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Abstract Many mixed-integer models are sparse and can, therefore, usually be de-
composed into weakly connected blocks. Such decompositions could be determined
algorithmically or be specified by the user. We limit ourselves to the later, as the user
usually has a very precise idea of which decomposition makes sense for structural rea-
sons. In the present work, we address the exploitation of user-supplied decompositions
within the non-commercial solver SCIP to control heuristics. In order to demonstrate
the potential, three different heuristics leveraging such decomposition information are
considered. Our results show that such an approach has a positive influence on the
overall solution behavior of SCIP, provided that the decomposition information supplied
describes the basic structural properties of the model appropriately for the particular
heuristic.
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1 Introduction

Decomposition methods have been used for solving linear and mixed-integer linear prob-
lems for over half a century. The publications of Dantzig and Wolfe [18] and of Ben-
ders [6] can be identified as starting points of the entire research area. In addition, La-
grangian relaxation [27] and its special case Lagrangian decomposition [30] have played
an important role for many years. In [44] a survey on different decomposition methods
is given. Detailed descriptions of the most important decomposition algorithms with
applications for mixed-integer programming are given in [39, 46, 48].

In most practical applications encoded as a mixed-integer problem, the constraint
matrix is typically very sparse, i.e., most of its entries are 0. In MIPLIB 2017 [28], which
comprises 1065 instances arising from more than 400 distinct applications of mixed-
integer problems, the fraction of nonzero entries, the so-called density, ranges from 10−7

to 1 (100 %), at an average of less than 3 % (see [50] for more details). Additionally,
mixed-integer supply chain models are typically very sparse [43]. Sparse problems can
usually be decomposed into loosely coupled blocks [13], which opens the possibility for
decomposition methods.
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In addition to the exploitation of sparsity for decomposition, it is beneficial to lever-
age other problem structures. In [20] the authors describe an efficient method for Ben-
ders’ decomposition that exploits the structure of the capacitated facility location prob-
lem. Based on this, Benders’ decomposition approaches allowing integer variables in
the subproblem were presented in [47] for the special case of single-source capacitated
facility location. For the solution of the symmetric traveling salesman problem, ap-
proaches combining Lagrangian relaxation with the structural utilization of 1-trees have
been established [34]. If the problem has a diagonal block structure, this can sometimes
be exploited in a Dantzig-Wolfe decomposition, as it is, for example, the case for the
generalized assignment problem [16].

Meanwhile some software packages offer the possibility to quickly set up decompo-
sition algorithms. Commercial solvers such as CPLEX [17] and non-commercial solvers
such as SCIP [11] provide interfaces to communicate decomposition information, mainly
used for Benders’ decomposition. The solver GUROBI [31] can perform a solution
improvement heuristic using user-provided partition information on the variables. All
approaches above have in common that the users have to define the structure themselves.
GCG [7, 21] performs a Dantzig-Wolfe decomposition of the problem, where the decom-
position is based on a structure either provided by the users or automatically detected.
SAS [42] also calculates a decomposition itself and solves the resulting problem using a
Dantzig-Wolfe approach.

One important part of successful algorithms for the solution of mixed-integer linear
problems is finding feasible solutions quickly. To this end, usually heuristics are em-
ployed to support the branch-and-cut procedure [9]. Heuristics are subdivided into two
categories: construction heuristics which attempt to determine a feasible solution from
scratch, and improvement heuristics which try to improve a given feasible solution.

In the present work we want to deal with the extent to which the provision of a
so called decomposition information or for short decomposition by the user can be used
profitably in the solution process. Such an approach has two advantages: First, the time-
consuming computation of a decomposition information is omitted and, second, the user
typically has a very precise idea of the underlying structure behind the problem and can
communicate it on the basis of a decomposition appropriately to a particular heuristic.
We focus on exploiting decompositions for the control of heuristics in SCIP [11, 12].

Our contributions in this publication consist of the presentation of three heuristics,
which exploit decomposition information to solve mixed-integer linear problems, the
provision of high-performance open-source C implementations, the traceability of part of
the computational results through the availability of test instances and decompositions,
and results from a tight integration with the non-commercial solver SCIP.

