
Shattering Inequalities for Learning Optimal

Decision Trees

Justin Boutilier1, Carla Michini1, Zachary Zhou1*

1*Department of Industrial and Systems Engineering, University of
Wisconsin-Madison, Madison, WI, USA.

*Corresponding author(s). E-mail(s): zzhou246@wisc.edu;
Contributing authors: jboutilier@wisc.edu; michini@wisc.edu;

Abstract

Recently, mixed-integer programming (MIP) techniques have been applied to
learn optimal decision trees. Empirical research has shown that optimal trees
typically have better out-of-sample performance than heuristic approaches such
as CART. However, the underlying MIP formulations often suffer from weak lin-
ear programming (LP) relaxations. Many existing MIP approaches employ big-M
constraints to ensure observations are routed throughout the tree in a feasible
manner. This paper introduces new MIP formulations for learning optimal deci-
sion trees with multivariate branching rules and no assumptions on the feature
types. We first propose a strong baseline MIP formulation that still uses big-M
constraints, but yields a stronger LP relaxation than its counterparts in the lit-
erature. We then introduce a problem-specific class of valid inequalities called
shattering inequalities. Each inequality encodes an inclusion-minimal set of points
that cannot be shattered by a multivariate split, and in the context of a MIP
formulation, the inequalities are sparse, involving at most the number of features
plus two variables. We propose a separation procedure that attempts to find a
violated inequality given a (possibly fractional) solution to the LP relaxation; in
the case where the solution is integer, the separation is exact. Numerical experi-
ments show that our MIP approach outperforms two other MIP formulations in
terms of solution time and relative gap, and is able to improve solution time while
remaining competitive with regards to out-of-sample accuracy in comparison to
a wider range of approaches from the literature.

Keywords: Decision Trees, Mixed-Integer Programming, Machine Learning

1

1 Introduction

Decision trees are among the most popular techniques for interpretable machine learn-
ing [1]. In addition to their use as a standalone method, decision trees form the
foundation for several more sophisticated machine learning algorithms such as random
forest [2, 3]. Although there are many ways to express a decision tree, the majority of
the literature, including this paper, focuses on binary trees. In a binary decision tree,
each internal node, referred to as a branch node, has exactly two children and observa-
tions are routed to the left or right child node according to a branching rule. Terminal
nodes in the tree are referred to as leaf nodes and each leaf node is assigned a class k
such that any observation routed to that leaf node is classified as belonging to class
k. Almost all algorithms (heuristic and exact) that generate decision trees focus on
univariate branching rules, which check if the value of a single feature exceeds a pre-
scribed threshold. In this work, we instead focus on multivariate branching rules, which
are separating hyperplanes checking several features at a time. Multivariate branching
rules are less easily interpretable, however they provide more flexibility than univariate
branching rules, which can only resort to axis-aligned hyperplanes. As a consequence,
multivariate branching rules can yield much more compact decision trees. In other
words, even if the tests performed at the branching nodes are more complex, the total
number of tests needed to achieve a target accuracy can be dramatically smaller; see
the toy example in Figure 1.

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

(a) (b) (c) (d)

Fig. 1 (a) Eight univariate branching rules are required to correctly separate the black and white
observations; (b) only one multivariate branching rule suffices. For a slightly different toy dataset: (c)
and (d) show how the feature space is partitioned when using univariate and multivariate branching
rules, respectively.

Related work. The problem of learning optimal decision trees is NP-hard [4]. As a
result, there exist several famous top-down induction algorithms for learning decision
trees such as CART [1] and ID3 [5]. These heuristic methods do not provide any
guarantee on the quality of the decision trees computed. More recently, a number of
exact approaches have been proposed that typically aim at minimizing the training
error and possibly some measure of the tree complexity.

One stream of work uses mixed-integer programming (MIP) to compute optimal
decision trees. Motivated by algorithmic advances in integer optimization, Bertsimas
and Dunn [6] first formulated the problem of learning an optimal decision tree as
a MIP. Their work spurred a series of subsequent papers that propose a variety of

2

MIP tools to model and solve the problem of learning optimal decision trees [7–16].
One main advantage of MIP approaches is their flexibility: the problem objective can
be easily modified to enhance feature selection and/or tree size, and the feasible set
can be modified by adding additional constraints of practical interest [7, 9, 11, 13].
Moreover, MIP formulations can easily handle multivariate branching rules [6, 16].
Typically, MIP formulations contain two key components: 1) a framework to model
the routing of observations through the decision tree to leaf nodes, and 2) a framework
that properly constructs the tree by devising branching rules at each branch node.
Most MIP approaches employ big-M constraints to unify these two components in
a single optimization problem [6, 15, 16], but this modeling technique suffers from
the fact that big-M constraints notoriously lead to poor LP relaxations [17]. One
notable exception is the work of Aghaei et al. [8], who consider datasets with binary
features and formulate the problem of routing observations through a fixed decision
tree with univariate branching rules as a max-flow problem. Thanks to these two key
assumptions – having binary features and restricting to univariate branching rules
– they can avoid using big-M constraints. Moreover, their formulation is amenable
to a Benders decomposition, where the master problem is tasked with constructing
the decision tree, and the routing of observations to leaf nodes is accomplished by
solving a subproblem for each observation that adds optimality cuts to the master.
Unfortunately, their flow-based approach does not generalize if we relax either of the
two key assumptions.

Another stream of work uses Boolean satisfiability (SAT) [18–21], constraint pro-
gramming (CP) [22, 23], and dynamic programming [24–29] to compute optimal
decision trees. These methods address the scalability issues of general MIP methods by
using a different range of techniques to explore the search space, such as sub-sampling,
branch and bound search, and caching. Some of these algorithms are tailored to the
specific structure of decision trees, which is used to speed-up computation. However,
1) all of them assume binary features or use binarization techniques to transform
numerical features into binary ones in a preprocessing step, which can dramatically
increase the size of the input (causing memory problems) and is not guaranteed to
preserve optimality [30]; 2) most of them are designed and/or implemented to work
only for binary classification; and 3) all of them are only suited to construct decision
trees with univariate branching rules.

Our contribution. We first propose a new MIP formulation for learning optimal
decision trees with multivariate branching rules and no assumptions on the feature
types. Our formulation employs only binary variables to (i) express how each observa-
tion is routed in the decision tree and (ii) express the objective function as a weighed
sum of the training accuracy and the size of the tree. Moreover, we exploit the struc-
ture of decision trees and use a geometric interpretation of the optimal decision tree
problem to devise a specialized class of valid inequalities, called shattering inequali-
ties, which intuitively detect problematic sub-samples of the dataset that cannot be
linearly separated. We leverage these inequalities within a Benders-like decomposition
[31] to decompose our formulation into a master problem that determines how to route
each observation to a leaf node, and a collection of linear programming (LP) feasibil-
ity subproblems that certify whether, for each branch node of the decision tree, it is

3

possible to construct a multivariate branching rule that realizes the given routing of
observations. If it is not possible to realize the routing, then we add one of our valid
inequalities to the master problem as a feasibility cut. Each of our inequalities encodes
a minimal set of points that cannot be shattered by a multivariate branching rule and
in the context of a MIP formulation, the inequalities are sparse, with at most the num-
ber of features plus two variables. Our approach does not require big-M constraints,
but generates sparse cuts that capture the combinatorial structure of the problem to
strengthen the LP relaxation and decrease training time. Although we use these cuts
in a decomposition algorithm for our formulation, they can be directly applied as valid
inequalities to other MIP formulations that may not be suited to decomposition (e.g.,
OCT-H [6] and SVM1-ODT [16]). We demonstrate through numerical experiments
that our MIP approach outperforms (in terms of training accuracy, testing accuracy,
solution time, and relative gap) two other popular MIP formulations, and is able to
improve both in and out-of-sample performance, while remaining competitive in terms
of solution time to a wide range of popular approaches from the literature.

2 The Optimal Decision Tree Problem

In this section, we formally introduce the problem setting, our notation, and our
formulation.

2.1 The Optimal Decision Tree Problem

We first define our data, which includes a training set of N observations, each of
which has p numerical features and belongs to one of K classes. For n ∈ N, we denote
by [n] the set {1, . . . , n}. Without loss of generality, we normalize the training set
so that all features are scaled to [0, 1]. Thus, each observation i ∈ [N] is a vector
(xi, yi) ∈ [0, 1]p × [K].

As noted in Section 1, we focus on learning optimal binary decision trees with
multivariate branching rules, which we refer to as multivariate splits. Each node in
the tree is either a branch node or a leaf node. Note that the first node in the tree is
colloquially referred to as the root node (even though it is a branch node). The model
is built upon a binary tree where every branch node has exactly two children and the
leaves are all on the same level. The maximum depth of the decision tree D ∈ N is
defined as the length of the path from the root to any leaf. We denote the set of branch
nodes as B = {1, . . . , 2D − 1}. Each branch node t corresponds to a multivariate split
defined by learned parameters at ∈ Rp and bt ∈ R. The multivariate split is applied
as follows: for each observation x ∈ [0, 1]p, if a>t x ≤ bt, then x is sent to the left
child of t, denoted by 2t; otherwise it is sent to the right child, denoted by 2t + 1.
The key difference between multivariate and univariate splits is that a univariate split
allows only one component of at to be non-zero. We denote the set of leaf nodes by
L = {2D, . . . , 2D+1 − 1}. Each leaf node t is a terminal node (i.e., it has no children)
and is assigned a class k ∈ [K]. All observations routed to leaf t are classified as
belonging to class k.

The max depth D ∈ N is often used as a hyperparameter to control the complexity
and size of the tree. To deter the model from constructing a full binary tree of depth

4

D, we use a hyperparameter β ∈ N to limit the number of non-trivial splits used (more
on this in Section 2.2).

2.2 Problem Formulation

We now present a formulation for learning an optimal decision tree – the training
problem – that includes a set of complicating constraints. For each branch node t ∈ B,
we can either define a branching rule establishing whether an incoming observation
should be sent to the left or to the right child of t, in which case we say that node t
applies a (non-trivial) split, or we can direct all of the incoming observations to the
left child of t. Correspondingly, we introduce a binary variable dt that is equal to 1
if t applies a split, and to 0 otherwise. The decision variables d thus define the tree
topology. For each t ∈ B we have p+ 1 variables (at, bt) defining the multivariate split
associated with the branch node. If t does not apply a split, it is feasible to set these
variables to (0, 0).

