
SENSITIVITY-BASED DECISION SUPPORT FOR CRITICAL

MEASURES USING THE EXAMPLE OF COVID-19 DYNAMICS

FALK M. HANTE†, SHANSHAN MENG‡

Abstract. We parametrize public policies in the context of the COVID-19

pandemic to evaluate the effectiveness of policies through sensitivity-based
methods in order to offer insights into understanding the contributions to

critical measures in retrospective. The study utilizes a group-specific SEIR

model with a tracing and isolation strategy and vaccination programs. Public
policies are applied to minimize death tolls, mitigate the social and economic

effects caused by infections and avoid the overburden of the health system. We

propose derivative-based sensitivity analysis to evaluate the priorities of differ-
ent strategies. As apposed to purely scenario-based approaches, the proposed

method only uses qualitative properties of the underlying mathematical model.

Combined with compartment models the strategy permits to assess the rela-
tive significance of policies under the typically large uncertainties. The study

carries out experiments under past situations with Delta and Omicron variants
in Germany. These experiments confirm a positive influence of tracing apps

as earlier observed in simulation-based case studies as well as the importance

of booster programs, especially for the elderly. Insights and methods gained
from this study may provide support for decision-making processes in future

public health crises and can be advanced to assessing criticality of measures

for other societal challenges.

1. Introduction

In March 2020, the new coronavirus was declared a pandemic by WHO because
of its rapid spread throughout the world. During the pandemic years, the German
government has locked down to varying degrees several times, which came at huge
social and economic costs. As the country’s statistic agency reported, the German
economy fell into a recession in 2020 after ten years of growth. Statistics showed
a gross domestic product (GDP) reduction of 4,9% compared to 2019. Measured
against GDP at current prices, the deficit ratio for 2020 is 4.2% [7]. The inflation
rate increased still by 3.1% on average in 2021 compared to 2020 [13]. Furthermore,
the social damage was non-negligible regarding the impacts of lower population
growth, unemployment and a greater risk of psychological disorders due to fewer
social connections and an increase in despair and anxiety[4].

The unprecedented global health crisis caused by the COVID-19 outbreak has
prompted policymakers at that time to implement various strategies to control the
spread of virus and reduce the social and economic costs. Making rational decisions
entails incorporating the available scientific evidence, which is often derived from
expert opinions and modelling studies[2]. Other than the contributions from medi-
cal aspects, mathematical models are increasingly being used to better understand
illness transmission patterns and to simulate the effectiveness of public policies in
mitigating the adverse impacts of the pandemic. Mathematical studies have the
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ability to provide numerical insights and guidance for informed decision-making
and play the role of a systematic and rigorous approach facing complex challenges.
Quantifying and measuring various public policy factors can provide a preliminary
understanding for policy formulation, improving the efficiency of public policies
and reducing the expenditures in the implementation. However, many public is-
sues, such as the COVID-19 problem, are facing large uncertainties and rapidly
evolving changes[2]. Reviewing past pandemic, it is crucial to find an appropriate
way with sufficient robustness in order to provide information in decision-making
processes.

In the context of COVID-19, it was questionable how to strike a balance between
the cost and effectiveness of different strategies, in a way that does not overbur-
den the health system. Non-pharmaceutical intervention methods such as social
distancing and putting infectious patients without complications into home quar-
antine are critical to control the pandemic. In the technological environment, it is
reasonable to use the “tracing and isolation strategy” to decrease expenses. The
use of tracing apps can effectively break the transmission chain when the contact
persons can be put into quarantine quickly enough. The vaccination program is also
an important strategy to prevent infections, while it has been implemented since
2021. Given the weakening of the vaccine efficacy over time, the government also
considers the booster program as an addition. Facing the possible wave caused by
new variants, it is interesting to investigate the impacts of each strategy in different
situations influenced by Delta and Omicron variants, respectively.

Many mathematical modelling studies have been conducted, trying to simulate
and analyze the situation, see e.g. [8, 12, 15, 17, 28, 34, 33, 16, 10, 5, 25, 27]. Most
of the models extended from the classic SIR and SEIR models. Some of them lay
the focus on the social distancing policy and found it to be an effective method to
control the disease [28, 25]. Age-structure in the transmission of the disease is also
an interesting topic in the studies [8, 15, 27]. Some studies have investigated the
basic reproduction number R0 and the sensitivity of fixed parameters regarding R0

[12, 33]. Various researchers have taken advantage of control theory and studied
the optimal control of the intervention. Some studies have utilized statistical and
machine learning methods to predict the situation[10, 5]. Many studies have also
extended the original SIR or SEIR models to include the implications of the vaccine
policy [25, 22, 31, 29, 32, 27, 21].

