈ {0, 1}3 × R4

≥0

∣∣∣∣∣x1 + x2 + x3 ≤ 2

z + pi ≥ ĉixi ∀i ∈ [3]

})
,

with ĉ1 = ĉ2 = 1 and ĉ3 = 0. The constraint x1 + x2 + x3 ≤ 2 is facet-defining
for the corresponding CNOM, and thus meets all requirements of Corollary 1 with
the exception that it is not uncertainty-exclusive. Indeed, the recycled inequality
2z + p1 + p2 + p3 ≥ x1 + x2 is not facet-defining, as it is dominated by the sum
of the constraints z + p1 ≥ x1 and z + p2 ≥ x2.

The observation in the example above is quite intuitive. While we can always
transform an arbitrary recyclable inequality into an uncertainty-exclusive one by
dropping all xi with ĉi = 0, we loose information during this process and cannot
expect to obtain a facet on the robust variables. Less obvious is the importance
of the dimension of the nominal polytope CNOM, which is a prerequisite for
Corollary 1. In the following, we study lower-dimensional problems, for which
we first consider another example.

Example 4. Consider the four-dimensional polytope with five variables

CROB = conv

({
(x, p, z) ∈ {0, 1}2 × R3

≥0

∣∣∣∣∣x1 + x2 = 1

z + pi ≥ xi ∀i ∈ [2]

})
.

The inequality 2x1+x2 ≤ 2 defines a facet for the corresponding CNOM. However,
the recycled inequality 2z + 2p1 + p2 ≥ 2x1 + x2 is not facet-defining for CROB,
as it is the sum of z + p1 ≥ x1 and z + p1 + p2 ≥ x1 + x2, where the latter is
recycled from x1 + x2 = 1.

The example shows that in the lower dimensional case, inequalities recycled
from facet-defining inequalities are not necessarily facet-defining. Note that the
mapping from the set of recyclable inequalities to the corresponding recycled
inequalities is a homomorphism in the sense that the recycled inequality of∑

i∈[n]

(
π1
i + π2

i

)
xi ≤ π1

0 + π2
0 equals the sum of the recycled inequalities of∑

i∈[n] π
1
i xi ≤ π1

0 and
∑

i∈[n] π
2
i xi ≤ π2

0 . As recycled inequalities are proper
inequalities, their sum is weaker than the separate inequalities and it is better
to recycle each inequality individually.

13



This applies to the example, where 2x1+x2 ≤ 2 is the sum of the recyclable
inequality x1 ≤ 1 and the recyclable equation x1 + x2 = 1. Although both in-
equalities have the same face, recycling x1 ≤ 1 yields a facet-defining inequality,
while recycling 2x1 + x2 ≤ 2 does not. Hence, for lower dimensional CNOM,
one cannot decide whether recycling yields a facet-defining inequality by solely
relying on the recyclable inequality’s face.

However, we can eliminate equations from an inequality and recycle the
resulting one, which is equivalent for CNOM. Formally, we call two inequalities∑

i∈[n] π
′
ixi ≤ π′

0 and
∑

i∈[n] πixi ≤ π0 equivalent for a polytope P if they define

the same face [35]. This is implies that there exist equations
∑

i∈[n] ω
k
i xi = ωk

0 ,

satisfied by all x ∈ P , such that
{
π′, ω1, . . . , ωℓ

}
are linearly independent and

λ0π
′ +
∑

k∈[ℓ] λkω
k = π holds for some λ0 > 0 and λk ∈ R with k ∈ [ℓ].

Algorithm 1: Procedure for removing equations from π.

Input: A recyclable, uncertainty-exclusive inequality
∑

i∈[n] π
′
ixi ≤ π′

0

and equations
∑

i∈[n] ω
k
i xi = ωk

0 for k ∈ [ℓ] such that{
π′, ω1, . . . , ωℓ

}
are linearly independent

Output: An equivalent recyclable, uncertainty-exclusive inequality∑
i∈[n] πixi ≤ π0 with |{i ∈ [n]|πi = 0}| ≥ ℓ

1 Set π = π′

2 for k ∈ [ℓ] do

3 Choose i∗ ∈ argmin
{∣∣∣ πi

ωk
i

∣∣∣∣∣∣i ∈ [n] , ωk
i ̸= 0,

}
4 Update π ← π − πi∗

ωk
i∗
ωk

5 for k′ ∈ {k + 1, . . . , ℓ} do
6 Update ωk′ ← ωk′ − ωk′

i∗

ωk
i∗
ωk

7 return
∑

i∈[n] πix ≤ π0

We use Algorithm 1 to transform a recyclable inequality
∑

i∈[n] π
′
ixi ≤ π′

0

into an equivalent inequality
∑

i∈[n] πixi ≤ π0 that satisfies the conditions of

Theorem 2. For given equations
∑

i∈[n] ω
k
i xi = ωk

0 , the algorithm performs

a specialized Gaussian elimination on
∑

i∈[n] π
′
ixi ≤ π′

0. We already noted
above that having many zero coefficients is beneficial for obtaining facet-defining
recycled inequalities. Therefore, for each equation given by ωk, Algorithm 1
subtracts in line 4 a multiple πi∗

ωk
i∗

of ωk from π such that the coefficient πi∗

becomes zero. Note that the index i∗ is chosen with respect to a bottleneck
condition in line 3. This makes sure that πi∗

ωk
i∗

is the multiple with the smallest

absolute value such that one coefficient πi with ωk
i ̸= 0 becomes zero. This

has two desirable implications. First, if πi was positive before, then it will be
non-negative after subtracting πi∗

ωk
i∗
ωk
i . Second, if πi was already zero before,

then it will still be zero afterwards. This implies that if
∑

i∈[n] π
′
ixi ≤ π′

0
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is recyclable and uncertainty-exclusive, then this also holds for the resulting∑
i∈[n] πixi ≤ π0. After eliminating πi∗ , we make sure in line 6 that ωk

i∗ = 0
holds for all remaining equations such that i∗ will be different in every iteration.
By doing so, we guarantee that we have at least ℓ indices i ∈ [n] with πi = 0 at
the end of Algorithm 1.

The following proposition uses Algorithm 1 to generalize Corollary 1 for
lower-dimensional CROB.

Proposition 2. Let
∑

i∈[n] π
′
ixi ≤ π′

0 be a recyclable, uncertainty-exclusive in-

equality such that F (π) is either a facet of CNOM or F (π) = CNOM. Let further-
more ℓ be the maximum number of equations

∑
i∈[n] ω

k
i xi = ωk

0 for k ∈ [ℓ] such

that
{
π′, ω1, . . . , ωℓ

}
are linearly independent. Then Algorithm 1 computes an

equivalent recyclable inequality
∑

i∈[n] πixi ≤ π0 whose Recycled Inequality (1)

is facet-defining for CROB.

Proof. Since the returned inequality
∑

i∈[n] πixi ≤ π0 from Algorithm 1 is re-
cyclable and uncertainty-exclusive, it only remains to show by Theorem 2 that
dim (projS (F (π))) = |S|−1 holds, with S = {i ∈ [n]|πi > 0}. Due to the choice
of ℓ, we have

ℓ =

{
n− dim

(
CNOM

)
− 1 , if F (π) = CNOM

n− dim
(
CNOM

)
, otherwise.

Hence, there exists a set
{
x1, . . . , xn−ℓ

}
⊆ F (π) of affinely independent vectors.

Let furthermore T ⊆ [n] \ S consist of the ℓ indices i∗ that were chosen in Al-

gorithm 1. We show that the vectors
{
proj[n]\T

(
x1
)
, . . . ,proj[n]\T

(
xn−ℓ

)}
are affinely independent, i.e., dim

(
proj[n]\T (F (π))

)
≥ n − |T | − 1. Since

S ⊆ [n] \ T holds, this implies dim (projS (F (π))) ≥ |S| − 1. Furthermore,
since the equation induced by π is only on the variables {xi|i ∈ S}, we have
dim (projS (F (π))) < |S|, which then proves the proposition.

Assume that the projections proj[n]\T
(
xj
)
are not affinely independent.

Then there exist coefficients λ ∈ Rn−ℓ with λ ̸= 0,
∑

j∈[n−ℓ] λj = 0, and∑
j∈[n−ℓ] λjx

j
i = 0 for all i ∈ [n]\T . Consider a fixed but arbitrary index i∗ ∈ T .

Since i∗ was chosen in Algorithm 1, there exists an equation
∑

i∈[n] ω
k
i xi = ωk

0

with ωk
i∗ ̸= 0. Without loss of generality, we can assume ωk

i∗ = 1 and obtain

xj
i∗ = ωk

0 −
∑

i∈[n]\{i∗}

ωk
i x

j
i
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for all j ∈ [n− ℓ], and thus

∑
j∈[n−ℓ]

λjx
j
i∗ =

∑
j∈[n−ℓ]

λj

ωk
0 −

∑
i∈[n]\{i∗}

ωk
i x

j
i


= ωk

0

∑
j∈[n−ℓ]

λj︸ ︷︷ ︸
=0

−
∑

i∈[n]\{i∗}

ωk
i

∑
j∈[n−ℓ]

λjx
j
i︸ ︷︷ ︸

=0

= 0.