For each observation i ∈ [N] and for each node t ∈ B ∪ L of the decision tree, we
introduce a binary variable wit that is equal to 1 if observation i is sent to node t, and
to 0 otherwise. The decision variables w thus define how to route the observations
from the root node to the leaf nodes.

For each class k ∈ [K] and leaf node t ∈ L, we introduce a binary decision variable
ctk that is equal to 1 if t is assigned class label k, and to 0 otherwise. Finally, for
each observation i ∈ [N] and leaf node t ∈ L, we introduce a binary-valued decision
variable zit that is equal to 1 if i is sent to leaf t and is correctly classified as yi, and
to 0 otherwise. We will later see that the integrality constraints on z can be relaxed.
Our formulation for the training problem is

maximize
c,d,w,z,a,b

N∑
i=1

∑
t∈L

zit (1a)

subject to
∑
t∈L

wit = 1 ∀i ∈ [N], (1b)

wit = wi,2t + wi,2t+1 ∀i ∈ [N], t ∈ B, (1c)

K∑
k=1

ctk = 1 ∀t ∈ L, (1d)

zit ≤ wit ∀i ∈ [N], t ∈ L, (1e)

zit ≤ ct,yi ∀i ∈ [N], t ∈ L, (1f)

wi,2t+1 ≤ dt ∀i ∈ [N], t ∈ B, (1g)∑
t∈B

dt ≤ β, (1h)

ctk ∈ {0, 1} ∀k ∈ [K], t ∈ L, (1i)

dt ∈ {0, 1} ∀t ∈ B, (1j)

wit ∈ {0, 1} ∀i ∈ [N], t ∈ B ∪ L, (1k)

5

zit ∈ R ∀i ∈ [N], t ∈ L, (1l)

(at, bt) ∈ Ht(w) ∀t ∈ B, (1m)

where, for each branch node t ∈ B and integral w satisfying (1b) and (1c), the set
Ht(w) is defined as

Ht(w) =
{

(at, bt) ∈ Rp+1 : a>t xi + 1 ≤ bt ∀ i ∈ [N] : wi,2t = 1, (2)

a>t xi − 1 ≥ bt ∀ i ∈ [N] : wi,2t+1 = 1} . (3)

Note that, for a fixed w, the set Ht(w) is a (possibly empty) polyhedron in Rp+1.
The objective function (1a) aims to maximize the total number of observations

that are correctly classified. Our code implementation allows the user to specify a
regularization hyperparameter α ≥ 0 such that the objective is changed to mirror
CART’s cost-complexity measure [1]: minimize 1

N

∑N
i=1

(
1−

∑
t∈L zit

)
+ α

∑
t∈B dt.

Constraints (1b) ensure that each observation is mapped to exactly one leaf, while
constraints (1c) guarantee that each observation routed to a branch node t is sent to
either the left or the right child of t. For a branch node t that does not apply a split,
constraints (1g) automatically send any incoming observations to the left child of t.
Constraints (1d) assign each leaf node a class in [K]. Constraints (1e) and (1f) enforce
the condition that if zit = 1, then wit = 1 and ct,yi = 1 (i.e., observation i is sent
to leaf t and is correctly classified as yi). Constraint (1h) limits the number of non-
trivial splits used to be at most β, where β ∈ {1, . . . , 2D−1}. The main motivation for
introducing hyperparameter β is that, while the search space for α is infinitely large,
for β we only need to search over finitely many choices [6]. We remark that integrality
constraints are not required for the z and c variables, since they are implied by the
integrality of w and by the fact that at an optimal solution constraints (1e) and (1f)
hold with equality, see [32] for a formal proof. Complicating constraints (1m) are the
only ones involving variables (at, bt), t ∈ B, which ensure that the routing defined by
w can be realized by multivariate splits. This is possible if and only if for each branch
node t we have Ht(w) 6= ∅.

We highlight some technical differences between our formulation and other MIP
models in the literature. First, we define the set of feasible routings w as the routings
that satisfy constraints (1m). As it will be clear in the following, we have a range
of options to express Ht(w), i.e., by resorting to big-M constraints, by dynamically
adding violated shattering inequalities, or with a mix of these two approaches. Second,
we define w over all nodes of the decision tree, while previous formulation defines w
over only the leaf nodes [6, 13, 16]. Our primary motivation for defining additional
(roughly double) w variables is that we can exploit these additional variables to create
stronger valid inequalities for characterizing the set of feasible routings, see Section 4.
A secondary reason for the introduction of w variables over the branch nodes is that
these extra variables give us the option to formulate a model using fewer and stronger
big-M constraints, see Section 3.

Finally, we maximize training accuracy and we control the tree size by imposing
constraint (1h). Unlike the univariate setting where CART’s cost-complexity measure
can be directly used as a template, the multivariate setting has no universally accepted

6

objective. For example, OCT-H [6] penalizes the total number of features used over
all splits in the tree and SVM1-ODT [16] penalizes the `1 norm of at over all splits in
the tree.

3 Baseline MIP formulation

For a fixed branch node t ∈ B, the complicating constraint (1m) holds if and only if
for every observation i ∈ [N], the logical constraints

wi,2t = 1 =⇒ a>t xi ≤ bt, (4a)

wi,2t+1 = 1 =⇒ a>t xi − ε ≥ bt (4b)

are satisfied for some sufficiently small ε > 01. Typically, logical implications are
modeled using big-M constraints; indeed, this is the approach used by many optimal
tree formulations for imposing (1m) [6, 14–16]. To ensure the quantity a>t x

i − bt is
bounded so that a big-M value can be defined, we enforce the conditions ‖at‖1 ≤
1, bt ∈ [−1, 1]. Thus, we have the constraints

p∑
j=1

âtj ≤ 1, (5a)

âtj ≥ atj j ∈ [p], (5b)

âtj ≥ −atj j ∈ [p], (5c)

bt ∈ [−1, 1], (5d)

where the auxiliary variables âtj are used to model |atj | for each j ∈ [p]. We obtain
from (4) the big-M constraints

a>t xi ≤ bt +Mi(1− wi,2t) i ∈ [N], (6a)

a>t xi − ε ≥ bt − (Mi + ε)(1− wi,2t+1) i ∈ [N], (6b)

with big-M values
Mi = max

j∈[p]
{xij}+ 1 ∀i ∈ [N]. (7)

We define our baseline formulation to be (1) where the complicating constraints (1m)
are implemented using big-M constraints (6) for all t ∈ B.

We point out that some MIP formulations found in the literature do not employ
big-M constraints. This is typically the case of univariate decision tree models relying
on the assumption that the feature vectors x are binary [8, 9, 11]. However, in the
absence of either of these two assumptions—univariate splits or binary features—it
becomes more complicated to circumvent the use of big-M constraints.

We provide a comparison with how the OCT-H formulation of Bertsimas and Dunn
[6] models (1m), and argue our formulation yields a stronger LP relaxation. In the

1In practice, ε is fixed in advance; a reasonable choice is ε = 0.005.

7

OCT-H formulation, the variables wit are defined only for the leaf nodes t ∈ L. The
authors define the set AL(t) (resp. AR(t)) of ancestors of leaf node t ∈ L whose left
(resp. right) child is in the path from the root node to node t. As a consequence, the
logical constraints implemented in OCT-H are

wit = 1 =⇒ a>mxi ≤ bm ∀i ∈ [N], t ∈ L, m ∈ AL(t), (8a)

wit = 1 =⇒ a>mxi − ε ≥ bm ∀i ∈ [N], t ∈ L, m ∈ AR(t). (8b)

These logical constraints are then linearized to obtain the big-M constraints2

a>mxi ≤ bm +M ′i(1− wit) ∀i ∈ [N], t ∈ L, m ∈ AL(t), (9a)

a>mxi − ε ≥ bm − (M ′i + ε)(1− wit) ∀i ∈ [N], t ∈ L, m ∈ AR(t), (9b)

with big-M values
M ′i = 2 ∀i ∈ [N]. (10)

The big-M values (10) exploit only the assumption that features are normalized to the
[0, 1] interval, while the big-M values (7) are specific of each observation i ∈ [N]. Since
for most observations i ∈ [N], maxj∈[p]{xij} may be much smaller than 1, the big-M
values in the OCT-H formulation are not as tight as the big-M values (7) utilized in
our baseline formulation.

Second, and more importantly, the big-M constraints of OCT-H result in weaker
LP relaxations. We denote by Pbase and POCT-H the linear relaxations of our baseline
formulation and of OCT-H, respectively. We consider the projections of Pbase and
POCT-H on variables {wit : i ∈ [N], t ∈ L} and {(at, bt) : t ∈ B}, which we denote by
Qbase and QOCT-H, respectively. We consider the case where β = 2D − 1 and there
is no restriction on the minimum number of observations in leaf nodes, which is an
additional parameter of OCT-H.
Proposition 1. Qbase is strictly contained in QOCT-H.

Proof. The big-M constraints (9) in OCT-H can be rewritten as

a>t xi ≤ bt +M ′i(1− wi,t̂) ∀i ∈ [N], t ∈ B, t̂ ∈ L(2t), (11a)

a>t xi − ε ≥ bt − (M ′i + ε)(1− wi,t̂) ∀i ∈ [N], t ∈ B, t̂ ∈ L(2t+ 1), (11b)

where L(t) denotes the set of leaf nodes in the subtree whose root is t ∈ B. Based on
the discussion in [6], it is evident that QOCT-H is determined by wit ≥ 0 for all i ∈ [N],
t ∈ L, (1b), (5) and (11). This is because, for each assignment of {wit : i ∈ [N], t ∈ L}
and {(at, bt) : t ∈ B} satisfying these constraints we can derive values of the other
problem variables that are feasible for POCT-H.

2In [6], ε appears in first set of constraints (9a), not in the second set of constraints (9b) as we have
written. For the sake of comparison, we put ε in (9b).

8

In our formulation, wit =
∑

t′∈L(t) wi,t′ for all i ∈ [N], t ∈ B, so by writing our

big-M constraints (6) for all t ∈ B, we obtain

a>t xi ≤ bt +Mi

1−
∑

t′∈L(2t)

wi,t′

 ∀i ∈ [N], t ∈ B, (12a)

a>t xi − ε ≥ bt − (Mi + ε)

1−
∑

t′∈L(2t+1)

wi,t′

 ∀i ∈ [N], t ∈ B. (12b)

Qbase is determined by wit ≥ 0 for all i ∈ [N], t ∈ L, (1b), (5) and (12), since for each
assignment of {wit : i ∈ [N], t ∈ L} and {(at, bt) : t ∈ B} satisfying these constraints
we can derive values of {wit : i ∈ [N], t ∈ B}, d, c and z that yield a vector in POCT-H.