This work combines the mathematical epidemiological models with a derivative-
based sensitivity analysis to assess the impacts of different public strategies in
controlling the epidemic under the situations of different variants. The model used
in this work is based on the models in the work of Grimm et al. [8]. This model
utilized different groups with various infection severity and risks, which leads to
diverse parameters in asymptomatic and death rates. Also, the model parameterizes
the compliance with tracing apps to share the private location information and
includes a quarantine process, which makes the model more complex and more
complete for the situation than many others. There are also various studies about
contact tracing apps [14], most of which used empirical and stochastic methods
along with individual-based message-passing models. Those models only cover part
of the aspects which are mentioned in the model of Grimm et al.

For our study, the model by Grimm et al. is further extended in several aspects.
First, the model allows discussions about the vaccination and booster programs. It
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is obvious that people with and without antibodies differ in the possibilities to get
infected or have severe complications. To fulfill these particular purposes, the model
is extended into more detailed compartments. In addition, the model parameterizes
different strategies into controllable arguments, including the non-pharmaceutical
interventions (NPIs), the compliance of tracing apps, triage mechanisms in hos-
pitalization and the acceptance of vaccinations and boosters. The group-specific
model offers the opportunity to choose varying parameters in different groups. The
controllability of parameters corresponds to the implementation of various poli-
cies to suppress the pandemic. Furthermore, a functional is defined to model the
costs of the pandemic which needs to be minimized. The minimization of the cost
functional aims to minimize the death toll, reduce spending on the treatment and
testing of infections, lessen impacts of lock-downs and quarantines as well as avoid
the overburden of the health system.

Such simple compartment models have been criticized for their limitations in
quantitative predictions [30]. The accuracy has a high dependence on the precise-
ness of parameters. This leads to the unreliability of the results, since the predic-
tions are not absolute. However, our work focuses on the qualitative effects of the
controllable factors using derivative-based sensitivities, which is a replenishment
of other studies. The combination of compartment models with sensitivity anal-
ysis offers an analytically supported evaluation of the strategies, which is precise
enough for policy making. Local sensitivities are implemented using a fourth-order
Runge-Kutta discretization method (RK4) and the techinques of internal numerical
differentiation (IND). Globally, the model generates the so-called derivative-based
global sensitivity measures (DGSM) in a certain threshold with the trapezoidal rule.

The model and methods are used in this paper to analyze past situations under
the Delta and Omicron variants. They are applicable in different future scenarios
to provide assessment of public policies in public health crises and they can be
adapted to assess measures for other societal challenges as well.

The rest of the paper is organized as follows. Section 2 presents the model
and methods used in the experiments. Section 3 discusses the parameterization of
the experiments and illustrates the results of experiments. Section 4 presents the
conclusion.

2. Models and Methods

The SEIR model is one of the most commonly employed models in the epi-
demiological studies [11]. This system uses different compartments to distinguish
people in different infectious periods: susceptible (S), exposed (E), infectious (I)
and recovered (R). Each compartment may be considered as a function of time
(S(t), E(t), I(t), R(t)). The following nonlinear ordinary differential equations de-
scribe the dynamics of the transitions between compartments:

dS

dt
= −βIS(2.1a)

dE

dt
= βIS − εE(2.1b)

dI

dt
= εE − γI(2.1c)

dR

dt
= γI(2.1d)
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along with the initial conditions

S(0) = s0 ≥ 0, E(0) = e0 ≥ 0, I(0) = i0 ≥ 0, R(0) = r0 ≥ 0.

In this system, S(t), E(t), I(t) and R(t) are the susceptible, exposed, infectious
and recovered fraction in the whole population at time t, respectively. Thus, it holds
that S(t)+E(t)+I(t)+R(t) = 1 and (S(t)+E(t)+I(t)+R(t))N = N with N being
the total population size. β describes the average number of adequate contacts,
which are sufficient for the infection of a person per unit time. Thus, βISN is the
amount of new cases per unit time. 1/ε and 1/γ denote the average incubation
and infectious period. The basic reproduction number R0 is defined as the average
number of secondary infections that may exist after one infection is introduced into
the susceptible host group[11], which can be represented as R0 = β/γ.

2.1. Extension of the Model. The model being used in the following is pri-
marily based on the models presented in [8]. Since the outbreak of COVID-19
pandemic, there have been many researches discussing different measures including
non-pharmaceutical intervention methods and the use of tracing apps. The model
in [8] combined different strategies in a mathematical compartment model. It was
based on the basic SEIR model and was extended to analyze the effects of group-
specific interventions as well as the impact of tracing apps and quarantine policies.
Furthermore, the model allows us to distinguish between different severities of in-
fectiousness and takes the ICU capacity of the health system into consideration and
provides the chance to study the development of pandemics in different scenarios.