However, as this applies for all i∗ ∈ T , we have
∑

j∈[n−ℓ] λjx
j
i = 0 for all

i ∈ [n]. This implies that the vectors
{
x1, . . . , xn−ℓ

}
are affinely dependent,

which contradicts their choice and completes the proof.

Note that we do not always know the dimension of CNOM in practice, let alone
all equations

∑
i∈[n] ω

k
i xi = ωk

0 . We tested Algorithm 1 using the already present
equations in the constraint matrix Ax ≤ b of the robust instances generated from
the MIPLIB 2017, which we use in our computational study in Section 6.6.
Interestingly, we observed no improvement in the dual bound provided by the
linear relaxation compared to the setting in which we didn’t use Algorithm 1.
Thus, Algorithm 1 is more of a theoretical tool for Proposition 2, as practitioners
seem to usually model their problems such that we can immediately derive
strong recycled inequalities.

Now that we have established a good theoretical understanding of the strength
of recycled inequalities, we discuss in the next section how to use them in prac-
tice.

4 Separating Recycled Inequalities

In the previous section, we have seen that recycling can yield a vast number
of facet-defining inequalities. For example, in the case of the independent set
problem, every clique inequality can be recycled to a facet-defining inequality.
Therefore, potentially exponentially many facet-defining recycled inequalities
exist, which raises the need for an efficient separation.

4.1 Separation of Recycled Constraints

A straightforward separation approach is to simply recycle the constraints Ax ≤
b of the nominal problem. Given a row

∑
i∈[n] ajixi ≤ bj of the constraint

matrix, we first remove all negative entries on the left-hand side. Since the
variables xi are binary, ∑

i∈[n]:aji≥0

ajixi ≤ bj −
∑

i∈[n]:aji<0

aji

is a recyclable inequality for CROB. We may either add the corresponding re-
cycled inequalities directly to the formulation PROB or precalculate and store
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them for later separation during branch and cut. In both cases, we restrict
ourselves to inequalities with∑

i∈[n]:aji≥0

aji > bj −
∑

i∈[n]:aji<0

aji,

as the corresponding recycled inequality is otherwise dominated by the con-
straints pi + z ≥ ĉixi. When using the precalculated recyclable inequalities for
separation to cut off a fractional solution (x̃, p̃, z̃) ∈ PROB, we also make sure
to only include variables xi with ĉix̃i − p̃i ≥ 0, as this maximizes the violation∑

i∈[n] πi (ĉix̃i − p̃i) − π0z̃ of the recycled inequality. That is, we iterate over
every row in the constraint matrix Ax ≤ b and recycle∑

i∈[n]:aji≥0,
ĉix̃i−p̃i≥0

ajixi ≤ bj −
∑

i∈[n]:aji<0

aji

if the resulting recycled inequality is violated. We will see in our computational
study that this simple approach already improves the solvers performance dras-
tically in many cases.

4.2 Separation of Recycled Cuts

Another approach is to benefit from the research on the nominal problem and
recycle well studied cutting planes, i.e., inequalities that are valid for the convex
hull CNOM, but not for the linear relaxation PNOM. Let Π ⊆ Rn+1

≥0 be such that∑
i∈[n] πixi ≤ π0 is a recyclable inequality for all π ∈ Π. When separating

inequalities to cut off a fractional solution to the nominal problem x̃ ∈ PNOM,
we would usually search for a π ∈ Π with positive violation

∑
i∈[n] πix̃i−π0 > 0.

When separating recycled inequalities for a given solution (x̃, p̃, z̃) ∈ PROB,
we require

∑
i∈[n] πi (ĉix̃i − p̃i) − π0z̃ > 0 instead. Note that the coefficients

ĉix̃i− p̃i and z̃ are fixed in this case. Therefore, the same algorithms for finding
a violated nominal inequality can be applied for separating violated recycled
inequalities, provided these do not rely on some special structure of the objective
function of the separation problem. In our computational study, we will test a
heuristic separation of recycled clique inequalities for the robust independent set
problem. We will show that these facet-defining recycled inequalities improve
the formulation significantly.

4.3 Exact Separation via Recycling Combined Constraints

Obviously, an exact separation of violated recycled inequalities is NP-hard in
general. For example, in the case of recycled clique inequalities, an exact sep-
aration would require solving a maximum weighted clique problem. However,
we can separate recycled inequalities from valid inequalities for PNOM in poly-
nomial time in the size of the constraint matrix Ax ≤ b via solving an LP.
In particular, if we already know the convex hull of the nominal problem, i.e.,
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CNOM = PNOM, then an exact separation of recycled inequalities can be done
in polynomial time. To see this, note that an inequality

∑
i∈[n] πixi ≤ π0 is

valid for PNOM if and only if it can be expressed as a conic combination of
the rows in Ax ≤ b as well as the box constraints xi ≤ 1 and −xi ≤ 0. That
is, we have νi − µi +

∑
j∈[m] ajiλj = πi and

∑
i∈[n] νi +

∑
j∈[m] bjλj = π0 for

some λ ∈ Rm
≥0, µ, ν ∈ Rn

≥0. Hence, there exists a recyclable inequality for

PNOM whose recycled inequality is violated by (x̃, p̃, z̃) ∈ PROB if and only if
the following separation LP has a solution with positive objective value

(SLP)

max
∑
i∈[n]

πi (ĉix̃i − p̃i)− π0z̃

s.t. νi − µi +
∑
j∈[m]

ajiλj = πi ∀i ∈ [n]

∑
i∈[n]

νi +
∑
j∈[m]

bjλj = π0

π ∈ Rn+1
≥0 , λ ∈ Rm

≥0, µ, ν ∈ Rn
≥0.

As the optimal objective value of the SLP is either zero or unbounded due
to arbitrary scaling, we normalize the recyclable inequality

∑
i∈[n] πixi ≤ π0

by fixing π0 = 1. This imposes no restriction on finding violated recycled
inequalities, as we always have π0 > 0 for all relevant recyclable inequalities
and can thus achieve π0 = 1 via scaling. This is because the left-hand side∑

i∈[n] πixi is non-negative, and thus π0 = 0 would imply xi = 0 for all x ∈
PNOM and i ∈ [n] with πi > 0. In both cases, the right-hand side of the recycled
inequality

∑
i∈[n] πiĉix̃i would always be zero, which renders the inequality void.

Remember that recycling is a homomorphism on the set of recyclable in-
equalities. Hence, recycling a conic combination of inequalities, as given by a
solution to SLP, is only reasonable if some of the combined inequalities are not
recyclable themselves. That is, if we have π = π1 + π2, with π1, π2 linearly
independent and both define recyclable inequalities, then it would be better to
recycle each of these inequalities separately. In practice, this is guaranteed by
fixing π0 = 1, as a combination of π1 and π2 is never a vertex of SLP and can
only be an optimal solution if the violation of their respective recycled inequal-
ities is equal.

We observe two issues when using SLP for separation in practice. First,
solving SLP is relatively time consuming if the number of inequalities is large.
Second, we obtain only one optimal solution when solving SLP, and can thus
only separate one recycled inequality at a time, although MILP solvers usually
perform better when several cuts are added at once. The following proposition
helps in this regard, showing that we can partition the constraints into sets that
can be considered independently for combination. Doing so, we can solve one
smaller LP for each set of the partition, yielding multiple (possibly violated)
recycled inequalities within the same separation round.

Proposition 3. Let A = (aji)j∈[m],i∈[n] be the left-hand side of the constraints
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Ax ≤ b (not including 0 ≤ x ≤ 1) and let G = (V,E) be the graph with

nodes V = [m] and edges E =
{
{j, j′} ∈

(
V
2

)∣∣∣∃i ∈ [n] : aji < 0 < aj′i

}
. Let

{C1, . . . , Ck} ⊆ 2V be the connected components in G. Then every inequality
that is recycled from a valid inequality for PNOM is dominated by inequalities
recycled from recyclable inequalities of the form

∑
i∈[n]

νℓi − µℓ
i +

∑
j∈Cℓ

ajiλj

xi ≤
∑
i∈[n]

νℓi +
∑
j∈Cℓ

bjλj (2)

with ℓ ∈ [k], λ ∈ Rm
≥0, and µℓ, νℓ ∈ Rn

≥0.

