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To mitigate the negative effect of freight vehicles on urban areas, many cities have implemented road acces-

sibility restrictions, including limited traffic zones, which restrict access to specific areas during certain times

of the day. Implementing these zones creates a trade-off between the delivery cost and time, even under the

assumption of equal traversal time and travel cost. Consequently, the planners in charge of vehicle routing

need to work with graphs containing information on all Pareto-optimal paths. Inspired by these changes in

city logistics and the resulting computational challenges, we study the vehicle routing problem with access

restrictions, where some streets are closed to traffic within a given time period. We formulate this problem

using workday variables and propose two branch and price algorithms based on the underlying road network

and multi-graph. The results of our computational experiments demonstrate the effectiveness of the pro-

posed algorithms, solving instances with up to 100 nodes and 33 customers, and underline the importance

of considering alternative paths in reducing costs.
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1. Introduction

The inner-city operation of freight vehicles causes congestion, air pollution, and noise pollution,

leading to serious public health and environmental issues. To cope with these consequences, munic-

ipalities around the world implement road accessibility restrictions, such as low emission zones

and limited traffic zones. This study focuses on the latter, which restricts access to specific areas

during certain times of the day. While these restrictions reduce the aforementioned problems, they

pose challenges to logistics companies accessing the customers in the restricted areas. The deliver-

ies in question typically occur during business hours. Restricted access in these time intervals can

increase travel distance, causing higher costs and longer delivery times and forcing companies to use

more vehicles. Despite the challenges that limited traffic zones pose to logistics providers, imposing

access restrictions remains an important strategy for creating more sustainable urban environ-

ments. Companies should incorporate these restrictions in their logistics planning to decrease the

negative impact of these measures on their costs and quality of service.
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With this motivation, we define the Vehicle Routing Problem with Access Restrictions (VRPAR).

The aim is to plan delivery routes for a homogeneous fleet of vehicles in a city where vehicles are

not allowed to enter certain arcs during a given time period. Customers do not quote time windows

and can be visited any time during the day, and the demands of customers cannot be split among

several vehicles. We assume that vehicles are unlimited in number and can be used by incurring

a fixed cost for a workday. Vehicles have capacities, and the duration of a workday limits their

working time. The aim is to find minimum cost routes that comply with access restrictions, in

which every customer is visited exactly once, the capacity restrictions of the vehicles are respected,

and the vehicles can be back at the depot by the end of the workday.

In this study, we assume that the time it takes to traverse an arc is equal to (or a positive

multiple of) the cost incurred to traverse the arc, for all arcs. Under this assumption, if there are

no access restrictions, then in an optimal solution, one uses only minimum cost routes. Indeed,

the classical VRP is defined on a complete graph, where the cost of using an arc (i, j) is equal

to the cost of the minimum cost path from i to j. However, in VRPAR, vehicles may encounter

different waiting times depending on the arrival time at the tail of an arc with access restrictions.

When this waiting time is incorporated into the travel time of the corresponding arc, VRPAR

becomes a special case of the time-dependent VRP where some arcs have time-dependent travel

times. Consequently, despite the fact that the traversal time of an arc is equal to its travel cost, it

is not always possible to consider only minimum cost paths between two nodes. To demonstrate

this feature, Figure 1 depicts a graph where the numbers on the arcs are the travel costs (also

traversal times). The graph consists of eight road junctions, where no customer or depot is located,

and two customers, represented by orange nodes. The restricted arcs closed to the traffic between

times 60 and 100 are represented by dashed lines. There are four paths to go from customer 1 to

customer 2. The arrival times of all paths are plotted on the right as a function of the dispatch

time from customer 1. This plot shows that more expensive paths have shorter travel times for

certain dispatch times. For example, the most expensive path, 1-8-9-2, leads to the earliest arrival

time for departures between times five and ten.

As this example shows, assuming the equality of traversal times and costs does not suffice to

be able to solve the VRPAR in a graph that contains “one best arc” between two nodes. In other

words, a graph that contains the information on all Pareto-optimal paths must be considered not

to jeopardize optimality. Hence VRPAR belongs to the family of VRPs with alternative paths. We

note that the workday restriction is critical in VRPAR, since, without it, the vehicles will wait

until the end of the restricted period instead of taking more costly routes, and the problem reduces

to the capacitated VRP.
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Figure 1 The effect of access restrictions on the arrival times

To the best of our knowledge, alternative paths arising from the incorporation of access restric-

tions have never been considered in the literature. With this study, we aim to fill this gap. We

propose two branch and price algorithms to solve VRPAR, one based on the road network and the

other one based on the multi-graph, defined in Sections 4 and 5, respectively. Our computational

experiments show that the proposed algorithms can solve instances with up to 100 nodes and 33

customers, and the multi-graph approach performs better on the tested instances.

The rest of the paper is organized as follows. In Section 2, we review the literature. Section

3 provides a formal definition of the VRPAR and introduces our formulation with path-based

variables on the road network. We describe the proposed branch and price algorithm based on

the road network in Section 4. We explain the construction of the multi-graph and the required

changes on the model and the algorithm for the multi-graph approach in Section 5. In Section 6,

we present the results of our computational experiments. Finally, we conclude in Section 7.

2. Related literature

To the best of our knowledge, imposing access restrictions has been studied only in the context of

the VRP with Access Time Windows (VRPATW), defined by Muñuzuri et al. (2013). In VRPATW,

a restricted area that contains a subset of the nodes is closed to the traffic within a given time

period. Since the vehicles do not have access to the whole area during the restricted period, the

nodes inside this area cannot be visited within the restricted period, no matter which path is used.

Therefore, the access time windows in VRPATW do not create Pareto-optimal paths when the

arcs have one distinctive attribute as opposed to our setting. As a result, VRPATW is closely

related to the VRP with time windows, where the time windows correspond to the intervals during

which the nodes cannot be visited. The authors propose a heuristic algorithm where the routes

are first generated by a genetic algorithm without considering the access restrictions, and then the
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obtained customer sequences are modified in a way that the access restrictions are respected. Later

on, Grosso et al. (2018) propose a mathematical formulation for this problem.

In the remainder of this section, we review the results and algorithms for two problems closely

related with VRPAR, namely, VRP with alternative paths and time-dependent VRP. To facilitate

the discussion, we define three commonly used graphs in the related studies: road network, multi-

graph and customer-based graph. In road networks, each arc represents the road segments, and the

nodes correspond to the endpoints of these segments. Therefore, the node set might also contain the

road junctions where no customer or depot is located. An example of this graph type can be seen

in Figure 1. In multi-graphs, the node set contains only the set of depots and the set of customers.

The arc set contains all Pareto-optimal paths obtained by solving a multi-criteria shortest path

problem in the underlying road network for each node pair. Hence, there might be parallel arcs

between each node pair. When only one attribute is considered, and each node pair is linked by at

most one arc representing the best path on the underlying road network in terms of this attribute,

the resulting graph is called a customer-based graph. One example of a customer-based graph is

the min-cost graph, which contains only the arcs representing min-cost paths on the underlying

road network. Figure 2 demonstrates the multi-graph and min-cost graph representations of the

road segment depicted in Figure 1, where one of the min-cost paths is arbitrarily chosen for the

latter.
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Figure 2 Multi-graph and min-cost graph representations of Figure 1

2.1. VRP with alternative paths

Most of the studies in the VRP literature use customer-based graphs. However, the shortest and

quickest paths are not always the same in reality. Therefore, addressing the problem on customer-

based graph results in discarding the paths offering trade-offs between different attributes and

might lead to overestimating cost or infeasibility. To the best of our knowledge, Garaix et al. (2010)

is the first one addressing the disadvantages of customer-based graphs when several attributes are

associated with the arcs. The authors propose constructing a multi-graph. They solve a dial-a-ride

problem using the branch-and-price algorithm, where the pricing problem is solved over the multi-

graph. They also point out that the sequence of visited customers cannot be used to define a route

due to potentially having multiple arcs between each node pair. Even when this order is known,

the resulting problem is a multiple-choice knapsack problem (multidimensional if more than one
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attribute is constrained). Although the authors indicate that they construct the multi-graph using

a labelling algorithm similar to the one used in the pricing problem, they leave the space and time

requirements of such a graph as an open question. This question is later addressed by Letchford,

Nasiri, and Oukil (2014). The authors show that when the road network contains O(|J | logT )
arcs where J is the set of customers and T is the workday duration limit, the multi-graph can

contain Θ(|J |2T ) arcs. To remedy this problem, they propose using the underlying road network

directly, which requires allowing the customers to be visited more than once in the pricing problem:

either to serve or to pass through without serving. Whereas the pricing algorithm is explained

in detail, the branching part of the algorithm is left for future research. Later, Ben Ticha et al.