Our model inherits the “tracing and isolation” strategy and the categories of
different severity of infections from the model in [8]. The infection chains can be
broken using tracing app and quarantine policy in the pre-infectious period. It is
assumed that a fraction of individuals in the whole population uses the tracing app
effectively1. When both of the infectious and susceptible sides have the tracing
app, the infection chain can be broken, and the susceptible side can be quarantined
throughout the latent period until he or she is recovered or dead. The traced
individuals who are exposed are placed in home quarantine during the incubation
period or, if they are extremely infectious, later in collective isolation, which is
denoted as Group Qk. All individuals who are not traced enter compartment Ik
when they become infectious. The ratio of people in group k who uses the tracing
app efficiently is denoted as ψk. The compartments of infectious individuals (both
traced and not traced) are divided into three parts: asymptomatic, symptomatic
and severely infectious people. The fraction of asymptomatic individuals among

all infectious people in each group is denoted with ηk =
Iasym
k

Ik
=

Qasym
k

Qk
∈ (0, 1).

Hence, 1−ηk of the infectious people exhibit symptoms. Among those symptomatic
infected, νk of them are severely infectious or even have complications. These
individuals might have more symptoms and respiratory diseases such as pneumonia
and bronchitis and need to be taken to the hospitals and receive intensive medical
care. The fractions of each particular compartment also differ between groups k.
The average infectious duration is denoted with 1

γ . The model also divides the

recovered compartment in classic SIR models into compartments R and D, which

1Group-specific rations of people using the tracing apps might be interesting to look at and
easily realized by modifying the model.
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Symbol Description
K Number of groups
Sk Sesceptible individuals in group k
Vk Individuals in group k with complete vaccinations
Bk Individuals in group k with booster dose

Ent,sk Exposed individuals without tracing apps in k - susceptible

Ent,vk Exposed individuals without tracing apps in k - vaccinated

Ent,bk Exposed individuals without tracing apps in k - boostered

Etr,sk Exposed individuals with tracing apps in k - susceptible

Etr,vk Exposed individuals with tracing apps in k - vaccinated

Etr,bk Exposed individuals with tracing apps in k - boostered
Iasymk Asymptomatic infectious people in group k
Isymk Symptomatic infectious people in group k
Isevk Severely infectious people in group k
Qasymk Asymptomatic infectious people in quarantine in group k
Qsymk Symptomatic infectious people in quarantine in group k
Qsevk Severely infectious people in quarantine in group k
Rk Recovered individuals with immunity in group k
Dk Dead individuals in group k

Table 1. Notations of compartments

describe the recovered individuals and dead individuals during the infection. (Note
that the group of recovered people in SIR models also includes deaths.)

The model is then extended in different aspects: First, different groups k ∈
{1, . . . ,K} are considered in this model. The number of individuals is denoted with
Nk. Then all the compartments S,E, I,R are split up into the compartments of
different groups, e.g., Sk, Ek, Ik, Rk. The total sum of all the compartments is still
1. The various groups can distinguish for example people of different ages, people
with less or more risk to be infected, people with different rates of vaccinations,
or people who are less or more compliant with the NPIs. Transmissions can occur
both within groups or across groups with different rates. It is assumed in our
model that the basic infection rate is fixed as β. The actual transmission rates are
modified by the intervention rate uk ∈ [0, 1]. The intervention rates combine the
effects of NPIs from the aspect of the policy and the willingness to stay at home
of each group. Here, uk = 1 means no intervention, and uk = 0 corresponds to the
extreme case of total isolation of the whole group k. The contact across two groups
is mainly determined by the group with a lower intervention rate since this group
is more inclined to stay at home and to reduce public contacts. In general, the
actual infectious rates across groups are denoted with multiplications βuij , where
uij := min{ui, uj}.

