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Abstract

In the past years, augmented Lagrangian methods have been successfully applied to several
classes of non-convex optimization problems, inspiring new developments in both theory and
practice. In this paper we bring most of these recent developments from nonlinear programming
to the context of optimization on Riemannian manifolds, including equality and inequality con-
straints. Many research have been conducted on optimization problems on manifolds, however
only recently the treatment of the constrained case has been considered. In this paper we pro-
pose to bridge this gap with respect to the most recent developments in nonlinear programming.
In particular, we formulate several well known constraint qualifications from the Euclidean con-
text which are sufficient for guaranteeing global convergence of augmented Lagrangian methods,
without requiring boundedness of the set of Lagrange multipliers. Convergence of the dual se-
quence can also be assured under a weak constraint qualification. The theory presented is based
on so-called sequential optimality conditions, which is a powerful tool used in this context. The
paper can also be read with the Euclidean context in mind, serving as a review of the most
relevant constraint qualifications and global convergence theory of state-of-the-art augmented
Lagrangian methods for nonlinear programming.

Keywords: constraint qualifications, global convergence, augmented Lagrangian methods, Rie-
mannian manifolds.

AMS subject classification: 49J52, 49M15, 65H10, 90C30.

1 Introduction

The problem of minimizing an objective function defined on a Riemannian manifold has received
a lot of attention over the last twenty five years. Several unconstrained algorithms on Euclidean
spaces have been successfully adapted to this more general setting. These adaptations come from
the fact that the Riemannian machinery, from a theoretical and practical point of view, allows
treating several constrained optimization problems as unconstrained Riemannian problems. It is
worth noting that the works on this subject involve more than merely a theoretical experiment
in generalizing Euclidean space concepts to Riemannian manifolds, which is challenging in many
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different aspects. Unlike Euclidean spaces, Riemannian manifolds are nonlinear objects, making
it challenging to develop a solid optimization theory in this setting. The most important thing to
keep in mind is that these studies are important mainly because many problems are most effectively
addressed from a point of view of Riemannian geometry. In fact, many optimization problems have
an underlying Riemannian geometric structure that can be efficiently exploited with the goal of
designing more effective methods to solve them; some references on this subject include [1, 23, 28].

Although unconstrained Riemannian optimization is already somewhat well established, only a
few works have appeared dealing with constrained Riemannian optimization (CRO) problems, that
is, Riemannian optimization problems where equality and inequality constraints restrict the vari-
ables to a subset of the manifold itself. For instance, [55] extended to the Riemannian context the
Karush/Kuhn-Tucker (KKT) conditions and second-order optimality conditions under a strong as-
sumption, while in [18] a very interesting intrinsic approach was presented for defining suitable KKT
conditions. In [54] the Approximate-KKT (AKKT) sequential optimality condition was proposed
to support the global convergence theory of an augmented Lagrangian method recently introduced
in [41]. In [35] an exact penalty method for special problems on Stiefel manifolds was presented,
some constraint qualifications and the first- and second-order optimality conditions to support the
method are discussed. A manifold inexact augmented Lagrangian framework to solve a family of
nonsmooth optimization problems on Riemannian submanifolds embedded in Euclidean space is
proposed in [26]. In [46], a Riemannian sequential quadratic optimization algorithm is proposed,
which uses a line-search technique with an ℓ1-penalty function as an extension of the standard
sequential quadratic optimization algorithm for constrained nonlinear optimization problems in
Euclidean spaces. In [38], a Riemannian interior point algorithm is introduced.

It is worth mentioning that the theoretical tools needed to support constrained optimization
methods on the Riemannian setting are still under development. In fact, only recently in [18]
a full theory of constraint qualifications and optimality conditions have been developed, where a
definition of weak constraint qualifications (CQs) such as Guignard’s CQ and Abadie’s CQ have
been given. Despite guaranteeing the existence of Lagrange multipliers, more robust applications
of these conditions are not known so far, even in the Euclidean setting. This is not the case of
stronger conditions such as the linear independence CQ (LICQ) and Mangasarian-Fromovitz CQ
(MFCQ), which gives, respectively, uniqueness and compactness of the Lagrange multiplier set,
together with boundedness of a typical sequence of approximate Lagrange multipliers generated
by several primal-dual algorithms, guaranteeing global convergence to a stationary point. These
results were discussed in the Riemannian setting in [54].

In this paper our goal is to introduce several intrinsic weaker CQs in the Riemannian context,
such as the constant rank CQ (CRCQ [34]), the constant positive linear independence CQ (CPLD
[47]), and their relaxed variants (RCRCQ [44] and RCPLD [11]). RCPLD is the weakest of these four
conditions introduced, however all of them have their own set of applications, which we mention
later. With the exception of CRCQ and RCRCQ, which are independent of MFCQ, all CQs
presented are strictly weaker than MFCQ. Thus, despite the fact that no such condition guarantees
boundedness of the set of Lagrange multipliers at a solution, they are still able to guarantee global
convergence of primal-dual algorithms to a stationary point. In particular, we show that all limit
points of a safeguarded augmented Lagrangian algorithm will satisfy the KKT conditions under all
proposed conditions. Finally, we present two other conditions, the constant rank of the subspace
component CQ (CRSC [12]) and the quasinormality CQ (QN [33]), which we also show to be
enough for proving the global convergence result we mentioned. Although we do not pursue these
results in the Riemannian setting, CRSC is expected to be strictly weaker than RCPLD, while
these conditions (CRSC and QN) are the weakest ones known in the Euclidean setting such that an
Error Bound condition is satisfied. That is, locally, the distance to the feasible set can be measured
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by means of the norm of the constraint violation [12, 45], which should be an interesting result to
be extended to the Riemannian setting. Throughout the text we review several results known in
the Euclidean setting in order to serve as a guide for future extensions to Riemannian manifolds.
We chose to present in the Riemannian setting an interesting characteristic of QN which is related
to the global convergence of the augmented Lagrangian method; namely, under QN, the sequence
of approximate Lagrange multipliers generated by the algorithm is bounded, guaranteeing primal-
dual convergence even when the set of Lagrange multipliers is itself unbounded, a result that first
appeared in [25] in the Euclidean setting. In order to do this, we will need to define a stronger
sequential optimality condition known as Positive-AKKT (PAKKT [2]). Finally, the machinery of
sequential optimality conditions we introduce is relevant due to the fact that it is easy to extend
the global convergence results we present to other algorithms. We want also to draw attention to
the fact that all of the findings obtained in this study are also valid in Euclidean spaces, thus, this
study may also be seen as a review of the recent developments in constraint qualifications and their
connections with global convergence of algorithms in the Euclidean setting.

This paper is organized as follows. Section 1.1 presents some definitions and preliminary results
that are important throughout our study. In Section 2, we state the CRO problem and also
recall the KKT and AKKT conditions, together with the definitions of LICQ and MFCQ for
CRO problems. Section 3 is devoted to introducing the new CQs for the CRO problem, namely,
(R)CRCQ, (R)CPLD, and CRSC, where we present several examples and the proof that these
conditions are indeed CQs associated with the global convergence of the augmented Lagrangian
method. In Section 4 we introduce the PAKKT condition and the quasinormality CQ, where we
show that the Lagrange multiplier sequences generated by the augmented Lagrangian method is
bounded under quasinormality. The last section contains some concluding remarks.

1.1 Notations, terminology and basics results

In this section, we recall some notations and basic concepts of Riemannian manifolds used through-
out the paper. They can be found in many books on Riemannian Geometry, see, for example,
[39, 48, 49].

LetM be an n-dimensional smooth Riemannian manifold. Denote the tangent space at a point p
by TpM, the tangent bundle by TM :=

⋃
p∈M TpM and a vector field by a mapping X :M→ TM

such that X(p) ∈ TpM. Assume also that M has a Riemannian metric denoted by ⟨·, ·⟩ and the
corresponding norm by ∥ · ∥. For f : U → R a differentiable function with derivative df(·), where
U is an open subset of the manifoldM, the Riemannian metric induces the mapping f 7→ grad f
which associates its gradient vector field via the following rule ⟨grad f(p), X(p)⟩ := df(p)X(p),
for all p ∈ U . The length of a piecewise smooth curve γ : [a, b] → M joining p to q in M, i.e.,
γ(a) = p and γ(b) = q is denoted by ℓ(γ). The Riemannian distance between p and q is defined as
d(p, q) = infγ∈Γp,q ℓ(γ), where Γp,q is the set of all piecewise smooth curves inM joining points p and
q. This distance induces the original topology onM, namely (M, d) is a complete metric space and
the bounded and closed subsets are compact. The open and closed balls of radius r > 0, centered at
p, are respectively defined by Br(p) := {q ∈M : d(p, q) < r} and Br[p] := {q ∈M : d(p, q) ≤ r}.
Let γ be a curve joining the points p and q inM and let ∇ be the Levi-Civita connection associated
to (M, ⟨·, ·⟩). A vector field Y along a smooth curve γ inM is said to be parallel when ∇γ′Y = 0.
If γ′ itself is parallel, we say that γ is a geodesic. A Riemannian manifold is complete if its geodesics
γ(t) are defined for any value of t ∈ R. From now on, M denotes an n-dimensional smooth and
complete Riemannian manifold. Owing to the completeness of the Riemannian manifold M, the
exponential map at p, expp : TpM → M, can be given by expp v = γ(1), where γ is the geodesic
defined by its position p and velocity v at p and γ(t) = expp(tv) for any value of t. For p ∈M, the
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injectivity radius ofM at p is defined by

rp := sup{r > 0 : expp|Br(0p) is a diffeomorphism},

where Br(0p) := {v ∈ TpM : ∥v∥ < r} and 0p denotes the origin of TpM. Hence, for 0 < δ < rp
and expp(Bδ(0p)) = Bδ(p), the map exp−1

p : Bδ(p) → Bδ(0p) is a diffeomorphism. Moreover,
for all p, q ∈ Bδ(p), there exists a unique geodesic segment γ joining p to q, which is given by
γpq(t) = expp(t exp

