
Mixed-Integer Programming for a Class of Robust Submodular Maximization
Problems

Hsin-Yi Huang1, Hao-Hsiang Wu1

Department of Management Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
huanghsinyi.mg08@nycu.edu.tw, hhwu2@nycu.edu.tw

Simge Küçükyavuz2
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Abstract: We consider robust submodular maximization problems (RSMs), where given a set of m monotone
submodular objective functions, the robustness is with respect to the worst-case (scaled) objective function. The
model we consider generalizes two variants of robust submodular maximization problems in the literature, depending
on the choice of the scaling vector. On one hand, by using unit scaling, we obtain a usual robust submodular
maximization problem. On the other hand, by letting the scaling vector be the optimal objective function of each
individual (NP-hard) submodular maximization problem, we obtain a second variant. While the robust version of
the objective is no longer submodular, we reformulate the problem by exploiting the submodularity of each function.
We conduct a polyhedral study of the resulting formulation and provide conditions under which the submodular
inequalities are facet-defining for a key mixed-integer set. We investigate several strategies for incorporating these
inequalities within a delayed cut generation framework to solve the problem exactly. For the second variant, we
provide an algorithm to obtain a feasible solution along with its optimality gap. We apply the proposed methods
to a sensor placement optimization problem in water distribution networks using real-world datasets to demonstrate
the effectiveness of the methods.
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1. Introduction We study two variants of robust submodular maximization problems (RSMs) con-

sidered in Krause et al. (2008b) and He and Kempe (2016), where the robustness is with respect to the

worst case of a finite number of (scaled) submodular functions. Specifically, let V = {1, . . . , n} be a finite

non-empty ground set, where n ∈ N. Let [m] = {1, . . . ,m} be the set of the first m ∈ N positive integers.

For all i ∈ [m], a function fi : 2
V → R is submodular if

fi(X ∪ {j})− fi(X) ≥ fi(X
′ ∪ {j})− fi(X

′) for X ′ ⊆ X ⊆ V and j ∈ V \X.

This definition of submodularity uses the concept of a marginal contribution. In particular, the term fi(X ∪
{j}) − fi(X) denotes the marginal contribution of the element j when added to the set X in function

fi, and the marginal contribution of j decreases if the set X includes more elements from the set V \ X.

Given monotonically non-decreasing submodular functions, fi, we assume, without loss of generality, that

fi(∅) = 0, i ∈ [m]. Note that, throughout the paper, we use the notation x̄ ∈ Bn and its support X̄ =

{i ∈ V : x̄i = 1}, and refer to the corresponding function evaluations fi(x̄) for x̄ ∈ Bn and fi(X̄) for the

corresponding support X̄ ⊆ V , interchangeably. Let X be a set of constraints on the binary variables x ∈ Bn.

Given a single monotone submodular set function fi(·), the traditional submodular maximization problem

is defined as

max
x∈X∩Bn

fi(x). (1)

It is well-known that submodular maximization is NP-hard.

Krause et al. (2008b) study a robust variant of Problem (1), where given m submodular functions fi :

2V → R, i ∈ [m], the objective is to maximize the worst case (minimum) of these m submodular functions,

i.e.,

max
x∈X

min
i∈[m]

fi(x). (2)

1Co-first authors ordered alphabetically.
2Corresponding author.
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In other words, Problem (2) aims to find a solution x ∈ X that is robust against the minimum possible value

given by mini∈[m] fi(x). That is, an optimal solution x∗ ∈ X ∩ Bn satisfies mini∈[m] fi(x
∗) ≥ mini∈[m] fi(x̄)

for all x̄ ∈ X ∩ Bn. Problem (2), introduced by Krause et al. (2008b), is the first robust extension of

submodular maximization, and it inspired various extensions of robustness such as He and Kempe (2016);

Bogunovic et al. (2017); Orlin et al. (2018); Staib et al. (2019); Adibi et al. (2022).

In this paper, in addition to the basic RSM Problem (2), we also consider the formulation of He and Kempe

(2016), which extends the robustness of Problem (2) to consider the performance of the robust solution in

proportion to the performance of the optimal solution for each submodular function. More precisely, let x∗
i

be an optimal solution of the i-th traditional submodular maximization problem (1). The RSM of He and

Kempe (2016) is defined as

max
x∈X∩Bn

min
i∈[m]

fi(x)

fi(x∗
i )
. (3)

For x ∈ X , the authors consider the proportion of the function value fi(x) to the largest possible function

value fi(x
∗
i ) for each i ∈ [m]. Problem (3) aims to find a solution x ∈ X that maximizes the worst

(smallest) value of these m proportions. In other words, the optimal solution x∗ of Problem (3) satisfies

mini∈[m]
fi(x

∗)
fi(x∗

i )
≥ mini∈[m]

fi(x̄)
fi(x∗

i )
for all x̄ ∈ X .

In fact, we observe that Problems (2) and (3) can be generalized as the problem

max
x∈X∩Bn

min
i∈[m]

fi(x)

αi
, (4)

where α = (α1, α2, . . . , αm) ∈ Rm
+ is a given vector of nonnegative scalars. Problem (4) is equivalent to

Problem (2) under the case α = 1. Furthermore, if we solve m submodular maximization problems and let

α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)), then Problem (3) is the same as Problem (4).

Krause et al. (2008b) review a wide range of applications of RSMs. For example, sensor placement

optimization for detecting the contamination of water networks (Krause et al., 2008a; Leskovec et al., 2007;

Krause et al., 2008b) can be modeled in the form of Problem (4). Note that for this application in critical

infrastructure we must take into account the issues of public health and security (Ostfeld et al., 2008), and

rather than a placement that optimizes an expected performance measure, we are interested in optimizing

the worst-case performance. Under public health considerations, a relevant objective concerns the population

affected by the pollutant, where either the exact number or the proportion of people far from the pollutant

is relevant. For example, functions f1(x̄) = 2 and f2(x̄) = 10 capture the exact number of individuals

protected from the outbreak by decision x̄ under m = 2 scenarios. Using the first performance measure,

f1(x̄) = 2 is the worst case of two scenarios. However, if a decision maker initially assesses an ability

to protect α1 = 2 and α2 = 20 individuals for the first and second scenarios respectively, then the second

scenario with f2(x̄)
α2

= 0.5 has the worst proportion compared to f1(x̄)
α1

= 1. A higher value of αi for all i ∈ [m]

indicates an ambition to protect more individuals in a given scenario; however, because of the limitation of

resources, the largest number of saved individuals cannot be greater than fi(x
∗
i ) for all scenarios i ∈ [m].

Therefore, it is reasonable to assume that 1 ≤ αi ≤ fi(x
∗
i ) for all i ∈ [m]. In our computational study, we

demonstrate the effectiveness of our proposed methods on this sensor placement optimization problem. The

detailed model of Krause et al. (2008a); Leskovec et al. (2007) for Problem (4) will be given in Section 3.

Previous literature on RSM focuses on a bicriteria approximation of the relaxation of Problem (2) un-

der certain constraints. Krause et al. (2008b) show that under the cardinality constraint Xc = {x :∑
i∈V xi ≤ b} and b ∈ N, there is no constant-ratio approximation algorithm for solving Problem (2)

unless NP = P. Krause et al. (2008b) propose the SATURATE algorithm that provides a solution

x̄s such that the objective value mini∈[m] fi(x̄s) ≥ maxx∈Xc∩Bn mini∈[m] fi(x), where ||x̄s||0 ≤ λsb and

λs = 1 + log(maxj∈V

∑
i∈[m] fi({j})). Powers et al. (2016) subsequently propose the GENSAT algorithm

under an assumption that the submodular maximization problem with a matroid constraint has an approx-

imation guarantee, λg. For a fixed τ ∈ R, given a β ∈ R, GENSAT provides a lower bound βτ for the
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minimal value of every fraction γ of m submodular functions, where γ ≥ λg−β
1−β and λg ∈ R is an approx-

imation guarantee based on the assumption shown in Theorem 1 of Powers et al. (2016). For the case

α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)) in Problem (4) under cardinality constraint Xc, He and Kempe (2016)

show a strong approximation hardness result that the bicriteria approximation has to select at least a factor

of ⌈b logm⌉ elements from V . Despite the hardness of solving the RSMs shown in Krause et al. (2008b); He

and Kempe (2016), our research interest is to study the mathematical structure of Problem (4). Instead of

the approximation methods, the main goal of this paper is to provide exact methods based on mixed-integer

programming and polyhedral theory to solve Problem (4), leveraging the tremendous power of mixed-integer

programming solvers in obtaining solutions to many NP-hard problems.

Numerous optimization problems involving submodularity have been investigated via a mixed–integer

programming lens, including but not limited to, submodular maximization (Nemhauser and Wolsey, 1981;

Ahmed and Atamtürk, 2011; Wu and Küçükyavuz, 2018; Yu and Ahmed, 2017; Shi et al., 2022; Coniglio

et al., 2022), submodular minimization (Yu and Küçükyavuz, 2022; 2023), conic quadratic optimization

(Gómez, 2018; Atamtürk and Gómez, 2020; 2022; Kılınç-Karzan et al., 2020), k-submodular optimization

(Yu and Küçükyavuz, 2021a;b), and chance-constrained optimization (Wu and Küçükyavuz, 2019; Kılınç-

Karzan et al., 2022; Shen and Jiang, 2023). We refer the reader to a recent tutorial (Küçükyavuz and Yu,

2023) for an overview of these approaches. Motivated by the success of these approaches in finding exact

solutions to challenging submodular optimization problems, in this paper, we also undertake a polyhedral

approach for Problem (4), which is a robust version of the submodular maximization problem (1). One

immediate challenge we face, as we will see later, is that the robust objective is no longer submodular even

if each individual function is submodular.

Robust optimization aims to deal with the worst-case over uncertain data with a broad array of applica-

tions such as finance (Ghaoui et al., 2003; Goldfarb and Iyengar, 2003; Tütüncü and Koenig, 2004), supply

chain management (Ben-Tal et al., 2005; Bertsimas and Thiele, 2006), social networks (He and Kempe, 2016;

Nannicini et al., 2019), and energy systems (Mulvey et al., 1995; Zhao and Zeng, 2012; Bertsimas et al.,

2013). We refer the reader to the survey of Kouvelis and Yu (1997); Bertsimas et al. (2011) for an overview

of various domains. There are scalable algorithms for robust convex optimization (Ben-Tal and Nemirovski,

1998; 1999; 2000), robust discrete optimization under certain uncertainty sets (Bertsimas and Sim, 2003;

2004; Atamtürk, 2006), and two-stage robust linear programming (Zhao and Zeng, 2012; Jiang et al., 2012;

Bertsimas et al., 2013; Zeng and Zhao, 2013), mainly relying on duality results of convex (or linear) programs.

