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1 Introduction

The recent development of quantum computers and claims on quantum ad-
vantage1 have motivated operations researchers to develop quadratic uncon-
strained binary optimization (QUBO) formulations for “solving” combinato-
rial optimization problems. Although there are severe doubts about the ex-
istence of quantum advantage, research shows that quantum machines can
“solve” combinatorial optimization problems faster than their classical coun-
terparts. While we provide no claim on quantum advantage, we explore the
capability of a quantum simulator in finding feasible solutions for the set parti-
tioning problem. We show that our proposed tight QUBO formulation, along
with a nice set of polytime reduction techniques [6], can help improve the
quality of solutions obtained by a quantum simulator.

Studying the set partitioning and exact cover problems in the quantum
context dates back to 1998, when no large quantum computer was available.
Farhi and Gutmann [4] reformulate the exact cover as a combinatorial branch-
and-bound problem on a decision tree. They prove that if the classical approach
can solve the problem in polytime, then the quantum strategy can do so.
Farhi et al. [3] propose a quantum adiabatic evolution algorithm for the exact
cover problem and claim that “future” quantum computers might be able to
outperform the classical ones on hard instances of the NP-complete problems.
Young et al. [16] explain how their quantum adiabatic algorithm (QAA), using
Monte Carlo simulations, outperforms the classical Davis-Putnam algorithm
for solving the exact cover problem with at most 128 variables. In subsequent
work, Young et al. [17] employ the same simulation procedure to simulate
the QAA for the instances of the exact cover problem that contain at most
256 variables. Furthermore, Vikstal et al. [15] use the quantum approximate
optimization algorithm (QAOA) to solve the tail-assignment problem that is
reduced to the exact cover problem in a branch-and-price approach. Svensson
et al. [13] employ QAOA in a branch-and-price framework to solve the set
partitioning problem.

In the optimization context, Garfinkel and Nemhauser [6] introduce the set
partitioning problem as the “set covering [problem] with equality constraints.”
This hard problem is usually employed in the main problem of the branch-and-
price approaches for solving large-scale and real-world optimization problems
(e.g., political redistricting and crew scheduling). Lewis et al. [9] develop an
unconstrained binary quadratic optimization model in which all the equality
constraints are penalized in the objective function. Similarly, Alidaee et al. [1]
propose a QUBO model for solving the set packing problem. One can easily
convert a set packing problem formulation to a set partitioning one by adding
slack variables. Glover et al. [7] propose a QUBO formulation for the set par-
titioning problem with arbitrary large penalty coefficients. Interested readers
are referred to Punnen [12] for more information on QUBO models.

1 The goal of demonstrating that a quantum computer with a tailored quantum algorithm
can efficiently perform a task that its classical counterparts cannot.
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2 Background

In this section, we provide some background on the set partitioning prob-
lem and on the variational quantum eigensolver (VQE) algorithm, a hybrid
quantum-classical algorithm.

2.1 The set partitioning formulation

The set partitioning problem is a well-known NP-hard problem [5]. We define
this problem as follows.

Problem: The set partitioning problem.
Input: Partition set P , wp ≥ 0 for each partition p ∈ P and item set I.
Output: (if any exist) A partition p1, . . . , pℓ of the item set I with smallest
integer ℓ such that each item is assigned to exactly one partition.

For every partition p ∈ P , decision variable xp is 1 if partition p is selected,
and 0 otherwise. For every partition p ∈ P , we also define Ip as the set of items
that are included in partition p.

min
∑
p∈P

wpxp (1a)

∑
p∈P :i∈Ip

xp = 1 ∀i ∈ I (1b)

xp ∈ {0, 1} ∀p ∈ P. (1c)

Here, constraints (1b) imply every item must be assigned to exactly one pos-
sible partition.

2.2 The variational quantum eigensolver

Peruzzo et al. [11] introduced the variational quantum eigensolver algorithm in
the context of quantum chemistry. The problem is to minimize the total energy
of the system represented by its Hamiltonian. The optimization is done in a
hybrid quantum-classical manner:

1. A parameterized quantum circuit is used to prepare a quantum state that
is used to estimate the expectation value of the Hamiltonian.

2. Then a classical solver will vary the circuit’s parameters to try to minimize
the expectation value of the energy associated with the Hamiltonian.