Second, it is assumed that only severely infectious people may not survive at
different lethality rates when they receive the hospitalization care or not. The
fraction of deaths among critically ill patients is denoted with σk. This parameter
is determined by the mortality rate of the virus both with ICU and without ICU,
as well as the rationing mechanisms of people who receive intensive health cares
and the ICU capacities in the hospitals. Denoting the lethality rate of a critical
patient with ICU in group k as σ̂k, we assume that the mortality without ICU is
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2σ̂k. The percentage of seriously infected patients who are admitted to hospitals
is denoted with αk in possibly different hospitalization triage methods. Thus, the
total death rate of group k is defined as

(2.2) σk =

{
σ̂kαk + 2σ̂k(1− αk) αk(Ik +Qk)sevNk <

Nk

N B
σ̂kBk+2σ̂k((Isevk +Qsev

k )Nk−Bk)
(Isevk +Qsev

k )Nk
αk(Ik +Qk)sevNk ≥ Nk

N B

with Bk := Nk

N B. Denote the severely infectious people in group k with Ck(t) :=

(Isevk (t) + Qsevk (t))Nk and the number of ICU beds for group k with Bk := Nk

N B,
the death rate in (2.2) can be written as

σk(t) =

{
σ̂kαk + 2σ̂k(1− αk), αkCk(t) < Bk
σ̂kBk+2σ̂k(Ck(t)−Bk)

Ck(t) , Ck(t) ≥ Bk.

If αk = 1, then it can be further simplified to

σk(t) =

{
σ̂k, Ck < Bk
2σ̂k − σ̂k Bk

Ck(t) , Ck ≥ Bk.

Remark. The death rate function is non-smooth when Ck(t) = Bk. In the model,
the differentiations of Rk and Dk are linear with the death rate σk. Thus, the
solutions of Rk and Dk also have the non-smoothness at the point αkCk(t) = Bk,
which might lead to inaccuracies in the numerical solution of the ODE system. To
resolve this, we use the right derivative at the point which is non-zero. In practice,
the non-smooth state is quite rare to be reached.

Furthermore, the model introduces vaccination and booster programs (Vk(t), Bk(t))
according to past situations. A proportion ak of susceptible people will choose to
be vaccinated and build resilience in the body against the coronavirus after getting
the complete vaccines. The time of immunization after complete vaccines is de-
noted as 1

γv
. However, vaccine protection can diminish over time when antibodies

from vaccination are gradually metabolized in months. For the elderly, this situa-
tion is quite common, and the time when antibodies stay is much shorter. Hence,
the booster vaccination program is carried out to enhance the immune system. In
the extended model, people are encouraged to take the booster vaccination after
at least three months ( 1

γb
). The fraction of vaccinated individuals who are will-

ing to take the booster dose is denoted as bk. Hence, a vaccination campaign can
reduce the risk of being infected and the severity of being infectious. Meanwhile,
the protection may also protect infected people against severe, critical or even fatal
diseases. The compartments Entk and Etrk are then split into groups denoted with
s-susceptible without vaccination, v-vaccinated and b-vaccinated with booster dose.
The fractions of asymptomatic individuals ηk and severe infectious individuals νk
also vary for people with or without vaccinations. It is assumed that vaccinated or
recovered individuals lose the immunity during the time 1

γ̃ . Those individuals will

enter the susceptible compartment after the stage of vaccine protection.
Moreover, we aim to model suppressing the pandemic by minimizing the death

toll, avoid ICU overflow, and at the same time reduce the economic and social
costs for (light-) lockdowns and quarantines. Thus, the motivated cost functional
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Symbol Description
Nk Number of individuals in the group k
βsk Infection rates of individuals without immunity
βvk Infection rates of vaccinated individuals
βbk Infection rates of boostered individuals
ηsk Fraction of asymptomatic individuals - susceptible
ηvk Fraction of asymptomatic individuals - vaccinated
ηbk Fraction of asymptomatic individuals - boostered
νsk Fraction of severely infectious individuals - susceptible
νvk Fraction of severely infectious individuals - vaccinated
νbk Fraction of severely infectious individuals - boostered
σ̂k Lethality rate
1/ε Average incubation time
1/γ Infection duration
1/γv Duration for immunization after normal vaccinations
1/γb Duration between normal vaccines and booster
1/γ̃ Duration to lose the immunity
B Number of ICU beds

Controllable parameters
ak Fraction of susceptible individuals who get vaccinated
bk Fraction of vaccinated individuals who get boostered
uk 1: no intervention in group k

0: no public activities in group k
ψk Rate of tracing app users in group k
αk Fraction of severely ill patiants sent to hospitals in group k

Table 2. Notations of all parameters in the model (2.4).

is defined as

(2.3)

J(z0, p) =

K∑
k=1

Dk(T ) +
1

T

∫ T

0

(
k1

K∑
k=1

(Iasymk +Qasymk )

+k2

K∑
k=1

(Isymk +Qsymk + Isevk +Qsevk )

)
dt.

The cost consists of two parts: the total death toll and the running cost for the
infections, which include not only the medical expenses, but also the economic and
societal impacts. It is assumed that the asymptomatic and symptomatic infections
lead to various weights in the cost functional.