However, submodular functions are neither convex nor concave, in general. Therefore these approaches are

not directly applicable for the robust submodular optimization problem we consider.

Recall that Problem (4) is a robust version of the submodular maximization problem (1). Given i ∈ [m],

Problem (1) is a class of NP-hard problems (see, e.g., Feige, 1998; Feige et al., 2011). In addition to network

optimization (Church and Velle, 1974; Kempe et al., 2003; Wu and Küçükyavuz, 2018; Fischetti et al., 2018;

Cordeau et al., 2019; Günneç et al., 2019), submodular maximization appears in other modern applications

including but not limited to public security and health (Leskovec et al., 2007; Krause et al., 2008a; Zheng

et al., 2019), computer vision (Boykov and Jolly, 2001; Jegelka and Bilmes, 2011), computational linguistics

(Lin and Bilmes, 2011), and artificial intelligence (Krause et al., 2008c; Golovin and Krause, 2011). We

refer the reader to the survey of Krause and Golovin (2012) for an overview of various application domains

of submodular optimization. There are two well-known approaches for solving Problem (1), either exactly

using delayed constraint generation approaches or approximately using the greedy method based on the

seminal results of Nemhauser and Wolsey (1981) and Nemhauser et al. (1978), respectively. The greedy

method has (1 − 1/e) optimality guarantee for monotone submodular maximization under a cardinality

constraint Xc. For a stochastic (expected value) version of Problem (1) with a finite number of scenarios,

Wu and Küçükyavuz (2018) introduce a two-stage stochastic submodular optimization model assuming that

the second-stage objective function is submodular, where a corresponding delayed constraint generation

algorithm with the submodular inequality of Nemhauser and Wolsey (1981) can be used for solving the



Huang, Wu, Küçükyavuz: MIP for a Class of Robust Submodular Maximization Problems 4

problem. The expectation of stochastic submodular functions preserves submodularity, thereby enabling the

adaptation of methods that exploit submodularity to the stochastic case.

In contrast, in this paper, we consider a robust variant of monotone submodular function maximization

(Problem (4)). There are three difficulties with solving Problem (4). First, for a given x ∈ X , the objective

mini∈[m]
fi(x)
αi

loses the submodularity property, and one cannot use the method of Nemhauser and Wolsey

(1981) directly. Second, we do not restrict ourselves to a particular type of constraint set (such as cardinality)

in X , therefore any algorithm that assumes a particular constraint structure cannot be immediately applied.

Finally, under the special caseα = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)), it is very hard to solvemNP-hard problems

within a reasonable period of an execution time limit in order to define Problem (3). To conquer these

difficulties, we provide an alternative formulation of Problem (4) that allows us to leverage the known

submodular inequalities. We then conduct a polyhedral study of the associated mixed-integer set. Finally,

for the hard special case with α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)), we provide an algorithm that obtains a

near-optimal solution equipped with an optimality gap.

The contributions and the outline of this paper are summarized as follows. In Section 2, we review an

alternative piecewise-linear reformulation of Problem (4), which enables the use of the submodular inequali-

ties of Nemhauser and Wolsey (1981). We conduct a polyhedral analysis of the associated mixed-integer set

given by the alternative formulation and propose a facet-defining condition for the submodular inequalities.

For the special case of Problem (3), we propose a method to estimate the optimality gap of the problem if

it is too time-consuming to obtain the optimal value of αi = fi(x
∗
i ) for all i ∈ [m]. Based on these analyses,

we investigate several computational strategies and propose a delayed constraint generation algorithm for

Problem (4). Finally, in Section 3, we demonstrate the proposed methods on a sensor placement optimization

problem in water networks using real-world datasets. We conclude in Section 4.

2. Models and Methods In this section, we investigate models and methods for Problem (4). Krause

et al. (2008b) observe that the objective mini∈[m] fi(x) of Problem (2) is no longer submodular, even though

each individual function fi is submodular. Therefore, Problem (4) also loses the submodularity property in

the associated objective mini∈[m]
fi(x)
αi

even for the case α = 1. However, we propose an alternative formu-

lation that exploits the submodularity property of each individual function. This alternative formulation is

crucial to derive several approaches to solve Problem (4).

2.1 An Alternative Formulation We first consider the alternative formulation of Problem (4). Given

constants αi, i ∈ [m], the formulation is defined as

max η (5a)

s.t. η ≤ θi
αi

∀i ∈ [m] (5b)

θi ≤ fi(x) ∀i ∈ [m] (5c)

x ∈ X ∩ Bn, η ∈ R,θ ∈ Rm, (5d)

where η ∈ R is a variable that captures the value of mini∈[m]
fi(x)
αi

, and θ is an m-dimensional vector of

variables θi lower bounding the value of fi(x) for each i ∈ [m]. Note that in Formulation (5), constraints (5c)

entail the hypograph of m submodular functions. Since the function fi(x) of Formulation (5) is submodular

over the domain Bn for all i ∈ [m], its hypograph is defined by submodular inequalities of Nemhauser and

Wolsey (1981), given by

θi ≤ fi(S)−
∑
j∈S

ρij(V \ {j})(1− xj) +
∑

j∈V \S

ρij(S)xj ,∀S ⊆ V, (6)

where ρij(S) = fi(S ∪ {j})− fi(S) captures the marginal contribution of including j ∈ V \ S to a subset S.

Using this observation, we derive a mixed-integer linear programming reformulation, where constraint (5c)
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is replaced by inequalities (6) for all i ∈ [m]. Furthermore, the variables θi, i ∈ [m] can be projected out to

arrive at the formulation

max η (7a)

s.t. η ≤ 1

αi
(fi(S)−

∑
j∈S

ρij(V \ {j})(1− xj) +
∑

j∈V \S

ρij(S)xj),∀S ⊆ V, i ∈ [m] (7b)

x ∈ X ∩ Bn, η ∈ R. (7c)

The resulting formulation (7) has exponentially many constraints. Hence, we propose a delayed constraint

generation (DCG) method to solve Formulation (5). In the proposed model, a relaxed master problem

(RMP) at any iteration is formulated as

max η (8a)

s.t. (η,x) ∈ C (8b)

x ∈ X ∩ Bn, η ∈ R, (8c)

where C is a mixed-integer set defined by a subset of the constraints (7b) generated until the current iteration.

In the next subsection, we consider how to choose the inequalities to include in the set C.

2.2 Analyses of the Submodular Inequality for RSM First, we observe that for large m, adding

a submodular inequality (7b) for each i in a DCG algorithm may be inefficient. Motivated by this, we

make a key observation that a mixed-integer set that includes fewer submodular inequalities compared to

the submodular inequalities for all i ∈ [m] is sufficient to define C to find an optimal solution of Problem

(4). Before we give our analysis, we provide some useful definitions that identify an important index that

determines the minimum of m submodular functions for a given set.

Definition 2.1 Given a subset S ⊆ V , we define a function

i(S) = argmin
i∈[m]

fi(S)

αi
,

where the function i : 2V → N returns the value of i for which fi(S)
αi

is the smallest. In other words, given a

subset S ⊆ V , the corresponding value i(S) denotes an index such that
fi(S)(S)

αi(S)
≤ fi(S)

αi
for all i ∈ [m].

Throughout this paper, the function i plays a key role in providing an upper bound for Problem (4). Based

on this index function, we define a mixed-integer set F as

F = {(η,x) ∈ R× Bn : η ≤ 1

αi(S)
(fi(S)(S)−

∑
j∈S

ρ
i(S)
j (V \ {j})(1− xj) +

∑
j∈V \S

ρ
i(S)
j (S)xj),∀S ⊆ V }. (9)

In what follows, we prove that we can let C = F in constraint (8b) of RMP (8).

Proposition 2.1 The mixed-integer set F is sufficient for defining C in (8b) of RMP (8) to find an optimal

solution of Problem (4).

Proof. Nemhauser and Wolsey (1981) show the validity of submodular inequality (6). Thus, we have

η ≤
θi(S)

αi(S)
≤

fi(S)(S)

αi(S)

≤
fi(S)(S)−

∑
j∈S ρ

i(S)
j (V \ {j})(1− xj) +

∑
j∈V \S ρ

i(S)
j (S)xj

αi(S)
.
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Therefore, Problem (4) is equivalent to the mixed-integer linear program

max η

s.t. η ≤ θi
αi

∀i ∈ [m]

θi(S) ≤ fi(S)(S)−
∑
j∈S

ρ
i(S)
j (V \ {j})(1− xj) +

∑
j∈V \S

ρ
i(S)
j (S)xj ∀S ⊆ V

S ∈ X ∩ Bn, η ∈ R,θ ∈ Rm.

Projecting out the θ variables, we obtain the desired result. □

Proposition 2.1 shows that given S ⊂ V , it is sufficient to add a submodular inequality (7b) with i = i(S)

to define the set C in RMP (4) for solving the problem. Note that considering all submodular inequalities

defining Fi, i ∈ [m] may give a stronger formulation than considering F . In our computational experiments,

we observe that obtaining a violated submodular inequality is time-consuming, and as such, Proposition 2.1

plays an important role in reducing the total number of inequalities. Below, we provide further analysis of

F to improve algorithmic efficiency.

We start by providing a proposition that gives sufficient conditions under which the submodular inequality

(7b) is facet-defining for conv(F). Let ej be the jth unit vector of appropriate dimension.

Proposition 2.2 Given S ⊆ V and ī ∈ [m], the submodular inequality

η ≤ 1

αī

(fī(S)−
∑
j∈S

ρīj(V \ {j})(1− xj) +
∑

j∈V \S

ρīj(S)xj)

is facet defining for conv(F) if the following conditions hold:

(i) for any j ∈ S, there exists at least one element kj ∈ V \ S such that ρīj({kj}) = 0 and fī(S)
αī

=
fi(S)(S)

αi(S)
=

fi(S\{j}∪{kj})(S\{j}∪{kj})
αi(S\{j}∪{kj})

=
fi(S∪{kj})(S∪{kj})

αi(S∪{kj})

(ii) for any j ∈ V \ S, we have
fī(S)+ρī

j(S)

αī
=

fi(S∪{j})(S∪{j})
αi(S∪{j})

, where ī = i(S).

Proof. Since dim(F) = n + 1, we enumerate n + 1 affinely independent points on the face defined by

the submodular inequality (7b) under conditions (i) and (ii).