−1
p q), for all t ∈ [0, 1]. Furthermore, d(q, p) = ∥exp−1

p q∥ and the map Bδ(p) ∋
q 7→ 1

2d(q, p)
2 is C∞ and its gradient is given by

grad
1

2
d(q, p)2 = − exp−1

p q,

see, for example, [48, Proposition 4.8, p.108].
Next we state some elementary facts on (positive-)linear dependence/independence of gradi-

ent vector fields, whose proofs are straightforward. Let h = (h1, . . . , hs) : M → Rs and g =
(g1, . . . , gm) :M→ Rm be continuously differentiable functions onM. Let us denote

A(q, I,J ) := {gradhi(q) : i ∈ I} ∪ {grad gj(q) : j ∈ J }, q ∈M, (1)

where I ⊂ {1, . . . , s}, J ⊂ {1, . . . ,m} while {gradhi(q) : i ∈ I} ∪ {grad gj(q) : j ∈ J } is a
multiset, that is, repetition of the same element is allowed.

Definition 1.1. Let V = {v1, . . . , vs} and W = {w1, . . . , wm} be two finite multisets on TpM.
The pair (V,W ) is said to be positive-linearly dependent if there exist α = (α1, . . . , αs) ∈ Rs and
β = (β1, . . . , βm) ∈ Rm

+ such that (α, β) ̸= 0 and

s∑
i=1

αivi +

m∑
j=1

βjwj = 0.

Otherwise, (V,W ) is said to be positive-linearly independent. When clear from the context, we refer
to V ∪W instead of (V,W ).

Lemma 1.1. Let p ∈M and assume that A(p, I,J ) is (positive-)linearly independent. Then, there
exists ϵ > 0 such that A(q, I,J ) is also (positive-)linearly independent for all q ∈ Bϵ(p).

Lemma 1.2. The following two conditions are equivalent:

(i) There exists ϵ > 0 such that for all I ⊂ {1, . . . , s} and J ⊂ {1, . . . ,m}, whenever the set
A(p, I,J ) is linearly dependent, A(q, I,J ) is also linearly dependent for all q ∈ Bϵ(p).

(ii) There exists ϵ > 0 such that for all I ⊂ {1, . . . , s} and J ⊂ {1, . . . ,m} the rank of A(q, I,J )
is constant for any q ∈ Bϵ(p).

Lemma 1.3 (Carathéodory’s Lemma [11]). Let u1, . . . , us, v1, . . . , vm be vectors in a finite-dimensional
vector space V such that {u1, . . . , us} is linearly independent. Suppose x ∈ V is such that there are
real scalars α1, . . . , αs, β1, . . . , βm, with βj ̸= 0 for j = 1, . . . ,m and

x =

s∑
i=1

αiui +

m∑
j=1

βjvj .
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Then, there exist a subset J ⊂ {1, . . . ,m}, and real scalars ᾱi, i = 1, . . . , s, and β̄j ̸= 0, j ∈ J such
that

x =
m∑
i=1

ᾱiui +
∑
j∈J

β̄jvj ,

β̄jβj > 0 for all j ∈ J , and {ui : i ∈ {1, . . . , s}} ∪ {vj : j ∈ J } is linearly independent.

We end this section by stating some standard notations in Euclidean spaces. The set of all
m× n matrices with real entries is denoted by Rm×n and Rm ≡ Rm×1. For M ∈ Rm×n the matrix
M⊤ ∈ Rn×m is the transpose of M . For all x, y ∈ Rm, min{x, y} ∈ Rm is the component-wise
minimum of x and y. We denote by [y]+ the Euclidean projection of y onto the non-negative
orthant Rm

+ , while ∥y∥2 and ∥y∥∞ denote its Euclidean and infinity norms, respectively.

2 Preliminaries

In this paper we are interested in the following Constrained Riemannian Optimization (CRO)
problem

Minimize
q∈M

f(q),

subject to h(q) = 0, g(q) ≤ 0,
(2)

whereM is an n-dimensional smooth and complete Riemannian manifold, the functions f :M→ R,
h = (h1, . . . , hs) :M→ Rs and g = (g1, . . . , gm) :M→ Rm are continuously differentiable onM.
The feasible set Ω ⊂M of problem (2) is defined by

Ω := {q ∈M : h(q) = 0, g(q) ≤ 0}, (3)

which is closed. For a given point p ∈ Ω, let A(p) be the set of indexes of active inequality
constraints, that is,

A(q) := {j ∈ {1, . . . ,m} : gj(q) = 0} . (4)

We say that the Karush/Kuhn-Tucker (KKT) conditions are satisfied at p ∈ Ω when there exists
so-called Lagrange multipliers (λ, µ) ∈ Rs × Rm

+ such that the following two conditions hold:

(i) gradL(p, λ, µ) = 0,

(ii) µj = 0, for all j /∈ A(p),

where L(·, λ, µ) :M→ R is the Lagrangian function defined by

L(q, λ, µ) := f(q) +

s∑
i=1

λihi(q) +

m∑
j=1

µjgj(q).

For p ∈ Ω, the linearized/linearization cone L(p) is defined as

L(p) :=
{
v ∈ TpM : ⟨gradhi(p), v⟩ = 0, i = 1, . . . s; ⟨grad gj(p), v⟩ ≤ 0, j ∈ A(p)

}
,

and its polar is given by

L(p)◦ =
{
v ∈ TpM : v =

s∑
i=1

λi gradhi(p) +
∑

j∈A(p)

µj grad gj(p), µj ≥ 0, λi ∈ R
}
. (5)

5



A constraint qualification (CQ) is a condition that refers to the analytic description of the feasible
set and that guarantees that every local minimizer is also a KKT point. In [18] it was shown that
when p is a local minimizer of (2) that satisfies Guignard’s CQ, that is, L(p)◦ = T (p)◦, where T (p)
is the Bouligand tangent cone of Ω at p, then the KKT conditions are satisfied at p.

In [50] the convex inequality constrained problem is studied, under a Slater CQ, on a complete
Riemannian manifold. In this case, the objective and inequality constraints are convex along
geodesics and the feasible set is described by a finite collection of inequality constraints. In this
context KKT conditions are formulated. In [55] it was shown that when p is a local solution of (2)
and LICQ holds at p, that is, the set {gradhi(p) : i = 1, . . . , s}∪{grad gj(p) : j ∈ A(p)} is linearly
independent, then the KKT conditions are satisfied at p.

Without CQs, an approximate verison of the KKT conditions are known to be satisfied at local
minimizers:

Theorem 2.1. Let p ∈ Ω be a local minimizer of (2). Then p is an Approximate-KKT (AKKT)
point, that is, there exist sequences (pk)k∈N ⊂M, (λk)k∈N ⊂ Rs and (µk)k∈N ⊂ Rm

+ such that

(i) limk→∞ pk = p,

(ii) limk→∞ gradL(pk, λk, µk) = 0,

(iii) µk
j = 0, for all j /∈ A(p) and sufficiently large k.

This result appeared in [54], as an extension of the well known nonlinear programming version
of this theorem [4]. Any sequence (pk)k∈N ⊂M that satisfies (i), (ii) and (iii) above is called a pri-
mal AKKT sequence for p while the correspondent sequence (λk, µk)k∈N is its dual sequence. In the
Euclidean setting, this notion has shown to be crucial in developing new constraint qualifications
and expanding global convergence results of several algorithms in different contexts; for instance,
nonlinear programming [11, 15], Nash equilibrium problems [25], quasi-equilibrium problems [24],
multi-objective [30], second-order cone programming [6], semidefinite programming [14, 5, 8], Ba-
nach spaces [22], equilibrium constraints [13], cardinality constraints [36], among several other
applications and extensions. In [54] the following safeguarded augmented Lagrangian algorithm
was defined and it was proved that its iterates are precisely AKKT sequences. In order to define it,
we denote by Lρ(·, λ, µ) :M→ R the standard Powell-Hestenes-Rockafellar augmented Lagrangian
function, defined by

Lρ(q, λ, µ) := f(q) +
ρ

2

(∥∥∥∥h(q) + λ

ρ

∥∥∥∥2 + ∥∥∥∥[g(q) + µ

ρ

]
+

∥∥∥∥2
)
.