3. Once the parameters are updated, the parameterized circuit generates an-
other quantum state to calculate a new expectation value for the energy,
initiating the algorithm loop again.
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The ground state of a system is the eigenvector that minimizes the eigenvalue
of the system’s Hamiltonian H. Let A be the index set of the eigenvectors
of H. Then for every i ∈ A, we have H |hi⟩ = λi |hi⟩ with |hi⟩ and λi be
the corresponding eigenvector and eigenvalue, respectively. Let

∣∣hgs〉 be an
eigenvector with the smallest eigenvalue λgs

2. Then for every i ∈ A, we have〈
hgs

∣∣H∣∣hgs〉 = λgs ≤ λi = ⟨hi|H|hi⟩ .

So, we can write H as a diagonal matrix using its eigenvectors.

H =
∑
i∈A

λi |hi⟩ ⟨hi| .

Let |ψ⟩ be a normalized state with expected value ⟨ψ|H|ψ⟩. The following
argument shows that ⟨ψ|H|ψ⟩ is a valid upper bound for the ground state
eigenvalue λgs.

⟨ψ|H|ψ⟩ =

〈
ψ

∣∣∣∣∣∣
∑
i∈A

λi |hi⟩ ⟨hi|

∣∣∣∣∣∣ψ
〉

=
∑
i∈A

λi ⟨ψ|hi⟩ ⟨hi|ψ⟩

=
∑
i∈A

λi|⟨ψ|hi⟩|2

≥
∑
i∈A

λgs|⟨ψ|hi⟩|2

= λgs.

By iterating over different states, one can tighten the bound around the ground
state energy of a system. Starting with an initial guess |ψ0⟩, a parameterized
quantum circuit, represented by the unitary linear transformation U(θ), acts
on |ψ0⟩ and gives us an estimate for

〈
ψ(θ)

∣∣H∣∣ψ(θ)〉. Then, a classical optimizer
minimizes the return value of the circuit by varying the values of θ.

3 QUBO Formulations

One can move constraints (1b) with appropriate penalty coefficients to the ob-
jective function (1a) and write a QUBO formulation. The QUBO formulation
corresponding to the integer programming (IP) model (1) can be written as

min z(x) :=
∑
p∈P

wpxp +
∑
i∈I

ci

 ∑
p∈P :i∈Ip

xp − 1

2

. (2)

Assuming the feasibility of the set partitioning instances and nonnegativity of
w, we provide two types of penalty coefficients: (i) naive, and (ii) tight.

2 Here, index gs stands for ground state.



The set partitioning problem in a quantum context 5

Remark 1 (Naive penalty coefficients) Let c be a penalty vector with ci >∑
p∈P wp for every item i ∈ I and x̂ be an optimal solution of the QUBO

formulation (2). Then x̂ is optimal for the IP model (1).

We propose a polytime row-and-column elimination algorithm that returns a
tight penalty coefficient vector. Algorithm 1 considers the worst-case penalty
coefficients at each iteration and eliminates a row and a column correspond-
ingly.

Algorithm 1 Calculate penalty coefficients

Require: (I, P )
1: let M ← I and N ← P be the row set and column set, respectively.
2: c∗ ← 0
3: for every row i ∈M do
4: let wi

max := maxp∈P :i∈Ip{wp}
5: while M ̸= ∅ and N ̸= ∅ do
6: let imax ∈ argmaxi∈M{wi

max} (if tie, choose a row whose next largest w is minimum)
7: let pmax be a partition with cost maxi∈M{wi

max} (if tie, choose a partition with
minimum |Ip|)

8: c∗ ← c∗ + wimax

9: M ←M − {imax}
10: N ← N − {pmax}
11: return c∗

Let m := |M | and n := |N | be the number of rows and columns corre-
sponding to the number of items and partitions, respectively. The following
proposition shows that our proposed algorithm runs in polytime.

Proposition 1 Algorithm 1 runs in min{m,n}O(m logm+mn) time.

Proof We note that lines (3)-(4) run in mO(n log n). Regarding the while loop
in line (5), we have min{m,n} iterations. At each iteration of the while loop,
we have time complexity (i) m logm for sorting rows and (ii) mn for breaking
ties. Hence, we have time complexity min{m,n}O(m logm+mn) in total.

The following proposition provides a tight penalty coefficient vector for the
QUBO formulation (2).

Proposition 2 Let c be a penalty vector with ci > c∗ for every item i ∈ I,
where c∗ is the penalty coefficient returned by Algorithm 1. Suppose x̂ is an
optimal solution of the QUBO model (2). Then x̂ is optimal for IP model (1).