Proof. We write
∑

i∈[n] πixi ≤ π0 as

∑
i∈[n]

νi − µi +
∑
j∈[m]

ajiλj

xi ≤
∑
i∈[n]

νi +
∑
j∈[m]

bjλj ,

which is a conic combination of Ax ≤ b and −x ≤ 0 as well as x ≤ 1 with
coefficients λ ∈ Rm

≥0, µ, ν ∈ Rn
≥0. We show that if

∑
i∈[n] πixi ≤ π0 is recy-

clable, then it is also a conic combination of the recyclable inequalities from the
statement.

Note that we can assume νi = 0 or µi = 0 for all i ∈ [n], since we would oth-
erwise decrease both and then recycle

∑
i∈[n] πixi ≤ π0−

∑
i∈[n] min {νi, µi} in-

stead. We can also assume νi′ =
(
−
∑

j∈[m] aji′λj

)+
, as otherwise

∑
i∈[n] πixi ≤

π0 would be a combination of xi′ ≤ 1 and the recyclable inequality obtained

by decreasing νi′ to
(
−
∑

j∈[m] aji′λj

)+
. Moreover, we can assume µi′ ∈{

0,
∑

j∈[m] aji′λj

}
, since both values result in recyclable inequalities and all

other values would imply that
∑

i∈[n] πixi ≤ π0 is a convex combination of

these two. Accordingly, we have µi′ = 0 for πi′ > 0 and µi′ =
(∑

j∈[m] aji′λj

)+
for πi′ = 0. Thus, we can rewrite

∑
i∈[n] πixi ≤ π0 as

∑
i∈[n]

− ∑
j∈[m]

ajiλj

+

+
∑
j∈[m]

ajiλj

xi −
∑

i∈[n]:πi=0

∑
j∈[m]

ajiλj

+

xi

≤
∑
i∈[n]

− ∑
j∈[m]

ajiλj

+

+
∑
j∈[m]

λjbj .

Note that
∑

j∈[m] ajiλj and
∑

j∈Cℓ
ajiλj have the same sign for all i ∈

[n] and ℓ ∈ [k]. Otherwise, there exist ℓ, ℓ′ ∈ [k] with j ∈ Cℓ and j′ ∈ Cℓ′

such that aji < 0 < aj′i. However, this implies that constraints j and j′ are
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adjacent in the graph G, and thus ℓ = ℓ′. It follows
(
±
∑

j∈[m] ajiλj

)+
=∑

ℓ∈[k]

(
±
∑

j∈Cℓ
ajiλj

)+
, and thus we can rewrite

∑
i∈[n] πixi ≤ π0 again as

∑
ℓ∈[k]

∑
i∈[n]

νℓi − µℓ
i +

∑
j∈Cℓ

ajiλj

xi

 ≤ ∑
ℓ∈[k]

∑
i∈[n]

νℓi +
∑
j∈Cℓ

bjλj

 ,

with µℓ
i =

(∑
j∈Cℓ

ajiλj

)+
for πi = 0 and µℓ

i = 0 for πi > 0 as well as νℓi =(
−
∑

j∈Cℓ
ajiλj

)+
.

Thus, the above inequality decomposes into the k Inequalities (2), all of
which are recyclable since νℓi − µℓ

i +
∑

j∈Cℓ
ajiλj ≥ 0 holds by the definition of

νℓ, µℓ.

In the special case where all constraints are recyclable, the graph G from
the proposition above contains no edges. Thus, we don’t have to consider any
combinations of constraints, but can solely rely on recycling constraints as in
Section 4.1.

Corollary 2. Let all constraints in Ax ≤ b be recyclable. Then every inequality
that is recycled from a valid inequality for PNOM is dominated by the recycled
inequalities from

∑
i∈I ajixi ≤ bj for j ∈ [m] and I ⊆ [n].

In the case where we have PNOM = CNOM and all constraints are recyclable,
the above corollary shows together with Proposition 1 that we can separate
inequalities of the form π0z+

∑
i∈[n] πipi ≥

∑
i∈[n] πiĉixi exactly in linear time.

In our computational study, we show the strength of such an exact separation
for the example of the robust weighted matching problem on bipartite graphs,
for which we have PNOM = CNOM and all constraints are indeed recyclable.

Even if not all constraints are recyclable, in practice an optimal solution to
SLP often corresponds to an already recyclable constraint in Ax ≤ b. Hence,
we observe that it is beneficial to first check whether we can separate violated
recycled inequalities from constraints, as described in Section 4.1. Only if none
of these are violated, we solve SLP to check whether there exists a violated
recycled inequality from a combined inequality. We will see in our tests on robust
instances generated from the MIPLIB 2017 that solving SLP sometimes yields
very strong recycled inequalities, even if recycling the constraints in Ax ≤ b has
no effect at all (cf. Section (6.6)).

5 Partially Recycling of Non-Recyclable Inequal-
ities

Let
∑

i∈[n] πixi ≤ π0 be a non-recyclable valid inequality. In the last section,

we transformed such inequalities into
∑

i∈[n]:πi>0 πixi ≤ π0 −
∑

i∈[n]:πi<0 πi for
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recycling, by estimating πixi ≥ πi. Intuitively, the resulting recycled inequality
seems to be unnecessarily weak if the estimated terms πix̃i are actually (near to)
zero for a fractional solution (x̃, p̃, z̃) ∈ PROB to be cut off. To resolve this, we
propose another procedure, using the recyclable part of generally non-recyclable
inequalities.

Note that
∑

i∈[n]:πi≥0 πixi ≤ π0 is a recyclable inequality for the restricted

nominal solution space
{
x ∈ CNOM

∣∣xi = 0 ∀i ∈ [n] : πi < 0
}
, and can thus be

recycled to a valid inequality for
{
(x, p, z) ∈ CROB

∣∣xi = 0 ∀i ∈ [n] : πi < 0
}
. In

order to obtain a valid inequality for CROB, we can then lift the fixed variables
into the recycled inequality. For this, we compute lifting coefficients αi ∈ R for
i ∈ [n] with πi < 0 such that

π0z +
∑

i∈[n]:πi>0

πipi ≥
∑

i∈[n]:πi>0

πiĉixi +
∑

i∈[n]:πi<0

αixi

is a valid inequality.
In general, one wants to choose maximal lifting coefficients α, such that the

lifted inequality is as strong as possible. Whether one obtains a facet-defining
inequality is not trivial to say, as this not only depends on the inequality to be
lifted and the maximality of the lifting coefficients, but also on the considered
polyhedron. However, roughly speaking, lifting is more likely to yield a facet-
defining inequality if the original inequality is facet-defining for the restricted
solution space, where the variables to be lifted are fixed to zero [21, 34, 36]. Using
Theorem 2, we can state in which case this applies for our recycled inequalities.

Corollary 3. Let
∑

i∈[n] πixi ≤ π0 be valid and S+ = {i ∈ [n]|πi > 0} as well as
S− = {i ∈ [n]|πi < 0}. The recycled inequality π0z+

∑
i∈S+ πipi ≥

∑
i∈S+ πiĉixi

is facet defining for the restricted solution space
{
(x, p, z) ∈ CROB

∣∣xi = 0 ∀i ∈ S−}
if ĉi > 0 holds for all i ∈ S+, i.e., it is uncertainty-exclusive on {xi|i ∈ S+},
and

dim
(
projS+

({
x ∈ F (π)

∣∣xi = 0 ∀i ∈ S−})) = ∣∣S+
∣∣− 1.

Hence, the approach of fixing, recycling, and lifting is promising if the orig-
inal inequality is strong on the variables {xi|i ∈ S+} and if we are able to com-
pute good lifting coefficients α. Computing maximal lifting coefficients often
involves solving multiple NP-hard optimization problems. For example, when
only lifting the variable xℓ into the recycled inequality π0z +

∑
i∈S+ πipi ≥∑

i∈S+ πiĉixi, we need to solve

min π0z +
∑
i∈S+

πipi −
∑
i∈S+

πiĉixi

s.t. (x, p, z) ∈ CROB, xℓ = 1.

That is, we minimize the slack of the inequality to be lifted while fixing xℓ = 1.
This (in our case non-positive) slack is then the maximal lifting coefficient of xℓ.
This theoretical complexity implies the need for an efficient heuristic approach.
The following proposition shows how to compute lifting coefficients by solving
a sequence of easy fractional knapsack problems.

21



Proposition 4. Let
∑

i∈[n] πixi ≤ π0 be a valid inequality for CNOM with π0 ≥ 0

and S+ = {i ∈ [n]|πi > 0} as well as S− = {i ∈ [n]|πi < 0}. Consider the
fractional knapsack problem

f (y) = max

{∑
i∈S+

πiĉixi

∣∣∣∣∣∑
i∈S+

πixi ≤ y, x ∈ [0, 1]
n

}
and let αi = f (π0)− f (π0 − πi) for i ∈ S−. Then

π0z +
∑
i∈S+

πipi ≥
∑
i∈S+

πiĉixi +
∑
i∈S−

αixi

is a valid inequality for CROB.