The full dynamics of the ODE system reads

dSk
dt

= γ̃(Rk + Vk +Bk)− akγvSk − βsk

 K∑
j=1

ujkI
sum
j

Sk(2.4a)

dVk
dt

= akγvSk − βvk

 K∑
j=1

ujkI
sum
j

Vk − bkγbVk − γ̃Vk(2.4b)
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dBk
dt

= bkγbVk − βbk

 K∑
j=1

ujkI
sum
j

Bk − γ̃Bk(2.4c)

dEnt,mk

dt
= βmk

 K∑
j=1

ujkI
asym
j

Mk − εEnt,mk(2.4d)

+ βmk

 K∑
j=1

ujk(1− ψjψk)(Isymj + Isevj )

Mk,m = s, v, b

dEtr,mk

dt
= βmk

 K∑
j=1

ujkψjψk(Isymj + Isevj )

Mk,m = s, v, b(2.4e)

dIasymk

dt
=

∑
m=s,v,b

ηmk εkE
nt,m
k − γIasymk(2.4f)

dIsymk

dt
=

∑
m=s,v,b

(1− ηmk )(1− νmk )εkE
nt,m
k − γIsymk(2.4g)

dIsevk

dt
=

∑
m=s,v,b

(1− ηmk )νmk εkE
nt,m
k − γIsevk(2.4h)

dQasymk

dt
=

∑
m=s,v,b

ηmk εkE
tr,m
k − γQasymk(2.4i)

dQsymk

dt
=

∑
m=s,v,b

(1− ηmk )(1− νmk )εkE
tr,m
k − γQsymk(2.4j)

dQsevk
dt

=
∑

m=s,v,b

(1− ηmk )νmk εkE
tr,m
k − γQsevk(2.4k)

dRk
dt

= γ(Iasymk + Isymk + (1− σk(t)Isevk )− γ̃Rk(2.4l)

+ γ(Qasymk +Qsymk + (1− σk(t)Qsevk )

dDk

dt
= σk(t)γ(Isevk +Qsevk ),(2.4m)

and is illustrated in Figure 1. All notations used in this model are listed in Table 1
and Table 2.

2.2. Methods. To study how the impact of each controllable parameters in Table
2 can result in the uncertainty in the cost functional (2.3), we conducted a sensi-
tivity analysis of the variables with respect to the cost. The sensitivity analysis
simplifies the model and reduces it into a qualitative study of the robustness. It
identifies significant factors which contribute the most to the objective function. As
the classical SIR and SEIR models are often criticized for its inability to quantify
the uncertainty in the predictions [30], the sensitivity analysis is compatible here
for a qualitative statement. The combination of a compartment model with the
sensitivity analysis is sufficiently precise to give useful information for the public
policy.
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Figure 1. Illustration of the transmission model of group k in the
model (2.4).

For the ordinary differential equation system (2.4), the solutions were approxi-
mated iteratively with the Runge Kutta 4th order method [9] and a suitable dis-
cretization in time. The principle of internal numerical differentiation [3], adds the
calculation of derivatives into the approximation of solutions in differential equa-
tions. The derivatives then present sensitivities of each variable along with each
parameter in the equation system. Compared to variational methods, this princi-
ple applies the idea of ”first-integrate-then-differentiate” and compute the value of
both the trajectory xi and the sensitivity Si = ∂xi

∂(x0,p)
simultaneously with given

temporal grids.

x′(t) = f(x(t), t)
integrate

=⇒ xi = xi−1 + hif(xi−1, ti−1)

differentiate
=⇒ Si = Si−1 + hi

∂f

∂x
Si−1.

Considering the discretizations xi of the solution x as iteratively defined functions
of the initial value x0 and the parameters p, the sensitivity Si w.r.t the arguments
(x0, p) can be derived with ∂f

∂x . For (2.4), these derivatives were calculated explicitly
with the analytical form of gradients of the right-hand-sides in (2.4).

The global sensitivity measure employed in this article averages local derivatives
using Monte Carlo or Quasi Monte Carlo sampling methods [20]. Consider the cost
function J(x,p) with p = (p1, · · · , pM ) ∈ Θ ⊆ RM a vector of the parameters in
the model. Local sensitivity of the parameters is presented as an approximation of
partial derivatives ∂J

∂pi
. The local sensitivity varies when p changes. In the concept

of derivative-based sensitivity measures, p1, · · · , pn are considered as independent
random variables defined in each domain. The cumulative density functions are
noted as F1(p1), · · · , Fn(pn). The derivative-based global sensitivity measure used
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in the sequel is defined as

ωi :=

∫
Θ

(
∂J(x,p)