We first show that each vector in Qbase also belongs to QOCT-H. We need to verify
that each vector in Qbase satisfies constraints (11). Let i ∈ [N], t ∈ B and t̂ ∈ L(2t).
By (12) we have

a>t xi ≤ bt +Mi

(
1− wi,t̂

)
−Mi

∑
t′∈L(2t)\{t̂}

wi,t′

≤ bt +M ′i
(
1− wi,t̂

)
and

a>t xi − ε ≥ bt − (Mi + ε)
(
1− wi,t̂

)
+ (Mi + ε)

∑
t′∈L(2t)\{t̂}

wi,t′

≥ bt − (M ′i + ε)
(
1− wi,t̂

)
,

since Mi ≤M ′i = 2 for all i ∈ N and by the non-negativity of w.
To prove that the inclusion is strict, we exhibit a vector that is in QOCT-H and not

in Qbase. Consider a depth 2 tree and a training set consisting of two observations with
identical feature vectors but different labels, e.g. (x1, y1) = (1, 1) and (x2, y2) = (1, 2).
Note that Mi = M ′i = 2 for i = 1, 2. We define w11 = w21 = 1, w12 = 1, w22 = 0,
w13 = 0, w23 = 1, w14 = w15 = 1/2, w24 = w25 = 0, w16 = w17 = 0, w26 = w27 =
1/2.Moreover, for each branching node t ∈ B we define at = 1 and bt = 0. It can be
easily checked that this vector is in QOCT-H. In particular, at each branching node
t ∈ B the big-M constraints (11a) are x ≤ M ′i/2 = 1, which is satisfied for i = 1, 2,
while the big-M constraints (11b) are x − ε ≥ −(M ′i + ε)/2 = −1 − ε/2, which is
satisfied for i = 1, 2 and ε ≤ 4.

On the other hand, some big-M constraints of the baseline formulation are violated,
specifically at the root node the big-M constraint (6a) is x1 ≤ 0, which is violated since
x1 = 1. There is actually no hyperplane a1x = b1 such that the big-M constraints (6)
at t = 1 can be satisfied, since x1 = x2.

We finally remark that our formulation uses fewer big-M constraints than OCT-
H to enforce (1m). Upon enumerating for every branch node t ∈ B, there are

9

2N |B| = N(2D+1 − 2) constraints among (6). In contrast, OCT-H (as well as OCT,
the univariate decision tree formulation of [6]) requires 2N |L|D = 2D+1ND big-M
constraints to accomplish the same goal of enforcing (1m). Since the number of con-
straints (1b)–(1h) is roughly 5N2D, the total number of constraints is reduced by a
factor of 28%, 39%, 47% and 54% for depths 2, 3, 4 and 5, respectively.

We conclude that the use of the ancestor sets AL(t) and AR(t) weakens OCT-H.
These ancestor sets are also used in OCT, as well as [16] and [13].

4 Shattering Inequalities

In this section, we propose a new class of valid inequalities for (1), called shatter-
ing inequalities, which correspond to subsets of observations that cannot be shattered
by a multivariate split, and we propose a separation algorithm to generate these
inequalities.

Let C be a family of binary classifiers in Rp. A set of observations is shattered
by C if, for any assignment of binary labels to these observations, there exists some
classifier in C that can perfectly separate all the observations. The maximum number
of observations that can be shattered by C is called the Vapnik–Chervonenkis (VC)
dimension of C [33].

We now consider the family of binary classifiers H consisting of the multivariate
splits in Rp. Let I be a collection of subsets I ⊆ [N] of observations such that

{
xi
}
i∈I

cannot be shattered by H. For each I ∈ I, denote by Λ(I) ⊂ {−1, 1}I the assignments
of binary labels to observations in I so that they cannot be perfectly separated by any
multivariate split in Rp. Then, the following inequalities are valid for (1):

∑
i∈I:λi=−1

wi,2t +
∑

i∈I:λi=+1

wi,2t+1 ≤ |I| − 1, ∀I ∈ I, λ ∈ Λ(I), t ∈ B. (13)

The shattering inequalities (13) have the form of packing constraints [34] and
impose the condition that at least one observation in I is not routed to the children of
t as prescribed by the label assignment λ. We can restrict our attention to the minimal
(w.r.t. set inclusion) subsets of I. Indeed, if I ∈ I is not minimal, then each inequality
(13) associated to I is implied by an inequality (13) associated to some I ′ ⊂ I in I.

Moreover, if I is a minimal set of observations in Rp that cannot be shattered
by H, then |I| ≤ p + 2. This follows from the fact that the VC dimension of H is
p+ 1. Note that we might still be unable to perfectly split |I| < p+ 2 observations in
Rp if there exists an hyperplane that contains more than p points. For example, for
p = 2, three points on a line labeled (in sequence) 1,−1, 1 cannot be perfectly split.
As a consequence, the support of inequalities (13) corresponding to minimal sets of
observations in Rp that cannot be shattered by H, is at most p + 2. In particular, if
p� N , these inequalities are sparse.

Figure 2 shows an example using a dataset with points xi = (xi1, x
i
2) ∈ R2, where

for the first four observations, x1 = (0, 0), x2 = (0, 1), x3 = (1, 0), x4 = (1, 1); the
full dataset may contain many more observations. I = {1, 2, 3, 4} is an example of
a minimal subset of observations that cannot be shattered by H; no hyperplane is

10

0 1
x1

0

1

x 2

0 1
x1

0

1

x 2

(a) (b)

Fig. 2 I = {1, 2, 3, 4} is a minimal subset of observations that cannot be shattered by H. Λ(I)
contains exactly two vectors λ = (λ1, λ2, λ3, λ4). (a) shows λ = (+1,−1,−1,+1), which is used to
derive (14); (b) shows λ = (−1,+1,+1,−1), which is used to derive (15).

capable of separating {x1,x4} from {x2,x3}, however I \ {i} can be shattered for any
i ∈ I. We can derive the shattering inequalities:

w2,2t + w3,2t + w1,2t+1 + w4,2t+1 ≤ 3, ∀t ∈ B (14)

and
w1,2t + w4,2t + w2,2t+1 + w3,2t+1 ≤ 3, ∀t ∈ B. (15)

4.1 Separation

It is impractical to enumerate all possible shattering inequalities (13) as there are
exponentially many. Instead, they should be used sparingly, such as through row gen-
eration. Consider a vector w̄, possibly fractional, satisfying (1b) and (1c). We propose
a method for separating w̄ using a violated inequality (13).

For each t ∈ B, let Nt(w̄) = {i ∈ [N] : w̄it >
p+1
p+2}; note that N2t(w̄) and N2t+1(w̄)

are disjoint, since for all i ∈ [N], at most one of w̄i,2t, w̄i,2t+1 can be greater than p+1
p+2 .

Consider the following system of linear inequalities in variables (at, bt):{
a>t xi + 1 ≤ bt, ∀i ∈ N2t(w̄),
a>t xi − 1 ≥ bt, ∀i ∈ N2t+1(w̄).

(16)

Our goal is to either certify that system (16) is feasible, or return an inclusion-minimal
subset of observations I ′ ⊆ Nt(w̄), such that I ′∩N2t(w̄) cannot be perfectly separated
from I ′ ∩ N2t+1(w̄) by a multivariate split. Each such subset I ′ corresponds to an
Irreducible Infeasible Subsystem (IIS) of the infeasible system (16), which is defined as
a subsystem of (16) that would become feasible by discarding one arbitrary inequality.
Given an IIS of (16) indexed by I ′, the inequality:∑

i∈I′∩N2t(w̄)

wi,2t +
∑

i∈I′∩N2t+1(w̄)

wi,2t+1 ≤ |I ′| − 1. (17)

11

is clearly a shattering inequality (13). In the next lemma, we formally prove that
inequality (17) is violated by w̄.
Proposition 2. Let w̄ be a nonnegative vector satisfying (1b) and (1c) such that (16)
is infeasible. Then, for each IIS I ′ of (16), the shattering inequality (17) is violated
by w̄.

Proof. Since w̄it >
p+1
p+2 for all i ∈ N2t(w̄) ∪ N2t+1(w̄), the right-hand-side of (17)

evaluated in w̄ is strictly greater than

|I ′ ∩N2t(w̄)|p+ 1

p+ 2
+ |I ′ ∩N2t+1(w̄)|p+ 1

p+ 2
= |I ′|p+ 1

p+ 2
.

Moreover

|I ′|p+ 1

p+ 2
≥ |I ′| − 1⇐⇒ |I ′|

(
1− p+ 1

p+ 2

)
≤ 1.

The condition on the right is always satisfied, since

|I ′|
(

1− p+ 1

p+ 2

)
= |I ′| 1

p+ 2
≤ 1,

where the last inequality follows from the fact that |I ′| ≤ p+ 2.

If w̄ is fractional and system (16) is feasible, we are not able to generate a shattering
inequality violated by w̄, however there might exist one such violated inequality. On
the other hand, if w̄ is binary and (16) is feasible we can conclude that w̄ satisfies all
the shattering inequalities (13).
Proposition 3. Let w̄ be a binary vector satisfying (1b) and (1c) and such that (16)
is feasible. Then, every shattering inequality (13) defined at node t is satisfied by w̄.

Proof. By contradiction, suppose that one shattering inequality (13) defined at node
t is violated by w̄: ∑

i∈I:λi=−1

w̄i,2t +
∑

i∈I:λi=+1

w̄i,2t+1 > |I| − 1,

for some I ∈ I and λ ∈ Λ(I). Since w̄ is binary, we must have that w̄i,2t = 1 for all
i ∈ I : λi = −1 and w̄i,2t+1 = 1 for all i ∈ I : λi = 1, thus {i ∈ I : λi = −1} =
I ∩ N2t(w̄) and {i ∈ I : λi = 1} = I ∩ N2t+1(w̄). By the definition, each shattering
inequality corresponds to a subset of observations that cannot be linearly separated,
thus the system {

a>t xi + 1 ≤ bt, ∀i ∈ I ∩N2t(w̄),
a>t xi − 1 ≥ bt, ∀i ∈ I ∩N2t+1(w̄).

is infeasible. This is a subsystem of system (16), which contradicts that system (16)
is feasible.

Propositions 2 and 3 imply that, in the case where w̄ is binary, our separation
algorithm is exact: either a violated inequality (17) is found, or w̄ satisfies the com-
plicating constraint (1m) associated with node t. As we will discuss later, this implies

12

that when solving using lazy cuts, we can certify an integer incumbent solution as
being optimal if we are unable to find a violated inequality (17).