Proof. We sequentially lift the variables {xi1 , . . . , xik} = {xi|i ∈ S−}. After
lifting variable xiℓ , this yields a valid inequality for the restricted solution space{
(x, p, z) ∈ CROB

∣∣xiℓ+1
= · · · = xik = 0

}
. Assume that we already lifted vari-

ables xi1 , . . . , xiℓ−1
with coefficients α1, . . . , αℓ−1 and consider the problem of

lifting variable xiℓ

min π0z +
∑
i∈S+

πipi −
∑
i∈S+

πiĉixi −
∑

j∈[ℓ−1]

αjxij

s.t. xiℓ = 1

xiℓ+1
, . . . , xik = 0

(x, p, z) ∈ CROB,

We relax this problem by only considering the bilinear constraints pi+xiz ≥ ĉixi

as well as
∑

i∈S+ πixi ≤ π0−πiℓ −
∑

j∈[ℓ−1] αjxij and allowing all variables but

xi1 , . . . , xiℓ to be fractional. By assuming that S ⊆ [ℓ− 1] defines an optimal
choice for the already lifted variables xi1 , . . . , xiℓ−1

, with xij = 1 iff j ∈ S, we
obtain the following relaxed lifting problem

(RLP)

min π0z +
∑
i∈S+

πipi −
∑
i∈S+

πiĉixi −
∑
j∈S

αj

s.t.
∑
i∈S+

πixi ≤ y

pi + xiz ≥ ĉixi ∀i ∈ [n]

x ∈ [0, 1]
n
, p ∈ Rn

≥0, z ∈ R≥0

with y = π0−πiℓ−
∑

j∈S πij . We will first show that the optimal solution value
of the RLP equals f (π0)− f (y)−

∑
j∈S αj for all y ≥ π0. Afterwards, we show

that S = ∅ is an optimal choice, which proves that f (π0)− f
(
π0 − πij

)
= αj is

a feasible lifting coefficient.
Since f (y) is a fractional knapsack problem with capacity y, values πiĉi and

weights πi, we can sort the variables with respect to non-decreasing πiĉi
πi

= ĉi
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and greedily fill the knapsack until the capacity is reached. Let x∗ be such an
optimal greedy solution to f (y). We show that x∗, together with appropriate
p∗, z∗, is also an optimal solution to RLP. For this, let (x, p, z) be an optimal
solution to RLP. We can assume pi = (ĉi − z)

+
xi, and thus obtain

π0z +
∑
i∈S+

πipi −
∑
i∈S+

πiĉixi −
∑
j∈S

αj = π0z −
∑
i∈S+

πi min {ĉi, z}xi −
∑
j∈S

αj .

Hence, for fixed z, we have a fractional knapsack problem with values πi min {ĉi, z}
and weights πi. Since sorting with respect to ĉi also yields a sorting with respect

to πi min{ĉi,z}
πi

= min {ĉi, z}, the above greedy solution x∗ is again optimal.
Now, we choose

z∗ = min

z ∈ {0, ĉ1, . . . , ĉn}

∣∣∣∣∣∣
∑

i∈S+,ĉi>z

πix
∗
i ≤ π0


together with p∗i = (ĉi − z∗)

+
x∗
i . We first show that the value of this solution

equals f (π0)− f (y)−
∑

j∈S αj and show afterwards that it is optimal.
If
∑

i∈S+ πi ≤ π0 holds then we have z∗ = 0, and thus

π0z
∗ +

∑
i∈S+

πip
∗
i −

∑
i∈S+

πiĉix
∗
i −

∑
j∈S

αj

=
∑
i∈S+

πi (ĉi − 0)
+
x∗
i −

∑
i∈S+

πiĉix
∗
i −

∑
j∈S

αj = −
∑
j∈S

αj .

Since the increased capacity y ≥ π0 has no effect on the objective value of the
relaxed knapsack problem, we also have f (π0)− f (y)−

∑
j∈S αj = −

∑
j∈S αj .

Otherwise, if
∑

i∈S+ πi > π0 holds, we assume 0 =: ĉ0 ≤ ĉ1 ≤ · · · ≤ ĉn
and let j∗ ∈ {0, . . . , n} be the smallest index such that

∑
i∈S+,ĉi>ĉj∗

πi ≤ π0.

It follows z∗ = ĉj∗ and x∗
i = 1 for all i > j∗ with πi > 0, which implies that

(x∗, p∗, z∗) is a solution to RLP of value

π0z
∗ +

∑
i∈S+

πip
∗
i −

∑
i∈S+

πiĉix
∗
i −

∑
j∈S

αj

=π0ĉj∗ +
∑

i∈{j∗+1,...,n}:πi>0

πi (ĉi − ĉj∗)− f (y)−
∑
j∈S

αj

=

π0 −
∑

i∈{j∗+1,...,n}:πi>0

πi

 ĉj∗ +
∑

i∈{j∗+1,...,n}:πi>0

πiĉi − f (y)−
∑
j∈S

αj

=f (π0)− f (y)−
∑
j∈S

αj .

Here, the last equation holds since x∗
i = 1 for all i > j∗ with πi > 0 and

x∗
j∗ =

π0 −
∑

i∈{j∗+1,...,n}:πi>0

πi

πj∗
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is an optimal solution to f (π0).
To see that the choice of p∗, z∗ is actually optimal, first consider z′ > z∗ and

p′ with p′i ≥ (ĉi − z′)x∗
i . By definition of z∗, we have

∑
i∈S+,ĉi>z∗ πix

∗
i ≤ π0,

and thus

π0z
∗ +

∑
i∈S+

πip
∗
i = π0z

∗ +
∑

i∈S+,ĉi>z∗

πi (z
′ − z∗ + ĉi − z′)x∗

i

≤ π0z
∗ + π0 (z

′ − z∗) +
∑

i∈S+,ĉi>z∗

πi (ĉi − z′)x∗
i

≤ π0z
′ +

∑
i∈S+,ĉi>z′

πi (ĉi − z′)x∗
i

≤ π0z
′ +

∑
i∈S+

πip
′
i.

Second, consider z′ < z∗ with an appropriate p′. Due to the minimality of z∗,
we have

∑
i∈S+,ĉi≥z∗ πix

∗
i > π0, and thus

π0z
∗ +

∑
i∈S+

πip
∗
i = π0 (z

′ + z∗ − z′) +
∑

i∈S+,ĉi≥z∗

πi (ĉi − z∗)x∗
i

< π0z
′ +

∑
i∈S+,ĉi≥z∗

πi (z
∗ − z′ + ĉi − z∗)

≤ π0z
′ +

∑
i∈S+,ĉi>z′

πi (ĉi − z′)x∗
i

≤ π0z
′ +

∑
i∈S+

πip
′
i,

which shows the optimality of z∗ and p∗.

We have shown that f (π0)−f
(
π0 − πiℓ −

∑
j∈S πij

)
−
∑

j∈S αj is the opti-

mal value of RLP for some S ⊆ [ℓ− 1]. Thus, it only remains to show that S = ∅
is optimal. To see this, note that f is submodular due to the diminishing utility
of additional capacity. That is, we have f (y′ + ε) − f (y′) ≥ f (y + ε) − f (y)
for y′ ≤ y and ε ≥ 0. Since all πij are negative, this implies

∑
j∈S

(
f
(
π0 − πij

)
− f (π0)

)
≥ f

π0 −
∑
j∈S

πij

− f (π0) ,
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and thus we have

f (π0)− f

π0 − πiℓ −
∑
j∈S

πij

−∑
j∈S

αj

=f (π0)− f

π0 − πiℓ −
∑
j∈S

πij

+
∑
j∈S

(
f
(
π0 − πij

)
− f (π0)

)

≥f

π0 −
∑
j∈S

πij

− f

π0 − πiℓ −
∑
j∈S

πij


≥f (π0)− f (π0 − πiℓ) ,

which proves the statement.

In practice, when cutting off a fractional solution (x̃, p̃, z̃) ∈ PROB with a
lifted recycled inequality, we again drop all variables xi from the inequality with
πi > 0 and ĉix̃i > p̃i, as these negatively impact the violation of the recycled
inequality. We do this before lifting the variables xi with πi < 0, as doing
so restricts the lifting problem RLP, and thus yields potentially better lifting
coefficients.

Note that we require π0 ≥ 0 in the above proposition, as a negative coeffi-
cient of the unbounded variable z would imply infinite lifting coefficients α for
obtaining a valid inequality. Hence, if the original inequality has π0 < 0, we first
have to estimate some πixi ≥ πi with πi < 0 to obtain a non-negative right-
hand side. This raises the question of which variables should be estimated and
which should be lifted. Moreover, even if π0 ≥ 0 holds, it is reasonable to check
whether lifting or estimating a variable yields a higher violation. For example,
when cutting off a fractional solution (x̃, p̃, z̃) with z̃ = 0, we obtain a higher
violation by estimating xiπi ≥ πi and recycling

∑
i∈S+ πixi ≤ π0 −

∑
i∈S+ πi,

as the higher coefficient of z in the recycled inequality is irrelevant in this case.
Contrary to that, if z̃ > 0 and x̃i = 0 hold, then it is preferable to lift xi.