We begin, in the next section, with an introduction to the definitions and notation
used in the remainder of the paper. Three sections follow, each with a heuristic exploit-
ing decomposition information, which constitute the main part of this paper. Initially
we describe two construction heuristics, DPS and PADM, in Section 3 and Section 4
that solve subproblems, which are directly derived from a given decomposition, on an
alternating basis. As opposed to DPS, which works with linking constraints only, PADM
requires a decomposition with linking variables only. Finally, we describe in Section 5
an extension of the kernel search framework that can be used both as construction and
improvement heuristic. Numerical results on all three heuristics are presented and dis-
cussed in Section 6. A brief summary of the results and a short discussion of open
research questions for future work in Section 7 conclude the paper.
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2 Definitions and Notation of Decompositions

Mixed-Integer Programs (MIP) are commonly formulated as optimization problem

min
{
c>x : Ax ≥ b, ` ≤ x ≤ u, xj ∈ Z for j ∈ I

}
(1)

with variables x ∈ Rn whose values are further restricted by lower and upper bounds
`, u ∈ (R∪{±∞})n, linear constraints formulated as system of inequalities using a matrix
A ∈ Rm×n and a vector b ∈ Rm, and integrality restrictions for all variables xj with
j ∈ I ⊆ {1, . . . , n}, I 6= ∅. The elements of A are denoted by aij with i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}.

For a number k ≥ 0 we call a partition D := (Drow, Dcol) of the rows and columns
of A into k + 1 pieces each,

Drow := (Drow
1 , . . . , Drow

k , Lrow), Dcol := (Dcol
1 , . . . , Dcol

k , Lcol),

a decomposition of A if Drow
q 6= ∅, Dcol

q 6= ∅ for q ∈ [k] := {1, . . . , k} and if it holds for

all i ∈ Drow
q1 , j ∈ Dcol

q2 that aij 6= 0 implies q1 = q2. We call k the number of blocks

and each block q ∈ [k] is specified by (Drow
q , Dcol

q ). The special rows Lrow and columns

Lcol, which may be empty, are called linking rows and linking columns, respectively.
Equivalent terms are linking constraints and linking variables, which can also be used
in the more general context of nonlinear problems.

In other words, the inequality system Ax ≥ b can be rewritten with respect to a
decomposition D by a suitable permutation of the rows and columns of A as equivalent
system

A[Drow
1 ,Dcol

1 ] 0 · · · 0 A[Drow
1 ,Lcol]

0 A[Drow
2 ,Dcol

2 ] 0 0 A[Drow
2 ,Lcol]

... 0
. . . 0

...
0 · · · 0 A[Drow

k ,Dcol
k ] A[Drow

k ,Lcol]

A[Lrow,Dcol
1 ] A[Lrow,Dcol

2 ] · · · A[Lrow,Dcol
k ] A[Lrow,Lcol]




x[Dcol

1 ]

x[Dcol
2 ]

...
x[Dcol

k ]

x[Lcol]

 ≥

b[Drow

1 ]

b[Drow
2 ]

...
b[Drow

k ]

b[Lrow]

 ,

where we use the shortcut A[I,J] to denote the |I|-by-|J | submatrix that arises from the
deletion of all entries from A except for rows I and columns J , for nonempty row and
column subsets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}. This representation of the matrix A
is also called bordered block diagonal form [13].

Note first that every matrix admits the trivial decomposition by setting Lrow =
{1, . . . ,m} and Lcol = {1, . . . , n}, in which case k = 0. The other extreme situation
occurs for Lcol = Lrow = ∅, in which case problem (1) can be solved by first solving
each of its k independent diagonal blocks and then combining the k obtained solutions
to a solution for (1). If any of the subproblems is infeasible, this infeasibility also holds
for (1).

An example for a rearrangement of a matrix A is shown in Figure 1. Nonzero entries
aij 6= 0 are visualized as black dots and are scattered wildly in the original arrangement,
whereas after a rearrangement based on a decomposition they are only inside blocks or
inside the border.

3 Dynamic Partition Search

In the following we propose a construction heuristic called Dynamic Partition Search
(DPS). According to a decomposition, DPS splits a mixed-integer linear program into
independent subproblems. Here, the linking constraints are also split. That is in our
case, that each block receives only that part of the linking constraints that contains
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(a) Original arrangement of nonzeros.
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(b) Arrangement of nonzeros according to de-
composition hrcgpartition (see Section 6).

Figure 1: Original and rearranged matrix for MIPLIB 2017 instance timtab1.

variables of the block and a limitation of the resources which may be used by this block.
DPS searches for a partition of the resources or rather of the right-hand side of the
linking constraints on the blocks such that we obtain a feasible solution. It achieves this
by dynamically updating an initially guessed partition, which led to the naming of the
heuristic. This heuristic is inspired by an approach proposed by Yıldız et al. [49] which
searches for a partition that belongs to an optimal solution.