Algorithm 1. Safeguarded augmented Lagrangian algorithm

Step 0. Take p0 ∈ M, τ ∈ [0 , 1), γ > 1, λmin < λmax, µmax > 0, and ρ1 > 0. Take also λ̄1 ∈
[λmin, λmax]

s and µ̄1 ∈ [0, λmax]
m initial Lagrange multipliers estimates, and (ϵk)k∈N ⊂ R+ a

sequence of tolerance parameters such that limk→∞ ϵk = 0. Set k ← 1.

Step 1. (Solve the subproblem) Compute (if possible) pk such that∥∥∥gradLρk(pk, λ̄k, µ̄k)
∥∥∥ ≤ ϵk. (6)

If it is not possible, stop the execution of the algorithm, declaring failure.
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Step 2. (Estimate new multipliers) Compute

λk = λ̄k + ρkh(p
k), µk =

[
µ̄k + ρkg(p

k)
]
+
. (7)

Step 3. (Update the penalty parameter) Define

V k =
µk − µ̄k

ρk
. (8)

If k = 1 or

max
{∥∥h(pk)∥∥

2
,
∥∥V k

∥∥
2

}
≤ τ max

{∥∥h(pk−1)
∥∥
2
,
∥∥V k−1

∥∥
2

}
, (9)

choose ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 4. (Update multipliers estimates) Compute λ̄k+1 ∈ [λmin , λmax]
m and µ̄k+1 ∈ [0 , µmax]

p.

Step 5. (Begin a new iteration) Set k ← k + 1 and go to Step 1.

In the algorithm, (λk, µk)k∈N is the dual sequence associated with (xk)k∈N, which may be
unbounded, while the safeguarded dual sequence (λ̄k, µ̄k)k∈N is bounded and used for defining the
subproblems. A standard choice is considering (λ̄k+1, µ̄k+1) as the projection of (λk, µk) onto the
corresponding box. It was shown in [54] that any limit point of a sequence (pk)k∈N generated by
Algorithm 1 is such that it is stationary for the problem of minimizing an infeasibility measure,
namely

Minimize
q∈M

1

2
∥h(q)∥22 +

1

2
∥g(q)+∥22 .

When the limit point is feasible, they showed that it is an AKKT point. The correspondent AKKT
sequence is precisely the sequence (pk)k∈N of primal iterates, what can be attested by the dual
sequences (λk, µk)k∈N generated by the algorithm.

Thus, in order to establish a standard global convergence result to Algorithm 1, namely, by
showing that its feasible limit points satisfy the KKT conditions, it is sufficient to consider any
condition that guarantees that all AKKT points are in fact KKT points. Due to Theorem 2.1,
the said condition will necessarily be a CQ. Constraint qualifications with this additional propery
are sometimes called strict CQs, and only the following ones have been stated in the Riemannian
context:

Definition 2.1. Let Ω be given by (3), p ∈ Ω and A(p) be given by (4). The point p is said to
satisfy:

(i) the linear independence constraint qualification (LICQ) if

{gradhi(p) : i = 1, . . . , s} ∪ {grad gj(p) : j ∈ A(p)}

is linearly independent;

(ii) the Mangasarian-Fromovitz constraint qualification (MFCQ) if

{gradhi(p) : i = 1, . . . , s} ∪ {grad gj(p) : j ∈ A(p)}

is positive-linearly independent.

The definition of LICQ was presented in [55] while MFCQ was introduced in [18], where it was
shown that LICQ implies MFCQ. In the next section we will introduce several new weaker CQs
and we will prove that they can still be used for proving global convergence to a KKT point of
algorithms that generate AKKT sequences such as Algorithm 1.
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3 New strict constraint qualifications

We will say that a property P of the constraints defining the feasible set Ω of (2) at a given point
p ∈ Ω is a strict CQ for the necessary optimality condition S if at a point p ∈ Ω that satisfies both
P and S, it is necessarily the case that p satisfies the KKT conditions, according to the definition
given in [21]. Thus, after we present and discuss our conditions, we shall prove that they are all
strict CQs with respect to the sequential optimality condition AKKT from Theorem 2.1. The first
conditions we propose are the following:

Definition 3.1. Let Ω be given by (3), p ∈ Ω and A(p) be given by (4). The point p is said to
satisfy:

(i) the constant rank constraint qualification (CRCQ) if there exists ϵ > 0 such that for all
I ⊂ {1, . . . , s} and J ⊂ A(p) the rank of {gradhi(q) : i ∈ I} ∪ {grad gj(q) : j ∈ J } is
constant for all q ∈ Bϵ(p);

(ii) the constant positive linear dependence condition (CPLD), if for any I ⊂ {1, . . . , s} and
J ⊂ A(p), whenever the set {gradhi(p) : i ∈ I} ∪ {grad gj(p) : j ∈ J } is positive-linearly
dependent, there exists ϵ > 0 such that {gradhi(q) : i ∈ I} ∪ {grad gj(q) : j ∈ J } is linearly
dependent, for all q ∈ Bϵ(p);

(iii) the Relaxed-CRCQ (RCRCQ) if there exists ϵ > 0 such that for all J ⊂ A(p) the rank of
{gradhi(q) : i = 1, . . . , s} ∪ {grad gj(q) : j ∈ J } is constant for all q ∈ Bϵ(p);

(iv) the Relaxed-CPLD (RCPLD) if there exists ϵ > 0 such that the following two conditions hold:

(a) the rank of {gradhi(q) : i = 1, . . . , s} is constant for all q ∈ Bϵ(p);

(b) Let K ⊂ {1, . . . , s} be such that {gradhi(p) : i ∈ K} is a basis for the subspace
generated by {gradhi(p) : i = 1, . . . , s}. For all J ⊂ A(p), if {gradhi(p) : i ∈
K} ∪ {grad gj(p) : j ∈ J } is positive-linearly dependent, then {gradhi(q) : i ∈
K} ∪ {grad gj(q) : j ∈ J } is linearly dependent, for all q ∈ Bϵ(p).

These conditions are natural versions in the Riemannian setting of the existing conditions in the
Euclidean setting. The following diagram shows the relationship among the conditions introduced
so far, where an arrow represents strict implication, which shall be proved later in this section.

LICQ CRCQ RCRCQ

MFCQ CPLD RCPLD

Figure 1: Strict constraint qualifications for problem (2).

The reason for introducing these CQs in the Riemannian setting is due to their several appli-
cations known in the Euclidean case, which we expect to be extended also to the Riemannian set-
ting. Although we shall only prove results concerning the global convergence of the safeguardaded
augmented Lagrangian method, let us briefly review some properties of these conditions in the
Euclidean setting.
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LICQ is equivalent to the uniqueness of the Lagrange multiplier for any objective function that
assumes a constrained minimum at the point [51]. However, it is considered to be too stringent.
For instance, it fails when the same constraint is repeated twice in the problem formulation. On the
other hand, MFCQ and its many equivalent statements is the most prevalent CQ in the nonlinear
programming literature, with several applications. In particular, it considers the correct sign of the
Lagrange multiplier in its formulation, what can be though as it being a more adequate statement
than LICQ. However, the simple trick of replacing an inequality constraint h(x) = 0 by two in-
equalities h(x) ≤ 0 and −h(x) ≤ 0 is enough for ensuring that MFCQ does not hold. This is due to
the fact that under this very natural formulation, the set of Lagrange multipliers (if non-empty) is
necessarily unbounded, while MFCQ is equivalent to the boundedness of this set [51]. Notice also
that the case of linear constraints is not automatically covered by any of these two assumptions,
which generally requires a separate analysis when one is assuming MFCQ or LICQ.

Condition CRCQ, on the other hand, gives more freedom to someone modeling an optimiza-
tion problem, given that it is not tricked by repetition of a constraint or by splitting an equality
constraint in two inequalities. It also subsumes the linear case, disregarding a separate analysis.
However, it does not consider the correct sign of Lagrange multipliers, being thus independent
of MFCQ. The CPLD condition, on the other hand, corrects this issue, introducing the correct
sign considering positive linear dependence instead of standard linear dependence (see the alterna-
tive definition of CRCQ as given by Lemma 1.2), being then strictly weaker than both MFCQ and
CRCQ together. This condition has been used mainly for showing global convergence of algorithms,
firstly for an SQP method, when it was introduced in [47], and it was popularized for being the
basis for the global convergence theory of the popular ALGENCAN software [21]. However, other
applications have emerged such as in bilevel optimization [53, 43], switching constraints [40], exact
penalty [31], among several others. On the other hand, CRCQ is more robust in terms of applica-
tions, since it has been introduced in order to compute the derivative of the value function [34]. It
has also found applications in the characterization of tilt stable minimizers [29]. More interestingly,
while MFCQ is still able to provide a second-order necessary optimality condition, the condition
depends on the whole set of Lagrange multipliers, which limits its practical use. CRCQ, on the
other hand, provides a strong second-order necessary optimality condition depending on a single
Lagrange multiplier [11], a result which was recently extended to the context of conic optimization
[9]. This difference with respect to MFCQ in terms of the second-order results can somehow be
explained by the fact that under CRCQ the value of the quadratic form defined by the Hessian of
the Lagrangian evaluated at a direction in the critical cone is invariant to the Lagrange multiplier
used to define it [29].