(a) Given S ⊆ V , consider the point (η,x) = (
fi(S)(S)

αi(S)
,
∑

i∈S ei) on the face defined by inequality (7b).

(b) Building on the point given in (a), we consider a set of points P , where |P | = |V \S| and each point

(η,x) ∈ P is given by (
fi(S∪{j})(S∪{j})

αi(S∪{j})
,
∑

i∈S ei + ej) for all j ∈ V \ S, which is on the face defined

by inequality (7b) under condition (ii).

(c) From conditions (i) and (ii), for any j ∈ S, there exists kj ∈ V \ S such that ρīj({kj}) =

0 and ī = i(S). We conclude that ρ
i(S)
j (V \ {j}) = 0 for any j ∈ S. Note

that
fi(S\{j}∪{kj})(S\{j}∪{kj})

αi(S\{j}∪{kj})
=

fi(S∪{kj})(S∪{kj})−ρ
i(S∪{kj})
j (S∪{kj})

αi(S∪{kj})
=

fi(S∪{kj})(S∪{kj})+0

αi(S∪{kj})
since

ρ
i(S∪{kj})
j (S ∪ {kj}) = ρīj({kj}) = 0 and fī(S)

αī
=

fi(S)(S)

αi(S)
=

fi(S\{j}∪{kj})(S\{j}∪{kj})
αi(S\{j}∪{kj})

=

fi(S∪{kj})(S∪{kj})
αi(S∪{kj})

. Therefore, we obtain a set of points P̄ on the face defined by inequality (7b),

where (η,x) = (
fi(S\{j}∪{kj})(S\{j}∪{kj})

αi(S\{j}∪{kj})
,
∑

i∈S\{j} ei + ekj ) ∈ P̄ for all j ∈ S and |P̄ | = |S|.
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Note that these n+ 1 points can be represented as an (n+ 1)× (n+ 1) matrix, where the first |V \ S| rows
are the points P described in (b), from the (|V \S|+1)-th row to the |V |-th row are the points P̄ described

in (c), and the (|V |+ 1)-th row is the point (η,x) = (
fi(S)(S)

αi(S)
,
∑

i∈S ei) given in (a). Consider the following

row operations.

Step 1: We multiply the (|V |+ 1)-th row by -1 to get a row (
−fi(S)(S)

αi(S)
,
∑

i∈S −ei).

Step 2: We add the new row (
−fi(S)(S)

αi(S)
,
∑

i∈S −ei) to each of the first |V \ S| rows. Then, we get |V \ S|

linearly independent rows, (
fi(S∪{j})(S∪{j})

αi(S∪{j})
+

−fi(S)(S)

αi(S)
, ej) for all j ∈ V \ S.

Step 3: We multiply each of the |V \S| linearly independent rows of Step 2 by -1. We get (
−fi(S∪{j})(S∪{j})

αi(S∪{j})
+

fi(S)(S)

αi(S)
,−ej) for all j ∈ V \ S.

Step 4: Recall that from the (|V \ S| + 1)-th row to the |V |-th row, each of the rows is represented by

(
fi(S\{j}∪{kj})(S\{j}∪{kj})

αi(S\{j}∪{kj})
,
∑

i∈S\{j} ei+ekj
) for a given j ∈ S. Here, for a given j ∈ S, there exists a

row (
−fi(S∪{kj})(S∪{kj})

αi(S∪{kj})
+

fi(S)(S)

αi(S)
,−ekj

) from Step 3. Now for a given j ∈ S, from the (|V \S|+1)-th

row to the V -th row, we add the rows (
−fi(S)(S)

αi(S)
,
∑

i∈S −ei) and (
−fi(S∪{kj})(S∪{kj})

αi(S∪{kj})
+

fi(S)(S)

αi(S)
,−ekj )

to the row (
fi(S\{j}∪{kj})(S\{j}∪{kj})

αi(S\{j}∪{kj})
,
∑

i∈S\{j} ei + ekj
). Then we get |S| linearly independent rows,

(0,−ej) for all j ∈ S.

Steps 1 to 4 show that the n+ 1 points described in (a)–(c) are affinely independent. □

We provide Example 2.1 to demonstrate Proposition 2.2.

Example 2.1 Suppose that we have m = 2 submodular functions with α1 = α2 = 1 and n = 4 elements

V = {1, 2, 3, 4}. For the case S = {1, 2}, we have two associated submodular inequalities

θ1 ≤ 2 + 2x3 + 3x4, and

θ2 ≤ 5− 2(1− x1)− 3(1− x2) + x3 + 4x4,

where f1(S) = 2, f2(S) = 5, ρ11(V \ {1}) = ρ12(V \ {2}) = 0, ρ21(V \ {1}) = 2, ρ22(V \ {2}) = 3, ρ13(S) = 2,

ρ14(S) = 3, ρ23(S) = 1, and ρ24(S) = 4. Note that the function i(S) = argmini∈[2]
fi(S)
αi

is equal to 1 since

the first submodular function at S attains the smallest value f1(S) < f2(S). Here, the submodular inequality

η ≤ 2 + 2x3 + 3x4 is facet defining, because f1(S ∪ {3}) = 4, f1(S ∪ {4}) = 5, and ρ11({3}) = ρ12({4}) = 0.

Condition (i) of Proposition 2.2 holds, since ρ11({3}) = ρ12({4}) = 0. Condition (ii) of Proposition 2.2

holds, since f1(S ∪ {3}) = f1(S) + ρ13(S) = 2 + 2 = 4, f1(S ∪ {4}) = f1(S) + ρ14(S) = 2 + 3 = 5, and

i(S) = i(S \ {1} ∪ {3}) = i(S \ {2} ∪ {4}) = 1.

From (a)–(c) of the proof of Proposition 2.2, the n + 1 affinely independent points (η, x1, x2, x3, x4) are

as follows. The point (2,1,1,0,0) is based on the selection of S as described in (a). From (b), there exist

|V \S| = 2 points, (4,1,1,1,0) and (5,1,1,0,1) based on the selection of S ∪ {3} and S ∪ {4}. From (c), there

exist |S| = 2 points (4,0,1,1,0) and (5,1,0,0,1) based on the marginal contributions ρ11({3}) = ρ12({4}) = 0.

We demonstrate the row operation steps 1 to 4 of the proof as follows, where the final table shows that the

n+ 1 = 5 points are affinely independent.
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

4 1 1 1 0

5 1 1 0 1

4 0 1 1 0

5 1 0 0 1

2 1 1 0 0


Step 1−→



4 1 1 1 0

5 1 1 0 1

4 0 1 1 0

5 1 0 0 1

−2 −1 −1 0 0


Step 2−→



2 0 0 1 0

3 0 0 0 1

4 0 1 1 0

5 1 0 0 1

−2 −1 −1 0 0


Step 3−→



−2 0 0 −1 0

−3 0 0 0 −1

4 0 1 1 0

5 1 0 0 1

−2 −1 −1 0 0


Step 4−→



−2 −0 0 −1 0

−3 −0 0 0 −1

0 −1 0 0 0

0 0 −1 0 0

−2 −1 −1 0 0


Final Matrix−→



0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0


We note that it may be difficult to find a submodular inequality that simultaneously meets the two

conditions of Proposition 2.2. Specifically, given a submodular inequality for S, the computational effort to

check whether the two conditions hold may be close to generating allm submodular inequalities corresponding

to the set S (not just one inequality corresponding to ī). However, we are able to derive some computational

strategies based on the two conditions of Proposition 2.2. Lemma 2.1, Lemma 2.2, and Lemma 2.3 provide

an important observation to this end.

Lemma 2.1 Given an index i ∈ [m], X̃ ′′ ⊆ X̃ ⊆ V , and S̃ ⊆ V , where X̃ and S̃ follow the equality

fi(X̃ ∪ S̃) = fi(S̃)+
∑

j∈X̃ ρij(S̃), if the equality ρij(X̃
′′ ∪ S̃) = ρij(S̃) holds for j ∈ X̃ \ X̃ ′′, then the relation

ρij(X̃
′′ ∪ S̃ ∪ Z) = ρij(S̃ ∪ Z) (10)

also holds for Z ⊆ V .

Proof. We prove the relation (10) by mathematical induction. Given an index i ∈ [m] and S̃ ⊆ V ,

consider the base case of the induction with X̃ ′ = ∅. We have ρij(∅ ∪ S̃ ∪ Z) = ρij(S̃ ∪ Z), which trivially

satisfies (10), for all j ∈ X̃ \ X̃ ′ and Z ⊆ V . Now for the case with X̃ ′ = {j1, . . . , jn̄−1} for 2 ≤ n̄ ≤ |X̃ ′′|,
we assume that for all j ∈ X̃ \ X̃ ′ and Z ⊆ V , the relation

ρij(X̃
′ ∪ S̃ ∪ Z) = ρij(S̃ ∪ Z) (11)

holds. Now consider the case with X̃ ′′ = {j1, . . . , jn̄−1, jn̄}. Equation (11) can be rewritten as

fi({j} ∪ X̃ ′ ∪ S̃ ∪ Z)− fi(X̃
′ ∪ S̃ ∪ Z) = fi({j} ∪ S̃ ∪ Z)− fi(S̃ ∪ Z).

Note that since jn̄ ∈ X̃ ′′\X̃ ′, ρijn̄(X̃
′∪S̃∪Z) = ρijn̄(S̃∪Z) for Z ⊆ V , we can construct a new Z ′ = {j}∪Z ⊆ V

and algebraically handle the above equation for all j ∈ X̃ ′′ \ X̃ ′ as

[fi({j} ∪ X̃ ′ ∪ S̃ ∪ Z) + ρijn̄(X̃
′ ∪ S̃ ∪ Z ′)]− [fi(X̃

′ ∪ S̃ ∪ Z) + ρijn̄(X̃
′ ∪ S̃ ∪ Z)]

= [fi({j} ∪ S̃ ∪ Z) + ρijn̄(S̃ ∪ Z ′)]− [fi(S̃ ∪ Z) + ρijn̄(S̃ ∪ Z)],

which is equivalent to

fi({j} ∪ X̃ ′′ ∪ S̃ ∪ Z)− fi(X̃
′′ ∪ S̃ ∪ Z) = fi({j} ∪ S̃ ∪ Z)− fi(S̃ ∪ Z).