(2019) complete this work and propose a branch-and-price algorithm for the VRPTWs on a road

network. They show that integer arc flows do not suffice for the integrality of the VRPs on a road

network since the arcs can be traversed more than once. They propose a hierarchical branching

where branching on the arc flows is prioritized. If a fractional solution is detected while all arc flows

are integer, they construct a support graph. In the first branch, they enumerate all feasible routes

in the support graph and solve the master problem using these enumerated routes. In the second

branch, they enforce at least one arc that is not used in the previous solution to be used. They also

compare the efficacies of the algorithms on a road network and a multi-graph using their previous

paper, Ticha et al. (2017), in which a branch-and-price algorithm for the VRPTWs on a multi-

graph is proposed. Their computational results show that the multi-graph approach outperforms

the road network approach. However, the authors also note that the size of the multi-graph could

significantly increase for some extensions of the VRP and even be intractable. This reason drives

the authors towards using the road network for the time-dependent VRPTW, as explained in the

next section.

The literature on the VRPs on a road network has also focused on the arc routing problems

(ARPs) in which the service is performed at the arcs instead of nodes. Two approaches stand out

in the ARP literature, namely, modelling the problem as a node-routing problem after converting

the road network into a customer-based one with additional nodes and directly using the road

network. For brevity, we do not review the ARP literature and refer interested readers to the recent

survey of Corberán et al. (2021).

2.2. Time-dependent VRP

In the traditional VRP, the travel times of the arcs are assumed to be time-independent. However,

travel times might be affected by exogenous factors such as traffic congestion or endogenous factors

such as the vehicle’s speed chosen by the driver. Modelling such situations requires relaxing the

assumption of time-independent travel times. The arising problem is called time-dependent VRP

(TDVRP).
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Dabia et al. (2013) propose the first exact algorithm for TDVRP where they consider the exten-

sion with time windows and minimize the total route duration. As the feasibility of a route is

defined considering the time dependency of travel times, their master problem is the same as that of

VRPTW, but the resulting pricing problem turns into a time-dependent elementary shortest path

problem with resource constraints. They solve this problem using a tailored labelling algorithm and

branch on the arc variables using strong branching. Since the cost of a route (its duration) depends

on the dispatch time from the depot, so is its reduced cost (i.e., it cannot be directly decomposed

to each edge). Therefore, in the proposed labelling algorithm, each label stores a piecewise linear

function of the dispatch time from the depot to represent the service completion time at the cor-

responding end node. When a label is completed, among the dispatch times from the depot for

which the label is feasible, the one that provides the minimum route duration is selected using

this piecewise linear function. Then, the reduced cost of the route is calculated according to the

selected dispatch time.

The pollution routing problem (PRP) is an extension of the VRPTW in which travel speeds

at each arc must be determined in addition to the vehicle route to minimize the consumption

of a vehicle and the cost of a driver Bektaş and Laporte (2011). Whereas the speed on each arc

is bounded because of the traffic regulations in the standard PRP, Franceschetti et al. (2013)

consider the speed restrictions caused by traffic congestion and employ time-dependent travel times.

Incorporating the congestion into the PRP framework opens up a new question that has not been

investigated in the VRPTW literature before: under which conditions should idle waiting after a

service completion be used as a strategy to avoid congestion? The authors provide a characterization

of the optimal solutions for the single-arc version of the problem, which is used to identify the

conditions under which idle waiting at certain locations is optimal.

In the studies mentioned above, any two nodes are linked by at most one arc. To the best of

our knowledge, Setak et al. (2015) is the first one considering the time-minimizing TDVRP in a

multi-graph. They propose a tabu search algorithm to solve this problem. Even though multiple

arcs are considered between each node pair, different trade-offs are not induced by the choice of

an arc because the travel costs are not considered. In other words, one arc dominates the others

once the travel start time is known. It is also worth mentioning that the authors do not discuss

the tractability of the multi-graph and restrict their computational experiments to the graphs that

contain at most three arcs between each pair of nodes.

Huang et al. (2017) introduce the cost-minimizing TDVRP with path flexibility and limited

workday duration. They consider a cost function that consists of the fuel cost dependent on vehi-

cle speed and load and vehicle depreciation cost dependent on the travel distance. Whereas in

the time-minimizing TDVRPs without budget constraints, selecting the fastest path of a certain
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Table 1 A classification of the studies in the literature

customer-
graph

multi-
graph

road
network

objective
time-

dependent
branching

Garaix et al. (2010) ✗ ✓ ✗ total cost ✗ enforce or forbid a successor

Dabia et al. (2013) ✓ ✗ ✗ total route duration ✓ enforce or forbid an arc

Ticha et al. (2017) ✗ ✓ ✗ total cost ✗ enforce or forbid an arc

Ben Ticha et al. (2019) ✗ ✓ ✓ total cost ✗ arc flows + support graph

Ben Ticha et al. (2021) ✗ ✗ ✓ total cost ✓ arc flows + support graph

dispatch time between each pair of nodes is always optimal if travel times satisfy the first-in-

first-out condition, locally cost-minimizing paths might not be globally optimal for the considered

objective function. Therefore, the authors define a set of candidate paths and provide a mathe-

matical formulation to decide the sequence of the nodes as well as the paths used between two

consecutive nodes from among the candidates. A set of candidate paths contains the shortest paths

in terms of time for a set of selected dispatch times and the shortest path in terms of distance

for each pair of nodes. Recently, Ben Ticha et al. (2021) and Jaballah et al. (2021) extend this

problem to the TDVRP on the road network. The former proposes a branch-and-price algorithm

and minimizes the total travel distance, and the latter proposes a simulated annealing algorithm

and minimizes the total travel time. Minimizing the total travel distance rather than time enables

Ben Ticha et al. (2021) to use the same pricing algorithm of Ben Ticha et al. (2019) proposed for

the time-independent version by simply changing the computation of the travel times. Even though

cost-minimizing objectives allow the standard labelling algorithms to be used in time-dependent

problems, the challenge is that they cannot be converted into the TDVRP. On the other hand, as

mentioned before, their time-minimizing counterparts can be by solving all pairs of shortest path

problem for each possible starting time (i.e, by choosing the locally time-minimizing paths). Even

modelling the cost-minimizing TDVRPs subject to the time-related constraints on a multi-graph

requires solving multi-criteria all-pairs shortest path problem for each possible starting time.

In Table 1, we provide the classification of the studies that propose an exact algorithm.

3. Problem definition and a set covering formulation on the road
network

Let G= (N,A) be a directed graph, representing the road network where setN consists of the depot

0, set of customers J and set of road junctions K at which no customer or depot is located. Each

customer i∈ J has a nonnegative demand qi, and each arc a∈A is associated with a nonnegative

traversal time ta and nonnegative travel cost ca. Arc a starts at node ia and ends at node ja. For

a subset of arcs AR, there is an access limitation during times [e, l). Because of this limitation, the
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actual travel time on an arc depends on when we reach the tail of the arc. We represent the travel

time of arc a where d is the time that the vehicle is ready to travel on arc a as τa(d) and calculate

it as follows:

τa(d) =

{
ta if a /∈AR ∨ d< e∨ d≥ l,

l− d+ ta otherwise.
(1)

Given a partial path p= (a0, . . . , ak) that starts at node i, let δpa(d) be the arrival time at node

ja given a dispatch time d at node i. The arrival time at each node visited by the path can be

recursively calculated as follows:

δpai(d) = δpai−1
(d)+ τai

(
δpai−1

(d)
)

∀i∈ {0, . . . , k} (2)

where δpa−1
(d) = d.

The travel time of path p for dispatch time d can be calculated as τ p(d) = δpak(d)− d. We show

the travel time and the arrival time graphs of arc a∈AR in Figure 3.

e r′ l

ta

l− r′ + ta

l− e+ ta

Ready time at arc a (d)

Travel time

e l

ta

e+ ta

l+ ta

Ready time at arc a (d)

Arrival time at node ja

Figure 3 Travel and arrival time graphs of arc a∈AR

There are an unlimited number of vehicles with capacity Q and a fixed cost f at the depot. The

problem is finding a set of trips that minimizes the total cost while ensuring that each customer is

served exactly once and all vehicles are back at the depot by time T . Each trip should also comply

with access restrictions and vehicle capacity constraints.

We formulate VRPAR using path variables. We call a path feasible if it starts and ends at the

depot, and if it respects the access time windows, workday duration limit and vehicle capacity

constraints. We define the set of all feasible paths as P . We represent the set of arcs traversed in

path p∈ P by Ap, and the cost of path p by ∆p =
∑

a∈Ap
napca where nap represents the number of

times arc a is traversed by path p. Binary parameter sjp is equal to 1 iff customer j ∈ J is served in
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path p. The variable zp takes value 1 if path p∈ P is used and 0 otherwise. Using these variables,

the VRPAR can be solved using the following set covering formulation:

min
∑
p∈P

(f +∆p)zp (3)

s.t.
∑
p∈P

sjpzp ≥ 1 ∀j ∈ J, (4)

zp ∈ {0,1} ∀p∈ P. (5)

4. Branch and price algorithm on the road network

As the formulation (3) - (5) contains an exponential number of variables, we devise a branch and

price algorithm to solve it. We explain the different components of this algorithm below.