Since we add αix̃i to the violation when lifting and πiz̃ when estimating,
we want to lift those variables with αix̃i > πiz̃. However, when we decide to
estimate πixi ≥ πi for i ∈ S ⊆ [n], we obtain a new inequality with a greater
right-hand side π0 −

∑
i∈S πi, which influences the lifting coefficients αj (S) =

f
(
π0 −

∑
i∈S πi

)
−f

(
π0 −

∑
i∈S πi − πj

)
of the other variables xj , and thus our

lifting decision. Let {i1, . . . , ik} = {i ∈ [n]|πi < 0} such that x̃i1 ≥ · · · ≥ x̃ik .
Since variables with higher solution values x̃i are less preferable for lifting, it is
reasonable to assume that a good decision for S consists of variables xi1 , . . . , xij

for some j ∈ [k]. Therefore, we first set S = ∅ and assume that all variables will
be lifted. Afterwards, we greedily decide for i ∈ {i1, . . . , ik} whether xi should
better not be lifted and instead added to S. For this, we check whether

πiz̃ +
∑

j∈{i1,...,ik}\(S∪{i})

αj (S ∪ {i}) x̃j ≥
∑

j∈{i1,...,ik}\S

αj (S) x̃j
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holds, i.e., whether the change of the violation is positive when not lifting xi.
Note that the values αj (S ∪ {i}) can be updated efficiently from αj (S) by
greedily extending the solutions of the corresponding fractional knapsack prob-
lems.

We use this approach in the following computational study, which shows the
practical relevance of recycling in general and also indicates the potential of
partially recycling.

6 Computational Study

In this section, we assess the performance of recycled inequalities computation-
ally. We first discuss numerical pitfalls that can occur in practice when using
recycled inequalities and present a remedy for these. Afterwards, we lay out our
methodology for measuring an algorithm’s performance. Using this methodol-
ogy, we test different aspects of recycling inequalities for different classes of
robust combinatorial optimization problems.

With the study of the robust independent set problem in Section 6.3, we
examine the contribution of recycling problem specific cuts. For this, we heuris-
tically separate recycled clique inequalities, which are always facet-defining for
the robust problem (cf. Section 3). In Section 6.4, we test the recycling of model
constraints for the robust bipartite matching problem. Since the standard for-
mulation of the nominal version consists exclusively of recyclable inequalities
and also describes the convex hull CNOM, every non-dominated recycled in-
equality corresponds to a model constraint (cf. Corollary 2). In Section 6.5,
we consider the robust bipartite matching problem with penalties, in which we
allow the violation of matching constraints at the cost of a penalty. Using the
new model constraints, which are no longer recyclable, we test the partially
recycling of non-recyclable inequalities.

After considering the combinatorial problems above, we evaluate the practi-
cal relevance of recycling on a broad set of robustified real world instances from
the MIPLIB 2017 [20], which have been used for benchmarking in [14]. For these
instances, we also test the generic approach of separating recycled inequalities
via solving SLP.

All algorithms have been implemented in Java 11 and are performed on
a single core of a Linux machine with an Intel® CoreTM i7-5930K CPU @
3.50GHz, with 4 GB RAM reserved for each calculation. All LPs and MILPs
are solved using Gurobi version 9.5.0 [23] in single thread mode and all other
settings at default. Furthermore, we use a time limit of 3600 seconds for each
algorithm and instance.

All implemented algorithms [18] and generated test instances [19] are freely
available online.
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6.1 Dealing with Numerical Issues

MILP solvers relying on numeric arithmetic have to face the threat of nu-
merical instability, leading to inconsistent results. One source of numerical
instability is a constraint matrix Ax ≤ b with a high range in the order of
magnitude of coefficients aij , e.g., with a11 = 10−4 and a12 = 1010. E.g.,
Gurobi recommends that the range of coefficients in the constraint matrix
should be within six orders of magnitude [22]. In the case of recycled inequal-
ities π0z +

∑
i∈[n] πipi ≥

∑
i∈[n] πiĉixi, the coefficients πiĉi on the right-hand

side might violate this desirable property if ĉi and πi are simultaneously very
large or very small. As a consequence, we observed for three instances in our
computational study on the MIPLIB that sub-optimal solutions were reported
as optimal. To tackle this problem, we scale the deviations ĉi as well as the
variables p, z in an attempt to reduce the range of coefficients in the recycled
inequalities. Let ĉmax = max {ĉ1, . . . , ĉn} and ĉmin = min {ĉi|ĉi > 0} be the
maximum and minimum (proper) deviations. If ĉmax is very large and ĉmin

simultaneously very small, then our problem is predisposed to be numerically
unstable anyway. However, if both are either very large or very small, then we
can scale the deviations such that ĉmax and ĉmin are closer to one. For this,
we divide all deviations ĉi by λ =

√
ĉmaxĉmin. This implies ĉmax

λ
ĉmin

λ = 1, i.e.,
the scaled maximum and minimum deviation have the same distance to one in
orders of magnitudes. To compensate this change, we multiply z and p in the
objective function with λ. Thus, our new problem, which is equivalent to ROB,
reads

min λΓz +
∑
i∈[n]

(cixi + λpi)

s.t. Ax ≤ b

pi + z ≥ ĉi
λ
xi ∀i ∈ [n]

x ∈ {0, 1}n , p ∈ Rn
≥0, z ∈ R≥0

and the recycled inequalities are

π0z +
∑
i∈[n]

πipi ≥
∑
i∈[n]

πi
ĉi
λ
xi.

This small change resolves the observed issues for the MIPLIB instances. For
comparability, we will always use the scaled problem when solving ROB. How-
ever, for the sake of simplicity, we will only write down the non-scaled problem
in the following sections.

6.2 Performance Indicators

Rating the performance of generic algorithms is not trivial, as different use
cases imply different requirements for an algorithm. While we aim to find an

27



optimal solution as fast as possible for some practical problems, it is important
to find a good solution within seconds for other problems. Therefore, we need
performance indicators that appropriately reflect the spectrum of use cases.

To reflect the aim of solving problems as fast as possible to optimality, we
consider the elapsed time required to solve an instance. As it is standard in the
literature, we set the elapsed time to the time limit in case an algorithm is not
able to solve an instance within this limit. Note that this favors algorithms that
often hit the time limit.

In addition, we use the primal-dual integral, which was proposed by Berthold [8]
with the aim that this metric “reflects the development of the solution quality
over the complete optimization process”. The primal-dual integral is defined
to be the integral of the gap between the current primal and dual bound for
each point in time. Since the optimality gap, as reported by, e.g., Gurobi, is in
general not bounded and at the start even infinite, the primal-dual integral is
defined over an adapted gap. Let v (t) be the primal bound and v (t) be the dual
bound at time step t, with v (t) =∞ or v (t) = −∞ respectively if no bound is
known. We define the step function

g (t) =


1, if v (t) =∞ or v (t) = −∞ or v (t) · v (t) < 0,

0, if v (t) = v (t) ,
v(t)−v(t)

max{|v(t)|,|v(t)|} , else,

with respect to the piecewise constant bounds v (t) , v (t), for which we can easily
compute the primal-dual integral

G(T ) =

∫ T ′

t=0

g (t) d t,

with T ′ being the time at which the algorithm is terminated or finishes. The
primal-dual integral reflects improvements of the gap over the whole computa-
tion process, and is thus a reasonable additional performance indicator alongside
the computation time.

Since displaying our performance indicators for all algorithms and instances
is impractical, we give aggregate values using the shifted geometric mean, as

proposed by Achterberg [1]. This is defined as
(
Πk

i=1 (vi + s)
1/k
)
− s for values

v1, . . . , vk ∈ R≥0 and a shifting parameter s ∈ R≥0. In the following, we always
use s = 1 second for computation times and s = 100% for primal-dual integrals,
which corresponds to the integral of one second at maximum gap. Besides
computation times and primal-dual integrals, we will also report integrality
gaps to compare the strength of the linear relaxation with and without recycled
inequalities. For aggregating these, we use the shifted geometric mean with
s = 1%.

6.3 Robust Independent Set

To show the effect of recycling a class of well-known valid inequalities in a
separation procedure, we consider the robust maximum weighted independent
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set problem on a graph G with nodes V and edges E. The robust counterpart
of the standard formulation with edge constraints xv + xw ≤ 1 for {v, w} ∈ E
reads

max
∑
v∈V

cvxv −

(
Γz +

∑
v∈V

pv

)
s.t. xv + xw ≤ 1 ∀ {v, w} ∈ E

pv + z ≥ ĉvxv ∀v ∈ V

x ∈ {0, 1}V , p ∈ RV
≥0, z ∈ R≥0.