Therefore, (10) holds for X̃ ′′, which completes the proof. □
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Lemma 2.2 Given an index i ∈ [m] and X̃, S̃ ⊆ V , if the equality

fi(X̃ ∪ S̃) = fi(S̃) +
∑
j∈X̃

ρij(S̃) (12)

holds, then the relation

fi(X̃ ∪ S̃ ∪ {z}) = fi(S̃ ∪ {z}) +
∑
j∈X̃

ρij(S̃ ∪ {z}) (13)

also holds for any z ∈ V .

Proof. We prove the relation (13) by mathematical induction. Given an index i ∈ [m], z ∈ V , and

S̃ ⊆ V , consider the base case of the induction with a single element X̃ ′ = {j1}, where

fi({j1} ∪ S̃ ∪ {z})− fi(S̃ ∪ {z}) = ρij1(S̃ ∪ {z}),

which follows from the definition of ρ. Now for the case with X̃ ′′ = {j1, . . . , jn̄−1} with n̄−1 < |X̃| elements,

we assume that under the condition

fi(X̃
′′ ∪ S̃) = fi(S̃) +

∑
j∈X̃′′

ρij(S̃), (14)

and the relation

fi(X̃
′′ ∪ S̃ ∪ {z}) = fi(S̃ ∪ {z}) +

∑
j∈X̃′′

ρij(S̃ ∪ {z}) (15)

holds.

For the case with n̄ elements X̃ = {j1, . . . , jn̄−1, jn̄}, we have

fi(X̃
′′ ∪ {jn̄} ∪ S̃)− fi(S̃) = fi(X̃

′′ ∪ S̃) + ρijn̄(X̃
′′ ∪ S̃)− fi(S̃)

= fi(S̃) +
∑
j∈X̃′′

ρij(S̃) + ρijn̄(X̃
′′ ∪ S̃)− fi(S̃)

=
∑
j∈X̃

ρij(S̃),

where the second equality follows from (14), and the third equality is from the condition (12) of the final

case. Since
∑

j∈X̃′′ ρij(S̃) + ρijn̄(X̃
′′ ∪ S̃) =

∑
j∈X̃ ρij(S̃), we have ρijn̄(X̃

′′ ∪ S̃) = ρijn̄(S̃). Here, the element

jn̄ ∈ X̃ \ X̃ ′′, and therefore, the relation ρijn̄(S̃ ∪ {z}) = ρijn̄(X̃
′′ ∪ S̃ ∪ {z}) holds from Lemma 2.1. We have

fi(X̃
′′ ∪ {jn̄} ∪ S̃ ∪ {z})− fi(S̃ ∪ {z}) = fi(X̃

′′ ∪ S̃ ∪ {z}) + ρijn̄(X̃
′′ ∪ S̃ ∪ {z})− fi(S̃ ∪ {z})

= fi(X̃
′′ ∪ S̃ ∪ {z}) + ρijn̄(S̃ ∪ {z})− fi(S̃ ∪ {z}).

From the above relations, since the assumption of the relation (15) holds, we have

fi(X̃ ∪ S̃ ∪ {z}) = fi(X̃
′′ ∪ {jn̄} ∪ S̃ ∪ {z})

= fi(X̃
′′ ∪ S̃ ∪ {z}) + ρijn̄(S̃ ∪ {z})

= fi(S̃ ∪ {z}) +
∑
j∈X̃′′

ρij(S̃ ∪ {z}) + ρijn̄(S̃ ∪ {z})

= fi(S̃ ∪ {z}) +
∑
j∈X̃

ρij(S̃ ∪ {z}).

This completes the proof. □
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Lemma 2.3 Given an index i ∈ [m] and X̃, S̃ ⊆ V , if the equality (12) of Lemma 2.2 holds, then the relation

fi(X̃ ∪ S̃ ∪ Z) = fi(S̃ ∪ Z) +
∑
j∈X̃

ρij(S̃ ∪ Z) (16)

also holds for Z ⊆ V .

Proof. Suppose that we are given an index i ∈ [m], Z ⊆ V , and X̃, S̃ for the equality. The following

steps show that adding all elements from Z to S̃ recursively does not violate the relation (13) of Lemma 2.2.

Step 1: Pick an element z ∈ Z.

Step 2: Since the equality (12) of Lemma 2.2 holds, the relation (13) of Lemma 2.2 holds.

Step 3: Set S̃ = S̃ ∪{z} for the relation (13) of Lemma 2.2. The new S̃ satisfies the equality (12) of Lemma

2.2.

Step 3: Let Z = Z \ {z}. Go to Step 1 if Z ̸= ∅; otherwise, stop.

This completes the proof. □

Using this lemma, we provide a proposition that informs a useful computational strategy to select a more

compact set of sufficient submodular inequalities. We separate the set S into two disjoint subsets. From the

first subset, we derive a new subset of elements, which is based on condition (i) of Proposition 2.2. Then,

we consider a union of the second subset with the new subset and make sure that the submodular inequality

(7b) associated with this particular union of subsets does not violate Proposition 2.1.

Proposition 2.3 Given a set X̄ ⊆ V and an index i ∈ [m], we define two associated subsets X̃i ⊆ X̄ and

S(i, X̃i) = {j ∈ V \ X̃i : ∃k ∈ X̃i with ρij({k}) = 0}. (17)

If the condition

fi(X̄)(X̃i(X̄)) = fi(X̄)(S(i(X̄), X̃i(X̄))) +
∑

j∈X̃i(X̄)

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄))) (18)

holds for all X̄ ⊆ V , then using the mixed-integer set given by

F ′ ={(η,x) ∈ R× Bn :

η ≤ 1

αi(X̄)

(fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))−
∑

j∈S(i(X̄),X̃i(X̄))∪X̄\X̃i(X̄)

ρ
i(X̄)
j (V \ {j})(1− xj)+

∑
j∈V \{S(i(X̄),X̃i(X̄))∪X̄\X̃i(X̄)}

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))xj),∀X̄ ⊆ V },

to define the set C in Formulation (8) provides an optimal solution to Problem (4).

Proof. Given X̄ ⊆ V and the associated X̃i(X̄) ⊆ X̄, we have

fi(X̄)(X̄)− fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))

= fi(X̄)(X̃i(X̄) ∪ S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))− fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄)) (19a)

=
∑

j∈X̃i(X̄)

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄)). (19b)
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Equality (19a) follows from X̃i(X̄) ⊆ X̄ and fi(X̄)(X̃i(X̄)) = fi(X̄)(X̃i(X̄) ∪ S(i(X̄), X̃i(X̄))) since for all

j ∈ S(i(X̄), X̃i(X̄)), there exists k ∈ X̃i(X̄) such that ρ
i(X̄)
j ({k}) = 0 shown in the definition of (17). Equality

(19b) follows from condition (18) and Lemma 2.3 as follows. Suppose that X ′ = X̄ \ X̃i(X̄). Equality (19b)

provides

fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̃i(X̄) ∪X ′) = fi(X̄)(X̄)

=
∑

j∈X̃i(X̄)

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪X ′) + fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))

=
∑

j∈X̃i(X̄)

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪X ′) + fi(X̄)(S(i(X̄), X̃i(X̄)) ∪X ′),

where we note that S(i(X̄), X̃i(X̄)) is S̃ of Lemma 2.3, X̃i(X̄) is X̃ of Lemma 2.3, and X ′ is Z of Lemma 2.3.

Consider the given X̄ ⊆ V and X̃i(X̄) with the subset S(i(X̄), X̃i(X̄)) that follows (17) and (18). Then

η ≤ 1

αi(X̄)

(fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄)) +
∑

j∈X̃i(X̄)

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))) =

fi(X̄)(X̄)

αi(X̄)

,

where the equality follows from (19) and (17) with ρ
i(X̄)
j (V \ {j}) = 0 for all j ∈ S(i(X̄), X̃i(X̄)). Finally,

Formulation (8) with the mixed-integer set F ′ derived from Formulation (5) provides

η ≤
θi(X̄)

αi(X̄)

≤
fi(X̄)(X̄)

αi(X̄)

≤
fi(X̄)(S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))−

∑
j∈S(i(X̄),X̃i(X̄))∪X̄\X̃i(X̄)

ρ
i(X̄)
j (V \ {j})(1− xj)

αi(X̄)

+

∑
j∈V \{S(i(X̄),X̃i(X̄))∪X̄\X̃i(X̄)}

ρ
i(X̄)
j (S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄))xj

αi(X̄)

.

Following the end of Proposition 2.1, this completes the proof. □

In Proposition 2.3, from condition (i) of Proposition 2.2, we define a set S(i, X̃i) = {j ∈ V \ X̃i : ∃k ∈
X̃i with ρij({k}) = 0} based on an index i ∈ [m] and a subset X̃i ⊆ X̄ ⊆ V , where an index j ∈ S(i, X̃i)

has at least one associated index kj ∈ X̃i such that ρīj({kj}) = 0. Then, if condition (18) is satisfied, we

show that with i = i(X̄) and S = S(i(X̄), X̃i(X̄)) ∪ X̄ \ X̃i(X̄), the associated submodular inequality (7b)

provides an upper bound
fi(X̄)(X̄)

αi(X̄)
of the RSM (5) for a solution x̄ ∈ X . The verification of the upper bound

for a solution is necessary to establish that it suffices to consider the set F ′ in defining set C. This further

enhances the computational efficiency, as we will show in our computational study.

We now consider condition (ii) of Proposition 2.2. Although finding a facet-defining submodular inequality

is challenging, we give a sequence of two propositions showing when, under certain conditions, a submodular

inequality (7b) is redundant and when it is a facet of conv(F). We first show that given X̄ ⊆ V , some

submodular inequalities based on X̄ may be redundant (i.e., dominated) in RMP (8).

Proposition 2.4 Given X̄ ⊆ V and ī, ī′ ∈ [m] and ī ̸= ī′, if fī(X̄)
αī
≤ fī′ (X̄)

αī′
,

−ρī
j(V \{j})
αī

≤ −ρī′
j (V \{j})
αī′

for

all j ∈ X̄, and
ρī
j(X̄)

αī
≤ ρī′

j (X̄)

αī′
for all j ∈ V \ X̄, then inequality (7b) with X̄ ⊆ V and i = ī′,

η ≤ 1

αī′
(fī′(X̄)−

∑
j∈X̄

ρī
′

j (V \ {j})(1− xj) +
∑

j∈V \X̄

ρī
′

j (X̄)xj),

is redundant in RMP (8).
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Proof. We follow the proof of Proposition 2.1 and the relations of Proposition 2.4, and obtain

η ≤
θi(X̄)

αi(X̄)

≤
fi(X̄)(X̄)

αi(X̄)

≤
fī(X̄)−

∑
j∈X̄ ρīj(V \ {j})(1− xj) +

∑
j∈V \X̄ ρīj(X̄)xj

αī

≤
fī′(X̄)−

∑
j∈X̄ ρī

′

j (V \ {j})(1− xj) +
∑

j∈V \X̄ ρī
′

j (X̄)xj

αī′
,

where inequality (7b) with X̄ ⊆ V and i = ī provides a better upper bound compared to the submodular

inequality (7b) with X̄ ⊆ V and i = ī′. This completes the proof. □

Example 2.2 Suppose that we have m = 3 submodular functions with α1 = α2 = α3 = 1 and n = 3

elements V = {1, 2, 3, 4}. For X̄ = {1, 2}, we have three associated submodular inequlities

η ≤ 3 + 2x3 + 3x4, and

η ≤ 2 + 3x3 + 4x4, and

η ≤ 5 + 3x3 + 5x4}.