3.1 Definitions and Reformulation

First we look at the problem definition and related reformulation. We have given a
problem of the form

min
{
c>x : Ax ≤ U, ` ≤ x ≤ u, xj ∈ Z for j ∈ I

}
(2)

and a corresponding decomposition D. This heuristic requires that there are only linking
constraints and no linking variables, so Lcol = ∅. Otherwise, the decomposition can be
adapted, for example, by adding the linking variables to the last block and recompute
the constraint labels. Note that the problem is formulated in this section with a right-
hand side U in contrast to (1). This is based on the idea that resources need to be
distributed among different parties (i.e. blocks).

To simplify the notation, for each block q ∈ [k] we define xq := x[Dcol
q ] and cq := c[Dcol

q ]

and summarize all constraints, bounds and integrality conditions in

Pq :=
{
xq : A[Drow

q ,Dcol
q ]xq ≤ U[Drow

q ], `[Dcol
q ] ≤ xq ≤ u[Dcol

q ], xj ∈ Z for j ∈ I ∩Dcol
q

}
.

In our specific case Pq is the feasible set of a mixed-integer linear problem, but the
heuristic is also applicable if Pq is a feasible set of an arbitrary mixed-integer nonlinear
problem (MINLP) and, thus, can also be used for MINLPs with linear linking constraints.
Moreover, we define Ã0

q := A[Lrow,Dcol
q ] for each block and Ũ := U[Lrow]. Thus, we can

rewrite problem (2) based on the decomposition D as

min
∑
q∈[k]

c>q xq (3a)

s.t. xq ∈ Pq, ∀q ∈ [k], (3b)∑
q∈[k]

Ã0
qxq ≤ Ũ . (3c)
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Note that problem (3) splits into k independent subproblems if we omit the linking
constraints (3c).

Since typically not every linking constraint contains variables from every block, we
denote by B(i) ⊆ [k] the set of blocks linked by constraint i ∈ Lrow, and we denote by
Lrow
q ⊆ Lrow the set of linking constraints containing variables of block q. Moreover, we

define Ãq := A[Lrow
q ,Dcol

q ], that means, Ãq contains all nonempty rows of Ã0
q.

The linking constraints can be further divided into the parts of the single blocks by
means of additional variables πq ∈ R|L

row
q | for each block q ∈ [k]. Thus problem (3) can

be reformulated to the equivalent problem

min
∑
q∈[k]

c>q xq (4a)

s.t. xq ∈ Pq, ∀q ∈ [k], (4b)

Ãqxq ≤ πq, ∀q ∈ [k], (4c)∑
q∈B(i)

πiq = Ũi, ∀i ∈ Lrow. (4d)

The partition variables πq describe the partitioning of the right-hand side Ũ between

the single blocks. To be more precise, a partition p of vector Ũ ∈ R|Lrow| in k blocks
is defined as a matrix p ∈ R|Lrow|×k such that

∑
q∈[k] piq = Ũi for each row i. Thereby

an entry piq in partition p is fixed to zero if q /∈ B(i). That is, the right-hand side is
split between the blocks in order to fulfill constraint (4d) if πq is fixed to p·q. Every
row i of this matrix corresponds to one linking constraint and is denoted by pi·, every
column q corresponds to one block and is denoted by p·q, whereby entries fixed to zero
are ignored.

If we know values pfeas·q of the partition variables for one feasible solution, which

specify a partition pfeas, it is straightforward to calculate a feasible solution for the
overall problem. The variables πq are just fixed to pfeas·q and the k independent and
smaller subproblems

Pq(p
feas
·q ) := min

{
c>q xq : xq ∈ Pq, Ãqxq ≤ pfeas·q

}
(5)

are solved until a feasible solution is found. The heuristic searches for a partition related
to a feasible solution by dynamically updating an initial guess.

3.2 Algorithm

To get started, for iteration index t = 0 we choose an initial partition pt. There are no
further hard restrictions on the partition, but the minimal activity of each row of Ãqxq
should be respected, because otherwise the partition can not lead to a feasible solution.
That is, we recommend choosing p0iq ≥ min{(Ãq)ixq : `q ≤ xq ≤ uq}. Nevertheless, one
should keep in mind that the choice of the initial partition has a huge influence on the
later solution. DPS does not require an LP solution, but if it is available, the initial
partition can be chosen based on it. Otherwise, for example, it is possible to split the
right-hand side uniformly.