Next, we discuss how to generate violated shattering inequalities. If system (16) is
infeasible for a given w̄, to find an IIS of the system we apply Farkas’ lemma and we
construct a dual polyhedron Qt(w̄) defined as

Qt(w̄) =
{

q ∈ RNt(w̄)
+ :

∑
i∈N2t(w̄)

qix
i =

∑
i∈N2t+1(w̄)

qix
i,

∑
i∈N2t(w̄)

qi =
∑

i∈N2t+1(w̄)

qi = 1

 .

In fact, there is a one-to-one correspondence between the IISs of (16) and the vertices
of Qt(w̄) [35]. Specifically, the indices of the inequalities appearing in an IIS of (16)
correspond to the support of a vertex of Qt(w̄), and vice versa. We remark that the
polyhedron Qt(w̄) has a very nice geometric interpretation. The decision variables q
are associated with the observations indexed by Nt(w̄), and they can be interpreted
as the coefficients of two convex combinations, one on the observations in N2t(w̄)
and the other on the observations in N2t+1(w̄). It is evident from its definition that
Qt(w̄) is nonempty if and only if there exists a point that is both in the convex hull
of
{
xi : i ∈ N2t(w̄)

}
and in the convex hull of

{
xi : i ∈ N2t+1(w̄)

}
.

Based on the above discussion, we can define a separation algorithm to dynamically
generate the shattering inequalities (13). This algorithm receives as input a vector
w̄ and a fixed branch node t ∈ B, and attempts to return an inequality of family
(13) associated with node t that is violated by w̄. Precisely, the algorithm checks
the feasibility of the dual polyhedron Qt(w̄). If Qt(w̄) is nonempty, then by Farkas’
Lemma, system (16) is infeasible, and from each vertex of Qt(w̄) we can construct an
IIS of (16) and a corresponding shattering inequality (17) that is violated by w̄.

In practice, it is possible to efficiently generate multiple inequalities (17) by finding
multiple vertices of Qt(w̄). One method for finding multiple vertices is to optimize over

Qt(w̄) multiple times with different objective functions. For instance, let f ∈ ZNt(w̄)
+

be a counter for the number of inequalities (17) that each observation in Nt(w̄) has
appeared in thus far. One can repeatedly solve max{f>q : q ∈ Qt(w̄)}, each time
updating a global counter g ∈ ZN+ as a cut is added. A downside to taking f to be a
counter is that over time, f may converge to θ1 where θ � 0, thus every observation is
equally weighted in the objective. A refinement of this idea is to keep an exponential
average; let g ∈ RN+ be initialized to the zero vector, and when a cut (17) is found, set
g := 1Nt(w̄) + 0.5g where 1Nt(w̄) is a binary vector with ones in indices corresponding
to Nt(w̄). This objective function is a bounded vector (each component is at most 2),
and places more emphasis on finding cuts not recently found.

Furthermore, for a fixed w̄, one can iterate t over a desired subset of branch
nodes to generate even more cuts. Thus, the separation algorithm has the signature
Separation(w̄, nodes, n cuts), where nodes is the desired subset of branch nodes

13

to loop over, and n cuts is the number of times to repeatedly solve max{f>q : q ∈
Qt(w̄)}.

The separation algorithm can be implemented via LP with a run time that is
polynomial in 2D and size(X), where X is the N × p matrix encoding the features
of the observations in the training set and size(X) is defined as the number of bits
required to encode X [36]. Note that there is an exponential dependence with respect
to the depth parameter D. However, the number of variables and constraints of our
MIP formulation (as well as the other formulations from the literature) are already
exponential in D and in practice, we want D to be small so that we can obtain a more
interpretable decision tree.

We now propose three practical methods of using shattering inequalities as cuts.
The first way is to add the cuts directly to the formulation up front as initial cuts. The
advantage to adding cuts directly to the formulation as constraints rather than as lazy
cuts or user cuts is that this enables the MIP solver to derive valid inequalities based
on the initial cuts. To find such cuts, we solve the LP relaxation of (1) excluding the
complicating constraints (1m). From the resulting solution, we call Separation(w̄,

branch nodes, n_init_cuts) in an attempt to derive cuts, where n_init_cuts is a
user-defined parameter, and add all found cuts to the LP relaxation. We iterate this
procedure until the LP relaxation amended with cuts no longer yields a solution from
which cuts can be derived, or once 10 iterations have passed. Once this is done, we
add to our baseline formulation all the derived cuts and solve the MIP.

The second way is to use the cuts as lazy cuts in a Benders-like decomposition.
Without using big-M constraints (6), another option for implementing the complicat-
ing constraint (1m) is using shattering inequalities (13) exclusively. It is impractical to
enumerate all possible shattering inequalities, however it might be the case that only
a few such inequalities are needed to find an optimal solution. At nodes of the branch-
and-cut tree, the MIP solver finds either a fractional solution of the relaxation or an
(integer) incumbent solution w̄, thus giving the user an opportunity to add lazy cuts.
Let benders_nodes be a user-defined subset of the branch nodes for which one would
like to apply lazy cuts. For branch nodes not in benders_nodes, we add the associated
big-M constraints (6) to the model (1). We call Separation(w̄, benders_nodes,

n_benders_cuts) to add lazy cuts to (1), where n_benders_cuts is a user-defined
parameter. In the case where we have an incumbent solution (w̄ is integer), separa-
tion is exact, meaning the solver correctly concludes the incumbent solution is feasible
if no cuts are added. Thus, we can implement the complicating constraint (1m) asso-
ciated with a branch node by dynamically adding shattering inequalities (13) to the
model as lazy cuts.

The third way is to use the cuts as user cuts. User cuts are cutting planes added
at nodes of the branch-and-cut tree in order to separate fractional solutions. Unlike
lazy cuts which are required for model correctness, user cuts only serve to tighten the
formulation; they cannot cut off integer solutions that satisfy the constraints of the
master formulation (i.e., (1) minus the complicating constraints (1m)). Thus, for a
given branch node, if one would like to apply user cuts, the big-M constraints (6) asso-
ciated with that node must be present. Let user_cuts_nodes be a user-defined subset
of the branch nodes for which one would like to apply user cuts; a requirement is that

14

user_cuts_nodes and benders_nodes must be disjoint. Note that user_cuts_nodes
are a subset of the branch nodes not in benders_nodes, hence the big-M constraints
(6) for user_cuts_nodes are in the model, as is required. At nodes of the branch-
and-cut tree where the MIP solver has found a fractional solution w̄ of the relaxation,
we call Separation(w̄, user_cuts_nodes, n_user_cuts) to add user cuts to (1),
where n_user_cuts is a user-defined parameter.

We remark that in the second scenario, where we use the cuts as lazy cuts in a
Benders-like decomposition, the shattering inequalities (17) are effectively combinato-
rial Benders (CB) cuts [37, 38]. CB cuts are a specialization of Hooker’s logic-based
Benders decomposition [38]. They are formally introduced by Codato and Fischetti
[37], who study MIP problems that can be decomposed into a master problem with
binary variables, and an LP subproblem whose feasibility depends from the solution of
the master problem. Let B′ be the subset of B containing the nodes in benders_nodes.
To derive shattering inequalities as CB cuts, we can decompose (1) into a master prob-
lem and an LP feasibility subproblem as follows. The master problem is obtained from
(1) by removing the complicating constraints (1m) for each t ∈ B′ and by (possibly)
adding some valid inequalities (13). Thus, the master problem is a MIP with decision
variables c,d,w, z and (at, bt) for t ∈ B \ B′. The LP feasibility subproblem includes
decision variables (at, bt), t ∈ B′, and verifies that, for a given w̄, Ht(w̄) is a nonempty
polyhedron for all t ∈ B′. The shattering inequalities (17) can be interpreted as CB
cuts by enforcing the complicating constraints (1m) through the following logical con-
straints (note that left children have an even index, while right children have an odd
index):

∀i ∈ [N], t ∈ B′ ∪ L \ {1}, wit = 1 =⇒

{
a>t/2x

i + 1 ≤ bt/2 if t is even

a>bt/2cx
i − 1 ≥ bbt/2c if t is odd.

After solving the master problem, if the inequality system given by the activated
logical constraints (i.e., those where w̄it = 1) is infeasible, the IISs of the system can
be used to derive CB cuts. A key observation is that, in our setting, each IIS involves
only the components of w̄ that pertain to a specific branch node t ∈ B′. As a result,
we can separately consider the inequality systems (16) associated with each individual
branch node t ∈ B′.

5 Heuristic for Training Multivariate Decision Trees

Unlike in the case of univariate decision trees, there are few widely used heuristic
algorithms for training multivariate trees. Although this paper is primarily concerned
with learning optimal decision trees, heuristics are still of interest as they serve as
strong warm starts for the MIP model. In this section, we develop a novel heuristic
based on existing univariate tree heuristics and support vector machines (SVMs). We
take inspiration from [39], whose procedure uses a series of linear programs rather
than SVMs.

15

We first review univariate decision tree heuristics in order to better understand
the difficulty in extending these algorithms to the multivariate setting. Many uni-
variate tree heuristics are top-down greedy algorithms that recursively split the data
according to some optimization criterion. For example, the CART algorithm seeks the
split resulting in the largest reduction in Gini impurity [1] The ID3, C4.5, and C5.0
algorithms function similarly with respect to Shannon entropy [5]. This optimization
problem is easy to solve in the univariate setting as all O(Np) possible splits may
be enumerated, however such enumeration is not possible in the multivariate setting;
indeed, the problem of finding a multivariate split that optimizes some arbitrary crite-
rion such as Gini impurity or Shannon entropy is NP-hard [40]. Hence, it is impractical
to simply replicate these univariate heuristics when allowing for multivariate splits.

Rather than enumerating all possible multivariate splits, we consider a small set of
promising splits. In particular, we use the one-vs-one and one-vs-rest decision bound-
aries returned by linear SVMs as our set of candidate splits. Among these candidates,
we pick the one that optimizes the desired split criterion. For example, if the criterion
is Gini impurity, we pick the split that results in the greatest decrease in impurity. We
build the tree in the same recursive fashion as top-down greedy algorithms for uni-
variate trees. In the case where there is a limit β < |B| on the number of non-trivial
splits used, we prune the tree.