The third inequality is redundant for RMP (8) since 3 + 2x3 + 3x4 ≤ 5 + 3x3 + 5x4 and 2 + 3x3 + 4x4 ≤

5 + 3x3 + 5x4 from Proposition 2.4.

Proposition 2.4 shows that if a submodular inequality’s right-hand side (RHS) and coefficients are all

greater than those of another submodular inequality, the former is redundant for RMP (8). Based on

Propositions 2.2 and 2.4, we also give a corollary that, under certain conditions, a given set of submodular

inequalities is a facet for RMP (8). Given a subset S ⊆ V and I ⊆ [m], we define a mixed-integer set of the

set of submodular inequalities as C(S, I) = {(η,x) ∈ R × Bn : η ≤ 1
αi
(fi(S) −

∑
j∈S ρij(V \ {j})(1 − xj) +∑

j∈V \S ρij(S)xj),∀i ∈ I}.

Corollary 2.1 Given X̄ ⊆ V and I ⊆ [m], each submodular inequality defining the set C(X̄, I) = {(η,x) ∈

R×Bn : η ≤ 1
αi
(fi(X̄)−

∑
j∈X̄ ρij(V \ {j})(1− xj) +

∑
j∈V \X̄ ρij(X̄)xj),∀i ∈ I} is a facet of conv(F) if the

following conditions hold

(i) for all j ∈ X̄ and i ∈ I, there exists at least an element kj ∈ V \ X̄ such that ρij({kj}) = 0 and

fi(X̄)
αi

=
fi(X̄)(X̄)

αi(X̄)
=

fi(X̄\{j}∪{kj})(X̄\{j}∪{kj})
αi(X̄\{j}∪{kj})

=
fi(X̄∪{kj})(X̄∪{kj})

αi(X̄∪{kj})
,

(ii) for all i ∈ I, we have
fi(X̄)(X̄)

αi(X̄)
= fi(X̄)

αi
,

(iii) for any ī′ ∈ [m] \ I, given an inequality (η,x) ∈ C(X̄, [m] \ I), there must exist an index ī ∈ I for

another inequality (η,x) ∈ C(X̄, I) such that the relations of Proposition 2.4 hold.

Proof. Condition (i) delineates that all submodular inequalities in C(X̄, I) satisfy condition (i) of

Proposition 2.2 for all ī ∈ I. Conditions (ii) and (iii) imply that given X̄ ⊆ V and j ∈ V \ X̄, we have

mini∈I{
fi(X̄)+ρi

j(X̄)

αi
} = fi(X̄∪{j})(X̄∪{j})

αi(X̄∪{j})
since C(X̄, [m]\I) includes redundant inequalities (from Proposition

2.4). Then n+1 affinely independent points defined in (a)-(c) in the proof of Proposition 2.2 satisfy conditions

(i)–(iii) of this corollary. □
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Corollary 2.1 shows that given X̄ ⊆ V , if the RHS of X̄ satisfies condition (i) of Proposition 2.2, it may

not be necessary to include all submodular inequalities for all i ∈ [m]. Next, we derive the following corollary

directly from Corollary 2.1.

Corollary 2.2 The inequalities defined by C(∅, [m]) are facets of conv(F).

Proof. Since X̄ = ∅, for any k ∈ V , it follows from condition (i) of Corollary 2.1 that ρīj({k}) = 0 for

all j ∈ X̄ and i ∈ [m]. Furthermore, conditions (ii) and (iii) hold, because I = [m] and fi(∅) = 0 for all

i ∈ I.

□

Example 2.3 Suppose that we have m = 3 submodular functions with α1 = α2 = α3 = 1 and n = 3

elements V = {1, 2, 3}. For the case X̄ = ∅, we have three associated submodular inequalities C(∅, [m]) = {

η ≤ 0 + 2x1 + 2x2 + 3x3, and

η ≤ 0 + x1 + 3x2 + 4x3, and

η ≤ 0 + 3x1 + 3x2 + x3}.

For the point (x1, x2, x3) = (1,0,0), the second inequality provides an upper bound equal to 1 for the variables

η and θ2. For the point (x1, x2, x3) = (0,1,0), the first inequality provides an upper bound equal to 2 for η.

For the point (x1, x2, x3) = (0,0,1), the third inequality provides an upper bound equal to 1 for η. The n+1

affinely independent points (η, x1, x2, x3) are (1,1,0,0), (2,0,1,0), (1,0,0,1), and (0,0,0,0).

2.3 An Analysis of a Special Case of RSM At the end of Section 1, we highlighted the difficulty

of solving Problem (3). That is, to get m values fi(x
∗
i ) for all i ∈ [m], we have to solve m NP−hard

problems (1). Let Fi be a mixed-integer set defined by the set of submodular inequalities for each i ∈ [m],

i.e., Fi = {(θi,x) ∈ R×Bn : θi ≤ fi(S)−
∑

j∈S ρij(V \ {j})(1−xj)+
∑

j∈V \S ρij(S)xj ,∀S ⊆ V }. Recall that
x∗
i is the optimal solution to the i-th submodular maximization problem (1) and fi(x

∗
i ) = max{θi : (θi,x) ∈

Fi,x ∈ X ∩ Bn, θi ∈ R} for all i ∈ [m]. Let LB and UB be lower and upper bounds of the optimal value of

Problem (3), respectively, i.e., LB ≤ maxx∈X∩Bn mini∈[m]
fi(x)
fi(x∗

i )
≤ UB. It may appear that, without solving

the m problems, we cannot solve Problem (3) or even find an optimality gap UB−LB
UB . We show how we can

overcome this difficulty based on the following proposition.

Proposition 2.5 Let lbi and ubi be lower and upper bounds of the optimal value of the i-th Problem (1)

for all i ∈ [m], i.e., lbi ≤ fi(x
∗
i ) ≤ ubi. Let η̄relax = max{η : η ≤ θi

lbi
, i ∈ [m], (θi,x) ∈ Fi, i ∈ [m], x ∈

X , η ∈ R, θ ∈ Rm} be the objective value of the relaxation of RSM (4). For a given x̄ ∈ X ∩ Bn, we have

min
i∈[m]

fi(x̄)

ubi
≤ max

x∈X∩Bn
min
i∈[m]

fi(x)

fi(x∗
i )
≤ η̄relax. (20)

Proof. We start by showing that maxx∈X∩Bn mini∈[m]
fi(x)
fi(x∗

i )
≤ η̄relax. From Formulation (5), we have

max{η : η ≤ fi(x)
fi(x∗

i )
∀i ∈ [m],x ∈ X ∩ Bn, η ∈ R} = maxx∈X∩Bn mini∈[m]

fi(x)
fi(x∗

i )
. Since lbi ≤ fi(x

∗
i ) for all

i ∈ [m], the constraint η ≤ fi(x)
lbi

is a relaxation of η ≤ fi(x)
fi(x∗

i )
for Formulation (5). We have the following
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inequality

max{η : η ≤ fi(x)

fi(x∗
i )
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R} ≤ max{η : η ≤ fi(x)

lbi
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R}.

Furthermore, the objective value η̄relax is obtained from the relaxation of x ∈ X ∩ Bn as x ∈ X . Therefore,
we conclude that

max
x∈X∩Bn

min
i∈[m]

fi(x)

fi(x∗
i )

= max{η : η ≤ fi(x)

fi(x∗
i )
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R}

≤ max{η : η ≤ fi(x)

lbi
, i ∈ [m],x ∈ X , η ∈ R}

≤ max{η : η ≤ θi
lbi

, i ∈ [m], (θi,x) ∈ Fi, i ∈ [m], x ∈ X , η ∈ R, θ ∈ Rm}

= η̄relax.

Next, we show the second part of inequality (20), mini∈[m]
fi(x̄)
ubi

≤ maxx∈X∩Bn mini∈[m]
fi(x)
fi(x∗

i )
. Since

fi(x
∗
i ) ≤ ubi for all i ∈ [m], we have η ≤ fi(x)

ubi
≤ fi(x)

fi(x∗
i )
. Thus,

max{η : η ≤ fi(x)

ubi
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R} ≤ max{η : η ≤ fi(x)

fi(x∗
i )
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R}.

In addition, the solution x̄ ∈ X ∩ Bn satisfies

max{η : η ≤ fi(x̄)

ubi
, i ∈ [m], η ∈ R} ≤ max{η : η ≤ fi(x)

ubi
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R}.

From the above relations, we conclude

min
i∈[m]

fi(x̄)

ubi
= max{η : η ≤ fi(x̄)

ubi
, i ∈ [m], η ∈ R}

≤ max{η : η ≤ fi(x)

fi(x∗
i )
, i ∈ [m],x ∈ X ∩ Bn, η ∈ R}

= max
x∈X∩Bn

min
i∈[m]

fi(x)

fi(x∗
i )
.

This completes the proof. □

Here, we also make an observation that we can solve Problem (3) without exactly solving m submodular

maximization problems, by instead solving Problem (4) with a particular choice of α, such that lbi ≤ αi ≤ ubi
for all i ∈ [m], under certain conditions.

Proposition 2.6 Let x̄′ be an optimal solution of maxx∈X∩Bn mini∈[m]
fi(x)
lbi

and i(X̄ ′) =

argmini∈[m]
fi(X̄

′)
lbi

. If lbi(X̄′) ≥ ubi for all i ∈ [m] \ {i(X̄ ′)}, then x̄′ is an optimal solution of

Problem (3).