The relaxed versions of CRCQ [44] and CPLD [11] can in fact be thought as the “correct”
versions of these conditions, as they enjoy the very same properties previously described. In fact,
there is no reason to consider all subsets of equality constraints, and this was already present in
the very first results proved under CRCQ by Janin in [34].

Let us now prove that the strict implications shown in Figure 1 hold for any Riemannian
manifoldM with dimension n ≥ 2. We do this by providing several examples that help illustrate
the different conditions we propose, however we only describe in details the computations concerning
the most relevant examples; the other ones being analogous. We start by showing in the next two
examples that MFCQ and CRCQ are independent conditions, that is, in Example 1, CRCQ holds
and MFCQ fails while in Example 2, MFCQ holds while CRCQ fails.

Example 1. Consider problem (2) with feasible set Ω := {q ∈ M : h(q) ≤ 0,−h(q) ≤ 0}, where
h :M→ R is continuously differentiable on M with gradh(p) ̸= 0 and p ∈ Ω. Thus MFCQ fails
at p while CRCQ holds.
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To proceed with the examples let us define some auxiliary functions. LetM be an n-dimensional
Riemannian manifold and p ∈ M. Take 0 < δ̄ < rp, where rp is the injectivity radius, such that
Bδ̄(p) is a strongly convex neighborhood, which exists by [27, Proposition 4.2]. Let u, v ∈ TpM with
∥u∥ = ∥v∥ = 1, ⟨v, u⟩ = 0, and define the geodesics γu(t) := expp(tu) and γv(t) := expp(tv). Take
also 0 < δ < δ̄ and define p1 := γu(−δ), p2 := γu(δ), and p3 = γv(δ). Note that p1, p2, p3 ∈ Bδ̄(p)
with p1 ̸= p2, p1 ̸= p3, and p2 ̸= p3. Define the following auxiliary functions

φi(q) =
1

2
d(q, pi)

2 − 1

2
d(p, pi)

2, i = 1, 2, 3. (10)

Example 2. Define the functions g1(q) := φ1(q), g2(q) := −φ2(q) and consider a feasible set
Ω := {q ∈ M : g(q) ≤ 0}, where g := (g1, g2). One can see that CRCQ is not valid at p ∈ Ω while
MFCQ holds.

In [47], it was proved that CPLD is strictly weaker than both MFCQ and CRCQ together
in the Euclidean setting. The next example shows that the same thing happens for any smooth
Riemannian manifoldM with dimension n ≥ 2.

Example 3. Let M be an n-dimensional Riemannian manifold with n ≥ 2. Take p ∈ M and
g := (g1, . . . , g4) :M→ R4 continuously differentiable functions satisfying the following conditions

(i) g(p) = 0;

(ii) grad g1(p) = grad g2(p) ̸= 0 and grad g3(p) = − grad g4(p) ̸= 0;

(iii) for all ϵ > 0, there exists q ∈ Bϵ(p) such that {grad g1(q), grad g2(q)} is linearly independent
with q ̸= p;

(iv) {grad g1(p), grad g3(p)} is linearly independent.

(v) there exists ϵ > 0 such that {grad g3(q), grad g4(q)} is linearly dependent, for all q ∈ Bϵ(p).

Consider the feasible set Ω := {q ∈ M : g(q) ≤ 0}. Then, by (i), p ∈ Ω. It follows from the first
equality in condition (ii), that the set {grad g1(p), grad g2(p)} is linearly dependent. Thus, (iii)
implies that p does not satisfy CRCQ. Furthermore, the second equality in condition (ii) guarantees
that p does not satisfy MFCQ. We will now show that p satisfies CPLD. It is easy to see that the set
{grad gj(p) : j ∈ J ⊂ A(p)} is positive linearly dependent if, and only if {3, 4} ⊂ J . Therefore, by
(v) we concluded that p satisfies CPLD. In the following we build two concrete examples satisfying
conditions (i), (ii), (iii), (iv), and (v). The first one considers M as the 2-sphere while the second
one considers an arbitrary 2-dimensional manifoldM, however it is easy to generalize the examples
to an arbitrary dimension n ≥ 2.

• Consider the sphere M := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and take p := (0, 0, 1). The
functions g1(x, y, z) := x, g2(x, y, z) := x + y2, g3(x, y, z) := x + y, g4(x, y, z) := −x − y
satisfy conditions (i), (ii), (iii), (iv), and (v). Indeed, for q = (x, y, z) ∈ Bϵ(p) we have
grad g1(q) = ΠTqM(1, 0, 0), grad g2(q) = ΠTqM(1, 2y, 0), grad g3(q) = ΠTqM(1, 1, 0), and
grad g4(q) = ΠTqM(−1,−1, 0), where ΠTqM denotes the orthogonal projection onto TqM.
Cleary, (i) holds. To see that (ii) and (iv) hold it is enough to note that since TpM = {p}⊥,
at q = p the projections coincide with the vectors being projected. We proceed to prove that
(iii) holds. Let q := (x, y, z) with y ̸= 0 and z ̸= 0, hence u := (1, 0, 0), v := (1, 2y, 0), and
q are linearly independent. Take α, β ∈ R such that α grad g1(q) + β grad g2(q) = 0. Since
TqM = {q}⊥, this implies that α(u − ruq) + β(v − rvq) = 0 for some ru, rv ∈ R, which in
turn gives αu+ βv + (−αru − βrv)q = 0, implying α = β = 0, hence, (iii). We obtain (v) by
noting that grad g3(q) = − grad g4(q) for all q.
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• LetM be a 2-dimensional complete manifold. Let us show that the functions g1(q) := φ1(q),
g2(q) := −φ2(q), g3(q) := φ3(q), and g4(q) := −φ3(q) satisfy conditions (i), (ii), (iii), (iv),
and (v), where these functions are defined in (10). Indeed, g(p) = 0, which gives (i). Since
grad g1(p) = − exp−1

p p1 = δu ̸= 0, grad g2(p) = exp−1
p p2 = δu, grad g3(p) = − exp−1

p p3 =
−δv ̸= 0 and grad g4(p) = exp−1

p p3 = δv, then g satisfies (ii).

We proceed to show that g1 and g2 satisfy (iii). For that, take a point q ∈ Bδ̄(p) with q ̸= p
such that d(q, p2) = d(q, p1) < d(p2, p1). Note that grad g1(q) = − exp−1

q p1 and grad g2(q) =
exp−1

q p2. In addition, due to d(q, p2) = d(q, p1), we have ∥ grad g1(q)∥ = ∥ grad g2(q)∥ =
d(q, p1). Assume by contradiction that {grad g1(q), grad g2(q)} is linearly dependent. SinceM
is 2-dimensional and d(q, p1) < d(p2, p1), we conclude that grad g1(q) = grad g2(q). Consider
the geodesic

γ(t) = expq(−t exp−1
q p1) = expq(t exp

−1
q p2),

where the second equality holds because we are under the assumption grad g1(q) = grad g2(q).
Hence γ(0) = q, γ(−1) = p1, and γ(1) = p2. Considering that there exists a unique geodesic
joining p1 and p2, we conclude that γu = γ. Thus, there exists t̄ such that γ(t̄) = p and

γ′(t̄) = Pqγ(t̄)(− exp−1
q p1).

We know that the parallel transport is an isometry and γ′(t̄) = δγ′u(0) = − exp−1
p p1. Thus,

using the last equality we conclude that d(q, p1) = d(p, p1). Hence, considering that q, p
and p1 belongs to the same geodesic, we have q = p, which is a contradiction. Therefore,
{grad g1(q), grad g2(q)} is linearly independent for q ̸= p.

Due to grad g1(p) = −δu, grad g3(p) = δv and ⟨v, u⟩ = 0, condition (iv) is satisfied. Finally,
due to g4 = −g3 we have grad g4(q) = − grad g3(q) and (v) is also satisfied.

The situation in consideration is depicted in Figure 2.

M

TpM p2

p1

p3

grad g1(p) = grad g2(p)

grad g3(p)

grad g4(p)

p

(a) The scenario at point p.

M
TqM

p2

p1

p3

grad g2(q)
grad g1(q)

grad g3(q)

grad g4(q)

p

q

(b) Case for q in the neighborhood of p.

Figure 2: Illustrative figure for Example 3 where CPLD holds while MFCQ and CRCQ fails. The
rank of the gradients indexed by {1, 2} is not constant, but they are positive-linearly independent.
In addition, the gradients in {3, 4} are positive-linearly dependent, which implies that MFCQ fails,
but this remains to be the case in a neighborhood.

As proved in [44], RCRCQ is strictly weaker than CRCQ in the Euclidean context. This fact
is also true for any smooth Riemannian manifoldM with dimension n ≥ 2. In fact, the following
example shows that RCRCQ does not imply CPLD.