Then it is checked whether partition pt will lead to a feasible solution. This can be
done by solving k independent subproblems (5) until a feasible solution is found. If all
of them are feasible, a solution for problem (2) is found and given by the concatenation
of the k subsolutions. If at least one of the subproblems is infeasible, the partition pt

will not lead to a feasible solution and has to be updated.
In case partition pt will not lead to a feasible solution, we need information about the

infeasibility for the update of pt. To obtain this information, we solve slightly modified
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subproblems. For each block we introduce new variables zq ∈ R
|Lrow

q |
≥0 to ensure feasibility

of the constraints Ãqxq ≤ pt·q. Moreover, the original objective function is replaced by a
weighted sum of the slack variables zq. The weights are defined by a penalty parameter

λt ∈ R|L
row|

>0 . This leads for every block q to the subproblem

min (λt[Lrow
q ])

>zq (6a)

s.t. xq ∈ Pq, (6b)

Ãqxq − zq ≤ pt·q, (6c)

zq ∈ R
|Lrow

q |
≥0 . (6d)

Note that the penalty parameter λ is independent of q. When we later increase it,
this will effect an information exchange between the blocks. If in some blocks a linking
constraint is violated, i.e., ziq > 0, all blocks will avoid the violation of this constraint
in the next iteration.

Subproblem (5) is feasible if and only if subproblem (6) has an optimal solution
with an optimal objective value of zero. If there exists a subproblem with an optimal
objective value strict greater than zero, the partition and the penalty parameter are
updated. For each single linking constraint i of (4d), we inspect in every block q ∈ B(i)
the value of the slack variable ziq corresponding to linking constraint i and distinguish
the following cases:

1. If at least one slack variable is positive and at least one is zero, we update in the
following way: The value vector z̄ti of the slack variables is added to the subpartition
pti· and—to keep constraint (4d) satisfied—the same amount is subtracted from all
ptiq with z̄tiq = 0, i.e., for q ∈ B(i)

pt+1
iq =

{
ptiq + z̄tiq, if z̄tiq 6= 0,

ptiq − 1
v

∑
φ∈B(i) z̄

t
iφ, if z̄tiq = 0,

(7)

where v is the number of blocks with z̄tiq = 0. Furthermore, the corresponding penalty
parameter λti is increased to avoid the repetitive violation of linking constraint i.

2. If all slack variable values z̄ti are greater than zero, only the penalty parameter λti is
increased.

3. If all slack variable values z̄ti are zero, no update for constraint i is necessary.

If all coefficients and variables of one row Ãiqxq are integral, the corresponding partition
value pt+1

iq can be rounded to an integral value. However, it must be ensured that
constraint (4d) is still satisfied.

After updating, the iteration index t is incremented and the subproblems (6) are
solved again. This process is repeated until a feasible solution for problem (4) is found
or until a maximum number T of iterations is reached. DPS is formally described in
Algorithm 1.

In the special case of two blocks and only one linking constraint, at most one update
is necessary. In both blocks, the objective function consists of only one partition variable,
which is minimized. If block 1 (or 2) has a positive slack variable after solving with the
initial partition, adding this value to the partition of block 1 (or 2) and subtracting
it from block 2 (or 1) must necessarily result in a feasible solution. Otherwise, and
especially if both slack variables are positive, the original problem is infeasible. Note
that in the general case the problem is not necessarily infeasible if all slack variables are
positive.

When setting up the subproblems (6), the original objective function is replaced by
the weighted sum of the slack variables. This is necessary to push the slack variables to

6



Algorithm 1: Dynamic Partition Search

Input: Initial partition p0 fulfilling (4d), penalty parameters λ0 ∈ R|L
row|

>0 , and
T ∈ N.

Output: A feasible solution for problem (2) if one has been found.
1 for t = 0, 1, . . . , T do
2 For each q ∈ [k], solve subproblem (6).
3 if all subproblems have an optimal objective value of zero then
4 Feasible solution for problem (2) found. Stop.
5 else
6 Update partition pt and penalty parameters λt.
7 end

8 end

zero and thus have a proof for the feasibility of the original subproblems (5). However,
this can lead to arbitrary bad solutions of (2). To compensate this drawback we propose
the following: If Algorithm 1 returned a feasible solution, we fix in each subproblem (6)
the partition to the current value and the slack variables to zero. Afterwards, we reop-
timize the subproblems with the original objective function c>q xq.

3.3 Implementation Details

In this section we discuss a few key details of the implementation of Algorithm 1.
DPS as presented above solves the subproblems to optimality. Since this step is very

expensive in general, we would like to terminate the solution process early. Obviously,
even with a suboptimal solution in some or all subproblems the partition can be updated.
But only if all subproblems have an optimal value of zero, we have a verified feasible
solution of problem (4). So we stop the solution process of each subproblem as soon as
we know that the solution value will be greater than zero in the current iteration and
thus at least one additional update is needed. This feature is implemented as a so called
event handler in SCIP, which tracks the dual bound.