4.1. Pre-processing of the road network

We first check the road network to see whether some restricted arcs can be converted into unre-

stricted arcs without changing the solution space. If the earliest arrival time at node i ∈N \ {0}

from the depot is not less than l, then a vehicle can traverse all outgoing arcs of this node without

waiting. Hence, if such nodes have restricted outgoing arcs, we drop the restrictions on these arcs.

Next, we search the road network to detect the arcs whose usage violates the workday duration

limit. Let Ej be the earliest time a vehicle can arrive at node j ∈N \ {0} from the depot and Lj

be the latest time a vehicle can depart from node j so that it can arrive at the depot by time T .

We remove all arcs a such that Eia + τa(Eia)>Lja .

4.2. Initial solution

To produce a starting solution to the initial restricted master problem at the root node, we first

solve all pairs shortest path problem in terms of travel costs on the underlying road network and

construct a min-cost graph that only contains the arcs with the minimum distance between each

pair of nodes. We use a greedy algorithm with two stages: clustering and routing. In the routing

phase, the algorithm prioritises the arcs in the min-cost graph; it first searches the arcs in the

min-cost graph to decide the next customer of a tour and uses the road network only when needed

for workday duration feasibility.

First, we find a capacitated spanning tree where the capacity is defined as the vehicle capacity to

cluster the customers. To do so, we use the min-cost graph, where the costs of the time-dependent

arcs are multiplied by a positive parameter to prioritize the use of time-independent arcs. Then,

we move to the routing part to create a tour (or tours) from each partition in this spanning tree.

For each partition, we start the tour from the depot and at each iteration, we add the closest

unvisited customer in the partition whose insertion does not violate the workday duration (also

considering the time required to go back to the depot from this customer) to the tour. If no such



10 Şahin and Yaman: The VRP with Access Restrictions

customer is found, we complete the current tour and start a new one. If no feasible insertion can be

found at the beginning of a tour, it indicates that the set of customers in this partition cannot be

visited using the arcs in the min-cost graph. In this case, we form the tour using the same criterion

(the closest in time), but we use the road network instead of the min-cost graph. We apply this

procedure until all customers are visited. Since the fleet size is unlimited, this algorithm always

generates a feasible solution if one exists.

4.3. Pricing problem

This section is based on section 4.2. of Şahin and Yaman (2022) with the modification of allowing

nodes to be visited more than once. For the sake of completeness, we present the algorithm in

detail.

When we solve the LP relaxation of the above formulation using column generation, the pricing

problem checks whether there exists a path with a negative reduced cost. We introduce graph

G = (N,A ∪As), where set As contains the copies of the incoming arcs of each customer j with

αj > 0. Since the customers can be visited more than once on a road network, and the reduced cost

of an arc depends on whether its head node is served, we use different arc sets for these two cases:

if a customer is visited using an arc in A, the vehicle passes through this customer without serving

it; if an arc in As is used, the customer must be served. Note that the arcs in set A can be used

more than once in a feasible path, but not the ones in set As (nap ∈ {0,1} for all a∈As, p∈ P ).

If we associate dual variable vector α to the set of the constraints (4), the pricing problem seeks

to find a path p∈ P such that ∑
a∈Ap

napwa <−f

where wa = ca, ∀a∈A and wa = ca −αja , ∀a∈As.

When αj = 0 for j ∈ J , the reduced costs of the incoming arcs of customer j in sets A and in As

are equal. Meaning that any label serving customer j has the same cost as the label representing

the same path, but that does not serve customer j. Since the former consumes the capacity resource

more, it is always dominated by the latter, as explained in detail in the next section. To avoid

generating these non-promising labels, As contains the incoming arcs of each customer j only when

αj > 0.

We call a path elementary if every customer of the path is served at most once. Using this

definition, the pricing problem can be defined as an ESPPRC with access restrictions where wa is

the cost of arc a∈A∪As.

We make use of Boland, Dethridge, and Dumitrescu (2006)’s state-space augmenting algorithm

to solve the ESPPRC. This algorithm relaxes elementarity constraints and imposes them iteratively

as they are violated. We solve the pricing problem to optimality and add all the columns with a



Şahin and Yaman: The VRP with Access Restrictions 11

negative reduced cost found during the process to the restricted master problem. The labelling

algorithm can be executed by extending labels forward from origin to destination and backwards

from destination to origin. Next, we explain both approaches, adapting them to our case.

4.3.1. Forward labelling Each forward label represents a path from the depot to an end

node and its associated cost and resource consumption. When a forward label with end node i is

extended using outgoing arc a of node i, arc a is added to the path from the depot to node i.

To determine the sequence for extending labels, we sort the labels based on specific criteria,

prioritizing duration, followed by cost and capacity consumption to resolve ties. We subject the

labels associated with the same node to a dominance test and discard the dominated labels. A

label is considered dominated if all feasible extensions of the dominated label are also feasible for

another label that is not more costly. The labelling algorithm terminates when all non-dominated

labels have been extended.

To be able to detect a larger number of dominated labels, we make use of the notion of “unreach-

able nodes ” as proposed by Feillet et al. (2004). We check the resource consumptions for the vehicle

capacity and workday duration to identify unreachable nodes and mark such nodes as served. For

the workday duration constraint, we use the latest arrival times calculated in the pre-processing

phase. For each node i ∈ N , we compute the latest arrival time to node i to reach customer

j ∈ J \ {i} at time Lj. If the time of a label associated with node i is greater than the computed

time, then customer j is unreachable to this label. Since this procedure uses the fastest path for a

given arrival time and the travel time function satisfies the FIFO property, times associated with

these paths satisfy the triangle inequality by definition, which is required to make sure that the

marked nodes are indeed unreachable.

Let f be a forward path starting at the depot and ending at node if at time t̃f ≤ T such that

access time windows and capacity constraints are respected and S be the set of critical nodes that

are not allowed to be served more than once. We represent every forward path f with a label

Lf = (c̃f , q̃f , if , t̃f , Sf ) where c̃f is the reduced cost, q̃f is the total demand of the served customers

and Sf is a binary node-serve resource vector of size |S| with Si
r̄ = 1 if the ith node in S has

already been served or identified as unreachable, 0 otherwise for i ∈ {1, . . . |S|}. To extend node-

serve resources, we define a vector bj of size |S| for each node j ∈ J : bij = 1 if node j is the ith node

in S, 0 otherwise.

We initialize the dynamic programming algorithm with a label for the depot defined as c̃f = 0,

q̃f = 0, if = 0, t̃f = 0 and Sf = 0⃗. In the following, we explain the extension procedure in detail.

• Let Lf ′ represent the label generated by extending Lf with if = i ∈N towards node j ∈N

such that arc a= (i, j)∈A, Lf ′ is constructed as follows:
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- c̃f ′ = c̃f +wa;

- q̃f ′ = q̃f ;

- if ′ = j;

- t̃f ′ = t̃f + τa(t̃f );

- Sf ′ = Sf and, if j ̸= 0, update the reachability of other critical nodes.

• If i ∈N, j ∈ J and S⊤
f bj = 0, Lf ′ is constructed for arc a= (i, j) ∈As (customer j is served)

as follows:

- c̃f ′ = c̃f +wa;

- q̃f ′ = q̃f + qj;

- if ′ = j;

- t̃f ′ = t̃f + τa(t̃f );

- Sf ′ = Sf + bj and update the reachability of other critical nodes.

Due to the workday duration limit and vehicle capacity constraints, a forward label Lf is feasible

only if t̃f ≤ T and q̃f ≤Q.

Let Lf = (c̃f , q̃f , if , t̃f , Sf ) and Lf ′ = (c̃f ′ , q̃f ′ , if ′ , t̃f ′ , Sf ′) be two labels. To reduce the number of

labels generated, we apply the following dominance rule: Label Lf dominates Lf ′ if the following

conditions are satisfied:

i) if = if ′ , ii) q̃f ≤ q̃f ′ , iii) t̃f ≤ t̃f ′ , iv) Sf ≤ Sf ′ , v) c̃f ≤ c̃f ′

The first four conditions guarantee that each feasible extension of Lf ′ is also feasible for Lf

without incurring a higher cost, as indicated in the last condition. When all conditions are met

with equality, we select one of the labels arbitrarily.

4.3.2. Backward labelling The labelling algorithm can also be executed by extending the

labels from destination to origin. In the backward extension method, each label represents a path

from its end node to the depot. When a backward label associated with node i is extended using

incoming arc a of node i, arc a is added to the path from node i to the depot.