Example 4. Define the functions h(q) := −φ3(q), g1(q) := −φ1(q), g2(q) := −φ2(q) from (10)
and consider a feasible set Ω := {q ∈ M : h(q) = 0, g(q) ≤ 0}, where g := (g1, g2). The point
p ∈ Ω does not satisfy CPLD, but it satisfies RCRCQ.
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Finally, let us show that RCRCQ implies RCPLD. We do this by providing the following equiv-
alent description of RCRCQ:

Proposition 3.1. Let K ⊂ {1, . . . , s} be such that {gradhi(p) : i ∈ K} is a basis for the subspace
generated by {gradhi(p) : i = 1, . . . , s}. RCRCQ holds at p ∈ Ω if and only if there exists ϵ > 0
such that the following two conditions hold:

(i) the rank of {gradhi(q) : i = 1, . . . , s} is constant for all q ∈ Bϵ(p);

(ii) for all J ⊂ A(p), if {gradhi(p) : i ∈ K} ∪ {grad gj(p) : j ∈ J } is linearly dependent, then
{gradhi(q) : i ∈ K} ∪ {grad gj(q) : j ∈ J } is linearly dependent for all q ∈ Bϵ(p).

Proof. Assume first that p ∈ Ω satisfies RCRCQ. Taking J = ∅ in the definition of RCRCQ, we
obtain (i). In order to obtain (ii), let J ⊂ A(p) such that {gradhi(p) : i ∈ K} ∪ {grad gj(p) : j ∈
J } is linearly dependent. Since {gradhi(p) : i ∈ K} is a basis for the subspace generated by
{gradhi(p) : i = 1, . . . , s} and (i), we have that there exists ϵ > 0 such that {gradhi(q) : i ∈ K}
is a basis for the subspace generated by {gradhi(q) : i = 1, . . . , s} for all q ∈ Bϵ(p). Thus, in
accordance with RCRCQ, the rank of {gradhi(q) : i ∈ K} ∪ {grad gj(q) : j ∈ J } is constant for
all q ∈ Bϵ(p). Consequently, (ii) holds.

To prove the reciprocal assertion, let J ⊂ A(p). It is worth noting that, owing to Lemma 1.1, the
rank of the set cannot decrease in a neighborhood. Let us choose J1 ⊂ J such that A(p,K,J1) is a
basis for A(p,K,J ) – see the notation introduced in (1). The case J1 = J follows trivially. Consider
the situation J1 ̸= J and let j ∈ J with j /∈ J1. As a result of (ii), A(q,K,J1) ∪ {grad gj(q)}
must continue to be linearly dependent for q in a neighborhood of p. Therefore, rank A(q,K,J ) =
|K|+ |J1| for all q ∈ Bϵ(p) and sufficiently small ϵ > 0. Considering the definition of K and (i) we
must have that A(q, {1, . . . , s},J ) has constant rank for q ∈ Bϵ(p), which completes the proof.

Clearly, the equivalent definition of RCRCQ given by Proposition 3.1 is independent of the
choice of the index set K. It is easy to see that the definition of RCPLD is also independent of this
choice. This concludes the analysis of strict implications depicted in Figure 1, where in particular
we have that RCPLD is strictly weaker than CPLD and RCRCQ.

At this point, condition RCPLD is the weakest one among the ones we have presented. Thus, we
will prove that RCPLD is a strict CQ with respect to the AKKT condition, which will be true for
all other conditions that imply it. Before doing this, let us present yet another CQ called Constant
Rank of the Subspace Component (CRSC [12]). Noticing that while RCRCQ improves upon CRCQ
by noticing that there is no reason to consider every subset of equality constraints, CRSC improves
upon RCRCQ by noticing that the same thing is true with respect to the inequality constraints.
Namely, it is not the case that every subset of the active inequality constraints must be taken into
account; only a particular fixed subset of the constraints maintaining the constant rank property
is enough for guaranteeing the existance of Lagrange multipliers. The definition is as follows:

Definition 3.2. Let Ω be given by (3), p ∈ Ω, A(p) and L(p)◦ be given by (3) and (5), respectively.
Define the index set J−(p) = {j ∈ A(p) : − grad gj(p) ∈ L(p)◦}. The point p is said to satisfy
CRSC if there exists ϵ > 0 such that the rank of {gradhi(q) : i = 1, . . . , s}∪{grad gj(q) : j ∈ J−(p)}
is constant for all q ∈ Bϵ(p).

It is clear that CRSC is weaker than RCRCQ and MFCQ, but its relation with RCPLD is not
simple to establish. Somewhat surprisingly, CRSC is strictly weaker than RCPLD in the Euclidean
setting. The proof is somewhat elaborate [12], so we did not pursue it in the Riemannian setting, as
it was not needed in our developments. Instead, we simply show that CRSC does not imply RCPLD
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in any Riemannian manifoldM of dimension n ≥ 2. Thus, we shall prove the convergence of the
augmented Lagrangian method under either of these conditions, even though we expect CRSC to
be weaker than RCPLD. At this point, results under CRSC are at least independent of the ones
where RCPLD are employed. We proceed with the example where CRSC holds and RCPLD fails:

Example 5. Let M be an n-dimensional smooth Riemannian manifold with n ≥ 2. Take p ∈
M and g := (g1, . . . , g4) : M → R4 continuously differentiable functions satisfying the following
conditions:

(i) g(p) = 0;

(ii) grad g1(p) = − grad g2(p) and grad g3(p) = − grad g4(p);

(iii) for all ϵ > 0, there exists q ∈ Bϵ(p) such that the set {grad g1(q), grad g2(q)} is linearly
independent with q ̸= p;

(iv) the set {grad g1(p), grad g3(p)} is linearly independent;

(v) there exists ϵ > 0 such that rank{grad gj(q) : j = 1, . . . , 4} = 2 for all q ∈ Bϵ(p).

Consider a feasible set Ω := {q ∈ M : g(q) ≤ 0} and p ∈ Ω. It follows from condition (ii), that
the set {grad g1(p), grad g2(p)} is positive linearly dependent. Hence, using conditions (i) and (iii),
we conclude that RCPLD does not hold at p. In order to see that CRSC is valid at p, it is enough
to note (v) together with the fact that (i) and (ii) imply that J−(p) = {1, 2, 3, 4}. Next, we will
present two examples in which conditions (i), (ii), (iii), (iv), and (v) are satisfied.

• Consider the sphere M := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and take p := (0, 0, 1),
g1(x, y, z) := x−y2, g2(x, y, z) := −x, g3(x, y, z) := y−x2 and g4(x, y, z) := −y, where clearly
(i) holds. Similarly to Example 3, Let q := (x, y, z) with y ̸= 0 and z ̸= 0, u1 := (1,−2y, 0),
u2 := (−1, 0, 0), u3 := (−2x, 1, 0), and u4 := (0,−1, 0). Since ui ∈ {p}⊥, i = 1, 2, 3, 4,
it is easy to see (ii) and (iv). In order to prove (iii), notice that {q, u1, u2} is linearly
independent. Hence, since grad gi(q) = Π{q}⊥(ui) = ui − ruiq, rui ∈ R for i = 1, 2, 3, 4,
similarly to Example 3 we have that {grad g1(q), grad g2(q)} is linearly independent. To see
that (v) holds, take ϵ > 0 such that z ̸= 0 for all q = (x, y, z) ∈ Bϵ(p). Hence, {u2, u4, q} is
linearly independent, which implies that {grad g2(q), grad g4(q)} is linearly independent. From
the fact thatM is 2-dimensional, (v) holds.

• Consider a 2-dimensional complete manifold M and define the functions g1(q) := φ1(q),
g2(q) := φ2(q), g3(q) := φ3(q), and g4(q) := −φ3(q) from (10). Similarly to the computations
in Example 3, one can prove that items (i), (ii), (iii), and (iv) are satisfied. By (iv) and
Lemma 1.1, we have that the rank of {grad gj(q) : j = 1, . . . , 4} is at least 2 for all q ∈ Bϵ(p)
and some ϵ > 0. Therefore, taking into account that M is 2-dimensional, condition (v) is
also satisfied. Figure 3 illustrates this example.

In our view, CRSC is the most interesting one of all previously defined conditions. Although we
do not pursue its extensions to the Riemannian setting, we mention a few of its properties known in
the Euclidean case. First, it has an elegant mathematical description. Also, the index set J−(p) can
be viewed as the index set of active inequality constraints that are treated as equality constraints in
the polar of the linearized cone L◦(p) (5). Actually, this interpretation holds also for the cone L(p),
since J−(p) can be equivalently stated as the set of indexes j ∈ A(p) such that ⟨grad gj(p), v⟩ = 0
for all v ∈ L(p) [37]. However, surprisingly, these interpretations are not by chance, since it was
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grad g4(p)
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(a) The scenario at point p.