Proof We show that for every item i ∈ I, we have
∑

p∈P :i∈Ip
x̂p = 1. Suppose

not. Then there is an item j ∈ I for which
∑

p∈P :j∈Ip
x̂p ̸= 1. Because wp ≥ 0

for any partition p ∈ P and by the feasibility of the instances, there is a
solution x∗ for which (i)

∑
p∈P :j∈Ip

x∗p = 1, and (ii) its objective value is less
than that of x̂ as

z(x∗) ≤ c∗ < cj ≤ z(x̂).
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Here, the first inequality holds by the feasibility of x∗. The second inequality
holds by the assumption. The last inequality holds because

∑
p∈P :j∈Ip

x̂p ̸= 1.

This contradicts optimality of x̂ for the QUBO formulation (2).

4 The Set Partitioning Hamiltonian

We recall m := |I| and n := |P | as the sizes of sets P and I, respectively.
Without loss of generality, we define I := {1, . . . ,m} and P := {1, . . . , n}. For
every item i ∈ I and every partition p ∈ P , we define aip = 1 if i ∈ Ip and
aip = 0 otherwise. Then, we have

∑
p∈P

wpxp +
∑
i∈I

ci


 ∑

p∈P :i∈Ip

xp

− 1


2

=
∑
p∈P

wpxp

+
∑
i∈I

ci


∑

p∈P

aipxp

− 1


2

.

To convert the objective function into a Hamiltonian, we need to substitute
constants c for c · I⊗n and xp for 1

2I
⊗n − Zp with

Zp =

 ⊗
j∈P :j<p

I

⊗ Z ⊗

 ⊗
j∈P :j>p

I


as described by Glover et al. [7]. Thus, we have

H =
1

2

∑
p∈P

wp

(
I − Zp

)
+
∑
i∈I

ci

1

2

∑
p∈P

aip
(
I − Zp

)− I


2

=
1

2

∑
p∈P

wp

(
I − Zp

)
+
∑
i∈I

ci

I −
∑

p∈P

aip
(
I − Zp

)

+
1

4

∑
p∈P

∑
q∈P

aipaiq
(
I − Zp − Zq + ZpZq

)
 .
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One can rewrite H without using parameters a as follows.

H = I −

 ∑
p∈P :i∈Ip

(
I − Zp

)+
1

2

∑
p∈P

wp

(
I − Zp

)

+
∑
i∈I

ci

1

4

 ∑
p∈P :i∈Ip

∑
q∈P :i∈Iq

(
I − Zp − Zq + ZpZq

)
 .

5 Computational Enhancement

Matrix reduction (i.e., deleting some rows and columns of a matrix) has a
long history in mixed integer programming [2,8]. Specifically, Garfinkel and
Nemhauser [6] proposed five reduction techniques for the set partitioning prob-
lem that are explained below. In Section 6, we observe how these reductions
help us to solve instances of the set partitioning problem on a quantum simu-
lator.

Reduction 1: If there is an empty row in A (i.e., a row with all 0 entries), then
the set-partitioning problem has no solution.

Reduction 2: If there is a row with exactly one unit entry, say in position
t, then we must have xt = 1 in every solution of the problem. For every
j ∈ {1, 2, . . . ,m}, we remove row Rj with ajt = 1 because the jth equality of
Ax = b already holds with xt = 1. Furthermore, we can set xq = 0 for every
q ∈ {1, 2, . . . , n} with ajq = 1 and q ̸= t.

Reduction 3: For every pair of rows {i, j} ∈
(
[m]
2

)
with Rj ≥ Ri, we delete row

Rj . Moreover, we delete any column At such that ajt = 1 and ait = 0 and set
the corresponding variable xt = 0.

Reduction 4: For every column index t ∈ {1, . . . , n}, we delete column At and
set the corresponding variable xt = 0 if At =

∑
j∈Ω Aj and the cost coefficients

satisfy ct ≥
∑

j∈Ω cj for some subset Ω ⊆ {1, . . . , n} \ {t}. We propose an IP
model to find columns that this reduction technique can remove. For every
t ∈ [n], we have

min
∑

j∈[n]\{t}

cjyj (3a)

A[t] =
∑

j∈[n]\{t}

Ajyj (3b)

ct ≥
∑

j∈[n]\{t}

cjyj (3c)

yj ∈ {0, 1} ∀j ∈ [n] \ {t}. (3d)
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Reduction 5: Suppose that neither Rj ≥ Rk nor Rk ≥ Rj for rows Rj and Rk.
We define J :=

{
t ∈ {1, . . . , n}

∣∣ ajt > akt
}
andK :=

{
t ∈ {1, . . . , n}

∣∣ akt > ajt
}
.