As seen in Section 3, recycling a clique inequality
∑

v∈Q xv ≤ 1 yields a facet-
defining inequality for all cliques Q ⊆ V . We compare the separation of recycled
clique inequalities in the root node of the branching tree against the robust
default formulation PROB, which solely uses the constraints pi + z ≥ ĉixi. For
this, we use Gurobi’s callback to add the recycled inequalities as user cuts [23].
Every time Gurobi invokes the callback in the root node and reports a current
optimal fractional solution (x̃, p̃, z̃) ∈ PROB, we heuristically separate cliques
Q ⊆ V for which the recycled inequality z+

∑
v∈Q pv ≥

∑
v∈Q ĉvxv is violated.

We do so as in Section 4.2, that is, we heuristically solve maximum weighted
clique problems on the graph G = (V,E) with weights ĉvx̃v − p̃v. To separate
many recycled inequalities at once, we extend each node v ∈ V with ĉvx̃v− p̃v >
0 greedily to a clique Qv ⊆ V with v ∈ Qv. For this, we start with Qv = {v}
and then iteratively add v′ ∈ N (Qv) such that ĉv′ x̃v′ − p̃v′ is maximal and non-
negative. Finally, we return the corresponding recycled inequality to Gurobi as
a user cut if its violation is positive.

As a basis for our instances, we use the graphs of the second DIMACS
implementation challenge on the clique problem [25]. Of the 66 DIMACS graphs,
we choose the 46 graphs that have at most 500 nodes, as otherwise the nominal
problem is already very hard. For each node v ∈ V , we generate independent and
uniformly distributed values cv ∈ {900, . . . , 1000} and correlated deviations ĉv =
⌈ξvcv⌉, with ξv ∈ [0.45, 0.55] being an independent and uniformly distributed
random variable. Since robust problems tend to be hard for Γ being somewhere
around half the number of variables with xi = 1 [14], we greedily compute a

maximal independent set S ⊆ V and define Γ =
⌊
|S|
2

⌋
. Using this procedure,

we randomly generate five robust independent set problems for each of the 46
DIMACS graphs, leaving us with 230 robust instances.

We show computational results for the default formulation and the recycling
of clique inequalities in Table 1. Here, we see that the shifted geometric mean
of the integrality gaps is reduced absolutely by roughly 220% from 1427.09%
to 1206.91% when using recycled clique inequalities. For computing these gaps,
we use the dual bound obtained by heuristically separating recycled clique in-
equalities for subsequent linear relaxations until no violated inequalities are
found. While the absolute reduction of the integrality gap is quite impressive,
the relative reduction does not adequately reflect the strength of the recycled
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Figure 1: Proportion of instances whose integrality gap has been reduced by at
least a specific percentage relative to the clique formulation without recycling.

inequalities. This is due to the large integrality gap of the nominal problem,
which constitutes a major part of the total gap. Therefore, we also test an
additional formulation for the nominal problem, in which we replace every con-
straint xv + xw ≤ 1 for an edge {v, w} ∈ E with a constraint

∑
v∈Q xv ≤ 1 for

a clique Q ⊆ V with {v, w} ⊆ Q. This clique formulation has a much tighter
linear relaxation compared to the previous edge formulation, and thus reduces
the contribution of the nominal problem to the integrality gap. Indeed, Table 1
shows that separating recycled clique inequalities reduces the integrality gap by
more than half when using the clique formulation. Figure 1 gives a more detailed
view of the improvement, by showing for how many instances the integrality gap
is reduced by at least a specific percentage. Here, we see that recycling cliques
reduces the integrality gap by at least 30% for more than 50% of all instances.
Moreover, we have a reduction of 90% for almost 20% of the instances.

Apart from the analysis of the integrality gap, the clique formulation is not
of practical interest, as Gurobi seems to be better trained on the edge formula-
tion. Table 1 shows for the edge formulation that we solve one more instance
when recycling clique inequalities, but have an increase in the computation time
and the primal-dual integral. This seems to be due to some interference with
Gurobi’s own cutting planes. When disabling Gurobi’s cutting planes, recycling
is much better than using the default formulation, as it approximately halves

Default Formulation Separate Recycled Clique Inequalities

formulation GCuts timeout time integral int Gap timeout time integral int Gap

edge
enable 22 26.13 14.12

1427.09%
21 33.22 16.99

1206.91%
disable 42 51.23 22.91 20 20.93 11.72

clique
enable 61 116.13 67.66

135.50%
64 135.15 77.06

56.49%
disable 74 168.47 83.30 53 82.07 49.97

Table 1: Computational results for 230 instances of the robust maximum
weighted independent set problem. We use different nominal formulations and
test with Gurobi’s own cuts enabled or disabled.
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Figure 2: Performance indicators when using the edge formulation.

the computation time and the primal-dual integral. In fact, disabling Gurobi’s
cuts and using recycled clique inequalities is the overall best performing ap-
proach, solving the most instances in the least amount of computation time.
This is supported by Figures 2a and 2b. While both recycling approaches and
the default solve 75% of all instances within a similar time and have a similar
primal-dual integral, especially the recycling approach without Gurobi’s cuts
performs better on the harder instances.

6.4 Robust Bipartite Matching

To study the recycling of model constraints, we now consider the robust maxi-
mum weighted matching problem

max
∑
e∈E

cexe −

(
Γz +

∑
e∈E

pe

)
s.t.

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

pe + z ≥ ĉexe ∀e ∈ E

x ∈ {0, 1}E , p ∈ RE
≥0, z ∈ R≥0

on a bipartite graph with nodes V and edges E. As mentioned above, the
bipartite matching problem has the interesting property that the constraints∑

e∈δ(v) xe ≤ 1 for v ∈ V and 0 ≤ xe for e ∈ E already define the convex hull

of the nominal problem [15]. Moreover, since all constraints are recyclable, the
properties from Corollary 2 are fulfilled, which allows for an exact separation of
recycled inequalities in linear time, and thus enables us to test their strength to
the limit.

We randomly generate instances by first dividing a given set of nodes V = [n]
into two partitions U =

[⌈
n
2

⌉]
and W =

{⌈
n
2

⌉
+ 1, . . . , n

}
. Afterwards, we sam-
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Default Formulation Recycle Constraints Recycle Constraints + Separate Exactly

nodes GCuts timeout time integral int Gap timeout time integral int Gap timeout time integral int Gap

50
enable 0 1.73 0.04

19.532%
0 0.48 0.04

0.326%
0 0.77 0.04

0.319%
disable 10 3600.00 192.48 0 0.25 0.05 0 0.35 0.05

100
enable 9 2269.14 3.49

22.820%
0 4.50 0.16

0.319%
0 6.28 0.17

0.316%
disable 10 3600.00 550.96 0 15.16 0.21 0 16.26 0.20

150
enable 7 2223.68 2.56

23.660%
0 150.40 0.59

0.269%
0 168.12 0.61

0.265%
disable 10 3600.00 635.91 6 1887.56 2.51 8 1960.65 2.65

Table 2: Computational results for the robust maximum weighted bipartite
matching problem. We generate ten instances per number of nodes and test
with Gurobi’s own cuts enabled or disabled.

ple for each node u ∈ U a random number ϕu ∈ [0, 1], modeling the probability
with which an edge incident to u exists. Then for every w ∈ W , we add the
edge {u,w} with probability ϕu. Given the constructed graph, we generate
weights ce and deviations ĉe analogously to the independent set problem. Every
weight is a random number ce ∈ {900, . . . , 1000} and the correlated deviations
are ĉe = ⌈ξece⌉ with ξe ∈ [0.45, 0.55]. Finally, as the number of edges in a
solution will most likely be near to n

2 , we set Γ =
⌊
n
4

⌋
. We use this procedure

to generate ten instances for different numbers of nodes n ∈ {50, 100, 150}.
Table 2 shows computational results for the robust default formulation and

two different approaches for using recycled inequalities. The first approach recy-
cles all constraints

∑
e∈δ(v) xe ≤ 1 for v ∈ V . The second approach additionally

separates violated inequalities
∑

e∈E′ xe ≤ 1 with E′ ⊆ δ (v) for v ∈ V in the
root node of the branch and bound tree.

It is evident that recycling inequalities is significantly better than solely using
the default formulation. We observe a significant strengthening of the formula-
tion, leading to a reduction of the integrality gap to nearly one-hundredth for
n = 150 nodes. This strength also translates to a higher number of instances
solved and much lower computation times. For n = 150 with Gurobi’s cuts
enabled, recycling constraints leads to a reduction of the computation time by
93%. Still, the primal-dual integral is quite low for the default formulation,
suggesting that the solver is very close to optimality from the beginning. This
changes once we disable Gurobi’s cuts. In this case, we are not even able to solve
any instance with the default formulation. Furthermore, the primal-dual inte-
gral for the default formulation is 253-times as large as the one for the recycling
of constraints.