In order to simplify the presentation, we assumed that all linking constraints are of
type ‘≤’. Whereas ‘≥’-constraints can be treated analogously, the implementation of
DPS is more complex for equations or even ranged constraints, where both sides are
finite. In that case, we have to set up and maintain two partitions, p` and pr. Internally
SCIP treats all constraints as ranged constraints, thus the linking constraints (3c) are
of the form b̃ ≤

∑
q∈[k] Ãqxq ≤ Ũ where b̃, Ũ ∈ (R ∪ {±∞})|Lrow|. Although these

constraints can be reformulated to ‘≤’-constraints, we keep them in order to not lose
information. So for each linking constraint i ∈ Lrow with finite right-hand and left-hand
side the problem reformulation as well as the partition update is slightly different and is
applied as follows: For each block q ∈ [k] we introduce two partition values piq,` and piq,r,

and two slack variables ziq,` and ziq,r, thus (6c) becomes piq,` ≤ Ãiqxq − ziq,r + ziq,` ≤
piq,r. When updating the partition it is important that the upper ranged constraint
stays feasible, that is, to ensure that piq,` ≤ piq,r. So we calculate one common update
vector for both sides in which the values of the slack variables of the right-hand side
count in with positive sign and the values of the slack variables of the left-hand side
count in with negative sign. This update vector is added to both partitions.

Besides updating the partitions, we also have to update the penalty parameter λti for
each linking constraint i ∈ Lrow. They are initialized with value 1 and updated if two
times in succession at least one of the corresponding slack variables is strictly positive.
In this case, λti is increased by the number of violated blocks multiplied with 100. This
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update rule can not lead to numerical problems, since in our implementation the number
of iterations is limited to 50 and the number of blocks is usually small enough.

When a feasible solution was found, it can get reoptimized with the original objective
function. To keep this step efficient, several solving limits are set. We solve for every
partially fixed subproblem only the root node and stop after one improving solution.
Apart from that, we stop for each subproblem when the elapsed time exceeds the elapsed
time until DPS found the non-reoptimized solution.

A basic version of DPS was published with SCIP version 8 [11]. Since then the
heuristic has been extended and improved according to the present paper.

4 Penalty Alternating Direction Method

Here we describe a construction heuristic called Penalty Alternating Direction Method
(PADM). It splits a MIP into several subproblems according to a decomposition, whereby
the linking variables get copied and their difference between the copies is penalized ap-
propriately during the iterations in order to determine a feasible solution. The heuristic
shown here is not designed to handle linking constraints. If the decomposition contains
linking constraints, one can attempt to assign them to one of the blocks, for example
by assigning each constraint to that block to which most of its variables belong and
then recomputing the variable labels. A detailed description of penalty alternating di-
rection methods can be found in [25]. For practical applications with a block-separable
structure, such as supply chain management problems, this approach has proven to be
successful [43].

Classical alternating direction methods (ADMs) are extensions of Lagrangian type
approaches [14]. In [25] it is shown that ADMs converge under reasonable assumptions
to so called partial minima. In our context partial minima are characterized by equal
solution values of the linking variables between two successive ADM iterations. However,
a partial minimum generally does not correspond to a feasible solution of the original
problem, which motivates to embed an ADM inside a penalty framework for solving
mixed-integer problems. This can be achieved by using two nested loops. We call the
outer loop penalty-loop and the inner loop ADM-loop.

4.1 Definitions and Reformulation

Consider problem (1) with a corresponding decomposition D in k blocks without linking
constraints. We denote by Lcol

q ⊆ Lcol the set of linking columns occurring in block

q ∈ [k], that is, for each j ∈ Lcol
q there exists a row i ∈ Drow

q with aij 6= 0. Furthermore,

we denote by B(j) ⊆ [k] those blocks containing linking column j ∈ Lcol, which means for
each b ∈ B(j) there exists i ∈ Drow

b such that aij 6= 0. Moreover, we use iteration index
t for the penalty-loop and τ for the ADM-loop. Based on this notation the subproblem
of block q ∈ [k] with penalty parameters µ > 0 can be written as

min
∑
j∈Lcol

q

∑
b∈B(j)\{q}

µq,b,t,+j sb,+j + µq,b,t,−j sb,−j (8a)

s.t. A[Drow
q ,Dcol

q ]x[Dcol
q ] +A[Drow

q ,Lcol
q ]x[Lcol

q ] ≥ b[Drow
q ], (8b)

xj + sb,+j − sb,−j = ξb,τj , ∀j ∈ Lcol
q , b ∈ B(j) \ {q}, (8c)

`j ≤ xj ≤ uj , ∀j ∈ Lcol
q ∪Dcol

q , (8d)

xj ∈ Z, ∀j ∈ I ∩ (Lcol
q ∪Dcol

q ), (8e)

sb,+j , sb,−j ∈ R≥0, ∀j ∈ Lcol
q , b ∈ B(j) \ {q}, (8f)
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Algorithm 2: Penalty Alternating Direction Method

Input: Initial values for ξq,τ and penalty parameters µt > 0.
Output: A feasible solution for problem (1), if one has been found.