Our heuristic, specifically the enumeration of SVM decision boundaries, can
be implemented using scikit-learn’s LinearSVC and SVC(kernel=’linear’) [41].
Multiple SVMs can be constructed by varying hyperparameters; we vary the C hyper-
parameter used in both scikit-learn models. Possible choices of minimization criteria
include Gini impurity, entropy, and training error. We train three multivariate trees
each based on one of these criteria, and pick the one with the highest overall training
accuracy to be the warm start.

6 Experiments

In this section, we provide two sets of numerical experiments to benchmark various
implementations of our approach (S-OCT) with five methods from the literature: OCT
and OCT-H [6], two MIP models for learning optimal univariate and multivariate trees
respectively; FlowOCT [8], a MIP model which can be solved as-is (FlowOCT), or with
Benders decomposition (FlowOCT-Benders); and DL8.5 [25], an itemset mining-based
approach that uses branch-and-bound and caching.

6.1 Experimental Setup

Before comparing S-OCT against the other approaches from the literature, we tuned
S-OCT on five datasets to find four promising configurations of the S-OCT model
parameters n_init_cuts, benders_nodes, n_benders_cuts, user_cuts_nodes, and
n_user_cuts. The five datasets we used can be obtained from the UCI Machine Learn-
ing Repository [42]: Hayes-Roth, Tic-Tac-Toe Endgame, Climate Model Crashes, Glass
Identification and Image Segmentation. We use the four best performing versions of
our model, along with the baseline S-OCT model which does not use any shattering
inequalities, for the remaining experiments.

16

We benchmark these five variants of our approach against other methods from the
literature on the following ten datasets from the UCI Machine Learning Repository
[42]: (A) Balance Scale, (B) Congressional Voting Records, (C) Soybean (Small), (D)
Iris, (E)Wine, (F) Breast Cancer, (G) Banknote Authentication, (H) Blood Transfu-
sion, (I) Ionosphere, and (J) Parkinsons. Note that none of these datasets were used
to tune S-OCT. The first set of benchmarks is a direct MIP comparison, where we
compare the five S-OCT variants with the following MIP methods: OCT, OCT-H,
FlowOCT, and FlowOCT-Benders. The second set of benchmarks is a comprehensive
comparison where we compare against all of the previously mentioned methods: OCT,
OCT-H, FlowOCT, FlowOCT-Benders, and DL8.5. In the direct MIP comparison, we
use our own implementations of OCT and OCT-H. In the comprehensive comparison,
we use the implementations of OCT and OCT-H from the Interpretable AI package
[43]. In both the direct MIP and comprehensive comparisons, we use our own imple-
mentations of FlowOCT and FlowOCT-Benders. We use the DL8.5 package available
on PyPI [26]3.

Since FlowOCT and DL8.5 require binary features, for these models we perform
an additional bucketization step for the numerical datasets. For FlowOCT, we define
five bins per feature using quantiles. For DL8.5, we perform bucketization as follows:
for every feature j, we sort the observations according to this feature, find consecutive
observations with different class labels (and different values for feature j), and define
a binary feature that has value 1 if and only if xj is less than the average of the two
adjacent feature values. Note that both methods of bucketizing continuous data may
sacrifice training accuracy, as identified in [28]. For OCT, OCT-H, and S-OCT, we
normalize numerical features to the [0, 1] interval. For all models, we perform one-hot
encoding for categorical features.

Our experiments were programmed using Python 3.8.10 and all optimization prob-
lems were solved using Gurobi 10.0 [44] on a machine with a 3.00 GHz 6-core Intel
Core i5-8500 processor and 16 GB RAM. A 10-minute time limit was imposed for all
optimization problems. Our code can be found at https://github.com/zachzhou777/
S-OCT.

6.1.1 Tuning experiments.

Let Blast = {2D−1, . . . , 2D − 1} denote the last level of branch nodes in the tree. We
tried three general variations of our S-OCT model, each associated with the three
different methods of using our cuts:

• Initial cuts. Let SOCT-init-<n_init_cuts> denote the baseline S-OCT
model amended with initial cuts, with cuts being found using the proce-
dure Separation(w̄, branch nodes, n_init_cuts). We defined the models
SOCT-init-1 and SOCT-init-5.

• Benders/lazy cuts. Let SOCT-benders-<benders_nodes>-<n_benders_cuts>

denote the S-OCT model where shattering inequalities (13) are used
to implement the complicating constraints (1m) for branch nodes

3The package is now named pydl8.5, not dl8.5

17

https://github.com/zachzhou777/S-OCT
https://github.com/zachzhou777/S-OCT
https://pypi.org/project/pydl8.5/

300 350 400 450 500 550 600 650
Average solution time (s)

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

re
la

tiv
e

ga
p

Fig. 3 A scatter plot of the average solution time and average relative gap for all parameter tuning
combinations. The red dots indicate the four best performing implementations.

in the set benders_nodes, with cuts being found using the proce-
dure Separation(w̄, benders_nodes, n_benders_cuts). We defined
the models SOCT-benders-<benders_nodes>-<n_benders_cuts> for
(benders_nodes, n_benders_cuts) ∈ {{1},Blast,B} × {1, 5, 10, 50, 100} (i.e., the
options for benders_nodesare the root node only, the last level of branch nodes,
and the set of all branch nodes).

• User cuts. Let SOCT-user-<user_cuts_nodes>-<n_user_cuts> denote
the baseline S-OCT model where user cuts are found for branch
nodes in the set user_cuts_nodes, with cuts being found using
the procedure Separation(w̄, user_cuts_nodes, n_user_cuts). We
defined the models SOCT-user-<user_cuts_nodes>-<n_user_cuts> for
(user_cuts_nodes, n_user_cuts) ∈ {{1},Blast,B} × {1, 5, 10, 50, 100}.

For each variation of our model, we simply run it across the five datasets. No cross
validation is performed. We do not employ warm starts or regularization (constraint
(1h) is deleted). Figure 3 displays a scatter plot of the average solution time and
average relative gap for all parameter tuning implementations across depths 2,3 and
4. We selected the four best performing implementations representing the pareto-
frontier (shown in red in Figure 3), along with the baseline model: SOCT-baseline,
SOCT-benders-last-1, SOCT-benders-last-10, SOCT-init-1, SOCT-init-5.

6.1.2 Direct MIP comparison.

In the direct MIP comparison, we compare the performance of our five S-OCT variants
against the other MIP methods: OCT, OCT-H, FlowOCT, and FlowOCT-Benders.
Here, we are interested in the strength of the above MIP formulations, rather than their
efficacy as machine learning models. Thus, we do not include constraint (1h) in S-OCT
and we set α = 0 in the other models. In other words, we simply maximize the number
of training points correctly classified. Finally, we refrain from providing warm starts.
We recall that OCT, FlowOCT, and FlowOCT-Benders solve the optimal univariate
decision tree problem, while OCT-H and our five S-OCT variants solve the optimal
multivariate decision tree problem. These two problems are inherently different, thus

18

when comparing the performance of a univariate and a multivariate model we should
mainly focus on the trade-off between training time and training accuracy. For all MIP
models, we set the Gurobi relative gap parameter MIPGap to 0 and the absolute gap
parameter MIPGapAbs to 1; this is done to prevent the solver from terminating before
the time limit unless it has a truly optimal solution, as by default Gurobi terminates
when the relative gap is below 10−4. For each instance (dataset, depth D), we train
each model on the entire dataset (no train-test split or cross validation) and record
the following:

• Training time, i.e., solution time.
• Upper bound: The bound on the best possible objective. Also known as the dual

objective bound and denoted by zD.
• Lower bound: The objective of the best incumbent at termination. Also known as

the primal objective bound and denoted by zP .
• Relative MIP gap: For a maximization problem, gap = (zD−zP)/zP ; if zP = zD = 0,

then gap = 0.

Figure 4(a) displays boxplots (across the ten datasets) of solution time for
each model and each depth. At depth 2, FlowOCT-Benders performed best with
an average±standard deviation solution time of 15.93 ± 21.01s. The fastest multi-
variate model was OCT-H, with an average solution time of 88.4 ± 173.91. Our
best performing model was SOCT-Benders-last-10 with an average solution time of
95.15 ± 183.07s, following closely by SOCT-Benders-last-1 with an average solution
time of 97.35± 178.54s. At depth 3, SOCT-Benders-last-1 and SOCT-Benders-last-10
performed best with an average solution time of 72.23± 178.72s and 111.71± 188.12s,
respectively. SOCT-Benders-last-1 improved upon the best model from the litera-
ture (OCT-H) by 184.44s (72%). The best univariate model is FlowOCT, with an
average solution time of 343.23±261.78s. At depth 4, SOCT-Benders-last-1 and SOCT-
Benders-last-10 performed best with an average solution time of 173.91± 215.82s and
150.15 ± 247.61s, respectively. SOCT-Benders-last-10 improved upon the best model
from the literature (OCT-H) by 151.12s (50%). The best univariate model is OCT,
with an average solution time of 483.43± 236.87s.

Figure 4(b) displays boxplots (across the ten datasets) of relative gap for each
model and each depth. At depths 2 and 3, the univariate model FlowOCT performed
best with an average relative gap of 0 ± 0 and 0.02 ± 0.03, respectively. The best
multivariate models at depth 2 are SOCT-baseline, SOCT-init-1 and SOCT-init-5,
with an average relative gap of 0.03±0.08, closely followed by OCT-H, with an average
relative gap of 0.03± 0.08. SOCT-benders-last-1 and SOCT-benders-last-10 produced
an average relative gap of 0.03± 0.09 for all three depths, improving over OCT-H by
59% and 64% at depths 3 and 4, respectively and over FlowOCT-Benders, which is
the best univariate model at depth 4, by 50%.

Figure 4(c) displays boxplots (across the ten datasets) of in-sample accuracy for
each model and each depth. SOCT-benders-last-1 performed best across all three
depths with an average in-sample accuracy of 0.98± 0.07. The best performing model
from the literature was OCT-H with an average in-sample accuracy of 0.95± 0.1.

19

Figure 4(d) displays a scatter plot of the overall average relative gap and overall
average solution time across all ten datasets and three depths for each model. Over-
all, SOCT-benders-last-1 and SOCT-benders-last-10 performed best with an average
solution time and relative gap of (114.5± 196.64s, 0.03± 0.09) and (119.0± 209.61s,
0.03± 0.09), respectively. The best performing models from the literature were Flow-
OCT and OCT-H with an average solution time and relative gap of (306.26±279.87s,
0.03± 0.07) and (215.45± 248.35s, 0.06± 0.14), respectively.