For backward labels, we initialize the algorithm with a backward label for the depot defined

as c̃b = 0, q̃b = 0, ib = 0, t̃b = T and Sb = 0⃗. We apply the same extension method to the backward

labels as in the forward labels but with a modification in the time update. To update the time of

backward labels, we define the travel time of arc a where db is the time that the vehicle is on node

ja as τ̂a(db) and calculate it as follows:

τ̂a(db) =

{
ta if a /∈AR ∨ (db − ta)< e∨ (db − ta)≥ l),

db − e+1 otherwise
(6)

and calculate the time of label Lb′ generated by extending Lb using arc a∈A∪As as t̃b′ = t̃b− τ̂a(t̃b).

A backward label Lb is feasible only if t̃b ≥ 0 and q̃b ≤Q.

We apply the following dominance rule: Lb dominates Lb′ if ib = ib′ , q̃b ≤ q̃b′ , t̃b ≥ t̃b′ , Sb ≤ Sb′ and

c̃b ≤ c̃b′ .
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4.3.3. Completion bounds We incorporate the completion bounds in the labelling algo-

rithm, as described by Baldacci, Mingozzi, and Roberti (2011), to eliminate the labels that cannot

produce columns with a negative cost earlier in the labelling process. A completion bound rep-

resents a lower bound on the cost required to complete a partial path. Using these bounds, we

can show that some partial paths cannot be converted into negative-cost paths from origin to

destination. Consequently, such paths can be eliminated.

As the relaxed problem gets tighter at each iteration in the state-space augmenting algorithm,

the optimal value obtained at an iteration provides a lower bound for the next one. However, a

path and its reverse might have different travel times in the VRP with access time restrictions

because the travel time of an arc depends on the dispatch time from its tail. This means that a

feasible path may become infeasible when reversed, and, as a result, the paths generated at the

previous iteration cannot be directly used to complete the ones at the next iteration. To remedy

this problem, we switch between forward and backward extensions in consecutive iterations. By

switching the direction of the extension, the completion bounds at a given iteration can be obtained

from the labels generated at the previous iteration. A full explanation of how the completion

bounds are calculated can be found in Şahin and Yaman (2022).

4.3.4. Post-processing As the road network approach allows to pass through customers with-

out serving, there might be unserved customers with a demand smaller than the remaining vehicle

capacity in the generated paths. Since the master problem is formulated as a set covering problem,

serving some unserved customers as well cannot weaken the corresponding cut added to the dual

space. Therefore, when an elementary path with a negative cost is found, we start from the begin-

ning of the path, and for each unserved customer, we check whether this customer can be served

without violating the capacity constraints. If so, we modify the column to serve this customer.

Otherwise, we move to the next unserved customer until all unserved customers are checked or

the remaining vehicle capacity is smaller than the minimum demand of the remaining unserved

customers.

4.3.5. Heuristic pricing As solving the pricing problem optimally can require a significant

amount of time, we first solve the pricing problem on the min-cost graph to detect negative reduced

cost columns and employ the exact method only if the heuristic algorithm fails.

The heuristic algorithm can be sped up by storing a limited number of labels at each node. When

the label limit is reached, and a newly generated label has a lower ratio of cost to used capacity

than any of the existing ones, the label with the highest ratio is removed, and the new label is

stored in its place. While this approach may increase the number of pricing iterations, it typically

yields a shorter overall computation time.
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4.4. Branching scheme

If the optimal solution of the master problem is fractional, we apply hierarchical branching in which

we first branch on the number of vehicles used and then branch on the arc flow variables.

Let v denote the number of vehicles used, that is, v =
∑

p∈P zp. If this number is fractional, we

add
∑

p∈P zp ≤ ⌊v⌋ and
∑

p∈P zp ≥ ⌈v⌉ to the master problem in the first and second child nodes,

respectively. In the pricing problem, we incorporate the corresponding dual values to the cost of

initial labels.

If the number of vehicles used is integer, we check whether there exists an arc a with fractional

xa value defined as
∑

p∈P :a∈Ap
zp. As the arcs can be used more than once in the road network, we

add
∑

p∈P :a∈Ap
zp ≤ ⌊xa⌋ and

∑
p∈P :a∈Ap

zp ≥ ⌈xa⌉ to the master problem in the first and second

child nodes, respectively. We also modify the reduced cost of arc a considering the corresponding

dual values. When ⌊xa⌋= 0, modifying the master problem can be avoided. In this case, we do not

inherit the columns that use arc a from the parent node and eliminate arc a from the graph to

ensure that no new column that uses this arc is generated.

We use semi-strong branching to select an arc. First, we select a subset of candidate arcs AC ⊂A

with the most fractional flows. Then, for each candidate arc, we solve the master problems in both

child nodes that would be obtained if this arc was selected for branching only with the columns

generated up to this point. Then, we choose the arc with the highest estimated lower bound, that

is min{lb1a, lb2a}, where lb1a and lb2a are the lower bounds that would be obtained in the child nodes.

We break the ties by the lower bound of the other child node.

In our preliminary experiments, we observed that at some nodes where arc a with ⌈xa⌉> 1 is

used for branching, an optimal LP solution contains routes with cycles where no customer is served

in between to satisfy the branching decision. To avoid such solutions, we prioritize the arcs with

fractional values smaller than one in the selection of candidate arcs.

As shown in Ben Ticha et al. (2019), having no arc with a fractional flow does not suffice for

integrality when a road network is used. Therefore if all arc flow variables are integer, they propose

a branching scheme that enumerates all feasible routes in the support graph of the current solution

in one branch and adds a constraint to the master problem in the second branch to impose the

use of at least one arc that is not used in the current solution. In our implementation, when we

encounter a node with a fractional solution supported by an integer flow, we do not branch on this

node. If later this node is pruned by bound, we report the optimal solution. Otherwise, we report

the best-found solution.

5. Solving VRPAR on the multi-graph

Another approach to solve routing problems with Pareto-optimal paths is constructing a multi-

graph that contains an arc corresponding to each Pareto-optimal path. In this section, we explain
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how to construct the multi-graph and what modifications are needed in the pricing problem to

solve the VRPAR on a multi-graph.

5.1. Construction of the multi-graph

Before explaining the construction of the multi-graph, we will first define the terms used throughout

this section. Since each arc in the multi-graph corresponds to a path in the underlying road network,

we refer to the arcs in the multi-graph as “paths” from here on. Each path p= (a0, . . . , ak) with

ia0 = i and jak = j is associated with a travel cost cp and an arrival time function δp : [Ei,Li]→N

that returns the arrival time at node j for dispatch time d at node i. Note that δp(d) is the same

as δpak(d) defined in Section 2 and can be calculated using Equation 2.

Let p1 and p2 be two paths from node i to node j. Path p2 dominates path p1 for dispatch time

d if δp2(d)≤ δp1(d) and cp2 < cp1 or δp2(d)< δp2(d) and cp2 ≤ cp1 . Path p1 from node i to node j is

Pareto-optimal for dispatch time d if there exists no path p2 from i to j that dominates p1.

We call the paths with time-dependent travel times time-dependent paths. Note that containing

a restricted arc does not necessarily make a path time-dependent. For example, consider path

((1,8),(8,9),(9,2)) in Figure 1. Even though arc (9,2) is restricted, the earliest arrival time at node

9 using this path is 100, at which all arcs are accessible. In other words, the vehicle never waits at

arc (9,2) regardless of the travel start time. Hence, the path is time-independent, as seen from its

arrival time graph in the same figure. Using this observation, we call the restricted arcs that can be

reached from the source node of the path before the end of the restricted period critical restricted

arcs and define time-dependent paths as paths containing at least one critical restricted arc. The

same arc could be critical for one path but not for another. As an example, in Figure 1, whereas

arc (6,2) can be reached before the restricted period ends on path ((1,3),(3,4),(4,5),(5,6),(6,2)),

meaning that it is critical for this path, it can be reached only after the restricted period ends on

path ((1,8),(8,6),(6,2)). As all restricted arcs are closed to the traffic within the same period, a

vehicle can wait at most at one critical arc on each path. For a given dispatch time, we call the

critical arc at which the vehicle waits the determining arc.

As aforementioned, Pareto-optimal paths between a given node pair depend on the travel start

time when the access restrictions are considered. However, the set of Pareto-optimal paths always

contains a min-cost path for each node pair and start time because there is no other path with a

smaller cost between the corresponding node pairs. Therefore, we first construct the min-cost graph

by solving all pairs shortest path problem in terms of travel costs on the underlying network. To do

so, we use a labelling algorithm where each label stores the travel cost, and a label is dominated only

if there exists a cheaper label associated with the same node. This labelling algorithm generates

all min-cost paths between each connected node pair.
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While finding the min-cost paths, we also check whether the travel time of the path is time-

dependent. Checking the time dependency of the min-cost paths is of great importance to the

efficacy of the graph construction algorithm because if a min-cost path is time-independent, it

implies that this path also has the shortest travel time for each start time (since the traversal times

and costs are equal). Therefore, it dominates all other paths between the corresponding node pair

for each start time, eliminating the need to check for other Pareto-optimal paths between this node

pair.

If multiple min-cost paths exist between the same pair of nodes, we always choose a time-

independent one if one exists. In the case of multiple time-independent min-cost paths, we arbi-

trarily choose one.