1 Set t = 1, τ = 1.
2 while no feasible solution was determined do
3 while no partial minimum was attained do
4 for q = 1, . . . , k do
5 Solve subproblem (8) for block q.

6 Update ξq,τj for all j ∈ Lcol
q in all subproblems b ∈ B(j) \ {q}.

7 end
8 Set τ ← τ + 1.

9 end
10 Choose new penalty parameters µt+1 ≥ µt.
11 Set t← t+ 1.

12 end

where the slack variables sb,+j and sb,−j represent the difference between two copies of

linking variable xj . The right-hand side ξb,τj represents the solution value of the linking
variable in the other block b, which contains a copy of xj , and need to be initialized
beforehand.

4.2 Algorithm

Algorithm 2 shows the basic procedure of PADM. The outer penalty-loop is aborted
when a feasible solution has been found, or when a solving limit has been reached, for
example. The inner ADM-loop is terminated when a partial minimum is reached, this
means the values of the linking variables remain constant. The for-loop inside the ADM-
loop solves the individual subproblems and then updates ξq,τj . If a partial minimum does
not lead to a feasible solution, the penalty parameters must be increased appropriately
to force convergence to a partial minimum that is also feasible.

Since it can be very time consuming to execute the ADM-loop until a partial mini-
mum is reached, it is also possible to terminate earlier. For example, we can abort the
inner loop after a fixed number of iterations.

In subproblem (8) the original objective function

c>[Dcol
q ]x[Dcol

q ] + c>[Lcol
q ]x[Lcol

q ]

is completely replaced by a penalty term. This approach has the advantage that PADM
usually converges faster to a feasible solution. However, the omission of the original
objective function has the effect that often no good solutions are found. To solve this
problem the following procedure can be used. First we try to find a feasible solution
as described in Algorithm 2. Then the linking variables are fixed to the values of the
solution and each subproblem is solved with the original objective function. In some
cases this can improve the originally found feasible solution.

4.3 Implementation Details

Before executing PADM, there is to decide how to initialize the values ξq,τj . In statistical
studies the values of the variables in an optimal or best known solution were examined.
The results for our three test sets described in Section 6 are shown in Figure 2. In the
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Figure 2: The majority of variables are zero in a best or optimal solution.

test set Miplib 93.8 % of the variables take the value zero, 0.3 % are on their nonzero
lower bound, 4.2 % are on their nonzero upper bound (but not on their lower bound),
and only 1.7 % of the variables have a nonzero value between their bounds. Similar but
not such extreme results are observed for both test sets SCM and Cellphone. Thus
the majority of variables are zero and it is obvious to initialize ξq,τj with zero.

This heuristic consists of an outer penalty-loop and an inner ADM-loop. In our
implementation the ADM-loop stops after a maximum of 4 iterations. Subsequently the
penalty parameters µ are updated. We initialize the penalty parameters with one and
increase µq,b,t,+j (or µq,b,t,−j ) after each ADM-loop by factor ten if the slack variable sb,+j
(or sb,−j ) is strictly positive in the subproblem of block q. Since this can lead to very
large values and thus to numerical problems, we apply a sigmoid rescaling similar to
that described by Schewe et al. [43]. If the largest penalty parameter ‖µ‖∞ exceeds the
threshold of ‖c‖∞, each entry µi of µ is rescaled by the sigmoid function

S(µi) := 5 ·
(

µi − 1
2‖µ‖∞

1
10‖µ‖∞ + |µi − 1

2‖µ‖∞|

)
+ 5 + 0.1.

This step keeps the order of the penalty parameters but maps them into the more
controllable interval [0.1, 10.1]. If no feasible solution was found after a maximum of 100
penalty-loops, the algorithm stops.