∂pi

)2

dF (p) = EΘ

[(
∂J(x,p)

∂pi

)2
]

(2.5)

where F (p) is the joint distribution function (cdf) of p.
The most applied methods for global sensitivity make use of the local informa-

tion, but the result does not rely much on the choice of a nominal point. The local
sensitivities can also be used to estimate the contribution of each parameter and
highlight the unimportant ones. Then, using a ”factors fixing setting”, certain pa-
rameters may be fixed at a specific point and ignored in the global analysis. Direct
realization of the global measures for models with high-dimensional p can be very
time-consuming and inefficient. Thus, the different triage mechanisms in hospitals
will not be considered in the analysis of global sensitivities, as they were not applied
in retrospective. In addition, they have a relatively low impact on the cost and the
sensitivities of other parameters.

3. Experiments and Results

The following case study is based on the German population of about 83 million
people [6]. Our results function as an extension and a supplement to the study
in [8] and provides a sensitivity analysis of the effectiveness of different policies
and approaches to control the epidemic mainly caused by the Delta variant and
Omicron variant now in retrospective.

3.1. Parameterization. In the case study, the group number K was set to 3. The
entire population is divided into groups of people under the age of 18, people aged
19 to 60 and people over 60 years old. These categories also vary in the suscep-
tibility against virus and proportions of getting vaccinated, which are represented
by the numbers 1 (aged under 18), 2 (aged 19 to 60) and 3 (aged over 60). The
initial values of the experiments about the infection cases and vaccination rates for
Delta and Omicron variants are mainly estimated from the reports from Robert-
Koch-Institute at the beginning of November and at the end of December in 2021,
respectively [18, 19].

The parameters from the top part of Table 2 are fixed in the model since they
are affected by the virus’s basic characteristics. Note that some parameters for
Omicrons are approximated from the Delta variant since the research for Omicron
was still ongoing at that time being. The reproduction number R was estimated
between 3.0 and 3.5 for Delta variant [24] and around 3.7 for Omicron variant
[1]. The basic reproduction number R0 was calculated between 3 and 8 for Delta
variants [23, 24]. Thus, we assume a basic reproduction number of 5.08 for the
Delta variant [23] and 7 for the Omicron variant. Based on the basic reproduction
numbers, the infectious rates β’s are fixed as 0.36 for Delta and 0.5 for Omicron for
people without immunity. The basic infectious rates for vaccinated and boostered
people are approximated from the case numbers and the attack rate, in reality, [26].
The asymptomatic rates and severe infectious rates are also estimated from the real
case numbers [26, 18] as in Table 3.

The latent period is estimated to be four days for Delta [24] and three days
for Omicron from the Centers for Disease Control and Prevention. The typical
infection (from infectious and until recovered) lasts 14 days on average, which is
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Variant Delta Omicron
Age <19 19–60 >60 <19 19–60 >60
βs 0.36 0.36 0.36 0.5 0.5 0.5
βv 0.022 0.087 0.095 0.14 0.14 0.142
βb 0.005 0.02 0.025 0.01 0.0106 0.016
ηs 0.4 0.3 0.08 0.4 0.3 0.08
ηv 0.2 0.2 0.08 0.3 0.3 0.08
ηb 0.2 0.2 0.08 0.3 0.3 0.08
νs 0.0058 0.033 0.218 0.0041 0.026 0.1963
νv 0.0047 0.013 0.116 0.0051 0.0116 0.0887
νb 0.003 0.005 0.05 0 0.005 0.04
σ̂ 0.003 0.014 0.16 0.003 0.014 0.16
1/ε 4 3
1/γ 14 14
1/γv 14 14
1/γb 90 90
1/γ̃ 180 180
B 24000 24000

Table 3. Parametriztion of fixed parameters in the model (2.4).

also estimated as the period for a vaccinated individual to get complete immunity
(1/γv). Booster vaccination can be taken at least three months after the second
dose of the vaccine. It is assumed that all the individuals who have taken the
vaccines or recovered from the infection will lose their immunity against the virus
after six months and might be infected again.

The bottom part of Table 2 lists the parameters whose sensitivities are studied.
Since more variants may appear in three to six months, it is meaningful to analyze
the situation during three months. The constants in the cost function are chosen
as k1 = 0.1, k2 = 1, since more financial and material resources are needed for
confirmed and critically ill patients.

All the experiments employ the fourth-order Runge Kutta method and IND
technique. The local sensitivities are taken as their absolute value. The non-
smoothness in the death rate is possible to influence the consistency and accuracy
of the computational results. Thus, an adaptive step size is set to avoid the point
of non-smoothness, when this point is exactly reached. However, this situation has
never been seen in any experiment. The multidimensional integration in derivative-
based global sensitivity measure is calculated with the trapezoidal rule implemented
in The MathWorks MATLAB.