If a time-dependent min-cost path connects a node pair, we use the following proposition to find

the breakpoint set of the arrival time function of this path.

Proposition 1. For a time-dependent path p= (a0, . . . , ak), the arrival time function δp is piece-

wise linear, and its breakpoint set is

Bp =Bp
1 ∪Bp

2 ,

where

Bp
1 =

{(
e−

i−1∑
j=0

taj
)
+
: i∈ {0, . . . , k} and ai ∈AR

}
and

Bp
2 =

{
l−

i−1∑
j=0

taj : i∈ {0, . . . , k}, ai ∈AR and l−
i−1∑
j=i

taj < e ∀i∈ [0, i− 1], ai ∈AR

}
∪
(
{0} \Bp

1

)
.

Proof. The waiting times due to the access restrictions cause the arrival time function δp to have

breakpoints. Waiting occurs at a restricted arc if a vehicle arrives at the start node of the arc in

the interval [e, l). A vehicle can arrive at the start node of arc ai ∈AR at time e, if it does not wait

on any of the preceding arcs on the same path. The dispatch time from source node ia0 to reach

arc ai at time e is equal to e−
∑i−1

j=0 taj . If a restricted arc ai cannot be reached before time e,∑i−1

j=0 taj ≥ e, it indicates that the vehicle has to wait on this path even if it leaves source node ia0

at time 0. The set Bp
1 contains these dispatch times.

Reaching the start node of the restricted arc ai ∈ AR at time l without violating the access

restrictions requires arriving at each preceding restricted arc on path p, if any exists, before time e.

Since no waiting time occurs until arc ai, the dispatch time from source node ia0 to reach arc ai at

time l is equal to l−
∑i−1

j=0 taj . In addition, when the vehicle leaves node ia0 at time l−
∑i−1

j=0 taj , it

reaches arc ai where i∈ [0, i−1] at time l−
∑i−1

j=0 taj +
∑i−1

j=0 taj = l−
∑i−1

j=i taj . Thus, for a restricted

arc ai in path p, if l −
∑i−1

j=i taj < e for all i ∈ [0, i − 1] with ai ∈ AR, l −
∑i−1

j=0 taj is one of the

breakpoints of the arrival time function. □
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Proposition 2. For a time-dependent path p= (a0, . . . , ak), B
p
1 ∩Bp

2 = ∅

Proof. Let i∈ [0, k]. For arc ai, we have l−
∑i−1

j=0 taj ̸= e−
∑i−1

j=0 taj since l ̸= e. For a successor arc

aī where ī∈ {i+1, . . . , k},
∑i−1

j=0 taj <
∑ī−1

j=0 taj Together with l > e, this implies that l−
∑i−1

j=0 taj >

e−
∑ī−1

j=0 taj . If l−
∑i−1

j=0 taj ∈Bp
2 , then l−

∑i−1

j=0 taj +
∑i−1

j=0 taj < e for a preceding restricted arc ai

by definition of Bp
2 . □

To characterize the arrival time function, we first add T into set Bp
2 for each p ∈ A. Then, we

sort Bp in ascending order. We denote the ith element of Bp by Bp(i) and the order of determining

arc for dispatch time Bp(i)∈Bp
1 on path p by ji.

Corollary 1. For a time-dependent path p= (a0, . . . , ak), δ
p(d) can be defined as

δp(d) =

{
l+

∑k

l=ji tal , if Bp(i)≤ d<Bp(i+1) and Bp(i)∈Bp
1 , ∀i∈ {0, . . . , |Bp| − 1}

d+
∑k

l=0 tal , if Bp(i)≤ d<Bp(i+1) and Bp(i)∈Bp
2 , ∀i∈ {0, . . . , |Bp| − 1}

To explain the breakpoints of an arrival time function on an example, consider path p =

((1,3), (3,4), (4,5), (5,6), (6,2)) in Figure 1. Since a3 = (5,6) and a4 = (6,2) cannot be reached

before time 60,
∑2

j=0 taj = 60 and
∑3

j=0 taj = 75, 0∈Bp
1 . On the other hand, a1 = (3,4) satisfies the

condition
∑0

j=0 taj = 2< 60: Bp
1 = {0,60− 2}. For the breakpoints in Bp

2 , as there is no preceding

restricted arc before a1, it satisfies the definition of Bp
2 . Thus, B

p
2 contains 100 - 2. Similarly, for

the vehicle to reach a3 at time 100, it needs to arrive at a1 at time 100−
∑2

j=1 taj = 42, which

satisfies the definition of Bp
2 . This means that Bp

2 also contains 100−
∑2

j=0 taj = 40. However, a3

needs to be entered at time 100−15 = 85 to reach a4 at time 100, which does not comply with the

access restrictions. Therefore, Bp
2 = {40,98} and Bp = {0,40,58,98, T}. The arrival time function

corresponding to Bp by Corollary 1 is shown in Figure 1 by the pink line and can be defined as:

δp(d) =


100+15+5, if 0≤ d< 40

d+80, if 40≤ d< 58

100+7+51+15+5, if 58≤ d< 98

d+80, if 98≤ d< T

If there are multiple time-dependent min-cost paths between the same pair of nodes, we take the

union of the breakpoints of these paths and choose the minimum arrival time at each time interval.

We then merge the consecutive time intervals during which the arrival time function is continuous.

We add one artificial path with the obtained arrival time function to the min-cost graph. We call

the paths in the min-cost graph merged min-cost paths from here on. For instance, the arrival time
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function of the merged min-cost path p corresponding to min-cost paths ((1,7), (7,10), (10,2)) and

((1,3), (3,4), (4,5), (5,6), (6,2)) in Figure 1 is as follows:

δp(d) =



d+80, if 0≤ d< 5

120, if 5≤ d< 40

d+80, if 40≤ d< 58

165, if 58≤ d< 85

d+80, if 85≤ d< T

After constructing the min-cost graph, we look for other Pareto optimal paths in the underlying

network. As there is a limit on the workday duration, the Pareto-optimal paths between a given

node pair and dispatch time can be found using the labelling algorithms designed for the SPPRC.

We define the travel time as a resource and use the travel time function in Equation 1. We use the

arrival time of the corresponding merged min-cost path at a given dispatch time as a time resource

limit because it provides a tighter limit than the workday duration and enables us to eliminate

more labels.

We denote the multi-graph by G′ = (N ′,A′) where N ′ = J ∪{0} and A′ is the arc set containing

Pareto-optimal paths. We denote the set of Pareto-optimal paths between nodes i∈N ′ and j ∈N ′

by A′
ij and let A′ = ∪i,j∈N ′A′

ij. We consider that each path p = (a0, . . . , ak) ∈ A′ is characterized

by its cost and travel time function and the set of Pareto-optimal paths contains distinct paths: if

there are multiple Pareto-optimal paths between the same pair of nodes with the same cost and

travel time for a given dispatch time, we abuse the definition and choose one of them arbitrarily

and remove the others.

We use the following propositions derived from the piecewise linear and non-decreasing structure

of the arrival time function to reduce the number of time periods at which Pareto-optimal paths

must be searched.

Proposition 3. Let p1 and p2 be two paths between the same pair of nodes and 0≤ t1 ≤ t2 ≤ T .

Suppose that δp1 is constant within the interval [t1, t2). If there exists t′ ∈ [t1, t2) for which p1 is

Pareto-optimal, then p1 is Pareto-optimal for all dispatch times in [t′, t2). Moreover, if there exists

t′ ∈ [t1, t2) for which p1 dominates p2, then p1 dominates p2 for all dispatch times in [t′, t2).

Proof. Let p1 and p2 be paths between the same pair of nodes and 0≤ t1 ≤ t2 ≤ T . Suppose that

δp1 is constant within the interval [t1, t2) and there exists t′ ∈ [t1, t2) for which p1 is Pareto-optimal.

Then, δp1(t′)≤ δp2(t′) for each path p2 with cp2 = cp1 , and δp1(t′)< δp2(t′) for each path p2 with

cp2 < cp1 . Let t ∈ [t′, t2). Since δp1(t) = δp1(t′) and δp2(t′)≤ δp2(t), it is easy to see that p1 remains

Pareto-optimal for dispatch time t as well. The same argument also applies to preserving the

dominance as p1 dominating p2 at departure time t′ ∈ [t1, t2) means either δp1(t′) ≤ δp2(t′) and

cp1 < cp2 or δp1(t′)< δp2(t′) and cp1 ≤ cp2 . □
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Proposition 4. Let p1 and p2 be two paths between the same pair of nodes and 0≤ t1 ≤ t2 ≤ T .

If δp1 is increasing within interval [t1, t2) and if path p1 dominates p2 at time t1, then p1 dominates

p2 or δp1(t) = δp2(t) and cp1 = cp2 for all dispatch times t in [t1, t2).