The subproblems (8) can be warmstarted by using the solution from a previous ADM
iteration. Let (x̄, s̄) be the solution of iteration τ − 1 of block q and ξb,τ be the current
assignments of the linking variables. Then (x̄, ŝ) with

ŝb,+j := max{ξb,τj − x̄j , 0}
and ŝb,−j := max{x̄j − ξb,τj , 0} ∀j ∈ Lcol

q , b ∈ B(j) \ {q}

is a feasible solution of block q in iteration τ and can be used as start solution.
If Algorithm 2 found a feasible solution, this solution can get reoptimized with the

original objective function. In our code the whole problem (1) is copied and the linking
variables are fixed at the value in the found solution. This partially fixed problem splits
up into independent components, which is handled by SCIP during presolve [22, 26]. To
keep the reoptimization step efficient, several solving limits are set. The partially fixed
problem is warmstarted with the already found solution and we stop after one improving
solution. Moreover, we solve only the root node and we stop if the elapsed time exceeds
the elapsed time until the non-reoptimized solution was found by PADM.
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A basic version of PADM was published with SCIP version 7 [24] and the extended
version as presented in this paper was published with SCIP version 8 [11]. The code of
the latter is also identical to the code used for the computational results in Section 6.2.

4.4 Potential of Parallelization

Algorithm 2 in its basic version is not well suited for parallelization due to the condition
of the inner for-loop, since one would actually like to compute all subproblems completely
in parallel and then determine ξq,τ+1

j . This can be realized by splitting the inner for-loop
in two for-loops. In the first loop all subproblems are solved, and in the second loop the
ξq,τj are updated. We have now different options to update ξq,τj . One option is to keep

the update as it is. Another option motivated by [14] is the following: Let x̄b be part
of the solution of iteration τ of block b. Then, for each block q, we can calculate the
updates by

ξq,τ+1
j =

∑
b∈B(j) x̄

b
j

|B(j)|
∀j ∈ Lcol

q .

If the associated linking variable is an integer variable, we can afterwards round ξq,τ+1
j

appropriately. Since these values are independent of q, we can define ξτj := ξq,τj and
simplify subproblem (8) by replacing (8c) and (8f) by

xj + s+j − s
−
j = ξτj and s+j , s

−
j ∈ R≥0 ∀j ∈ Lcol

q

and by replacing the objective function (8a) by

min
∑
j∈Lcol

q

µt,+j s+j + µt,−j s−j .

Note that the size of one subproblem is now independent of the number of blocks and
that the total number of constraints (8c) is now linear in the number of blocks and no
longer quadratic.

We will not continue to pursue the parallel variants. Our code used for the com-
putational experiments in Section 6 can not run in parallel, therefore a computational
study on this would not be meaningful. However, we think this is an interesting topic
for further research.

5 Decomposition Kernel Search

Problems with (exclusively) binary variables usually have a special structure which can
be leveraged to develop tailored heuristics, working efficiently on these problems. Kernel
Search (KS) lies in the intersection of construction and improvement heuristics, as it
tries to find a feasible solution quickly and, then, iteratively attempts to improve it. KS
was initially introduced in fields of the binary problems of portfolio optimization [4] and
(multi-dimensional) knapsack problems [3]. Later on, it was refined as in [29], respect-
ing the “hardness” of resulting subproblems and integrating binary and pure integer
variables. We too make use of the original KS framework and extend it by incorporat-
ing decomposition information. We call the resulting framework Decomposition Kernel
Search (DKS).

In order to keep this chapter self-contained, we formulate the basic KS framework as
stated in [29] in a suitable way for our presentation. After an explanation of the char-
acteristics in basic KS, we highlight our adjustments made in order to incorporate the
decomposition information. Further, we describe implementational details and highlight
enhancements which, to the best of our knowledge, were introduced here for the first
time.
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5.1 Kernel Search Framework

In [29] the kernel is initially defined as a subset of the occurring integer variables. It
is supposed to contain the “promising” variables, i.e., variables likely to play a central
role in good solutions. The remaining integer variables are partitioned into buckets. In
an iterative manner, the original problem is restricted to the union of the current kernel
with one bucket, fixing every integer variable not in this union to zero or its lower bound,
and then solved. Depending on the solution, the kernel is updated before combining it
with the next bucket. The idea behind KS constitutes of solving the restricted problems
quickly due to their (hopefully) small amount of unfixed integer variables and improving
a known solution thereby. As can be seen from Figure 2, the majority of the variables
in a good or optimal solution are zero. Hence, by fixing them to their lower bound
beforehand, which often is zero, we potentially decrease the solution time needed.