Proof. Since fi(X̄′)(x
∗
i(X̄′)

) ≥ lbi(X̄′) ≥ ubi for all i ∈ [m] \ {i(X̄ ′)} and maxx∈X∩Bn mini∈[m]
fi(x)
lbi

=

mini∈[m]
fi(x̄

′)
lbi

, we have the following relation

fi(X̄′)(x̄
′)

fi(X̄′)(x
∗
i(X̄′)

)
≤

fi(X̄′)(x̄
′)

lbi(X̄′)

≤ fi(x̄
′)

ubi
≤ fi(x̄

′)

fi(x∗
i )
≤ fi(x̄

′)

lbi
, i ∈ [m] \ {i(X̄ ′)}.

Consequently, the formulation maxx∈X∩Bn mini∈[m]
fi(x)
lbi

has the following relation with several optimization

problems

max
x∈X∩Bn

min
i∈[m]

fi(x)

lbi
= min

i∈[m]

fi(x̄
′)

lbi
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= max{η : η ≤ fi(x̄
′)

lbi
, i ∈ [m], η ∈ R}

= max{η : η ≤
fi(X̄′)(x̄

′)

lbi(X̄′)

, η ≤ fi(x̄
′)

lbi
, i ∈ [m] \ {i(X̄ ′)}, η ∈ R}

= max{η : η ≤
fi(X̄′)(x̄

′)

lbi(X̄′)

, η ≤ fi(x̄
′)

ubi
, i ∈ [m] \ {i(X̄ ′)}, η ∈ R}

= max{η : η ≤
fi(X̄′)(x̄

′)

lbi(X̄′)

, η ≤ fi(x̄
′)

fi(x∗
i )
, i ∈ [m] \ {i(X̄ ′)}, η ∈ R}

= max{η : η ≤
fi(X̄′)(x)

lbi(X̄′)

, η ≤ fi(x)

fi(x∗
i )
, i ∈ [m] \ {i(X̄ ′)},x ∈ X ∩ Bn, η ∈ R}.

From the above relations, since
fi(X̄′)(x)

lbi(X̄′)
≤ fi(x)

fi(x∗
i )

for all i ∈ [m], the inequalities {η ≤ fi(x)
fi(x∗

i )
, ∀i ∈ [m] \

{i(X̄ ′)}} are redundant while solving max{η : η ≤ fi(x̄
′)

lbi
∀i ∈ [m], η ∈ R}. Therefore,

max
x∈X∩Bn

min
i∈[m]

fi(x)

lbi
= min

i∈[m]

fi(x̄
′)

lbi

= max{η : η ≤
fi(X̄′)(x)

lbi(X̄′)

,x ∈ X ∩ Bn, η ∈ R}.

Since fi(X̄′)(x
∗
i(X̄′)

) ≥ lbi(X̄′) ≥ ubi ≥ fi(x
∗
i ) for all i ∈ [m] \ {i(X̄ ′)}, the inequalities {η ≤ fi(x)

fi(x∗
i )
∀i ∈

[m] \ {i(X̄ ′)}} are redundant for max{η : η ≤ fi(x)
fi(x∗

i )
∀i ∈ [m],x ∈ X ∩ Bn, η ∈ R}. Therefore,

max
x∈X∩Bn

min
i∈[m]

fi(x)

fi(x∗
i )

= max{η : η ≤
fi(X̄′)(x)

fi(X̄′)(x
∗
i(X̄′)

)
, η ≤ fi(x)

fi(x∗
i )
, i ∈ [m] \ {i(X̄ ′)},x ∈ X ∩ Bn, η ∈ R}

= max{η : η ≤
fi(X̄′)(x)

fi(X̄′)(x
∗
i(X̄′)

)
,x ∈ X ∩ Bn, η ∈ R}.

From the above relations, we observe that lbi(X̄′) and fi(X̄′)(x
∗
i(X̄′)

) are two constants and the solution x̄′ is

the largest value of the function fi(X̄′). Therefore, the solution x̄′ is also an optimal solution of

max
x∈X∩Bn

min
i∈[m]

fi(x)

fi(x∗
i )

= max{η : η ≤
fi(X̄′)(x)

fi(X̄′)(x
∗
i(X̄′)

)
,x ∈ X ∩ Bn, η ∈ R}.

= max{η : η ≤
fi(X̄′)(x̄

′)

fi(X̄′)(x
∗
i(X̄′)

)
, η ∈ R}.

□

Proposition 2.6 shows that solving Problem (4) with certain αi ̸= fi(x
∗
i ) for all i ∈ [m] may provide an

optimal solution of Problem (3). From Propositions 2.5 and 2.6, we arrive at a corollary for the final analysis

of Problem (3).

Corollary 2.3 From Propositions 2.5 and 2.6, for Problem (4) with lbi ≤ αi ≤ ubi for all i ∈ [m], an

optimal solution x̄′′ of Problem (4) is equivalent to an optimal solution of Problem (3) if one of the following

conditions holds.

(i) if the solution x̄′′ satisfies mini∈[m]
fi(x̄

′′)
ubi

= η̄relax, or

(ii) the condition of Proposition 2.6 holds for x̄′ = x̄′′.
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Finally, we derive a corollary that provides a strategy for the computational study.

Corollary 2.4 Given X̄ ⊆ V , we have max{η : (η,x) ∈ C ∩C(X̄, {i(X̄)}), x ∈ X ∩Bn, η ∈ R} ≥ max{η :

∀i ∈ [m], (η,x) ∈ C ∩ C(X̄, I(X̄)), x ∈ X ∩ Bn, η ∈ R} ≥ max{η : (η,x) ∈ C ∩ C(X̄, I(X̄)), η ≤ θi
αi
∀i ∈

[m], (θi,x) ∈ Fi, i ∈ [m], x ∈ X ∩ Bn, η ∈ R, θ ∈ Rm}, where I(X̄) = {j ∈ [m] :
fj(X̄)
αj

=
fi(X̄)(X̄)

αi(X̄)
},

αi = max{θi : (θi,x) ∈ F̄i,x ∈ X ∩ Bn, θi ∈ R} and F̄i ⊇ Fi for all i ∈ [m].

Proof. Given (η̄, θ̄, x̄), where x̄ ∈ Bn ∩ X ∩ C, we have the following relations

η̄ ≤ min
i∈I(X̄)

θ̄i
αi
≤ min

i∈I(X̄)

{
fi(X̄)−

∑
j∈X̄\X̄ ρij(V \ {j}) +

∑
j∈X̄\X̄ ρij(X̄)

αi

}

≤
fi(X̄)(X̄)−

∑
j∈X̄\X̄ ρ

i(X̄)
j (V \ {j}) +

∑
j∈X̄\X̄ ρ

i(X̄)
j (X̄)

αi(X̄)

,

where the above relations follow from the definition of submodular inequality (6) and i(X̄) ∈ I(X̄). This

completes the proof. □

In Corollary 2.2, we establish that the set of submodular inequalities C(∅, [m]) satisfies the conditions of

Corollary 2.1. On the other hand, Corollary 2.4 shows that with the same RHS, adding a set of submodular

inequalities provides a tighter bound compared to just adding one submodular inequality to RMP (8), where

the RHS is the value of
fi(X̄)(X̄)

αi(X̄)
≤ fi(X̄)

αi
for a given X̄ ∈ V . Finally, Corollary 2.4 notes that as we solve a

submodular maximization problem αi = max{θi : (θi,x) ∈ F̄i,x ∈ X ∩ Bn, θi ∈ R}, a subset of submodular

inequalities defining the mixed-integer set F̄i ⊇ Fi can be reused to derive a class of valid inequalities of

RMP (8) for solving Problem (3).

In the next section, we design algorithms for solving Problem (4), including the special case of Problem

(3). The idea of Proposition 2.5 is that if we obtain all the lower and upper bounds of the m submodular

maximization problems (1), we can calculate the optimality gap of the associated Problem (3). Proposition

2.5 provides a strategy for solving Problem (3). That is, we could set a time limit for each submodular

maximization Problem (1) to obtain upper and lower bounds of the problem. Using these bounds, for all

i ∈ [m], we set αi as the lower bound lbi. By solving the relaxation max{η : (η,x) ∈ C, x ∈ X ∩ Bn, η ∈ R
we obtain the optimality gap of Problem (3).

2.4 Algorithms In the final part of this section, we summarize the mentioned strategies and provide

algorithms for Problem (4) including the special case of Problem (3), with α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)).

The core algorithm is a delayed constraint generation algorithm described in Algorithm 1. Algorithm 1 takes

as input α, a subset of cuts defining C (could be empty), and a Boolean parameter reduce that determines

whether we consider Proposition 2.1 and Corollary 2.4. The True value of the parameter reduce indicates

that we consider the mixed-integer set F or F ′ that includes fewer submodular inequalities compared to

adding all inequalities for Fi, i ∈ [m] under the False value of the parameter. The termination criteria can

be a time limit, T and/or an optimality gap tolerance, ϵ ∈ [0, 1], where, for a lower bound on the optimal

solution denoted as min(Λ) and an incumbent objective value η̄, the optimality gap is given by η̄ −min(Λ).

Note that the user can provide warm-start cuts for the set C of the RMP (8) as input. In particular, in

Corollary 2.2, we have shown that the set of submodular inequalities C(∅, [m]) satisfies the facet conditions

given in Corollary 2.1. Therefore, in line 2 of Algorithm 1, we add the facet-defining inequalities C(∅, [m])

to C as a class of warm-start cuts.

In line 4 of the while loop of Algorithm 1, we solve RMP (8) and get an incumbent solution (η̄, x̄). In

line 6, based on the incumbent x̄, we form a set Λ including m values fi(x̄)
αi

for all i ∈ [m]. We compute
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mini∈[m]
fi(x̄)
αi

using the function min(Λ) that returns the minimal value of the elements of the set Λ. Note

that the function min(Λ) provides a lower bound of Problem (4) based on the incumbent x̄. The lower bound

is used to compute an optimality gap and obtain the smallest value of the set
{

f1(x̄)
α1

, . . . , fi(x̄)
αi

, . . . , fm(x̄)
αm

}
,

which is essential to determine the set F of Proposition 2.1. The for loop in lines 8 to 21 is for adding

the submodular inequalities. Given an incumbent x̄, if reduce = True, the for loop adds fewer submodular

inequalities to RMP (8) following Proposition 2.1 and Corollary 2.4, compared to the case that reduce =

False. Next, in Algorithm 2, we describe the separation routine, FindSetRoutine(x̄,i), of this for loop. Recall

that given an incumbent X̄ and i ∈ [m], Proposition 2.3 separates the incumbent X̄ into two sets X̃i ⊆ X̄

and X̄ \ X̃i ⊆ X̄, where X̃i ⊆ X̄ determines the set S(i, X̃i) = {j ∈ V \ X̃i : ρ
i
j({k}) = 0,∃k ∈ X̃i}. Given

an element j ∈ V , lines 8 to 17 first evaluate if there exists an element k ∈ X̄ with ρij({k}) = 0 for some

i ∈ [m]. Then, the algorithm determines if j ∈ V can be a candidate of S, which is used to determine the

set S(i, X̃i), based on the condition shown in line 13, where StopPt ∈ N denotes the number of elements in

X̄ with zero marginal contribution. If StopPt = 0, then FindSetRoutine(x̄,i) returns the original input X̄.