M
TqM
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p1
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grad g2(q)
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grad g3(q)

grad g4(q)

p

q

(b) Case in the neighborhood of the p

Figure 3: Illustrative figure for Example 5 where RCPLD fails but CRSC is satisfied. Although
the subset of gradients indexed by {1, 2} loses positive linear dependence for q near p, all gradients
remain to span a 2-dimensional vector space (the whole tangent space) for q near p.

proved [12] that when p ∈ Ω satisfies CRSC, the constraints gj(q) ≤ 0, j ∈ J−(p) can only be
satisfied as equalities for a feasible point q in a small enough neighborhood around p. That is, one
can safely replace the inequalities gj(q) ≤ 0, j ∈ J−(p) with equalities gj(q) = 0, j ∈ J−(p) without
locally altering the feasible set and in such a way that MFCQ holds. This result is connected to the
one in [42] which shows that whenever CRCQ is satisfied, there exists a local reformulation of the
problem such that MFCQ holds. In fact, this procedure is well known in linear conic programming
as facial reduction, that is, when the constraints are such that there is no interior point, there
is an efficient procedure to replace the cone with one of its faces in such a way that a relative
interior point exists. The extension of CRSC to the conic context and its connections with the
facial reduction procedure are described in [7], where they also show that CRSC may also provide
the strong second-order necessary optimality condition depending on a single Lagrange multiplier
by considering the constant rank property for all subsets of constraints that include J−(p) and all
equalities. Finally, we mention an additional property that holds in the Euclidean setting for all
CQs discussed in this paper, that is, that they all imply that an error bound can be computed. We
state this as the following conjecture in the Riemannian setting:

Conjecture: LetM be a complete Riemannian manifold with dimension n ≥ 2. Let p ∈ Ω be
such that CRSC or RCPLD is satisfied. Then, there exists ϵ > 0 and α > 0 such that

inf
w∈Ω

d(q, w) ≤ αmax{0, g1(q), . . . , gm(q), |h1(q)|, . . . , |hs(q)|}

for all q ∈ Bϵ(p).
Finally, let us prove that all conditions proposed so far are constraint qualifications. We do

this by showing that they are strict CQs with respect to the necessary optimality condition AKKT
from Theorem 2.1, since this gives us the main result of global convergence of Algorithm 1. We
start by showing that CRSC is a strict CQ, and we note that when the condition was introduced
in the Euclidean setting [12], only an indirect proof of this fact was presented. Thus, a clear direct
proof was not available in the literature even in the Euclidean setting.

Theorem 3.1. Suppose that p ∈ Ω satisfies CRSC. If p is an AKKT point, then p is a KKT point.

Proof. As in Definition 3.2, let J−(p) := {j ∈ A(p) : − grad gj(p) ∈ L(p)◦} and we denote J+(p) :=
A(p)\J−(p). Since p is an AKKT point of problem (2), there exist sequences (pk)k∈N ⊂ M,
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(λk)k∈N ⊂ Rs, and (µk)k∈N ⊂ Rm
+ with µk

j = 0, for all j /∈ A(p) such that limk→∞ pk = p and

grad f(pk)+
s∑

i=1

λk
i gradhi(p

k)+
∑

ℓ∈J−(p)

µk
ℓ grad gℓ(p

k)+
∑

j∈J+(p)

µk
j grad gj(p

k) =: ϵk, ∀k ∈ N, (11)

where limk→∞ ϵk = 0. Let I ⊂ {1, . . . , s} and J ⊂ J−(p) be such that A(p, I,J ) is a basis for the
subspace generated by A(p, {1, . . . , s},J−(p)) (here we use the notation introduced in (1)). Thus,
(11) can be rewritten as

grad f(pk) +
∑
i∈I

λ̃k
i gradhi(p

k) +
∑
ℓ∈J

µ̃k
ℓ grad gℓ(p

k) +
∑

j∈J+(p)

µk
j grad gj(p

k) = ϵk, ∀k ∈ N, (12)

for suitable λ̃k
i ∈ R, i ∈ I and µ̃k

ℓ ∈ R, ℓ ∈ J . If all the sequences (λ̃k
i )k∈N, i ∈ I, (µ̃k

ℓ )k∈N, ℓ ∈ J ,
and (µk

j )k∈N, j ∈ J+ are bounded, we may take a suitable convergent subsequence (λ̃k
i )k∈K1 → λ̃i ∈

R, i ∈ I, (µ̃k
ℓ )k∈K1 → µ̃ℓ ∈ R, ℓ ∈ J , and (µk

j )k∈K1 → µj ∈ R+, j ∈ J+ such that

grad f(p) +
∑
i∈I

λ̃i gradhi(p) +
∑
ℓ∈J

µ̃ℓ grad gℓ(p) +
∑

j∈J+(p)

µj grad gj(p) = 0.

Let us see that this implies that p is a KKT point. First, note that J ⊂ J−(p) with J−(p)∪J+(p) =
A(p). If some µ̃ℓ0 < 0, ℓ0 ∈ J , by the definition of the set J−(p), we have µ̃ℓ0∇gℓ0 ∈ L◦(p). But
from (5), one can see that L◦(p) is closed under addition, which implies that − grad f(p) ∈ L◦(p),
that is, p is a KKT point. Otherwise, if it is not the case that all sequences are bounded, let us
take a subsequence K2 ⊂ N such that limk∈K2 Mk = +∞, where Mk = max{|λ̃k

i |, i ∈ I; |µ̃k
ℓ |, ℓ ∈

J ;µk
j , j ∈ J+(p)}. Dividing (12) by Mk and taking the limit on a suitable subsequence K3 ⊂ K2

such that limk∈K3

λ̃k
i

Mk
= αi ∈ R, limk∈K3

µ̃k
ℓ

Mk
= βℓ ∈ R, and limk∈K3

µk
j

Mk
= γj ≥ 0 with not all

αi, βℓ, γj equal to zero, we arrive at∑
i∈I

αi gradhi(p) +
∑
ℓ∈J

βℓ grad gℓ(p) +
∑

j∈J+(p)

γj grad gj(p) = 0.

However, by the definition of J+(p), we must have γj = 0 for all j ∈ J+(p), since otherwise, by
replacing the scalars when some βℓ < 0 (as previously done) we would have −∇gj(p) ∈ L(p)◦.
Hence A(p, I,J ) is linearly dependent. This contradicts the definition of the index sets I and
J .

Similarly, we show that RCPLD is a strict CQ.

Theorem 3.2. Suppose that p ∈ Ω satisfies RCPLD. If p is an AKKT point, then p is a KKT
point.

Proof. The proof is similar to the previous one, however without partitioning A(p). That is, consider
the previous proof with J−(p) replaced by ∅ and J+(p) replaced by A(p). We arrive similarly to
(12) to a sequence

grad f(pk) +
∑
i∈I

λ̃k
i gradhi(p

k) +
∑

j∈A(p)

µk
j grad gj(p

k) = ϵk, ∀k ∈ N,

with λ̃k
i ∈ R, i ∈ I, µk

j ≥ 0, j ∈ A(p), limk∈N pk = p, limk∈N ϵk = 0, and {gradhi(p) : i ∈ I} linearly
independent.
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For every k ∈ N, we apply Lemma 1.3 to arrive at

grad f(pk) +
∑
i∈I

λ̄k
i gradhi(p

k) +
∑
j∈Jk

µ̄k
j grad gj(p

k) = ϵk, (13)

for some λ̄k
i ∈ R, i ∈ I, µ̄k

j ≥ 0, j ∈ Jk ⊂ A(p), and all k ∈ N, where A(pk, I,Jk) is linearly
independent. Let us take a subsequence such that Jk is constant, say, Jk ≡ J for all k ∈ K1 ⊂ N.
The proof now follows similarly to the previous one considering Mk := max{|λ̄k

i |, i ∈ I; µ̄k
j , j ∈ J }.

If (Mk)k∈K1 is bounded, one may take the limit in (13) for a suitable subsequence to see that p is a
KKT point. Otherwise, dividing (13) by Mk we see that A(p, I,J ) is positive-linearly dependent,
which contradicts the definition of RCPLD.

We formalize our results in the following:

Corollary 3.1. Let p be a feasible limit point of a sequence (pk)k∈N generated by Algorithm 1 such
that p satisfies RCPLD or CRSC. Then p satisfies the KKT conditions.

Notice that differently from the result under MFCQ, where the dual AKKT sequence (λk, µk)k∈N
is necessarily bounded, and thus dual convergence to a Lagrange multiplier is obtained, our result
does not include convergence of the dual sequence. In the next section we prove that this can be
obtained under a condition weaker than CPLD and independent of RCPLD known as quasinor-
mality [33]. In order to do this, we shall extend a stronger sequential optimality condition to the
Riemannian setting known as Positive-AKKT condition (PAKKT [2]).

4 A stronger sequential optimality condition

The quasinormality constraint qualification (QN) was introduced in [33] and it has been popularized
in the book [19] in connection with convergence of the external penalty method. Recently, it has
been connected with the notion of so-called Enhanced KKT conditions, guaranteeing boundedness
of the corresponding set of Enhanced Lagrange multipliers [17]. QN is a fairly weak CQ, been
known to be strictly weaker than CPLD [16] while still implying the Error Bound property [45] in
the Euclidean setting. In this section we will extend an important algorithmic property of QN that
goes beyond what we have proved for RCPLD and CRSC. That is, besides QN being a strict CQ
with respect to the AKKT condition, namely, global convergence of Algorithm 1 in the sense of
Corollary 3.1 is also valid under QN, we will show that the dual sequence generated by Algorithm 1
under QN is in fact bounded. In order to do this, we will show that QN is a strict CQ with respect
to a stronger sequential optimality condition known as Positive-AKKT (PAKKT) condition [2].

We start by introducing the PAKKT condition in the Riemannian setting, showing that it
is indeed a genuine necessary optimality condition for problem (2). Our definition considers a
modification of the original one as suggested in [10].