Proof. Let p1 and p2 be paths between the same pair of nodes and 0≤ t1 ≤ t2 ≤ T . Suppose that δp1

is increasing within the interval [t1, t2) and p1 dominates p2 at time t1. Let t ∈ [t1, t2). Since δp1 is

increasing in the interval [t1, t2), we know that δp1(t) = cp1 + t. Also we know that δp2(t)≥ cp2 + t.

Since p1 dominates p2 at time t1, either δp1(t1) ≤ δp2(t1) and cp1 < cp2 or δp1(t1) < δp2(t1) and

cp1 ≤ cp2 . In the first case, δp1(t) = cp1 + t < cp2 + t≤ δp2(t) and in the second case δp1(t) = cp1 + t≤

cp2 + t≤ δp2(t). So p1 dominates p2 or δp1(t) = δp2(t) and cp1 = cp2 for dispatch time t. □

We can also deduce from Proposition 4 that if the arrival time function of a merged min-cost

path is increasing during a given time interval, as there is no path with a smaller cost, the merged

min-cost path dominates all other paths. Consequently, there is no need to search for the Pareto-

optimal paths for such time intervals, and the search can be started from the first breaking point

where the arrival time function of the merged min-cost path becomes constant. By Proposition 3,

if the merged min-cost path dominates all other paths at any point of a time interval where its

arrival time is constant, the search for the Pareto-optimal paths can be continued from the next

breakpoint.

If there are Pareto-optimal paths at any point of the time interval and if the arrival times of all

Pareto-optimal paths are constant within the following interval of their arrival time functions, then

the search can be continued from the minimum of the subsequent breakpoints of the arrival time

functions of all Pareto-optimal paths by Proposition 3. On the other hand, if a Pareto-optimal path

with an increasing arrival time function exists, it needs to be checked if this path gets dominated

within its following interval. If it does not, the same procedure as in the constant arrival times,

choosing the minimum of the succeeding breakpoints and continuing the search from there, can

be applied by Proposition 4. If it does, this path is not considered to decide the next time period

at which Pareto-optimal paths must be searched since the path dominating it also dominates the

paths dominated by it. The outline of this procedure is given in Algorithm 1. This procedure

generates a set of distinct Pareto-optimal paths.

After constructing the multi-graph, we search the graph to detect the arcs that cannot be used

in a feasible solution. We remove all paths p = (a0, . . . , ak) with ia0 = i and jak = j such that

δp(Ei)>Lj.
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Algorithm 1 The construction of the multi-graph

1: for each node i1 ∈N ′ and i2 ∈N ′ such that qi1 + qi2 ≤Q

2: find all shortest paths between this pair

3: for each shortest path p= (a0, a1, a2, . . . , ak) between i1 and i2

4: if ∃ u∈ {0, . . . , k} such that au ∈AR and
∑u−1

j=0 taj < l then mark p as time-dependent

5: else mark p as time-independent and break

6: if there exists a time-independent path then store this path as p∗ and delete other min-cost paths

7: else

8: generate an artificial min-cost path p∗ that has the earliest arrival time among all min-cost paths for
each dispatch time and compute its breakpoints

9: for t1 ∈Bp∗
1

10: let t2 be the breakpoint of δp
∗
after t1

11: for t′1 ∈ [t1, t2)

12:
use the labelling algorithm for the SPRC, where time is used as a resource and bounded
by δp∗(t′1) and the vehicle leaves node i1 at time t′1 to find all Pareto-optimal paths

13: if no path is found then break

14: else

15:

let P ′ be the set of Pareto-optimal paths between i1 and i2 for dispatch time t′1, P
c

contain all paths p∈ P ′ such that the arrival function δp is constant in the interval
containing t′1 and P i = P ′ \P c

16: next← t2

17: for p∈ P ′

18: let t′2 be the breakpoint of δp after t′1

19: if p∈ P c then p is Pareto-optimal within [t′1, t
′
2)

20: next←min{next, t′2}

21: else

22: if ∃t′′ ∈ [t′1, t
′
2) such that minp′∈Pc∪{p∗} δ

p′(t′1) = δp(t′′) then

23: p is Pareto-optimal within [t′1, t
′′)

24: else p is Pareto-optimal within [t′1, t
′
2)

25: next←min{next, t′2}

26: t′1← next

5.2. Branch and price algorithm on the multi-graph

In this section, we will explain the changes in the branch-and-price scheme when a multi-graph is

used. As we refer to the arcs in the multi-graph as “paths”, we use “workday” to denote the ordered

list of paths that starts and ends at the depot. In addition to the feasibility conditions given in

Section 3, we call a workday w ∈ P feasible if it uses each path p ∈Aw exactly once, npw = 1, and

if it visits each customer at most once. Each visited customer in workday w must be served. We

define the set of all feasible workdays as P ′ ⊂ P . The master problem can be formulated the same

as in formulation (3) - (5) where set P and index p are replaced by P ′ and w, respectively.
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The pricing problem is an ESPPRC with access restrictions on multi-graph G′ = (N ′,A′). It

seeks to find a workday w ∈ P ′ such that
∑

p∈Aw
wp < 0 where

wp =

{
f + cp −αjak

, if ia0 = 0
cp −αjak

, otherwise
∀p= (a0, . . . , ak)∈Aw

To adapt the labelling algorithm to the multi-graph approach, we extend each label Lf with

if = i ∈ N towards node j ∈ N through each path p ∈ A′
ij. We allow labels to be extended to a

customer only if this customer receives service.

In the branching scheme, we observed in our preliminary experiments that using the standard

branching rule, forbidding or enforcing the use of an arc, slows down the convergence of the

algorithm. Therefore, we opt for enforcing or forbidding the successor of a node. If there exist two

nodes i ∈N ′ and j ∈N ′ with fractional
∑

p∈A′
ij
xp value, where xp =

∑
w∈P ′:p∈Aw

zw, we branch in

a way that node j must be visited right after node i in one branch, and node j cannot be visited

right after node i in the other. In the first child node, if i= 0, we only inherit the columns that

visit node j as the first customer or do not visit node j from the parent node. We also eliminate

all incoming arcs of node j except for the arcs in A′
ij from the graph. Analogously, if j = 0, we only

inherit the columns that visit node i as the last customer or do not visit node i from the parent

node and eliminate all outgoing arcs of node i except for the arcs in A′
ij from the graph. If i, j ∈ J ,

we only inherit the columns that either visit nodes i and j consecutively or visit neither node i

nor j. We also modify the graph by eliminating all outgoing arcs of node i and all incoming arcs

of node j except for the arcs in A′
ij. In the second child node, we do not inherit the columns that

visit nodes i and j consecutively and eliminate the arcs in A′
ij from the graph. We use semi-strong

branching to select an arc to branch on, as explained in Section 4.4.

6. Computational experiments

In this section, we report the results of our computational experiments, where we investigate the

computational effectiveness of our algorithm for both road network and multi-graph approaches.

All experiments are carried out on a 64-bit machine with Intel Core i7 processor at 1.90 GHz and

16 GB of RAM using Java and CPLEX 12.10.

6.1. Computational performance for the road network and multi-graph approaches

In our experiments, we use 60 instances proposed by Ben Ticha et al. (2019), which were originally

generated for the VRPTW on road network using the procedure in Letchford, Nasiri, and Oukil

(2014). This procedure creates sparse graphs to resemble real-life road networks. The data set

contains five instances for each instance group. We consider vehicles of capacity 150 and fixed

cost of 35. To decide the workday duration, we first drop the access restrictions and compute
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the shortest workday duration, call T ′, for which a two-way trip between the depot and each

customer can be performed: T ′ =maxj∈J(c̄0j + c̄j0) where c̄ij is the length of a shortest path from

i to j. Then, we define the restricted period under three different settings: close to the beginning

[0, ⌈3T ′/5⌉), close to the middle [⌈T ′/5⌉, ⌈4T ′/5⌉) and close to the end of the workday [⌈2T ′/5⌉, T ′).

After the restricted period is defined, for each customer j, we compute the earliest arrival time

at this customer, Ej, and the earliest time the vehicle can be back at the depot when it leaves

customer j at time Ej, call T
′
j . These values can be computed by solving a shortest path problem

in terms of travel times for given dispatch times. We then set T to ⌈maxj∈J T
′
j ∗ 1.1⌉.

Table 2 The features of the road network and multi-graph for different instances

[e, l) [0, ⌈3T ′/5⌉) [⌈T ′/5⌉, ⌈4T ′/5⌉) [⌈2T ′/5⌉, T ′)

inst. |A| |AR| |Amc| |A′| G′ gen.
time

|Amc| |A′| G′ gen.
time

|Amc| |A′| G′ gen.
time

50-16 135 46 212 282 0.02 171 323 0.04 176 373 0.05
50-33 135 51 987 1293 0.06 826 1528 0.10 780 1868 0.18
100-25 278 91 560 717 0.02 381 828 0.03 407 1088 0.11
100-33 278 99 997 1184 0.07 723 1538 0.20 745 2191 0.20

To incorporate the access restrictions, we define a central area and define access restrictions for

the arcs whose both endpoints are in this area. We put the grid’s borders ten units away from the

closest customer and define 5/8 of the grid in the center as the central area. We provide the average

number of arcs in the road network, the average number of restricted arcs, the average number of

paths in the multi-graph and in the min-cost graph after preprocessing is applied, and the average

time spent to generate the multi-graph for each instance group in Table 2. These values show that

the multi-graph has twice as many arcs as the min-cost graph on average. Moreover, thanks to the

properties discussed in Section 5.1, generating a multi-graph takes 0.09 seconds on average for the

tested instances.