If there exists a row Rℓ with aℓt = 1 for all t ∈ K, and there is some t ∈ J ,
say t = q, with aℓq = 1, then we have xq = 0.

Table 1 illustrates the reduction results on an existing set of instances pro-
vided by Svensson et al. [13]. In this set of instances, the number of items is
fixed to 24, and the number of partitions varies between 6 to 20. The table
shows that the classical reduction techniques of Garfinkel and Nemhauser [6]
reduce the number of items and partitions by up to 83 and 90 percent, respec-
tively. We also note that the number of items is reduced by at least 4 units
for every benchmark instance, i.e., 17% of item reduction for every instance.

Table 1: Reduction results on the benchmark set partitioning instances of
Svensson et al. [13] with 24 items.

Original num. of New num. of Reduction (%)
ID items parts. items parts. items parts.
6.1 24 6 6 2 75.00 66.67
6.2 24 6 4 4 83.33 33.33
6.3 24 6 8 6 66.67 00.00
8.1 24 8 6 2 75.00 75.00
8.2 24 8 9 4 62.50 50.00
8.3 24 8 8 6 66.67 25.00
8.4 24 8 14 8 41.67 00.00

10.1 24 10 10 2 58.33 80.00
10.2 24 10 8 4 66.67 60.00
10.3 24 10 12 6 50.00 40.00
10.4 24 10 16 8 33.33 20.00
10.5 24 10 10 10 58.33 00.00
12.1 24 12 7 2 70.83 83.33
12.2 24 12 12 4 50.00 66.67
12.3 24 12 13 6 45.83 50.00
12.4 24 12 15 8 37.50 33.33
14.1 24 14 12 2 50.00 85.71
14.2 24 14 20 4 16.67 71.43
14.3 24 14 18 6 25.00 57.14
14.4 24 14 18 8 25.00 42.86
14.5 24 14 20 10 16.67 28.57
14.6 24 14 14 12 41.67 14.29
20.1 24 20 20 2 16.67 90.00
20.2 24 20 20 4 16.67 80.00
20.3 24 20 18 6 25.00 70.00
20.4 24 20 18 10 25.00 50.00
20.5 24 20 18 14 25.00 30.00
20.6 24 20 20 14 16.67 30.00
20.7 24 20 20 16 16.67 20.00
20.8 24 20 18 18 25.00 10.00
20.9 24 20 20 20 16.67 00.00
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6 Computational Experiments

The computational experiments are divided into two parts. In the first part,
we fix the circuit configuration setup to run our experiments on the benchmark
instances of Svensson et al. [13] in the second part. So, we generate feasible
instances with partitions of size between 4 and 16 and an item set of size 18.
For each partition size, we generate 200 random instances that result in 2,600
feasible random instances in total. The second set of experiments aims to test
the computational power of tight penalty coefficients and the classic reductions
on a set of 31 benchmark instances provided by Svensson et al. [13]. These
instances have partition sizes of 6 to 20 with 24 items. We generate the weights
associated with all partitions randomly within a range of natural numbers from
1 to 10. Computational experiments are conducted on the Nocona partition at
Texas Tech University’s High-Performance Computing Center (HPCC). The
machines ran on CentOS 8.1, with 240 PowerEdge C6252 nodes and 2 AMD
EPYC™ 7702 processors per node. We use the open-source library Qiskit [14] in
our implementations. The VQE algorithm employs COBYLA as the classical
optimizer. We check the feasibility of solutions by the Gurobi solver. Our codes
and data are available at our GitHub repository.

6.1 Circuit configurations and setup

In this section, we test different circuit configurations to find an appropri-
ate setup for running our final experiments on the benchmark instances of
Svensson et al. [13]. We run our configuration experiments based on (i) three
single-qubit gate combinations, (ii) two control gate combinations, and (iii) two
entanglement strategies. This results in twelve different configurations that are
tested on 200 randomly generated feasible instances for partition sizes between
4 and 16 and the item set size of 18. Thus, we have a total of 2,600 instances
and 31,200 experiments.