Here, line 13 follows the condition (18) of Proposition 2.3 that allows us to consider the mixed-integer set

F ′ as a valid set of submodular inequalities for the set C of the RMP (8).

Finally, we present Algorithm 3 for solving Problem (3), which is Problem (4) with a special choice of

α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)). Recall that obtaining α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)), before solving

the corresponding RMP (8), requires the solution of m NP-hard submodular maximization problems (1).

However, even if we cannot solve the m problems optimally, we can use Algorithm 3 to find a feasible

solution for RSM (2) along with an optimality gap. Lines 6 to 18 follow a standard method for solving

a submodular maximization problem using the submodular inequalities with some additional features. In

lines 8 to 11, when we finish solving a submodular maximization problem, the lower and upper bounds are

recorded. Furthermore, since the submodular inequalities for the corresponding submodular maximization

problem can be reused for solving Problem (4), we adapt and store the inequalities to the set C̄ for further

usage in line 11. After the for loop of Algorithm 3, we call Algorithm 1 based on a new vector α and a set of

warm-start cuts C̄. At the end of Algorithm 3, using the returned incumbent solution of Algorithm 1, we are

able to compute an optimality gap for Problem (2), where the computation of the gap follows Proposition

2.5.

3. An Application on a Class of Water Sensor Placement Optimization Problems In this

section, we apply the proposed algorithms to a class of sensor placement optimization problems in a water

distribution network, where the goal of the deployed sensors is to detect contaminants in the network. Various

objectives have been considered to quantify the effectiveness of the sensor deployment, such as the volume

of the contaminated water (Kessler et al., 1998), the contaminant detection time (Kumar et al., 1997; Dorini

et al., 2004), or the population affected by the pollutants. We refer the reader to Berry et al. (2005); Ostfeld

et al. (2008) for a detailed introduction to sensor placement optimization in real-world applications. In

addition, Watson et al. (2004); Huang et al. (2006); Preis and Ostfeld (2006); Wu and Walski (2006); Dorini

et al. (2006); Austin et al. (2009) provide an introduction to multi-objective sensor placement optimization

problems.

3.1 A Model for Sensor Placement Optimization Problems In this subsection, we introduce the

outbreak detection model of Leskovec et al. (2007) in a water distribution network (see also, Krause et al.,

2008a). Let J be a set of possible contamination events corresponding to a source node j ∈ J polluting the

network with probability pj ∈ [0, 1]. Therefore, a network may have |J | different contamination sources. Let

V be the set of all possible sensor locations and S ⊆ V be a set of selected sensor placements. Note that each

sensor s ∈ S has its own cost as ∈ R+; the total cost
∑

s∈S as of the selection S must be less than or equal

to a given budget b ∈ R+. Let W be a vector of edge flow velocities (time). Let T (S, j) be a detection time

that a set of sensors S ⊆ V detects the contamination of a source j ∈ J . From the definition, the function
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Algorithm 1: Delayed Constraint Generation Algorithm (α, C, reduce)

1 Input: α = (α1, α2, . . . , αm), C, and a Boolean parameter reduce

2 C ← C ∩ C(∅, [m])

3 while Termination criteria not met do

4 Solve RMP (8) and obtain an incumbent (η̄, x̄)

5 for i ∈ [m] do

6 Λ← Λ ∪
{

fi(x̄)
αi

}
7 end

8 for i ∈ [m] do

9 if reduce = True then

10 if fi(x̄)
αi

= min(Λ) and η̄ > fi(x̄)
αi

then

11 S ← FindSetRoutine(x̄,i)

12 Add a submodular inequality

η ≤ 1
αi
(fi(S)−

∑
j∈S ρij(V \ {j})(1− xj) +

∑
j∈V \S ρij(S)xj) to C

13 end

14 end

15 else

16 if η̄ > fi(x̄)
αi

then

17 S ← FindSetRoutine(x̄,i)

18 Add a submodular inequality

η ≤ 1
αi
(fi(S)−

∑
j∈S ρij(V \ {j})(1− xj) +

∑
j∈V \S ρij(S)xj) to C

19 end

20 end

21 end

22 end

23 Return (η̄, x̄) as the optimal value and solution.
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Algorithm 2: FindSetRoutine(x̄,i)

1 Set a stop point StopPt ∈ N

2 Q← ∅

3 S ← ∅

4 for j ∈ V do

5 if ρij(X̄) = 0 then

6 tmpQ← Q

7 counter ← 0

8 for k ∈ X̄ do

9 if ρij({k}) = 0 then

10 counter ← counter + 1

11 tmpQ← tmpQ ∪ {k}

12 end

13 if counter = StopPt and fi(tmpQ) = fi(S ∪ {j}) +
∑

l∈tmpQ ρil(S ∪ {j}) then

14 S ← S ∪ j

15 Q← Q ∪ tmpQ

16 end

17 end

18 end

19 end

20 S ← S ∪ {X̄ \Q}

21 Return S
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Algorithm 3: Solution Method for Problem (3)

1 Let UB ←∞ be the upper bound of Problem (3)

2 Let LB ← 0 be the lower bound of Problem (3)

3 SubCutReduction← True

4 for i ∈ [m] do

5 Let F̄i be a mixed-integer set derived from a subset of constraints for the i-th submodular

maximization Problem (1)

6 while True do

7 Solve a master problem max{η : x ∈ X ∩Bn, η ∈ R, (η,x) ∈ F̄i} and get an incumbent (η̄, x̄)

8 if Termination criteria met then

9 ubi ← η̄

10 ᾱi ← lbi ← fi(x̄)

11 Modify each submodular inequality of F̄i to the form

η ≤ 1
ᾱi
(fi(S)−

∑
j∈S ρij(V \ {j})(1− xj) +

∑
j∈V \S ρij(S)xj) and add the modified

inequalities to C̄

12 break;

13 end

14 else

15 S ← FindSetRoutine(x̄,i)

16 Add a submodular inequality η ≤ fi(S)−
∑

j∈S ρij(V \ {j})(1− xj) +
∑

j∈V \S ρij(S)xj

to F̄i

17 end

18 end

19 end

20 ᾱ← (ᾱ1, ᾱ2, . . . , ᾱi)

21 (η̄, x̄) ← Algorithm 1(ᾱ, C̄, SubCutReduction)

22 UB ← η̄

23 LB ← mini∈[m]
fi(x̄)
ubi

24 Gap← UB−LB
UB
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T ({s}, j) denotes the time that a sensor s ∈ V detects the contamination of j. We then derive a relation

T (S, j) = mins∈S T ({s}, j) meaning the time for detecting a contamination of j is the minimal time for the

contamination detected by any sensor s ∈ S. Note that if the contamination of j cannot be detected by the

set S, the function T (S, j) takes a value of ∞. Following the definition of the detection time, we let βj(t)

be a penalty function that denotes the amount of damage caused by a source j ∈ J after a time t. Here,

the amount of damage can be defined by users. For example, in a water distribution network, the associated

damage can be the number of polluted nodes, the population affected by contamination, or the total cost of

the contamination. For the case t =∞, the function βj(∞) denotes the total amount of damage caused by

the contamination of j ∈ J . Note that the penalty function is non-decreasing, where βj(t) ≤ βj(t
′) for t ≤ t′

and t, t′ ∈ R+.

Consider a water distribution network represented by a graph G = (V,E, J), where V is a set of nodes,

E is a set of directed edges, J ⊆ V is a set of possible contamination sources. Based on the definition

of the penalty function, given a set of sensors S and a contamination source j ∈ J in G, the penalty

reduction is defined as RG,W (S, j) = βj(∞) − βj(T (S, j)). The penalty reduction measures the amount of

damage that can be avoided due to the contamination of j after deploying a set S of sensors in the water

distribution network. Recall that the probability of the event j ∈ J is pj ∈ [0, 1]. For a set of possible

contamination sources J and a set of deployed sensors S ⊆ V , we consider the expected penalty reduction

function RG,W : 2V → R, where RG,W (S) =
∑

j∈J pjRG,W (S, j) is submodular (see, Leskovec et al., 2007,

for a proof of submodularity). Below, we give an example to illustrate the outbreak detection model in a

water distribution network.

2

0 1

3

4 hr
1 hr

2 hr

A contamination event occurs

at the source j = 0.

2

0 1

3

4 hr
1 hr

2 hr

A contamination event occurs

at the source j = 1.

Figure 1: An example introducing the penalty reduction via a network G = (V,E, J) =

({0, 1, 2, 3}, {(0, 2), (0, 3), (1, 3)}, {0, 1}) with 4 nodes, 3 directed edges, and 2 possible contamination sources

J = {0, 1}, and W = (4, 1, 2).

Example 3.1 Consider the water distribution network shown in Figure 1. The network is represented as

G = (V,E, J) = ({0, 1, 2, 3}, {(0, 2), (0, 3), (1, 3)}, {0, 1}), where each directed edge (i, j) ∈ E indicates the

water flow from node i to node j. Each edge (i, j) ∈ E has a weight representing the flow time from i to j.

For example, the weight of the edge (0, 2) is 4, indicating that it takes 4 hours for the water to flow from

node 0 to node 2. In the network G, we deploy a set of sensors S = {1, 2} indicated by two double circles on

nodes 1 and 2. For a set of two contamination sources J = {0, 1}, we consider the following two cases in

Figure 1.

In the left subfigure of Figure 1, a contamination event is indicated by the red node corresponding to the
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contamination source j = 0. Apart from the polluted red source node 0, the gray nodes 2 and 3, receiving

the water flow from the source node 0, are polluted if no sensor detects the contamination. Thus, the penalty

function β0(∞) = 3 captures the number of polluted nodes without any sensors, given by the two gray

nodes and the red node. If a sensor is placed at node 2 (indicated by the double circle), the contamination

at source node 0 will be detected after 4 hours; however, the sensor deployed at node 1 cannot detect the

contamination because there is no water flow from the source node 0 to node 1. Therefore, we conclude

T ({1, 2}, 0) = mins∈{1,2} T ({s}, 0) = 4, where T ({2}, 0) = 4 and T ({1}, 0) = ∞. The associated penalty

reduction RG,W ({1, 2}, 0) = β0(∞) − β0(T ({1, 2}, 0)) = 3 − 2 = 1 denotes that under the contamination

event at node j = 0, one node is not polluted because of the sensors deployed at S in G. In other words, the

set S saves the damage to one node in G under this contamination event.