The recycling of dominated inequalities
∑

e∈E′ xe ≤ 1 compared to the sole
recycling of constraints

∑
e∈δ(v) xe ≤ 1 yields an improvement of the integrality

gap. However, as the recycled constraints already perform very well for these
instances, the improvement in the linear relaxation is very small. In fact, the
minor strengthening of the linear relaxation cannot compensate for the com-
putational load imposed by the additional inequalities, which leads to higher
computation times. Our study on the MIPLIB instances will reveal that recy-
cling dominated inequalities can have a much greater effect on the integrality
gap, and thus lead to lower computation times.
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6.5 Robust Bipartite Matching with Penalties

Until now, we only considered problems for which all valid inequalities are re-
cyclable. In order to test our approach of partially recycling from Section 5, we
alter the bipartite matching problems from above such that none of the con-
straints is recyclable. To this end, we allow a solution to match each node v ∈ V
up to two times. However, when matching v more than once, we have to pay a
penalty cv > 0. This yields the following robust problem

max
∑
e∈E

cexe −
∑
v∈V

cvyv −

(
Γz +

∑
e∈E

pe

)
s.t.

∑
e∈δ(v)

xe − yv ≤ 1 ∀v ∈ V

pe + z ≥ ĉexe ∀e ∈ E

x ∈ {0, 1}E , y ∈ {0, 1}V , p ∈ RE
≥0, z ∈ R≥0,

where yv = 1 is chosen if node v is matched twice. We use the same graphs
and parameters as in the previous section, together with random penalties
cv ∈ {450, . . . , 500}, which is on average half the value ce ∈ {900, . . . , 1000}
of the edge e ∈ E. Note that we do not consider uncertainties on the penalty
coefficients.

Table 3 shows computational results for the robust default formulation as
well as the separation of recycled inequalities via estimating

∑
e∈δ(v) xe ≤ 2,

as in Section 4.1, and the separation of partially recycled inequalities, as in
Section 5. Again, we only separate within the root node of the branch and
bound tree.

The separation of recycled inequalities via estimation still significantly im-
proves the formulation, cutting the integrality gap in half. However, the effect
is clearly weaker compared to the improvement for the original matching prob-
lem. The partially recycling approach is considerably stronger, reducing the
integrality gap to one-tenth. This is despite the fact that approximately three-
fourths of the variables to be fixed and lifted yv are actually equal to 1 in the
computed solutions. Considering that the partially recycled inequalities are es-
pecially strong when the lifted variables are zero, this shows that the approach
can be very effective.

Default Formulation Separate Estimated Separate Partially Recycled

nodes GCuts timeout time integral int Gap timeout time integral int Gap timeout time integral int Gap

50
enable 0 65.67 0.35

18.14%
0 67.20 0.37

10.58%
0 27.07 0.17

1.67%
disable 10 3600.00 289.70 9 2907.91 72.20 0 127.79 0.48

100
enable 10 3600.00 17.79

20.89%
10 3600.00 17.73

11.02%
10 3600.00 13.84

2.02%
disable 10 3600.00 524.65 10 3600.00 252.57 10 3600.00 35.51

150
enable 10 3600.00 28.15

20.80%
10 3600.00 27.00

9.81%
10 3600.00 21.27

2.03%
disable 10 3600.00 575.09 10 3600.00 267.58 10 3600.00 45.15

Table 3: Computational results for the robust maximum weighted bipartite
matching with penalties problem. We generate ten instances per number of
nodes and test with Gurobi’s own cuts enabled or disabled.
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Even with the partially recycling procedure, the matching with penalties is
apparently much harder to solve. Since all approaches always hit the time limit
for n ∈ {100, 150}, we cannot compare computation times. However, we still see
that the partially recycling results in significantly smaller primal-dual integrals
compared to the other approaches, especially when Gurobi’s cuts are disabled.

6.6 MIPLIB

So far, we have seen that, given the right setting, recycling inequalities can
have a significant impact on the strength of the formulation, and thus on the
computational performance. To evaluate the use of recycled inequalities for
practical instances, we also perform tests on a broad set of robust instances that
have been generated in [14]. The test set contains 804 robust instances based
on 67 nominal benchmark instances from MIPLIB 2017 [20]. For each nominal
instance, 12 robust instances were generated by combining three different ranges
of deviations and four different values for Γ.

We consider four different approaches for integrating recycled inequalities in
the optimization process. Note that we don’t have any insight into the struc-
ture of the nominal problems of our test instances, and thus we only recycle
inequalities in a generic fashion based on the constraints in Ax ≤ b. Our first
two approaches are as described in Section 4.1. We call the approach in which
we directly add recycled constraints to the default formulation Recycle Con-
straints (short: RecCons). The second approach, in which we separate recycled
constraints in the root node of the branch and bound tree, is called Separate
Recycled Constraints (short: SepCons). For the third approach, we first sepa-
rate recycled constraints as for SepCons. If this separation is unsuccessful, we
solve SLP for a more refined separation of violated recycled inequalities. We call
this approach Separate LP (short: SepLP). The fourth approach is as SepCons,
but we also consider non-recyclable constraints as in Section 5. We call this
approach Separate Partially Recycled (short: SepPart).

Default Formulation Recycle Constraints Separate Recycled Constraints

instances GCuts timeout time integral int Gap timeout time integral int Gap timeout time integral int Gap

all
enable 348 226.52 35.35

15.90%
333 198.96 35.95

8.61%
309 193.73 31.97

7.95%
disable 497 670.46 99.48 394 368.22 51.14 409 395.64 51.69

affected
enable 273 303.21 47.59

24.64%
254 252.93 45.17

11.15%
235 246.43 41.63

10.06%
disable 398 842.92 147.33 295 377.53 60.50 311 416.77 61.85

Separate LP Separate Partially Recycled

instances GCuts timeout time integral int Gap timeout time integral int Gap

all
enable 308 199.98 33.16

7.07%
316 195.52 32.33

7.94%
disable 403 405.32 52.97 408 400.17 52.53

affected
enable 234 251.90 42.65

8.65%
242 247.79 41.99

10.05%
disable 305 425.30 62.88 310 423.35 63.24

Table 4: Computational results for robustified MIPLIB instances. We test with
Gurobi’s own cuts enabled or disabled and show results aggregated for all 804
instances as well as only the 608 on which at least one recycling approach had
an effect.
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Figure 3: Proportion of the affected instances whose integrality gap has been
reduced by at least a specific percentage relative to the default formulation.

Table 4 shows computational results for the four recycling approaches and
the default formulation. As for the combinatorial problems in the last sections,
recycling inequalities is very effective when Gurobi’s cuts are disabled. In this
setting, the recycling approaches require between 39% and 45% less time in the
shifted geometric mean of the computation time over all instances. When only
considering the affected instances, that are the instances for which at least one
of the recycling approaches provides a better integrality gap compared to the
default formulation, the speed-up is even higher. Out of the 804 instances in
our test set, 608 were affected by recycling. For these, the recycling approaches
require between 49% and 55% less time, which clearly highlights the practical
potential of recycling inequalities.

This performance boost is due to the substantially strengthened linear re-
laxations. RecCons already cuts the integrality gap nearly in half, from 15.90%
to 8.61%. SepCons yields an even better integrality gap, since we also recycle
dominated inequalities in this approach. Note that the relative improvement
of the integrality gap using SepCons is much larger compared to our obser-
vations for the robust bipartite matching problem. We deduce from this that
considering dominated inequalities is more important when the coefficients in
the constraints are not all the same, as in Example 2 in contrast to the matching
problem.

SepPart yields nearly no improvement of the integrality gap compared to
SepCons. While we were able to prove the great potential of this approach for
the matching with penalties, the considered instances of the MIPLIB apparently
don’t contain many constraints of the necessary structure with both positive and
negative coefficients on the left-hand side.

In contrast, SepLP yields another substantial improvement down to 7.07%.
In comparison with the integrality gap of the default formulation, this is a
relative reduction of 55% in the shifted geometric mean over all instances. When
only considering the affected instances, we even see an improvement from 24.64%
to 8.65%, which is a relative reduction of 65%.

To get a better picture of the improvement on the affected instances, we show
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in Figure 3 for how many of these the integrality gap is reduced by at least a
specific percentage. Note that SepCons and SepPart have nearly identical lines,
as they mostly compute the same cuts for these instances.

Of the 608 affected instances, RecCons, SepCons, and SepPart close the in-
tegrality gap completely for 19 and SepLP even for 20 instances. Interestingly,
this includes not only instances with a low default integrality gap, but 10 in-
stances with a default gap of more than 10%, of which one is even 59, 756%.
Moreover, these 10 instances are based on 6 different nominal instances from
the MIPLIB 2017. That is, for nearly every eleventh nominal instance, there
is at least one corresponding robust instance for which we close the integrality
gap completely.