3.2. Local Sensitivity Analysis.

3.2.1. Benchmark Scenarios. In the scenario for local sensitivity, it is assumed that
a uniform social distancing strategy is taken, and people who haven’t taken the
vaccine or the booster are reluctant to get it. However, a high amount of people use
the tracing apps properly. Children and elder people have a higher possibility to get
hospitalizations when they are severely infected. As kindergardens and schools are
closed only when the pandemic hits Group 1, the children are more inclined to have a
lower rate in the social activities and in the usage of tracing apps. The benchmark
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Parameters Value
Sensitivity
Delta

Sensitivity
Omicron

a1 0.1 0.000874641 0.003850389
a2 0.2 0.000390293 0.001678988
a3 0.2 0.000345878 0.001673189
b1 0.02 1.86213E-05 0.000104434
b2 0.02 0.000181992 0.000734436
b3 0.06 0.00184786 0.006424272
u1 0.6 0.001916091 0.007131778
u2 0.8 0.000636341 0.002862005
u3 0.8 0.000458237 0.001211584
ψ1 0.4 0.001207402 0.003999195
ψ2 1 0.002978279 0.007682046
ψ3 0.8 0.001855098 0.00380382
α1 1 8.85904E-08 3.12262E-07
α2 0.8 4.79465E-06 1.4748E-05
α3 1 0.000137452 2.75204E-05

Table 4. Benchmark scenario

scenario simulates an actual realistic situation when few people have gotten the
booster shot at the beginning of a booster program. The parameterization and
local sensitivity of all parameters are given in Table 4.

It is obvious that all the parameters have a higher local sensitivity in the Omicron
situation, except the proportion of elderly with fatal illness who can get hospitaliza-
tions. Besides, by both variants, the local sensitivities of parameters a1, b3, u1, ψ2

are larger than the others. It corresponds to a higher importance of the vaccination
rate and social activity intervention in children and young teenagers, the booster
rate in elder people and the usage of tracing apps in young adults.

3.2.2. Scenarios with different parameterization. This subsection shows the results
under different policy strategies. Four different scenarios are considered: VAC,
BOOST, NPI and TR. VAC represents the situation where people who haven’t got
the basic vaccination are more inclined to take it, while BOOST represents the case
when the rate of people who take the booster dose is higher. In the NPI scenario,
we assume fewer non-pharmaceutical interventions, while fewer individuals take
advantage of the tracing apps and stay in quarantine when they are warned in the
TR scenario. The values of parameters are listed in 5.

The local sensitivities of each parameter are shown in Figure 2 and Figure 3
respectively for Delta and Omicron cases.

In the VAC and BOOST scenarios, almost all parameters a, b, u, ψ have larger
values of local sensitivities than in the benchmark scenario for both variants. The
results are the opposite in the NPI and TR scenarios when less intervention partic-
ipates. These lead to a conclusion that all the strategies a, b, u, ψ tend to be more
important when the pandemic is more serious. As in the benchmark scenario, the
application of tracing apps and quarantine strategy is still significant for all the
three groups from the local sensitivity. Besides this strategy, the booster program
in Group 3 and the intervention in the activities of children and young teenagers
also play a crucial role in affecting the costs. Also, local sensitivities of parameters
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Figure 2. Local sensitivities by Delta-variant.

Figure 3. Local sensitivities by Omicron-variant.
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Parameters Bench VAC BOOST NPI TR
a1 0.1 0.4 0.1 0.1 0.1
a2 0.2 0.5 0.2 0.2 0.2
a3 0.2 0.5 0.2 0.2 0.2
b1 0.02 0.02 0.1 0.02 0.02
b2 0.02 0.02 0.3 0.02 0.02
b3 0.06 0.06 0.3 0.06 0.06
u1 0.6 0.6 0.6 0.6 0.6
u2 0.8 0.8 0.8 1 0.8
u3 0.8 0.8 0.8 1 0.8
ψ1 0.4 0.4 0.4 0.4 0.4
ψ2 1 1 1 1 0.6
ψ3 0.8 0.8 0.8 0.8 0.6
α1 1 1 1 1 1
α2 0.8 0.8 0.8 0.8 0.8
α3 1 1 1 1 1
Table 5. Parametrization in different scenarios

a, b, u, ψ in all three groups are larger under the Omicron conditions than the Delta,
which implies the influence of more actions facing the Omicron variant.