In the right subfigure of Figure 1, we consider another contamination source at j = 1. Two nodes (1

and 3) can be polluted by the water flow from source 1. However, since a sensor is placed at source node

1, the contamination event from node 1 will be detected immediately. There are no nodes in G polluted by

the source j = 1 because of the sensor at node 1. Thus, we conclude that the associated penalty reduction

RG,W ({1, 2}, 1) = β1(∞)− β1(T ({1, 2}, 1)) = 2− 0 = 2, where T ({1, 2}, 0) = 0.

Finally, for all j ∈ J , we assume that each contamination event of the source j has the same probability

pj = 1
2 . The expected penalty reduction RG,W ({1, 2}) =

∑
j∈{0,1} pjRG,W ({1, 2}, j) = p0RG,W ({1, 2}, 0) +

p1RG,W ({1, 2}, 1) = 0.5× 1 + 0.5× 2 = 1.5.

Next, we formulate a robust variant of the outbreak detection problem, with uncertain water flow velocity

along each edge. The uncertainty is due to hurricane disturbances, clogged pipes, and pump failures that

may affect the flow velocity along the pipes. We represent each scenario i for i ∈ [m] with gi = (G,Wi),

where Wi is a vector of velocities (weights) for the edges in G. Recall that RG,W : 2V → R is a submodular

function. In our experiments, we let fi = Rgi for all i ∈ [m]. Furthermore, the set of constraints X is given

by {x :
∑

i∈V aixi ≤ b}. Given a scenario gi, the goal of the submodular maximization problem (1) is to find

an optimal solution that provides the maximal value of the expected penalty reduction for this scenario under

the constraint
∑

i∈V aixi ≤ b. In other words, for a scenario gi and the budget constraint, Problem (1) aims

to place a set of sensors that avoid the largest expected amount of damage (i.e., save the largest expected

number of nodes) caused by contamination events in J . In contrast, given a set of sensors, Problem (2) aims

to find an optimal sensor placement that protects the largest expected amount of nodes in the worst case of

m scenarios. On the other hand, in Problem (3), given a scenario gi and a set of sensors S, we consider the

proportion of the number of saved nodes by sensors in S to the maximal number of protected nodes with

an optimal placement under scenario i, where the latter value is obtained by solving the i-th submodular

maximization problem (1). In the following subsection, we evaluate our proposed methods shown in Section

2 on real water distribution networks.

3.2 Computational Results In this subsection, we report our computational experience with the

proposed methods. We first introduce the three water distribution networks used in our computational study.

We consider two networks, EN2 and EN3, from EPANET developed by the United States Environmental

Protection Agency. Furthermore, we consider a network, BWSN1, from the battle of water sensor networks

of Ostfeld et al. (2008). Note that in a water distribution network, a facility, such as a junction, reservoir

source, or tank, is represented by a node. A pipe is represented by a node pair (i, j) denoting the direction
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of an edge from i to j (see Node1 and Node2 of PIPES in http://epanet.de/js/index.html.en). The network

EN2 includes 36 nodes and 41 edges, EN3 includes 97 nodes and 117 edges, and BWSN1 includes 129 nodes

and 168 edges.

Based on the three networks, we use the following parameters for Problem (4). We set the number of

nodes to |V | ∈ {36, 97, 129}, where there are |J | ∈ {25, 50} contamination sources for EN3 and BWSN1, and

|J | ∈ {12, 25} for the small-size network EN2. The probability of a contamination event at a contamination

source j ∈ |J | is pj = 1
|J| . We generate m ∈ {50, 100} scenarios for each network, where the weights Wi of

the directed edges for a scenario gi are chosen from a discrete uniform distribution U(1, 10) for all i ∈ [m].

We consider a budget b ∈ {30, 50}, where the cost of a sensor ai ∈ A is from a discrete uniform distribution

U(5, 10) for all i ∈ V . Note that given a fixed budget b, the different cost set A may affect the number

of sensors deployed in a network. For each setting (|V |, b,m, |J |), we generate three instances and report

the average statistics. All algorithms are implemented in Python with Gurobi 8.1.1 Optimizer. We execute

all experiments on a laptop with Intel Core i5-10210U 1.60 GHz CPU, 8 GB DRAM, x64 processor, and

Windows 10 operating system. The time limit for each instance is set to 1800 seconds. We consider ϵ = 0

and use the default integrality gap (MIPgap) of Gurobi, where a MIPgap of 10−4% is considered optimal.

First, we consider Problem (2), which is Problem (4) under the case α = 1. Algorithm 1 is used for

solving the problem. The Baseline-RSM (2) column provides baseline computational results for solving

Problem (2) with Algorithm 1 using the parameters reduce= False, and with StopPt = 0 for the associated

FindSetRoutine (Algorithm 2). That is, Baseline-RSM (2) with reduce= False considers all submodular

inequalities for Fi, i ∈ [m] for C instead of considering F with fewer submodular inequalities as shown in

Proposition 2.1. Also, in Baseline-RSM (2), since the parameter StopPt of the associated FindSetRoutine

is zero, given an incumbent solution x̄ ∈ X , the algorithm does not utilize Proposition 2.3 that allows us

to find a better set than X̄ to generate the corresponding submodular inequality. We consider two other

methods, PolyF-Algo 1 and PolyF ′-Algo 1, shown in the other two columns of Table 1 to evaluate the

computational benefits of Propositions 2.1 and 2.3 described in Section 2, respectively. In PolyF-Algo 1, we

consider Algorithm 1 with reduce = True and the parameter StopPt = 0 in the associated FindSetRoutine.

That is, RMP (8) uses the set F for deriving the cuts in C. In PolyF ′-Algo 1, Problem (8) considers set

F ′ shown in Proposition 2.3 for deriving the cuts in C. Note that for set F ′, we let reduce = True and

StopPt = 2 in the FindSetRoutine of Algorithm 1.

We summarize our computational results in Table 1. The Time-s column denotes the average compu-

tational time of three instances (in seconds). Note that the number in the parenthesis under the Time-s

column denotes the number of instances that cannot be solved within the time limit of 1800 seconds. The

average gap of the unsolved instances is reported in the Gap-% column and we use a dash symbol to indicate

when all three instances of each setting are solved optimally. The Iteration-# column records the number of

iterations to solve RMP (8). The Cut-# column reports the number of submodular inequalities added to set

C of RMP (8). From the Time-s columns, we observe that PolyF-Algo 1 is faster than the baseline, which

demonstrates the effectiveness of Proposition 2.1. We note that the Baseline-RSM (2) adds more inequalities

to RMP (8), leading to many unsolved instances for the EN3 and BWSN1 instances. Comparing PolyF-Algo
1 and PolyF ′-Algo 1, we observe that for most instances, PolyF ′-Algo 1 outperforms PolyF-Algo 1 in both

computational time and the number of added inequalities. This highlights the effectiveness of Proposition

2.3 in these instances.

Next, we consider RSM (3), which is RSM (4) under the case α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)). From

these previous experiments, we conclude that using set F ′ in deriving the submodular inequalities is the best

strategy for solving RSM (4). Therefore, in Algorithm 3, we set reduce = True and StopPt = 2 of the Find-

SetRoutine in Algorithm 1. In these experiments, we aim to highlight the benefits of Algorithm 3. That is, we

demonstrate different experiments on the If -condition of lines 8-11 of Algorithm 3. Baseline-RSM (3) consid-

ers the basic method without any computational enhancements described in Section 2.3. That is, algorithm
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3 without reusing the submodular inequalities generated for solving m submodular maximization problems

exactly to calculate α. For Baseline-RSM (3), we set C̄ = ∅ in line 11 and t =∞ of Algorithm 3. Here, the

parameter t =∞ indicates that Algorithm 3 has to exactly compute α = (f1(x
∗
1), f2(x

∗
2), . . . , fm(x∗

m)) before

solving RSM (4). PolyF ′-Algo 3 with a finite t demonstrates the effectiveness of Proposition 2.5. That is,

without completely solving m submodular maximization problems, we aim to find a near-optimal solution

with a provable optimality gap based on Proposition 2.5. For PolyF ′-Algo 3, we set t = 15s for m = 100

and t = 30s for m = 50. Note that because the time limit is 1800 seconds, if m submodular maximization

problems take t ×m seconds, then the time limit of algorithm 1 embedded in Algorithm 3 is 1800 − t ×m

seconds.

Table 2 provides the computational results of the three methods introduced in the previous paragraph.

For the instances that can be solved by both Baseline-RSM (3) and PolyF ′-Algo 3 with a finite t, we observe

that the setting C̄ = ∅ slows down the performance of Algorithm 3. This shows the effectiveness of line 11 in

Algorithm 3. We now consider the the unsolved instances (N/A) of Table 2 and observe that PolyF ′-Algo

3 with a finite t outperforms Baseline-RSM (3) significantly. We note that in Baseline-RSM (3), there are

many unsolved instances for EN3 and BWSN1, and the unsolved instances cannot provide a gap as indicated

by the N/A symbol in Table 2. However, PolyF ′-Algo 3 with a finite t overcomes this issue and provides

a small optimality gap for the instances unsolved within the time limit. Given that security of the water

distribution infrastructure is critical, a high-quality sensor deployment plan with a certifiable performance

guarantee which is robust to disruptions as provided by Algorithm 3 is highly desirable.

4. Conclusion We investigate mixed-integer programming methods and a polyhedral study for a class

of robust submodular optimization problems. We start by introducing a fundamental robust submodular

optimization problem, where the goal is to deal with the worst case of a set of possible submodular functions.

Several propositions, including a facet condition on the submodular inequalities of the associated polyhedral

structure, allow us to devise a delayed constraint generation method to solve the problem optimally. We also

consider an extension of the fundamental robust submodular optimization problem that generalizes several

robust submodular maximization subproblems of interest. For cases in which the submodular maximization

subproblems cannot be solved exactly within a time limit, we provide a method for finding a feasible solution

with a certifiable optimality gap. Our computational experiments on a sensor placement optimization prob-

lem for water distribution networks with real-world datasets demonstrate the effectiveness of the proposed

methods.
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