In addition to these extreme cases, we see that SepLP is able to halve the
integrality gap for 49% of the instances. Furthermore, SepLP achieves a re-
duction for some problems on which RecCons, SepCons, and SepPart have no
effect. This gives hope that practitioners with a good understanding of their
problem might be able to benefit from problem specific fast separations of re-
cycled inequalities that don’t correspond directly to the constraints Ax ≤ b.

The strong linear relaxations also translate to an improved performance
when Gurobi’s cuts are enabled, with all recycling approaches solving more in-
stances in shorter time. Table 4 shows that SepCons has the lowest shifted
geometric mean for the computation time and primal-dual integral. Compared
to the default formulation, the computation times are 14.5% lower for all in-
stances and 18.7% for the affected ones. Moreover, the lower primal-dual integral
implies that separating recycled constraints usually improves the performance
across the whole optimization process. SepLP solves one instance more, but is on
average slightly slower than SepCons. This is because the overhead of handling
and solving SLP only pays off for specific instances. SepPart performs worse
than SepCons, as both compute almost the same cuts, with SepPart requiring
more time doing so. RecCons is on average clearly slower compared to the
other recycling approaches because many of the added recycled constraints are
actually uninteresting for strengthening the linear relaxation, and thus impose
unnecessary computational load due to the bigger constraint matrix. Neverthe-
less, we will see in the following that RecCons can actually be very useful in
practice.

Just like for the integrality gap, Figure 4 shows the distribution of perfor-
mance indicators. Figures 4a and 4b display for each approach the proportion
of affected instances that were solved within a given number of seconds and
whose primal-dual integral is below a specific value. We see that the line for
SepCons is almost always above the line for Default. Although the difference
in the primal-dual integral appears to be small, a paired Wilcoxon signed-rank
test [33] reveals for both, the computation time and the primal-dual integral,
that the improvement of SepCons is significant with a confidence level above
99%.

Figures 4c and 4d display the performance indicators of our recycling ap-
proaches relative to the default formulation. In Figure 4c, we see that all recy-
cling approaches are 8-times as fast for roughly 5%, while requiring 8-times as
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(a) Proportion of instances solved within a
specific number of seconds.
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(b) Proportion of instances for which the
primal-dual integral is at most a specific value.
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(c) Proportion of instances whose computa-
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Figure 4: Performance indicators for the set of affected instances.
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much time for only 0.5% of the instances. The most balanced of all approaches
is SepCons, which is 2-times as fast for 9.5% and halve as fast for 3.3% of the
instances. Similar observations can be made for the primal-dual integral in Fig-
ure 4d. However, the most interesting observation about Figure 4c and 4d is
that RecCons’ and SepLP’s performance is quite extreme. Regarding compu-
tation time and primal-dual integral, both approaches perform badly for more
instances than SepCons, but the number of instances on which they perform very
well is also higher. This is no surprise for SepLP, as we already observed above
that the higher effort in separating cuts pays off for some specific instances. For
RecCons, we see that, given the proper problem structure, recycling constraints
directly is not only the most easy approach, but also very efficient. This is
good news for the practical use of recycled inequalities, as practitioners will
often know whether their optimization problem contains promising recyclable
constraints, like clique constraints or almost binding capacity restrictions, that
are worth recycling. Recycling precisely these constraints, and not all as we do
here for RecCons, might result in a good speed-up for the respective problem.
In comparison to SepCons, this yields the advantage that the added recycled
inequalities are present from the beginning of the optimization process, which is
beneficial because the solver can use the additional information for preprocess-
ing. When integrated into a general robust optimization solver, some further
engineering might enable us to combine the stable performance of SepCons with
the performance peaks of RecCons. In any case, we have seen that recycling
inequalities can help to

7 Conclusions

In this paper, we proposed and analyzed recycled inequalities for robust combi-
natorial optimization problems with budget uncertainty. Given a valid knapsack
inequality for the nominal problem, the corresponding recycled inequality can
be derived in linear time, which gives the possibility to reuse model-constraints
and well known classes of valid inequalities in order to strengthen the linear re-
laxation of the robust problem. We highlighted the theoretical strength of such
recycled inequalities by proving that they often define facets of the convex hull
of the robust problem, even when the underlying valid inequality is dominated.

To make recycled inequalities usable in practice, we discussed different sep-
aration procedures that either depend on separation algorithms for classical
cutting planes or simply work on the constraint matrix in a generic fashion.
One of these separation procedures even implies that recycled inequalities can
be separated exactly in polynomial time if the convex hull of the nominal prob-
lem is known. Furthermore, we showed that inequalities that are not of the
knapsack type can be partially recycled on a restricted solution space and lifted
afterwards to obtain a valid inequality for the robust problem.

To test the strength of recycled inequalities and the practicability of their
separation, we conducted an extensive computational study on robust versions
of three classes of combinatorial problems and a set of nominal benchmark in-
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stances. Our experiments show that recycled inequalities are not only interesting
from a theoretical point of view, but can also yield a substantial speed-up in
the optimization process.

For future research, it would be interesting to further analyze the recycling
of non-knapsack inequalities and evaluate whether one can obtain facet-defining
robust inequalities from specific classes of nominal inequalities. Furthermore,
the effect of recycling should be tested for robust problems with uncertain con-
straints.

Statements and Declarations

Funding This work was partially supported by the German Federal Ministry
of Education and Research (grants no. 05M16PAA) within the project
“HealthFaCT - Health: Facility Location, Covering and Transport”, the
Freigeist-Fellowship of the Volkswagen Stiftung, and the German research
council (DFG) Research Training Group 2236 UnRAVeL.

Competing Interests The authors declare that they have no competing in-
terests.
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Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano.
MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Pro-
gramming Library. Mathematical Programming Computation, 2021.

[21] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Sequence
independent lifting in mixed integer programming. Journal of Combinato-
rial Optimization, 4:109–129, 2000.

[22] Gurobi Optimization, LLC. Advanced user scaling. https://www.gurobi.
com/documentation/9.5/refman/advanced_user_scaling.html. Ac-
cessed: 2022-09-27.

[23] Gurobi Optimization, LLC. Gurobi optimizer reference manual, version
9.5, 2022.

[24] Christoph Hansknecht, Alexander Richter, and Sebastian Stiller. Fast
robust shortest path computations. In 18th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2018), volume 65 of OpenAccess Series in Informatics (OA-
SIcs), pages 5:1–5:21, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[25] David S Johnson and Michael A Trick. Cliques, coloring, and satisfia-
bility: second DIMACS implementation challenge, October 11-13, 1993,
volume 26. American Mathematical Soc., USA, 1996.

[26] Seulgi Joung and Sungsoo Park. Robust mixed 0-1 programming and sub-
modularity. INFORMS Journal on Optimization, 3(2):183–199, 2021.

[27] P Kouvelis and G Yu. Robust discrete optimization and its applications.
Springer, USA, 1997.

[28] Taehan Lee and Changhyun Kwon. A short note on the robust combinato-
rial optimization problems with cardinality constrained uncertainty. 4OR,
12(4):373–378, 2014.

[29] Manfred W Padberg. On the facial structure of set packing polyhedra.
Mathematical programming, 5(1):199–215, 1973.

[30] Kyungchul Park and Kyungsik Lee. A note on robust combinatorial
optimization problem. Management Science and Financial Engineering,
13(1):115–119, 2007.

41

https://www.gurobi.com/documentation/9.5/refman/advanced_user_scaling.html
https://www.gurobi.com/documentation/9.5/refman/advanced_user_scaling.html


[31] Hanif D Sherali and Warren P Adams. A reformulation-linearization tech-
nique for solving discrete and continuous nonconvex problems, volume 31.
Springer, New York, 2013.

[32] Allen L Soyster. Convex programming with set-inclusive constraints
and applications to inexact linear programming. Operations Research,
21(5):1154–1157, 1973.

[33] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics,
1(6):80–83, 1945.

[34] Laurence A Wolsey. Facets and strong valid inequalities for integer pro-
grams. Operations research, 24(2):367–372, 1976.

[35] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial
optimization, volume 55. John Wiley & Sons, 1999.

[36] Eitan Zemel. Lifting the facets of zero–one polytopes. Mathematical Pro-
gramming, 15:268–277, 1978.

42


	Introduction
	Recycling Valid Inequalities
	Facet-Defining Recycled Inequalities
	Separating Recycled Inequalities
	Separation of Recycled Constraints
	Separation of Recycled Cuts
	Exact Separation via Recycling Combined Constraints

	Partially Recycling of Non-Recyclable Inequalities
	Computational Study
	Dealing with Numerical Issues
	Performance Indicators
	Robust Independent Set
	Robust Bipartite Matching
	Robust Bipartite Matching with Penalties
	MIPLIB

	Conclusions