Definition 4.1. The Positive-Approximate-KKT (PAKKT) condition for problem (2) is satisfied
at a point p ∈ Ω if there exist sequences (pk)k∈N ⊂M, (λk)k∈N ⊂ Rs and (µk)k∈N ⊂ Rm

+ such that

(i) limk→∞ pk = p;

(ii) limk→∞
∥∥gradL(pk, λk, µk)

∥∥ = 0;

(iii) µk
j = 0 for all j ̸∈ A(p) and sufficiently large k;
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(iv) If γk :=
∥∥(1, λk, µk)

∥∥
∞ → +∞ it holds:

lim
k→∞

∣∣λk
i

∣∣
γk

> 0 =⇒ λk
i hi(p

k) > 0, ∀k ∈ N; (14)

lim
k→∞

µk
j

γk
> 0 =⇒ µk

j gj(p
k) > 0, ∀k ∈ N. (15)

A point p satisfying Definition 4.1 is called a PAKKT point; the correspondent sequence (pk)k∈N
is its associated primal sequence while (λk, µk)k∈N is its associated dual sequence. In order to present
our results, we will make use of the following lemmas extended to the Riemannian setting in [54]:

Lemma 4.1. Let p be a local minimizer of problem (2) and α > 0. Then, for each k ∈ N and
ρk > 0, the following problem

Minimize
q∈M

f(q) +
1

2
d(q, p)2 +

ρk
2

(
∥h(q)∥22 + ∥g(q)+∥

2
2

)
,

subject to d(q, p) ≤ α,

admits a solution pk. Moreover, if limk→∞ ρk = +∞ then limk→∞ pk = p.

Lemma 4.2. Let ϕ :M→ R be a differentiable function, α > 0 and p0 ∈M. Suppose that p ∈M
is an optimal solution of the following optimization problem:

Minimize
q∈M

ϕ(q),

subject to d(q, p0) ≤ α.

If d(p, p0) < α, then gradϕ(p) = 0.

We now show that PAKKT is a genuine necessary optimality condition for problem (2).

Theorem 4.1. Let p ∈ Ω be a local minimizer of (2). Then, p is a PAKKT point.

Proof. Let p be a local minimizer of problem (2). Thus, there is a sufficiently small parameter
α > 0 such that the problem

Minimize
q∈M

f(q) +
1

2
d(q, p)2,

subject to h(q) = 0, g(q) ≤ 0, d(q, p) ≤ α,

has p as the unique global minimizer. For each k ∈ N, take ρk > 0 such that limk→∞ ρk = +∞.
Consider the penalized problem

Minimize
q∈M

f(q) +
1

2
d(q, p)2 +

ρk
2

(
∥h(q)∥22 + ∥g(q)+∥

2
2

)
,

subject to d(q, p) ≤ α.
(16)

It follows from Lemma 4.1 that there exists a sequence (pk)k∈N such that pk is a solution of (16)
and limk→∞ pk = p. Thus, item (i) of Definition 4.1 is satisfied. Moreover, there exists an infinite
index set K1 such that d(pk, p) < α, for all k ∈ K1. Consequently, using Lemma 4.2, we conclude
that

grad f(pk)− exp−1
pk

p+

s∑
i=1

ρkhi(p
k) gradhi(p

k) +

m∑
j=1

ρk max{0, gj(pk)} grad gj(pk) = 0,
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for all k ∈ K1. Therefore, we have

lim
k∈K1

gradL(pk, λk, µk) = lim
k∈K1

(
grad f(pk) +

s∑
i=1

λk
i gradhi(p

k) +
m∑
j=1

µk
j grad gj(p

k)
)

= lim
k∈K1

− exp−1
pk

p = 0,

where for each k ∈ K1, we denote λk := ρkh(p
k) and µk := ρk[g(p

k)]+ ≥ 0. Therefore, (ii) and
(iii) of Definition 4.1 are satisfied. We will now analyze the validity of (14) and (15). Let γk :=∥∥(1, λk, µk)

∥∥
∞ for all k ∈ K1 be such that limk∈K1 Mk = +∞, and assume that limk∈K1(

∣∣λk
i

∣∣/γk) >
0. Thus,

∣∣λk
i

∣∣/γk > 0 for sufficiently large k ∈ K1, which implies that h(pk) ̸= 0. Hence, λk
i hi(p

k) =
ρkhi(p

k)2 > 0 for all sufficiently large k ∈ K1. Similarly, if limk∈K1(µ
k
j /γk) > 0, we have µk

j > 0,

which implies gj(p
k) > 0 for sufficiently large k ∈ K1. Therefore, (14) and (15) are fulfilled.

Consequently, p satisfies Definition 4.1, which concludes the proof.

Let us now introduce QN in the Riemannian context. We will show that under QN the dual
sequence (λk, µk)k∈N associated with any PAKKT sequence (pk)k∈N is bounded. Later, we will show
that Algorithm 1 generates PAKKT sequences, which will provide the main algorithmic relevance
of QN.

Definition 4.2. Let Ω be given by (3), p ∈ Ω and A(p) be given by (4). The point p satisfies the
quasinormality constraint qualification (QN) if there are no λ ∈ Rs and µ ∈ Rm

+ such that

(i)
∑s

i=1 λi gradhi(p) +
∑

j∈A(p) µj grad gj(p) = 0;

(ii) µj = 0 for all j /∈ A(p) and (λ, µ) ̸= 0;

(iii) for all ϵ > 0 there exists q ∈ Bϵ(p) such that λihi(q) > 0 for all i ∈ {1, . . . , s} with λi ̸= 0 and
µjgj(q) > 0 for all j ∈ A(p) with µj > 0.

In the next example we show that QN holds, but both RCPLD and CRSC fail.

Example 6. Define the functions h1(q) := φ1(q)e
φ2(q) and h2(q) := φ1(q) as defined in (10). Note

that

gradh1(q) := eφ2(q) gradφ1(q) + φ1(q)e
φ2(q) gradφ2(q), gradh2(q) := gradφ1(q). (17)

The point p ∈ Ω satisfies QN. Indeed, first we note that φ1(p) = 0 and φ2(p) = 0. Moreover,
we have gradh1(p) = gradh2(p) = gradφ1(p). Consider the linear combination λ1 gradh1(p) +
λ2 gradh2(p) = 0 with λ1 and λ2 ∈ R. Thus, we have (λ1+λ2) gradφ1(p) = 0. Since gradφ1(p) ̸= 0,
we conclude that unless λ1 = λ2 = 0, we must have λ1λ2 < 0. In this case, take ϵ > 0 and q ∈ Bϵ(p)
such that q ̸= p. Since h1(q)h2(q) > 0, we conclude that λ1h1(q) and λ2h2(q) have opposite signs,
which implies that p satisfies QN.

Now, we are going to show that p does not satisfy RCPLD nor CRSC. For that, we first
note that rank of {gradh1(p), gradh2(p)} is equal to one. On the other hand, similarly to the
computations in Example 3, one can prove that, for all ϵ > 0, there exists q ∈ Bϵ(p) such
that {gradφ1(q), gradφ2(q)} is linearly independent with q ̸= p. By the definition of φ1, no-
tice that φ1(q) ̸= 0 for all q ∈ Bϵ(p) and sufficiently small ε > 0; it follows from (17) that
{gradh1(q), gradh2(q)} is also linearly independent. Therefore, p does not satisfy RCPLD nor
CRSC.
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Theorem 4.2. Let p ∈ Ω be a PAKKT point with associated primal sequence (pk)k∈N and dual
sequence (λk, µk)k∈N. Assume that p satisfies QN. Then (λk, µk)k∈N is a bounded sequence. In
particular, p satisfies the KKT conditions and any limit point of (λk, µk)k∈N is a Lagrange multiplier
associated with p.

Proof. Let p ∈ Ω be a PAKKT point with primal sequence (pk)k∈N and dual sequence (λk, µk)k∈N
and let us assume that the dual sequence is unbounded. Then, we will conclude that the point p
does not satisfy the quasinormality condition, i.e., we will prove the existence of λ ∈ Rs and µ ∈ Rm

+

such that items (i), (ii) and (iii) of Definition 4.2 are satisfied. For that, set γk =
∥∥(1, λk, µk)

∥∥
∞

as in Definition 4.1 and take an infinite subsequence indexed by K1 such that limk∈K1 γk = +∞.
To simplify the notations let us define the following auxiliary sequence

Uk := (1, λk, µk) ∈ R× Rs × Rm
+ , ∀k ∈ N,

with limk∈K1 ∥Uk∥2 =∞. Take an infinite subset K2 ⊂ K1 such that the sequence (Uk/∥Uk∥2)k∈K2

converges to some (0, λ, µ) ∈ R× Rs × Rm
+ , with ∥(0, λ, µ)∥ = 1. Thus, considering that (pk)k∈N is

a primal PAKKT sequence, we conclude that

lim
k∈K2

gradL(pk, λk, µk)

γk
= lim

k∈K2

(grad f(pk)
γk

+

s∑
i=1

λk
i

γk
gradhi(p

k) +

m∑
j=1

µk
j

γk
grad gj(p

k)
)
= 0.