6.1.3 Comprehensive comparison.

In the comprehensive comparison, we compare the practical performance of our
approach against a wider range of other methods, both within and outside of MIP.
We now allow the use of warm starts for the MIP models: FlowOCT and FlowOCT-
Benders use scikit-learn’s CART implementation [41], and our five SOCT models use
the multivariate heuristic described in Section 5.

For each instance (dataset, depth D), we perform 3-fold cross validation. We tune
hyperparameters using an inner 2-fold cross validation. For the S-OCT and FlowOCT
models, we tuned the hyperparameter β, the maximum number of splits allowed in
the tree; when D = 2 we searched over {2, 3}, when D = 3 we searched over {3, 5, 7},
when D = 4 we searched over {5, 10, 15}. Interpretable AI automatically tunes α for
OCT and OCT-H. For DL8.5, we tuned the hyperparameter min sup, which refers to
the minimum number of observations per leaf; we searched over {1, 10, 20}. For each
model and instance, we record for each of the three folds the following:

• Training time
• Train accuracy
• Test accuracy

Tables 1, 2, and 3 provide a detailed comparison of the numerical results for each
dataset and all model implementations at depths 2, 3, and 4, respectively. Figure 5
displays line plots of the training accuracy, testing accuracy, and solution time across
all 10 datasets (sorted for clarity) and for all models at depth four. The line plots
visualize the results in Table 3.

For solution time, our models performed similar to OCT and better than OCT-H,
except for dataset H, where we consistently timed-out. Note that we are unable to
determine if OCT and OCT-H solve to optimality or if the interpretable AI implemen-
tation uses an early stopping criteria. Our models to not use early stopping and unless
they timeout, solve to optimality. Excluding dataset H, the average solution time for
OCT at depths 2, 3, and 4 was 0.31 ± 0.09, 0.38 ± 0.16, and 0.44 ± 0.2, respectively.
The average solution time for OCT-H at depths 2, 3, and 4 was 9.8± 8.4, 11.6± 9.9,
and 12.2 ± 10.7, respectively. The average solution time for SOCT-benders-last-1 at
depths 2, 3, and 4 was 0.71± 0.41, 1.4± 1.1, and 3.5± 5.8, respectively.

In terms of out-of-sample accuracy, our models performed similarly to OCT-H and
significantly better than the other models from the literature. The average out-of-
sample accuracy for OCT-H at depths 2, 3, and 4 was 0.92 ± 0.06, 0.93 ± 0.05, and
0.93±0.06, respectively. The average solution time for SOCT-benders-last-1 at depths
2, 3, and 4 was 0.92± 0.07, 0.92± 0.08, and 0.93± 0.07, respectively.

20

Depth 2 Depth 3 Depth 4
0

100

200

300

400

500

600

700

So
lu

tio
n

tim
e

(s
)

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(a)

Depth 2 Depth 3 Depth 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e

ga
p

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(b)

Depth 2 Depth 3 Depth 4

0.6

0.7

0.8

0.9

1.0

In
-s

am
pl

e
ac

cu
ra

cy

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(c)

100 150 200 250 300 350 400 450
Average solution time (s)

0.03

0.04

0.05

0.06

0.07

0.08

Av
er

ag
e

re
la

tiv
e

ga
p

OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(d)

Fig. 4 Direct MIP comparison results displaying (a) boxplots (across datasets) of solution time
for all three depths, (b) boxplots (across datasets) of relative gap for all three depths, (c) boxplots
(across datasets) of in-sample accuracy for all three depths, and (d) the overall average relative gap
and overall average solution time across all three depths and all datasets.

21

Overall, our models were able perform similarly to the best models from the liter-
ature in terms of out-of-sample accuracy, while improving solution time by between
71% and 93%.

7 Conclusion

We proposed a new MIP formulation for the optimal decision tree problem. Our
approach directly deals with numerical features and leverages the higher modeling
power of multivariate branching rules. We also introduced a new class of valid inequal-
ities and an exact decomposition approach that uses these inequalities as feasibility
cuts. These inequalities exploit the structure of decision trees and express the geometri-
cal properties of the dataset at hand. We demonstrate through numerical experiments
that our MIP approach outperforms (in terms of training accuracy, testing accuracy,
solution time, and relative gap) two other popular MIP formulations, and is able to
improve solution time, while remaining competitive in terms of out-of-sample accuracy
to a wide range of popular approaches from the literature. Finally, we note that our
formulation and the shattering inequalities (13) are general and can be extended to
any binary classifier used to implement the branching rules. When the branching rules
are implemented via multivariate splits, the separation of the shattering inequalities
can be performed efficiently. However, the separation may become more challenging if
we consider more complex classifiers.

22

1 2 3 4 5 6 7 8 9 10
Datasets (sorted)

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

tra
in

 a
cc

ur
ac

y

DL8.5
OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(a)

1 2 3 4 5 6 7 8 9 10
Datasets (sorted)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

te
st

 a
cc

ur
ac

y

DL8.5
OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(b)

1 2 3 4 5 6 7 8 9 10
Datasets (sorted)

0

100

200

300

400

500

600

Av
er

ag
e

so
lu

tio
n

tim
e

(s
)

DL8.5
OCT
FlowOCT
FlowOCT-Benders
OCT-H
SOCT-baseline
SOCT-benders-last-1
SOCT-benders-last-10
SOCT-init-1
SOCT-init-5

(c)

Fig. 5 Line plots across all 10 datasets (sorted for clarity) of the training accuracy, testing accuracy,
and solution time for all models at depth four.

23

T
a
b
le

1
D

et
a
il
ed

su
m

m
a
ry

o
f

co
m

p
re

h
en

si
v
e

co
m

p
a
ri

so
n

s
fo

r
d

ep
th

2
.

D
a
ta

se
t

(A
)

(B
)

(C
)

(D
)

(E
)

(F
)

(G
)

(H
)

(I
)

(J
)

O
b

se
rv

a
ti

o
n

s
(N

)
6
2
5

4
3
5

4
7

1
5
0

1
7
8

5
6
9

1
3
7
2

7
4
8

3
5
1

1
9
5

F
ea

tu
re

s
(p

)
2
0

4
8

5
9

4
1
3

3
0

4
4

3
4

2
2

D
L

8
.5

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

3
5
.6

7
4
3
2
.3

3
3
1
4
3
.6

7
1
1
8
4
.0

1
0
3
.0

1
5
1
7
.0

7
5
8
.0

F
lo

w
O

C
T

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

2
0
.0

6
5
.0

1
5
0
.0

2
0
.0

1
8
.6

7
1
5
8
.0

1
1
0
.0

C
la

ss
es

(K
)

3
2

4
3

3
2

2
2

2
2

In
-s

a
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.7

0
.9

6
1
.0

0
.9

6
0
.9

7
0
.9

7
0
.9

3
0
.7

8
0
.9

2
0
.9

4
O

C
T

0
.6

9
0
.9

6
1
.0

0
.9

7
0
.9

6
0
.9

5
0
.9

3
0
.7

6
0
.9

2
0
.8

9
F

lo
w

O
C

T
0
.6

9
0
.9

6
1
.0

0
.9

0
.9

3
0
.9

5
0
.9

0
.7

7
0
.8

7
0
.9

F
lo

w
O

C
T

-B
en

d
er

s
0
.6

9
0
.9

6
0
.9

4
0
.9

0
.9

3
0
.9

5
0
.9

0
.7

7
0
.8

7
0
.9

O
C

T
-H

1
.0

0
.9

6
0
.9

9
0
.9

9
1
.0

0
.9

9
1
.0

0
.8

2
0
.9

6
0
.9

5
S

O
C

T
-b

a
se

li
n

e
1
.0

1
.0

1
.0

0
.9

9
1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

9
1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

0
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

8
1
.0

1
.0

S
O

C
T

-i
n

it
-1

1
.0

1
.0

1
.0

0
.9

9
1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

S
O

C
T

-i
n

it
-5

1
.0

1
.0

1
.0

0
.9

9
1
.0

1
.0

1
.0

0
.7

9
1
.0

1
.0

O
u

t-
o
f-

sa
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.6

3
0
.9

5
0
.9

8
0
.9

5
0
.9

4
0
.9

3
0
.9

1
0
.7

6
0
.8

6
0
.8

5
O

C
T

0
.6

6
0
.9

6
0
.9

6
0
.9

3
0
.9

0
.9

2
0
.9

1
0
.7

6
0
.8

6
0
.8

5
F

lo
w

O
C

T
0
.6

6
0
.9

5
1
.0

0
.8

7
0
.9

0
.9

2
0
.8

7
0
.7

5
0
.8

4
0
.8

4
F

lo
w

O
C

T
-B

en
d

er
s

0
.6

6
0
.9

5
0
.9

2
0
.8

7
0
.9

0
.9

2
0
.8

7
0
.7

5
0
.8

4
0
.8

7
O

C
T

-H
0
.9

2
0
.9

6
0
.9

6
0
.9

4
0
.9

1
0
.9

6
1
.0

0
.7

8
0
.8

9
0
.8

8
S

O
C

T
-b

a
se

li
n

e
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

8
0
.8

8
0
.8

7
S

O
C

T
-b

en
d

er
s-

la
st

-1
0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
0
.9

9
0
.7

7
0
.8

8
0
.7

9
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

1
S

O
C

T
-i

n
it

-1
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

8
0
.8

8
0
.8

3
S

O
C

T
-i

n
it

-5
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

9
0
.8

7
C

o
m

p
u

ta
ti

o
n

a
l

ti
m

e
(s

)

D
L

8
.5

0
.0

0
.0

0
.0

0
.0

0
.0

2
1
.3

7
0
.3

0
.0

0
.3

4
0
.0

9
O

C
T

0
.4

0
.3

4
0
.2

3
0
.2

0
.2

4
0
.4

7
0
.3

4
0
.2

3
0
.3

5
0
.2

5
F

lo
w

O
C

T
3
.7

3
5
.4

5
0
.0

4
0
.1

5
0
.9

7
6
4
.1

3
2
.7

4
0
.8

3
3
2
.1

5
7
.4

5
F

lo
w

O
C

T
-B

en
d

er
s

0
.6

8
3
.5

1
0
.1

0
.1

5
2
.3

5
2
8
.6

8
3
.5

6
1
.0

3
0
.0

5
6
.4

4
O

C
T

-H
1
8
.4

9
9
.5

9
1
.8

1
0
.4

9
3
.8

2
6
.3

7
1
2
.3

6
3
.1

4
1
9
.4

4
5
.5

2
S

O
C

T
-b

a
se

li
n

e
1
.3

8
0
.5

9
0
.2

8
0
.5

0
.3

3
1
.5

9
1
1
.8

4
6
0
1
.3

1
2
.3

5
4
.5

3
S

O
C

T
-b

en
d

er
s-

la
st

-1
1
.0

5
0
.5

0
.2

6
0
.5

0
.2

9
0
.7

8
1
.5

8
6
0
1
.3

8
1
.3

5
0
.6

8
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

1
.0

6
0
.5

3
0
.2

6
0
.5

3
0
.3

0
.7

7
4
.1

5
6
0
1
.4

2
1
.0

6
0
.6

6
S

O
C

T
-i

n
it

-1
1
.4

6
0
.6

4
0
.2

9
0
.5

2
0
.3

4
1
.6

8
.5

8
6
0
1
.4

2
3
.5

3
2
.4

S
O

C
T

-i
n

it
-5

1
.4

6
0
.6

6
0
.2

9
0
.5

1
0
.3

4
1
.5

3
4
4
.3

4
6
0
1
.7

4
5
.6

3
2
.2

9

24

T
a
b
le

2
D

et
a
il
ed

su
m

m
a
ry

o
f

co
m

p
re

h
en

si
v
e

co
m

p
a
ri

so
n

s
fo

r
d

ep
th

3
.