First, we analyze the impact of the state space augmentation algorithm on the computation

time for the road network and multi-graph approaches. We compare the straightforward labelling

algorithm with the state-space augmentation algorithm. In both methods, first, the heuristic pricing

algorithm is executed, and the exact algorithm is called only when the heuristic algorithm fails to

find a negative cost workday. We set the time limit to three hours. We report the average values

of the gap between the best obtained upper and lower bounds, the solution time, the number of

nodes processed and the number of pricing iterations performed in Table 3 for the road network

approach and in Table 4 for the multi-graph approach. In the gap column, we also report the number

of instances that are solved to optimality within the time limit. When the column generation

terminates at the root node, we solve the integer problem that contains all generated columns to
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Table 3 Comparison of the straightforward and SSA labelling algorithms for the road network approach

Straightforward SSA

[e, l) |N | |J | gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

[0, ⌈3T ′/5⌉)

50 16 0 / 5 621.14 1924.60 11496.80 0 0 / 5 1583.79 2036.20 11463.40 0.98
50 33 4.55 / 1 8671.91 139.60 928.60 4.76 3.27 / 1 8750.83 210.40 1342.20 4.35
100 25 1.28 / 3 4537.22 1465.80 9344.80 2.37 1.08 / 3 4506.05 1098.20 6535.40 2.23
100 33 2.66 / 2 9729.33 118.60 646.80 3.25 1.35 / 2 7529.73 331 1866.60 2.89

[⌈T ′/5⌉), ⌈4T ′/5⌉)

50 16 0 / 5 32.84 423.40 1626.60 1.24 0 / 5 64.05 387.80 1486.40 1.24
50 33 1.90 / 3 5041.24 554.80 3438.80 2.37 1.96 / 3 5714.63 552 3549.60 2.55
100 25 0.35 / 4 2482.94 1728.60 12094 1.37 0** / 5 952.20 373.80 2430 1.18
100 33 1.09 / 3 4500.26 130.20 673.60 2.81 0.09 / 4 3763.16 346 1726.20 2.34

[⌈2T ′/5⌉), ⌈T ′⌉)

50 16 0 / 5 1.99 62.60 248 0.92 0 / 5 3.58 55.80 235.60 0.88
50 33 0.62* / 2 6969.25 197.40 1273.60 1.69 1.13 / 3 6426.94 712.20 4232.60 1.86
100 25 0.42 / 4 2248.97 162.80 1057.20 0.47 0.44 / 4 2268.19 114.60 774.80 0.51
100 33 1.08 / 2 8691.60 550 3267.60 1.65 0.57 / 3 5810.15 560 3268.80 1.48

compute a better upper bound earlier in the tree. We report the average values of the gap between

this upper bound and the best obtained lower bound in the RootIP gap column.

During our experiments, we observe one instance where the straightforward labelling algorithm

reaches the time limit before solving the root node to optimality. As a valid lower bound is not

obtained, we did not consider this instance in the average gap calculation. We use * in the gap

column of the instance group it belongs to. We also observe one instance that is solved to optimality,

but the optimality is not proved due to a fractional solution with an integer arc flow when the SSA

algorithm is used on the road network approach. To denote this instance group, we use ** in the

gap column.

Table 4 Comparison of the straightforward and SSA labelling algorithms for the multi-graph approach

Straightforward SSA

[e, l) |N | |J | gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

[0, ⌈3T ′/5⌉)

50 16 0 / 5 17.94 1557.40 6158.40 1.23 0 / 5 22.59 1719 6527.60 1.57
50 33 1.57 / 2 7915.01 7393 34622.80 2.59 1.12 / 3 6385.13 15745.40 78170.80 2.28
100 25 0 / 5 1057.22 23232.20 95108.80 2.44 0 / 5 854.40 22230.60 95359.60 1.07
100 33 0.13 / 4 4796.71 48582.20 176805.60 0.80 0 / 5 3603.37 45367.40 161257 1.38

[⌈T ′/5⌉), ⌈4T ′/5⌉)

50 16 0 / 5 10.86 979.80 3134.40 2.27 0 / 5 10.17 687.40 2906 0.91
50 33 1.50 / 2 6511.26 24579 115847.00 2.04 1.19 / 3 6326.36 30390.80 139695.80 2.05
100 25 0 / 5 173.43 4547.40 19220.40 0.38 0 / 5 198.04 6907.40 24944.80 0.15
100 33 0 / 5 1561.94 1452.20 7622.20 1.72 0 /5 628.69 1771 9635.80 1.86

[⌈2T ′/5⌉), ⌈T ′⌉)

50 16 0 / 5 1.84 80.20 292.60 0 0 / 5 0.72 33.40 128 0
50 33 1.43 / 3 5717.43 3284.40 14935.20 2.04 0.99 / 3 4828.90 9043.20 43821.40 1.37
100 25 0 / 5 207.72 1561 7805.40 0.29 0 / 5 130.53 1237.40 5968.80 0.44
100 33 0.59 / 4 3076.41 1411.40 7149 1.09 0.68 / 4 2447.64 3230.60 18614.80 1.83

The results demonstrate that the SSA algorithm solves more instances to the optimality within

the time limit, even though it increases the computation time for some instance groups in the road-

network approach. Overall, 43 of 60 instances are solved to optimality in 66 minutes on average
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with the SSA algorithm, whereas the straightforward labelling algorithm could solve 39 instances

in 74 minutes on average. The SSA algorithm exhibits superior performance in the multi-graph

approach as well. 53 of 60 instances are solved to optimality in 35 minutes on average when the

SSA algorithm is used, and the number of solved instances reduces to 50 with an increased average

computation time of 43 minutes when the straightforward algorithm is used.

As both the road network and the multi-graph approaches perform better when the SSA algo-

rithm is used, we compare their performances when the SSA algorithm is used in Table 5. The

results clearly demonstrate the superiority of the multi-graph approach over the road network

approach for each instance group. The road network approach demonstrates a comparable perfor-

mance with the multi-graph approach only for the instance group with 50 nodes and 33 customers

where the restricted period is close to the middle of the workday.

We conjecture that this performance difference might result from the nice properties of the

arrival time function. The multi-graph approach constructs a graph by leveraging these properties,

as explained in Section 5.1, resulting in fewer non-promising partial routes generated in the pricing

algorithm compared to the road network approach. Although using different branching schemes

makes it difficult to compare the efficacy of both approaches to solve the pricing problems, the

overwhelming superiority of the multi-graph approach suggests that the precalculations made in

the graph construction phase significantly reduce the computational effort required to solve the

pricing problem in the used instances.

Table 5 Comparison of the road network and the multi-graph approaches

Road network Multi-graph

[e, l) |N | |J | gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

gap(%) /
solved

time node
pricing
iter

RootIP
gap(%)

[0, ⌈3T ′/5⌉)

50 16 0 / 5 1583.79 2036.20 11463.40 0.98 0 / 5 22.59 1719 6527.60 1.57
50 33 3.27 / 1 8750.83 210.40 1342.20 4.35 1.12 / 3 6385.13 15745.40 78170.80 2.28
100 25 1.08 / 3 4506.05 1098.20 6535.40 2.23 0 / 5 854.40 22230.60 95359.60 1.07
100 33 1.35 / 2 7529.73 331 1866.6 2.89 0 / 5 3603.37 45367.40 161257 1.38

[⌈T ′/5⌉), ⌈4T ′/5⌉)

50 16 0 / 5 64.05 387.80 1486.40 1.24 0 / 5 10.17 687.40 2906 0.91
50 33 1.96 / 3 5714.63 552 3549.60 2.55 1.19 / 3 6326.36 30390.80 139695.80 2.05
100 25 0** / 5 952.20 373.80 2430 1.18 0 / 5 198.04 6907.40 24944.80 0.15
100 33 0.09 / 4 3763.16 346 1726.20 2.34 0 /5 628.69 1771 9635.80 1.86

[⌈2T ′/5⌉), ⌈T ′⌉)

50 16 0 / 5 3.58 55.80 235.60 0.88 0 / 5 0.72 33.40 128 0
50 33 1.13 / 3 6426.94 712.20 4232.60 1.86 0.99 / 3 4828.90 9043.20 43821.40 1.37
100 25 0.44 / 4 2268.19 114.60 774.80 0.51 0 / 5 130.53 1237.40 5968.80 0.44
100 33 0.57 / 3 5810.15 560 3268.80 1.48 0.68 / 4 2447.64 3230.60 18614.80 1.83

6.2. The impact of the access restrictions

In the presence of access restrictions, one of the key decisions that must be made is whether to

wait on a closed street until it reopens or to take a more costly arc to save time. To assess the

effect of access restrictions on optimal solutions, we look at the characteristics of the routes. We
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consider only the instances solved to optimality. We report the percentage of waiting time to the

total travel time, the number of vehicles used, and the number of routes in which a non-min-cost

path is used in Table 6. If an optimal solution is not found within the time limit, we use dash for

each column of this instance. To assess the impact of Pareto-optimal paths on the travel cost, we

also compare the problems where all Pareto-optimal paths are considered and where only min-cost

paths are considered. We report the savings in the cost-saving column. We use inf for the instances

for which the problem is infeasible when only min-cost paths are considered.