3.3. Global Sensitivity Analysis. In this subsection, we will take a look at the
global sensitivity of the parameters. Table 6 presents the domains of the parameters.
All parameters are uniformly distributed in the domain.

Parameters Range
a1 [0.2, 0.6]
a2 [0.2, 0.8]
a3 [0.2, 0.8]
b1 [0.02, 0.1]
b2 [0.02, 0.3]
b3 [0.06, 0.5]
u1 [0.6, 1]
u2 [0.6, 1]
u3 [0.6, 1]
ψ1 [0.4, 0.6]
ψ2 [0.6, 1]
ψ3 [0.6, 1]

Table 6. Range of parameters for the global sensitivity anyalsis.

The vaccination rates vary from 0.2 to a value less than 1 since it is impossible
to force all the people to get the vaccine. The booster rates have different domains
due to the reason that the vaccination program in young teenagers begins much
later than in older people. Thus the booster program has also been affected by the
time difference. The admissible rates for NPI strategies are larger than 0.6 because
complete isolation of the population is unrealistic.

Figure 4 shows the global sensitivity of the parameters.
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Figure 4. Derivative-based global sensitivity measures

The global sensitivity measures of ψ’s can be seen obviously in the chart, es-
pecially for the young adults. This observation is consistent with the conclusion
in [8] that contact tracing with a high compliance rate is effective to control the
pandemic. Other than this, b3 and u2 (booster for elderly and NPI in the adults)
also possess larger global sensitivities than other parameters by both variants.

When comparing the results in the contexts of different variants, it can be seen
that the global sensitivities of all parameters in Table 6 are greater in the situation
of the Omicron variant than the Delta. This again emphasizes the importance of the
intervention strategies under Omicron conditions, not only in vaccination programs
but also in social activities. Besides the factors that have been mentioned in both
cases, a1 and u1 (vaccination and NPI in children) can cause impacts that are not
to be neglected facing the Omicron variant.

4. Conclusion

The purpose of this study was to assess the sensitivity of controllable parameters
regarding different strategies in a COVID-19 model based on [8] under the impacts
of Delta and Omicron variants, respectively, and to get insights on how public
policies can have an impact on mitigating the spread of the pandemic. It aims
at evaluating the efficiency of anti-COVID policies in decision-making processes
and providing inspiration for future policy formulation by incorporating scientific
support.

The model was extended with vaccination and booster programs to simulate the
situation. Individuals with antibodies are less inclined to have severe symptoms
or need the intensive health care. Varying group-specific strategies were parame-
terized as controllable arguments, including the NPI interventions such as social
distancing restriction to reduce close contacts, usage of tracing apps and isolation
policy, compliance of taking vaccines and boosters as well as triage mechanism in
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hospitalizations. We defined a cost functional to reduce the casualties and minimize
the impact of infections from the economic and societal aspects.

Concerning the criticisms of compartment models like SIR and SEIR models on
failing to provide absolute predictions, we used sensitivity analysis in this work
to give a mathematically supported qualitative evaluation of public policies. The
combination of compartment models with sensitivity analysis is sufficiently accurate
to assess significance of the polices and strategies. We conducted experiments
on past circumstances of Delta and Omicron variants using the given model and
methods. The model and methods in this study may be of assistance to also analyze
later variants or other highly contagious diseases.

The main results of the experiments under the situations of Delta and Omicron
variants are as follows:

(1) Locally and globally, all the strategies a, b, ψ, u show larger sensitivities by
Omicron variant than Delta.

(2) The compliance of tracing apps, the intervention in social activities in adults
ψ2, u2 as well as the booster rate in older people b3 show greater contribu-
tions in J than other parameters under conditions of both variants.

(3) Besides the factors in (2), the compliance of tracing apps in all 3 groups
b’s, the vaccination program and the NPI strategy in children and teenagers
a1, u1 should not be neglected especially facing the Omicron variant.

(4) Effects of hospitalization rate in the young group α1, α2 are negligible.
Contributions of α3 are small but still detectable.

Results 2 and 3 support the conclusion in [8] that mild social distancing in com-
bination with a “tracing and isolation” approach is a promising way to control
the epidemic in the medium run. Furthermore, public policies play a more signif-
icant role in the context of the Omicron variant. To defeat COVID, it confirms
significants to introduce boosters especially to the elderly.

Future work may be dedicated to investigate other sensitivity measures, to com-
bine this with techniques from uncertainty quantification and to extend these tech-
niques to more detailed models for example based on agent-type models and ho-
mogenization techniques.
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zu Omikron-Fällen und COVID-19-Trends im Überblick. Dec. 30, 2021.
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