In our experiments, the single qubit gates are (i) rotation-Y gate (ry),
(ii) rotation-Y gate followed by rotation-Z gate (ryrz) and (iii) rotation-Z
gate followed by rotation-Y gate (rzry). Furthermore, the control gates are
(i) control-Y gate (cy) and (ii) control-Y gate followed by control-Z gate on
the same pair of qubits (cycz). We also employ two entanglement strategies:
(i) linear entanglement, and (ii) structured entanglement. Linear entanglement
refers to control gates between neighbor qubits. Structured entanglement refers
to control gates between qubits representing partitions containing a similar
item. We give this name as it depends on the structure of the set partitioning
problem.

https://github.com/rafafariasc/VQE---Set-Partitioning
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Fig. 1: Average feasible and optimal probability for different number of parti-
tions and circuit configurations. Figures (a) and (b) show the average feasible
and optimal probabilities using linear entanglement. Figures (c) and (d) show
the average feasible and optimal probabilities using structured entanglement.

We also employ tight penalty coefficients obtained by Algorithm 1. Fur-
thermore, the ansatz is initialized as a random point by the VQE algorithm
and the circuit depth is set to one. We measure the quality of the results
in terms of the average probability of obtaining a feasible solution and the
average probability of obtaining an optimal solution for each instance size.
Figure 1 illustrates the average probability results in terms of the number of
qubits (size of the partition set). When the number of qubits is 16 (the largest
number of qubits in the experiment), Figure 1 shows that we obtain average
feasible and optimal probabilities up to 42% and 28%, respectively. We note
that these percentages are obtained under configuration rzry-cy with linear en-
tanglement. This configuration performs best for larger values of qubits (i.e.,
between 13 and 16) in terms of average feasible and optimal probabilities. We
also observe that introducing a problem-derived entanglement strategy (i.e.,
structured strategy) does not provide a clear computational advantage or dis-
advantage, as observed by Nannicini [10] too. Therefore, linear entanglement
is preferred as it requires less preprocessing. For benchmark instances, we con-
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duct our experiments under configuration rzry-cy with linear entanglement in
Sections 6.2 and 6.3.

6.2 Tight vs. naive penalty coefficients

In this section, we discuss the effect of employing tight penalty coefficients,
which are returned by Algorithm 1 in Section 3, against naive ones. To as-
sess the effect of tight penalty coefficients, we compare the probabilities of
obtaining feasible and optimal solutions under naive and tight penalty coeffi-
cients. Table 2 illustrates the effect of designing tight penalty coefficients on a
set of benchmark instances provided by Svensson et al. [13]. Our experiments
show the superiority of the QUBO formulation with tight penalty coefficients
over the one with naive penalties. In better words, Table 2 shows that 29% of
instances have a greater probability of obtaining feasible or optimal solutions
under the tight policy. On the other hand, only 13% of instances have a greater
probability of obtaining feasible or optimal solutions under the naive policy.
We conjecture a better performance of the tight model for larger instances;
however, we cannot test larger instances due to the limitations on the number
of qubits we can test in our simulations. Furthermore, Table 2 shows that our
quantum simulation cannot solve instances with 20 partitions. In Section 6.3,
we will see how reduction techniques discussed in Section 5 can improve ob-
taining both feasible and optimal solutions for the benchmark instances with
20 partitions.

6.3 Final experiments

We conduct the final set of experiments on the benchmark instances of Svens-
son et al. [13] with the following considerations.

1. We employ the tight penalty coefficients returned by Algorithm 1 in Sec-
tion 3;

2. We apply the reduction techniques of Garfinkel and Nemhauser [6] dis-
cussed in Section 5; and

3. We adopt the best circuit configuration discussed in Section 6.1, i.e., the
single-qubit gates rotation-Z followed by rotation-Y and the linear entan-
glement of the control-Y.

Table 3 shows the performance improvement (in terms of the probability of
obtaining feasible or optimal solutions) of the VQE for 68% of the bench-
mark instances. After applying the reductions and tight penalty coefficients,
we obtain

– feasible solutions for 15 out of 31 instances that reach no feasible solution
beforehand.

– optimal solutions for 16 out of 31 instances that reach no optimal solution
beforehand.
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Table 2: The VQE results with naive and tight penalty coefficients on the
benchmark set partitioning instances of Svensson et al. [13] with 24 items.