Table 6 The characteristics of optimal solutions

[0, ⌈3T ′/5⌉) [⌈T ′/5⌉, ⌈4T ′/5⌉) [⌈2T ′/5⌉, T ′)

inst.
waiting
time (%)

# of
routes

# of alt.
routes

cost
saving (%)

waiting
time (%)

# of
routes

# of alt.
routes

cost
saving (%)

waiting
time (%)

# of
routes

# of alt.
routes

cost
saving (%)

50-16-1 0 3 2 inf 11.35 3 1 15.90 0 4 2 inf
50-16-2 15.26 3 1 inf 7.48 3 1 0.24 16.46 3 0 0
50-16-3 9.35 3 0 0 15.69 3 1 2.20 0 3 0 0
50-16-4 28.57 3 1 4.60 10.87 3 0 0 20.25 3 0 0
50-16-5 31.67 3 0 0 5.33 3 0 0 11.73 3 0 0

50-33-1 - - - - - - - - 25.74 5 0 0
50-33-2 27.88 5 0 0 12.20 5 0 0 10.65 5 1 0.35
50-33-4 38.08 5 1 1.87 21 5 1 inf - - - -
50-33-5 25.59 5 1 0.91 16.67 5 0 0 18.11 5 0 0

100-25-1 18.89 4 0 0 20 4 0 0 30.13 4 0 0
100-25-2 36.41 4 0 0 8.88 4 2 8.25 9.56 4 1 1.32
100-25-3 12.14 4 1 1.98 20.79 4 0 0 10.50 4 0 0
100-25-4 10.27 4 1 3.61 8.28 4 1 1.70 16.32 4 0 0
100-25-5 40.32 4 0 0 17.43 5 0 0 18.29 4 1 1.62

100-33-1 24.20 5 0 0 19.09 5 0 0 - - - -
100-33-2 36.76 5 0 0 5.77 5 1 1 15.76 5 0 0
100-33-3 27.72 5 1 1.24 27.19 5 0 0 33.53 5 0 0
100-33-4 42.41 5 0 0 21.77 5 2 2.13 23.87 5 0 0
100-33-5 38.78 6 0 0 9.57 5 0 0 16.65 5 0 0

The results demonstrate that choosing between waiting on a closed street or taking a more costly

path is not straightforward. In most instances where a non-min-cost path is used, vehicles still

choose to wait on some streets. Additionally, waiting times and the choice of using a non-min-cost

path vary significantly even within the same instance groups, emphasizing the instance-specific

nature of the decision. These findings show the need for optimization methods in addressing the

trade-off between waiting times and travel costs. We also observe that considering only min-cost

paths leads to infeasibility in four of 53 instances.

To demonstrate the importance of alternative paths in VRPAR, Figure 4 depicts the optimal

solutions of instance 50-16-1 on the road network and on the min-cost graph, where the restricted

period is defined as [⌈T ′/5⌉, ⌈4T ′/5⌉). The optimal solution obtained on the min-cost graph is also

converted into a road network solution to demonstrate the differences and similarities between the

two solutions more clearly. The circles represent the road junctions, the blue rectangles represent

the customers, and the red rectangle represents the depot. The dashed lines are used to represent

the restricted arcs. Different colours are used for the workday of each vehicle. The optimal value
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of the first problem is 1058, and it increases to 1258 when only min-cost paths are considered. In

the road network solution, the vehicle whose workday is represented by a green line uses a non-

min-cost path between two customers, which is represented by a thicker line. Visiting the same

set of customers in the same order is infeasible on the min-cost graph because the vehicle has to

wait on the min-cost path between these two customers, and this waiting time causes exceeding

the workday duration. Not considering this non-min-cost path leads to using one more vehicle but

also increases the total travel cost compared to that of the road network solution.

(a) road network (b) min-cost graph

Figure 4 An optimal solution of 50-16-1 instance for different graph types

7. Conclusion

In this study, we presented two branch and price algorithms for VRPAR, one based on the road

network and the other one based on the multi-graph. The results of the conducted experiments

suggest the superiority of the multi-graph approach over the road network approach for the tested

instances. We believe this performance difference results from being able to incorporate the prob-

lem structure in the multi-graph approach but not in the road network approach. During our

preliminary experiments, we observed that the road network approach struggles, while solving the

pricing problems, with routes containing cycles where no customer is served. These cycles can have

a negative cost due to the branching decisions, and it is not obvious to eliminate routes containing

such cycles without jeopardizing optimality. We also observe that such routes are used in an opti-

mal LP solution of some nodes to satisfy branching decisions, resulting in poorer LP bounds and

degrading the algorithm’s performance. Developing a technique to avoid these cycles in the road

network approach is an important future research direction.

The implementation of access restrictions may cause long waiting times during which vehicles

need to find a parking space. Starting a workday later, that is, waiting at the depot at the beginning

of the workday, may reduce the waiting times, but it does not necessarily eliminate the need for

waiting. For example, consider the workday shown in Figure 5, where node 0 represents the depot,
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dashed lines represent the restricted arcs, and the vehicle must return to the depot by time 6. If

the vehicle leaves the depot at time zero, it waits at node 2 for one time unit and is back at the

depot at time 6. To avoid waiting at node 2, the vehicle should leave the depot the earliest at time

one. However, starting the workday at time one causes infeasibility because now the vehicle needs

to wait at node 1 until time 4. As this small example demonstrates, there may be some workdays

with no workday start time that eliminates the waiting time. In this study, we assume the presence

of a parking space at each node. Incorporating the availability of parking spaces is a promising

extension of our current work.

0

1 2

3

1

2

[2,4)

1[2,4)

1

Figure 5 Example demonstrating the need for waiting

Another limitation of our study is allowing streets to be closed within a single time period. A

more general setting is to consider several periods where streets are closed to traffic at different

times throughout the day, such as the start and end of a school day. When access restrictions are

defined only for one time period and are the same for all arcs, the cardinality of the breakpoint

set of the arrival time function of a time-dependent path is bounded by twice the number of

restricted arcs on this path. However, in the presence of multiple restricted periods, this set can

grow quickly because the vehicles might wait on more than one restricted arc on the same path.

Even though the resulting arrival time function is still piecewise linear, this increase in the number

of breakpoints might significantly increase the size of the multi-graph and the required time to

construct this graph. On the other hand, the road network approach can be used to solve the

problem with multiple restricted periods with a slight modification in the arrival time function.

Considering multiple restricted periods is an interesting extension of our current work.

Another promising direction of future work is to consider low emission zones and incorporate

small vehicles into the fleet. In this extension, since the small vehicles have access to the restricted

areas, the routes of small vehicles can be planned on a min-cost graph if the traversal time of

each arc is equal to (or a positive multiple of) its travel cost. On the other hand, the routes of

the large vehicles still need to be planned either on a road network or a multi-graph, utilizing the

methodologies proposed in our current work.
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Şahin MK, Yaman H, 2022 A branch and price algorithm for the heterogeneous fleet multi-depot multi-trip

vehicle routing problem with time windows. Transportation Science 56(6):1636–1657.

Setak M, Habibi M, Karimi H, Abedzadeh M, 2015 A time-dependent vehicle routing problem in multigraph

with fifo property. Journal of Manufacturing Systems 35:37–45.

Ticha HB, Absi N, Feillet D, Quilliot A, 2017 Empirical analysis for the vrptw with a multigraph represen-

tation for the road network. Computers & Operations Research 88:103–116.


	Introduction
	Related literature
	VRP with alternative paths
	Time-dependent VRP

	Problem definition and a set covering formulation on the road network
	Branch and price algorithm on the road network
	Pre-processing of the road network
	Initial solution
	Pricing problem
	Forward labelling 
	Backward labelling
	Completion bounds
	Post-processing
	Heuristic pricing

	Branching scheme

	Solving VRPAR on the multi-graph
	Construction of the multi-graph
	Branch and price algorithm on the multi-graph

	Computational experiments
	Computational performance for the road network and multi-graph approaches
	The impact of the access restrictions

	Conclusion