Hence, taking into account that µj = 0 for j /∈ A(p), we obtain that item (i) of Definition 4.2 is
satisfied at p. In addition , since (λ, µ) ̸= 0, item (ii) of Definition 4.2 is also satisfied at p. From
(14) and (15), we have that λk

i hi(p
k) > 0 whenever λi ̸= 0, and µk

j gj(p
k) > 0 whenever µj > 0,

which gives precisely item (iii) of Definition 4.2. Therefore, QN fails.

Finally, it remains to show that Algorithm 1 generates PAKKT sequences, which gives its global
convergence result under QN.

Theorem 4.3. Assume Algorithm 1 generates an infinite sequence (pk)k∈N with a feasible accu-
mulation p, say, limk∈K pk = p. Then, p is a PAKKT point with correspondent primal sequence
(pk)k∈K and dual sequence (λk, µk)k∈K as generated by Algorithm 1. In particular, p is a KKT
point and any limit point of (λk, µk)k∈K is a Lagrange multiplier associated with p.

Proof. By Step 1 and Step 2 of the algorithm, we have

lim
k∈K

gradL(pk, λk, µk) = lim
k∈K

gradLρk(p
k, λ̄k, µ̄k) = 0,

with µk
j = 0 for sufficiently large k ∈ K if j ̸∈ A(p). To see this, note that when (ρk)k∈K is

unbounded, this follows from the definition of µk
j , the boundedness of (µ̄k

j )k∈K , and the fact that

ρkgj(x
k)→ −∞. When (ρk)k∈K is bounded, we must have from Step 3 that V k → 0. In particular,

max

{
0,

µ̄k
j

ρk
+ gj(p

k)

}
− µ̄k

j

ρk
→ 0. Since gj(p

k) < 0 is bounded away from zero when j ̸∈ A(p), we

must have µk
j = 0 for sufficiently large k ∈ K. Thus (i), (ii), and (iii) of Definition 4.1 hold.

To prove (iv) of Definition 4.1, let γk :=
∥∥(1, λk, µk)

∥∥
∞ and assume that limk∈K γk = +∞. Let

i ∈ {1, . . . , s} be such that limk∈K
λk
i

γk
= λi ̸= 0 and j ∈ A(p) be such that limk∈K

µk
j

γk
= µj > 0.

This implies that λk
i = λ̄k

i + ρkhi(p
k) is unbounded for k ∈ K, with λk

i λi > 0. Since (λ̄k
i )k∈K

is bounded, the only possibility is that ρk → +∞ and λihi(p
k) > 0 for sufficiently large k ∈ K.

Similarly, we have µjgj(p
k) > 0 for sufficiently large k ∈ K, which completes the proof.
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We conclude by providing another property of QN in connection with Algorithm 1. Instead
of considering (6) in Step 1 of Algorithm 1, one may consider a more flexible criterion for
solving the correspondent subproblem. That is, instead of requiring the iterate pk to satisfy∥∥gradLρk(pk, λ̄k, µ̄k)

∥∥ ≤ ϵk, one may require the looser criterion
∥∥∥gradLρk

(pk,λ̄k,µ̄k)

γk

∥∥∥ ≤ ϵk, where

γk :=
∥∥(1, λk, µk)

∥∥
∞ with λk and µk given as in Step 2 of the algorithm. That is, one abdicates

robustness of the solution of the subproblem in place of an easier computable iterate. For instance,
this is the approach considered in the well known interior point method IPOPT [52], even though
it tends to generate unbounded dual sequences [32]. This modification gives rise to the so-called
Scaled-PAKKT condition [10] which we present in the Riemannian setting as follows:

Definition 4.3. The Scaled-PAKKT condition for problem (2) is satisfied at a point p ∈ Ω if there
exist sequences (pk)k∈N ⊂M, (λk)k∈N ⊂ Rs and (µk)k∈N ⊂ Rm

+ such that it holds:

(i) limk→∞ pk = p;

(ii) limk→∞

∥∥∥gradL(pk,λk,µk)
γk

∥∥∥ = 0, where γk :=
∥∥(1, λk, µk)

∥∥
∞;

(iii) µk
j = 0 for all j ̸∈ A(p) and sufficiently large k;

(iv) If γk → +∞, then

lim
k→∞

∣∣λk
i

∣∣
γk

> 0 =⇒ λk
i hi(p

k) > 0, ∀k ∈ N;

lim
k→∞

µk
j

γk
> 0 =⇒ µk

j gj(p
k) > 0, ∀k ∈ N.

It is easy to see that Algorithm 1 with the looser criterion in Step 1 as described previously
generates Scaled-PAKKT sequences. Now, it is easy to see that QN is still sufficient for guaranteeing
boundedness of the dual Scaled-PAKKT sequence, following the proof of Theorem 4.2; however,
let us show that QN is somewhat the weakest condition with this property.

Theorem 4.4. If for each continuously differentiable function f :M → R such that p ∈ Ω is a
Scaled-PAKKT point, the KKT conditions also hold, then p satisfies QN or L(p)◦ = TpM.

Proof. Assume that the point p does not satisfy the quasinormality condition and L(p)◦ ̸= TpM.
We will show that there exists a continuously differentiable function f :M → R such that p is a
Scaled-PAKKT point, but p is not a KKT point. Since L(p)◦ ̸= TpM, taking into account that
L(p)◦ ⊂ TpM and 0 ∈ L(p)◦, we concluded that there exists v ∈ TpM with v ̸= 0 such that
v /∈ L(p)◦. Thus, by the definition of L(p)◦ in (5), we have

−v +
s∑

i=1

λ̄i gradhi(p) +
∑

j∈A(p)

µ̄j grad gj(p) ̸= 0, ∀µ̄j ≥ 0, ∀λ̄i ∈ R. (18)

To proceed we take 0 < δ < rp, the injectivity radius, and define f : Bδ(p) → R by f(q) :=
⟨−v,− exp−1

p q⟩, which is continuously differentiable and grad f(p) = −v. Hence, (18) implies that
p is not a KKT point. It remains to show that p is a Scaled-PAKKT point. Since p does not
satisfy QN, there exist λ ∈ Rs and µ ∈ Rm

+ that satisfy items (i), (ii), and (iii) of Definition 4.2.
In particular, by item (iii), let (pk)k∈N ⊂M be such that, limk→∞ pk = p, with

λihi(p
k) > 0, ∀i ∈ {1, . . . , s} , λi ̸= 0 and µjgj(p

k) > 0, ∀j ∈ A(p), µj > 0. (19)
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By the continuity of gradh and grad g and item (i) of Definiton 4.2, we have

lim
k→∞

( s∑
i=1

λi gradhi(p
k) +

∑
j∈A(p)

µj grad gj(p
k)
)
= 0. (20)

It follows from (20) and from the continuity of grad f , provided that limk→∞ pk = p, that

lim
k→∞

1

k

(
grad f(pk) +

s∑
i=1

kλi gradhi(p
k) +

∑
j∈A(p)

kµj grad gj(p
k)
)
= 0. (21)

Taking into account that any positive multiple of (λ, µ) also satisfies the three items of Definition 4.2,
we can suppose without loss of generality that ∥(λ, µ)∥∞ = 1. Thus, setting λk := kλ, µk := kµ,
and γk :=

∥∥(1, λk, µk)
∥∥
∞ we have γk = k. Hence, (21) becomes

lim
k→∞

1

γk

(
grad f(pk) +

s∑
i=1

λk
i gradhi(p

k) +
∑

j∈A(p)

µk
j grad gj(p

k)
)
= 0. (22)

We conclude that p is a scaled PAKKT point and the proof is complete.

5 Conclusions

In this paper we presented a detailed global convergence analysis of a safeguarded augmented
Lagrangian method defined on a complete Riemannian manifold. In order to do this, we presented
several weak constraint qualifications that can be used to obtain stationarity of all limit points
of a primal sequence generated by the algorithm, despite the fact that the dual sequence may be
unbounded. In doing so, we described several properties of these conditions well known in the
Euclidean setting, which should foster further developments in the Riemannian setting. By means
of a stronger sequential optimality condition, we were able to present a weak constraint qualification
which guarantees boundedness of the dual sequence, even when the true set of Lagrange multipliers
is unbounded. In presenting our conditions, we provided illustrative examples to prove that our
conditions are strictly weaker than previously known ones in any complete Riemannian manifold
with dimension n ≥ 2.

Note that when defining the sequential optimality conditions, we chose to present the simplest
complementarity measure, namely, item ii) of Theorem 2.1 and item iii) of Definition 4.1, while in
[54], they considered a slightly stronger complementarity measure known as Approximate Gradient
Projection. See the recent discussion about several different complementarity measures in [3] in
the context of Euclidean conic optimization. We foresee significant progress in this topic in the
nearby future, in particular, several stronger first- and second-order global convergence results of
augmented Lagrangian methods and other algorithms should be expected to be extended to the
Riemannian setting.

Finally, in the particular case where the manifoldM can be embedded in an Euclidean space,
one can treat x ∈ M as a subproblem/lower level constraint as described in [20]. It is clear that
one should exploit the Riemannian structure in order to solve the subproblems more efficiently,
while it is also clear that an intrinsic formulation of the theory is well justified [18]; however, in
this context, it is not clear whether the pure Euclidean theory differs from the one formulated in
the Riemannian setting. This topic will be the subject of a forthcoming paper.
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