No. of Prob. w naive Prob. w tight
ID parts. Feasible Optimal Feasible Optimal
6.1 6 1.00 1.00 1.00 1.00
6.2 6 0.00 0.00 1.00 0.00
6.3 6 1.00 0.00 1.00 0.00
8.1 8 0.00 0.00 0.00 0.00
8.2 8 0.00 0.00 0.00 0.00
8.3 8 0.00 0.00 0.00 0.00
8.4 8 1.00 0.00 1.00 0.00

10.1 10 0.00 0.00 0.00 0.00
10.2 10 0.00 0.00 0.00 0.00
10.3 10 0.99 0.00 0.00 0.00
10.4 10 0.00 0.00 0.99 0.00
10.5 10 0.98 0.00 1.00 0.00
12.1 12 0.00 0.00 0.00 0.00
12.2 12 0.00 0.00 0.94 0.00
12.3 12 1.00 1.00 1.00 1.00
12.4 12 0.00 0.00 0.02 0.02
14.1 14 0.00 0.00 0.00 0.00
14.2 14 0.01 0.00 0.00 0.00
14.3 14 0.00 0.00 0.00 0.00
14.4 14 0.00 0.00 0.00 0.00
14.5 14 0.00 0.00 0.01 0.00
14.6 14 0.00 0.00 0.01 0.00
20.1 20 0.00 0.00 0.00 0.00
20.2 20 0.00 0.00 0.02 0.00
20.3 20 0.00 0.00 0.00 0.00
20.4 20 0.00 0.00 0.00 0.00
20.5 20 0.01 0.00 0.00 0.00
20.6 20 0.00 0.00 0.00 0.00
20.7 20 0.00 0.00 0.18 0.00
20.8 20 0.05 0.00 0.00 0.00
20.9 20 0.00 0.00 0.00 0.00

After applying the reductions and tight penalty coefficients, we also note that
we obtain at least one feasible solution for 5 out of 9 instances with 20 parti-
tions that reach no feasible solution beforehand.

7 Conclusion and future work

In this paper, we explore an important combinatorial optimization problem in
the quantum context: the set partitioning problem. We propose tight penalty
coefficients for the QUBO formulation of this problem. We also employ a
classical set of reduction techniques to decrease the size of the instances on
a quantum simulator. Our experiments show the efficacy of employing tight
penalty coefficients and classical reductions in “solving” an existing set of
experiments on a quantum simulator. For future works, one can
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Table 3: The VQE results with and without reduction and tight penalty co-
efficients on the benchmark set partitioning instances of Svensson et al. [13]
with 24 items.

Prob. w/o reduction Prob. w reduction
No. of & tight pen. coeff. & tight pen. coeff.

ID parts. Feasible Optimal Feasible Optimal
6.1 6 1.00 1.00 1.00 1.00
6.2 6 1.00 0.00 1.00 1.00
6.3 6 1.00 0.00 1.00 1.00
8.1 8 0.00 0.00 1.00 1.00
8.2 8 0.00 0.00 1.00 0.53
8.3 8 0.00 0.00 1.00 0.00
8.4 8 1.00 0.00 1.00 0.00

10.1 10 0.00 0.00 1.00 1.00
10.2 10 0.00 0.00 1.00 0.04
10.3 10 0.00 0.00 0.00 0.00
10.4 10 0.99 0.00 1.00 1.00
10.5 10 1.00 0.00 1.00 0.00
12.1 12 0.00 0.00 1.00 1.00
12.2 12 0.94 0.00 1.00 0.90
12.3 12 1.00 1.00 1.00 1.00
12.4 12 0.02 0.02 1.00 1.00
14.1 14 0.00 0.00 1.00 1.00
14.2 14 0.00 0.00 1.00 1.00
14.3 14 0.00 0.00 1.00 1.00
14.4 14 0.00 0.00 1.00 0.00
14.5 14 0.01 0.00 0.00 0.00
14.6 14 0.01 0.00 0.00 0.00
20.1 20 0.00 0.00 1.00 1.00
20.2 20 0.02 0.00 1.00 0.85
20.3 20 0.00 0.00 1.00 1.00
20.4 20 0.00 0.00 1.00 1.00
20.5 20 0.00 0.00 1.00 0.00
20.6 20 0.00 0.00 0.00 0.00
20.7 20 0.18 0.00 0.00 0.00
20.8 20 0.00 0.00 0.00 0.00
20.9 20 0.00 0.00 0.01 0.00

– test the effect of tight penalty coefficients and reduction techniques for
larger sets of instances as we believe that the effect of tight penalty coeffi-
cients should be more noticeable on larger instances of the set partitioning
problem; and

– develop tight penalty coefficients and fixing procedures for other crucial
optimization problems in the quantum context.
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