D
a
ta

se
t

(A
)

(B
)

(C
)

(D
)

(E
)

(F
)

(G
)

(H
)

(I
)

(J
)

O
b

se
rv

a
ti

o
n

s
(N

)
6
2
5

4
3
5

4
7

1
5
0

1
7
8

5
6
9

1
3
7
2

7
4
8

3
5
1

1
9
5

F
ea

tu
re

s
(p

)
2
0

4
8

5
9

4
1
3

3
0

4
4

3
4

2
2

D
L

8
.5

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

3
5
.6

7
4
3
2
.3

3
3
1
4
3
.6

7
1
1
8
4
.0

1
0
3
.0

1
5
1
7
.0

7
5
8
.0

F
lo

w
O

C
T

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

2
0
.0

6
5
.0

1
5
0
.0

2
0
.0

1
8
.6

7
1
5
8
.0

1
1
0
.0

C
la

ss
es

(K
)

3
2

4
3

3
2

2
2

2
2

In
-s

a
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.7

5
0
.9

7
1
.0

0
.9

8
1
.0

0
.9

9
0
.9

9
0
.8

1
0
.9

6
0
.9

9
O

C
T

0
.7

5
0
.9

6
1
.0

0
.9

7
1
.0

0
.9

8
0
.9

7
0
.7

9
0
.9

3
0
.9

7
F

lo
w

O
C

T
0
.7

4
0
.9

7
1
.0

0
.9

4
0
.9

8
0
.9

6
0
.9

5
0
.7

9
0
.9

1
0
.9

4
F

lo
w

O
C

T
-B

en
d

er
s

0
.7

4
0
.9

7
1
.0

0
.9

2
0
.9

7
0
.9

6
0
.9

5
0
.7

9
0
.9

1
0
.9

5
O

C
T

-H
1
.0

0
.9

6
1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
0
.9

4
0
.9

9
S

O
C

T
-b

a
se

li
n

e
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

8
1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

0
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

8
1
.0

1
.0

S
O

C
T

-i
n

it
-1

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

S
O

C
T

-i
n

it
-5

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

O
u

t-
o
f-

sa
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.7

0
.9

5
0
.9

8
0
.9

5
0
.9

1
0
.9

3
0
.9

7
0
.7

7
0
.8

5
0
.8

7
O

C
T

0
.7

0
.9

5
0
.9

6
0
.9

3
0
.9

2
0
.9

4
0
.9

6
0
.7

7
0
.8

6
0
.9

F
lo

w
O

C
T

0
.6

9
0
.9

4
0
.9

8
0
.8

9
0
.9

2
0
.9

4
0
.9

3
0
.7

6
0
.8

5
0
.8

6
F

lo
w

O
C

T
-B

en
d

er
s

0
.6

9
0
.9

4
0
.9

8
0
.8

9
0
.8

9
0
.9

2
0
.9

3
0
.7

6
0
.8

6
0
.8

5
O

C
T

-H
0
.9

3
0
.9

6
0
.9

8
0
.9

6
0
.9

2
0
.9

5
1
.0

0
.8

0
.8

9
0
.9

1
S

O
C

T
-b

a
se

li
n

e
0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

7
S

O
C

T
-b

en
d

er
s-

la
st

-1
0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
0
.9

9
0
.7

6
0
.8

6
0
.8

1
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

6
0
.7

7
S

O
C

T
-i

n
it

-1
0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
1
.0

0
.7

7
0
.8

7
0
.8

4
S

O
C

T
-i

n
it

-5
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

5
C

o
m

p
u

ta
ti

o
n

a
l

ti
m

e
(s

)

D
L

8
.5

0
.0

0
.0

1
0
.0

0
.0

0
.4

6
6
0
0
.6

8
1
1
1
.6

5
0
.1

1
9
2
.8

1
2
.6

7
O

C
T

0
.4

1
0
.4

1
0
.2

1
0
.2

0
.2

6
0
.7

1
0
.5

1
0
.2

8
0
.5

0
.3

F
lo

w
O

C
T

1
9
6
.9

2
1
6
0
.1

4
0
.0

9
2
.4

1
8
5
.6

2
5
1
3
.1

1
6
6
.1

3
2
3
.3

8
4
6
9
.7

7
3
0
3
.3

9
F

lo
w

O
C

T
-B

en
d

er
s

1
0
5
.9

9
8
2
.1

0
.0

1
1
.8

1
1
1
1
.8

8
6
0
0
.0

4
5
0
5
.6

8
2
2
4
.6

5
4
2
9
.5

6
0
0
.0

3
O

C
T

-H
2
2
.5

8
1
0
.4

2
.1

6
0
.6

2
4
.1

6
3
1
.5

2
1
3
.1

5
6
.2

4
2
6
.3

3
8
.2

8
S

O
C

T
-b

a
se

li
n

e
2
.0

3
1
.2

2
0
.4

4
0
.8

1
0
.5

1
.7

6
5
1
.0

4
6
0
2
.0

5
1
.7

6
5
.5

1
S

O
C

T
-b

en
d

er
s-

la
st

-1
1
.5

2
0
.7

8
0
.3

6
0
.8

9
0
.3

9
1
.0

5
1
.9

4
6
0
6
.0

3
1
.2

9
3
.9

9
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

1
.4

9
0
.7

7
0
.3

6
0
.5

9
0
.4

1
.1

1
1
.7

4
6
0
4
.1

4
1
.2

9
4
.6

2
S

O
C

T
-i

n
it

-1
2
.2

3
1
.2

4
0
.4

4
1
.0

0
.5

2
1
.8

6
6
.7

1
6
0
2
.2

7
1
.8

3
5
.1

7
S

O
C

T
-i

n
it

-5
2
.1

9
1
.2

4
0
.4

4
0
.7

4
0
.5

2
1
.9

7
1
3
.8

6
6
0
2
.5

1
.9

4
5
.0

5

25

T
a
b
le

3
D

et
a
il
ed

su
m

m
a
ry

o
f

co
m

p
re

h
en

si
v
e

co
m

p
a
ri

so
n

s
fo

r
d

ep
th

4
.

D
a
ta

se
t

(A
)

(B
)

(C
)

(D
)

(E
)

(F
)

(G
)

(H
)

(I
)

(J
)

O
b

se
rv

a
ti

o
n

s
(N

)
6
2
5

4
3
5

4
7

1
5
0

1
7
8

5
6
9

1
3
7
2

7
4
8

3
5
1

1
9
5

F
ea

tu
re

s
(p

)
2
0

4
8

5
9

4
1
3

3
0

4
4

3
4

2
2

D
L

8
.5

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

3
5
.6

7
4
3
2
.3

3
3
1
4
3
.6

7
1
1
8
4
.0

1
0
3
.0

1
5
1
7
.0

7
5
8
.0

F
lo

w
O

C
T

b
u

ck
et

s
(a

v
g
)

N
/
A

N
/
A

N
/
A

2
0
.0

6
5
.0

1
5
0
.0

2
0
.0

1
8
.6

7
1
5
8
.0

1
1
0
.0

C
la

ss
es

(K
)

3
2

4
3

3
2

2
2

2
2

In
-s

a
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.7

6
0
.9

7
1
.0

0
.9

7
1
.0

0
.9

9
0
.9

9
0
.8

3
0
.9

7
1
.0

O
C

T
0
.7

6
0
.9

6
1
.0

0
.9

7
1
.0

0
.9

8
0
.9

9
0
.7

9
0
.9

6
0
.9

8
F

lo
w

O
C

T
0
.7

8
0
.9

9
1
.0

0
.9

7
1
.0

0
.9

8
0
.9

7
0
.8

0
.9

3
0
.9

9
F

lo
w

O
C

T
-B

en
d

er
s

0
.7

7
0
.9

8
1
.0

0
.9

9
1
.0

0
.9

8
0
.9

7
0
.8

0
.9

3
0
.9

4
O

C
T

-H
1
.0

0
.9

6
1
.0

1
.0

1
.0

0
.9

9
1
.0

0
.8

2
0
.9

8
0
.9

7
S

O
C

T
-b

a
se

li
n

e
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

8
1
.0

1
.0

S
O

C
T

-b
en

d
er

s-
la

st
-1

0
1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

7
1
.0

1
.0

S
O

C
T

-i
n

it
-1

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.7

9
1
.0

1
.0

S
O

C
T

-i
n

it
-5

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

1
.0

0
.8

1
.0

1
.0

O
u

t-
o
f-

sa
m

p
le

a
cc

u
ra

cy

D
L

8
.5

0
.7

1
0
.9

3
0
.9

4
0
.9

3
0
.9

3
0
.9

2
0
.9

7
0
.7

7
0
.8

8
0
.9

1
O

C
T

0
.7

2
0
.9

6
0
.9

6
0
.9

5
0
.9

2
0
.9

4
0
.9

7
0
.7

8
0
.8

9
0
.9

F
lo

w
O

C
T

0
.7

1
0
.9

3
0
.9

8
0
.8

8
0
.8

9
0
.9

3
0
.9

7
0
.7

6
0
.8

4
0
.8

5
F

lo
w

O
C

T
-B

en
d

er
s

0
.7

0
.9

4
1
.0

0
.9

1
0
.9

1
0
.9

3
0
.9

5
0
.7

6
0
.8

2
0
.8

7
O

C
T

-H
0
.9

5
0
.9

5
0
.9

6
0
.9

6
0
.9

2
0
.9

6
1
.0

0
.7

7
0
.9

0
.8

9
S

O
C

T
-b

a
se

li
n

e
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

7
0
.8

7
0
.8

5
S

O
C

T
-b

en
d

er
s-

la
st

-1
0
.9

7
0
.9

4
1
.0

0
.9

6
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

5
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

0
.9

7
0
.9

4
1
.0

0
.9

8
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

5
S

O
C

T
-i

n
it

-1
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

3
S

O
C

T
-i

n
it

-5
0
.9

7
0
.9

4
1
.0

0
.9

7
0
.9

8
0
.9

5
1
.0

0
.7

6
0
.8

7
0
.8

4
C

o
m

p
u

ta
ti

o
n

a
l

ti
m

e
(s

)

D
L

8
.5

0
.0

3
0
.1

5
0
.0

0
.0

1
4
3
.9

1
6
0
0
.6

6
0
0
.1

1
4
.8

8
6
0
0
.1

2
1
.6

1
O

C
T

0
.5

4
0
.4

5
0
.2

1
0
.2

0
.2

9
0
.8

2
0
.6

5
0
.3

4
0
.6

2
0
.3

6
F

lo
w

O
C

T
6
0
1
.0

4
6
0
0
.8

1
0
.1

9
4
1
3
.6

9
1
4
.7

1
6
0
1
.4

7
6
0
2
.3

4
2
6
4
.0

1
6
0
0
.9

1
6
0
0
.4

5
F

lo
w

O
C

T
-B

en
d

er
s

5
3
7
.6

9
4
2
9
.8

2
0
.0

1
6
0
0
.0

3
2
0
6
.2

5
6
0
0
.0

5
6
0
0
.0

4
6
0
0
.0

4
6
0
0
.0

5
6
0
0
.0

3
O

C
T

-H
2
0
.3

1
1
.6

2
.2

1
0
.6

6
4
.1

3
3
5
.4

9
1
2
.9

8
4
.2

4
6
.2

7
1
0
.2

6
S

O
C

T
-b

a
se

li
n

e
3
.2

2
.5

1
0
.5

8
1
.3

2
0
.8

1
3
.4

4
6
0
.3

8
6
0
3
.0

4
2
.7

5
1
.5

5
S

O
C

T
-b

en
d

er
s-

la
st

-1
2
.3

9
1
.3

9
0
.4

5
1
.0

4
0
.5

9
1
.9

9
1
8
.7

4
6
0
7
.3

4
1
.8

3
1
.1

8
S

O
C

T
-b

en
d

er
s-

la
st

-1
0

2
.3

7
1
.3

9
0
.4

4
0
.9

2
0
.6

1
.9

6
6
.2

1
6
1
3
.0

1
.8

1
1
.2

S
O

C
T

-i
n

it
-1

3
.5

2
.5

5
0
.6

1
.3

0
.8

3
3
.6

5
8
.0

1
6
0
3
.5

6
2
.8

1
1
.8

2
S

O
C

T
-i

n
it

-5
3
.6

1
2
.5

5
0
.6

1
.5

8
0
.8

4
3
.6

8
7
.2

5
6
0
3
.8

1
2
.8

9
1
.8

4

26

References

[1] Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regres-
sion Trees. Taylor & Francis, New York (1984)

[2] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[3] Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R
news 2(3), 18–22 (2002)

[4] Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is np-complete.
Information processing letters 5(1), 15–17 (1976)

[5] Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)

[6] Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106
(2017)

[7] Aghaei, S., Azizi, M.J., Vayanos, P.: Learning Optimal and Fair Decision Trees
for Non-Discriminative Decision-Making (2019)

[8] Aghaei, S., Gómez, A., Vayanos, P.: Strong Optimal Classification Trees. Opti-
mization Online (2021). https://optimization-online.org/?p=16925

[9] Aghaei, S., Gómez, A., Jo, N., Vayanos, P.: Learning Optimal Prescrip-
tive Trees from Observational Data. Optimization Online (2021). https://
optimization-online.org/?p=17313

[10] Justin, N., Aghaei, S., Gómez, A., Vayanos, P.: Optimal robust classification
trees. In: The AAAI-22 Workshop on Adversarial Machine Learning and Beyond
(2022). https://openreview.net/forum?id=HbasA9ysA3

[11] Jo, N., Aghaei, S., Benson, J., Gómez, A., Vayanos, P.: Learning optimal fair
classification trees. CoRR abs/2201.09932 (2022) 2201.09932

[12] Dash, S., Günlük, O., Wei, D.: Boolean Decision Rules via Column Generation
(2020)

[13] Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., Scheinberg, K.: Optimal
Generalized Decision Trees via Integer Programming (2019)

[14] Verwer, S., Zhang, Y.: Learning decision trees with flexible constraints and
objectives using integer optimization. In: Salvagnin, D., Lombardi, M. (eds.)
Integration of AI and OR Techniques in Constraint Programming, pp. 94–103.
Springer, Cham (2017)

[15] Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear
program formulation. In: Proceedings of the Thirty-Third AAAI Conference on

27

https://optimization-online.org/?p=16925
https://optimization-online.org/?p=17313
https://optimization-online.org/?p=17313
https://openreview.net/forum?id=HbasA9ysA3
https://arxiv.org/abs/2201.09932

Artificial Intelligence (AAAI-19), pp. 1625–1632. AAAI Press, ??? (2019). 33rd
AAAI Conference on Artificial Intelligence, AAAI-19 ; Conference date: 27-01-
2019 Through 01-02-2019

[16] Zhu, H., Murali, P., Phan, D.T., Nguyen, L.M., Kalagnanam, J.: A scalable mip-
based method for learning optimal multivariate decision trees. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual (2020)

[17] Wolsey, L.A.: Integer Programming. Wiley Series in Discrete Mathematics and
Optimization. Wiley, Hoboken, New Jersey, U.S. (1998)

[18] Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal
decision trees with sat. In: Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence. IJCAI’18, pp. 1362–1368. AAAI Press, Stockholm,
Sweden (2018)

[19] Avellaneda, F.: Efficient inference of optimal decision trees. Proceedings of the
AAAI Conference on Artificial Intelligence 34(04), 3195–3202 (2020)

[20] Janota, M., Morgado, A.: Sat-based encodings for optimal decision trees with
explicit paths. In: Pulina, L., Seidl, M. (eds.) Theory and Applications of
Satisfiability Testing – SAT 2020, pp. 501–518. Springer, Cham (2020)

[21] Schidler, A., Szeider, S.: Sat-based decision tree learning for large data sets.
Proceedings of the AAAI Conference on Artificial Intelligence 35(5), 3904–3912
(2021)

[22] Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.-G., Schaus, P.: Learning opti-
mal decision trees using constraint programming (extended abstract). In: Bessiere,
C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI-20, pp. 4765–4769. International Joint Conferences on
Artificial Intelligence Organization, Yokohama, Japan. (2020)

[23] Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.-G., Schaus, P.: Learning
optimal decision trees using constraint programming. Constraints 25, 1–25 (2020)
https://doi.org/10.1007/s10601-020-09312-3

[24] Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In:
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’07, pp. 530–539. Association for Computing
Machinery, New York, NY, USA (2007)

[25] Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching
branch-and-bound search. Proceedings of the AAAI Conference on Artificial
Intelligence 34(04), 3146–3153 (2020)

28

https://doi.org/10.1007/s10601-020-09312-3

[26] Aglin, G., Nijssen, S., Schaus, P.: PyDL8.5: a library for learning optimal decision
trees. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI-20, pp. 5222–5224. International Joint
Conferences on Artificial Intelligence Organization, Yokohama, Japan. (2020)

[27] Hu, H., Siala, M., Hebrard, E., Huguet, M.-J.: Learning optimal decision trees
with maxsat and its integration in adaboost. In: Bessiere, C. (ed.) Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pp. 1170–1176. International Joint Conferences on Artificial Intelli-
gence Organization, Yokohama, Japan (2020)

[28] Lin, J.J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.I.: Generalized and scalable
optimal sparse decision trees. In: ICML (2020)

[29] Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamo-
hanarao, K., Stuckey, P.J.: MurTree: Optimal Classification Trees via Dynamic
Programming and Search (2021)

[30] Lin, J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.: Generalized and scalable opti-
mal sparse decision trees. In: International Conference on Machine Learning, pp.
6150–6160 (2020). PMLR

[31] Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1), 238–252 (1962)

[32] Michini, C., Zhou, Z.: A polyhedral study of multivariate decision trees. Opti-
mization Online (2022). https://optimization-online.org/?p=20972

[33] Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken, New Jersey, U.S. (1998)

[34] Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania, United States (2001)

[35] Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities.
INFORMS J. Comput. 2, 61–63 (1990)

[36] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester
(1986)

[37] Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res. 54(4), 756–766 (2006)

[38] Hooker, J., Ottosson, G.: Logic-based benders decomposition. Mathematical
Programming 96 (2001)

[39] Brown, D.E., Pittard, C.L., Park, H.: Classification trees with optimal multi-
variate decision nodes. Pattern Recognition Letters 17(7), 699–703 (1996) https:

29

https://optimization-online.org/?p=20972
https://doi.org/10.1016/0167-8655(96)00033-5
https://doi.org/10.1016/0167-8655(96)00033-5

//doi.org/10.1016/0167-8655(96)00033-5

[40] Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. CoRR abs/cs/9408103 (1994) cs/9408103

[41] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[42] Dua, D., Graff, C.: UCI Machine Learning Repository (2017). http://archive.ics.
uci.edu/ml

[43] Interpretable AI, L.: Interpretable AI Documentation (2021). https://www.
interpretable.ai

[44] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https:
//www.gurobi.com

30

https://doi.org/10.1016/0167-8655(96)00033-5
https://doi.org/10.1016/0167-8655(96)00033-5
https://arxiv.org/abs/cs/9408103
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.interpretable.ai
https://www.interpretable.ai
https://www.gurobi.com
https://www.gurobi.com

	Introduction
	The Optimal Decision Tree Problem
	The Optimal Decision Tree Problem
	Problem Formulation

	Baseline MIP formulation
	Shattering Inequalities
	Separation

	Heuristic for Training Multivariate Decision Trees
	Experiments
	Experimental Setup
	Tuning experiments.
	Direct MIP comparison.
	Comprehensive comparison.

	Conclusion