We start by giving some notation in order to formulate the basic algorithm precisely.
The subset of integer variables K ⊆ I denotes the current kernel. Further, we define
Nb ∈ N as the number of buckets which the remaining integer variables I\K are divided
into. We speak of a restriction of the original MIP (1) to a set of integer variables J ⊆ I,
whenever all integer variables with indices in I \ J are fixed to their lower bounds (or
zero for negative bounds) and all integer variables with indices in J are unfixed. We note
that in the basic KS framework continuous variables are either not present or unfixed.
In particular, the restricted problem is defined as

MIP(J) := min{c>x : Ax ≥ b, l ≤ x ≤ u, xj = max{0, lj} for j ∈ I\J, xj ∈ Z for j ∈ J}.
(9)

Lastly, we denote an upper bound to the solution value of (1) with z which can be +∞.
The notation enables to formulate the basic KS algorithm; see Algorithm 3. Note that
setting B1 = ∅ forces the first restricted MIP to be solved on the initial kernel only.

Algorithm 3: Kernel Search

Input: Problem (1) with z ∈ R ∪ {+∞}.
Output: Solution xnew with znew ≤ z for problem (1) if one has been found.

1 Set znew ← z.
2 Determine a kernel K ⊆ I.
3 Divide I \K into buckets (Bi)i=1,...,Nb

with B1 = ∅ and Bi 6= ∅ for i > 1.
4 for i = 1, . . . , Nb do
5 Solve MIP(K ∪ Bi) to obtain x̃ or message “MIP(K ∪ Bi) is infeasible”.
6 if MIP(K ∪ Bi) infeasible then
7 Continue with next iteration.

8 else if c>x̃ ≤ znew then
9 Set xnew ← x̃ and znew ← c>x̃.

10 Adjust the kernel K w.r.t. Bi and x̃.

11 end

12 end

5.2 Extension to Decomposition Kernel Search

For the determination of the initial kernel K in step 2 of Algorithm 3, [3, 4] use the LP
relaxation. If a variable’s value in the relaxation exceeds its lower bound, its index is
added to K. In the remainder of this section, we will call such a variable active with
respect to the relaxation. Note that the index of a free variable, i.e., a variable without
any bound, will always be added to K.
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B0 B1 B2
bin 0 1 4
int 1 0 4
con 1 4 9

(a) Number of active variables for instance A
which contains 28 binary, 31 pure integer, and
52 continuous variables.

B0 B1 B2
bin 0 3 2
int 3 0 2
con 1 5 13

(b) Number of active variables for instance B
which contains 28 binary, 28 pure integer and
103 continuous variables.

Table 1: Exemplary number of active variables in two instances.

Now, as we want to incorporate decomposition information in the KS framework,
we require several extensions. The major one tackles the construction of the initial
kernel and the respective buckets. As exemplified in Table 1 for two different instances
from the SCM test set used in Section 6, our observed solutions typically show active
variables in (almost) all blocks and (almost) all variable types. This motivates a block-
wise construction of the kernel and the buckets, where we consider the block with linking
variables as the zeroth block. This construction can lead to kernels and buckets with a
large size in comparison. In order to keep the solution process of the restricted problems
fast and as there exist binary, pure integer, and continuous variables in the general
MIP setting, we, thus, propose a similar separation for the variable types. Note that
an additional split regarding the continuous variables is performed in contrast to the
approaches in [3, 4, 29], where the kernel is considered to consist only of binary/integer
variables.

In particular, we consider the qth block, q ∈ {0} ∪ [k] and define Dcol
0 := Lcol as the

indices corresponding to the linking variables. Then, for every variable xj with j ∈ Dcol
q

and τ ← type(xj), we check for its activity. If the variable is active with respect to a
given solution x∗ of (a relaxation of) problem (1), its index j is added to the set Kτ

q

which we call the binary/integer/continuous sub-kernel (of block q), for the respective
τ ∈ {bin, int, con}. Here and from now on, we use bin, int, con as abbreviations for
binary, pure integer, and continuous, respectively. The resulting initial sub-kernel of
block q and the overall initial kernel are constructed as simple unions of the sets above,
i.e.,

Kq := Kbin
q ∪K int

q ∪Kcon
q , q ∈ {0} ∪ [k],

and
K :=

⋃
q∈{0}∪[k]

Kq,

respectively. Note that, in contrast to the basic KS framework, it is K ⊆ [n]. Hence,
in (9) we have to replace the first occurrence of I by [n].

Note that we include a solution to (1) as a possible indication to determine activity
of variables. Since DKS is integrated in SCIP, feasible solutions may have been found
before DKS is called. Assuming the current best solution to be close to the optimal one,
the former might give a better starting point for the kernel identification than the LP
relaxation.

Although seeming exaggeratedly complicated on first sight, we construct the buckets
analogously for each variable-type-block combination and unite afterwards. In particu-
lar, for every variable type τ and for every block q, we define so-called sub-buckets Bτi, q,
i = 1, . . . , Nb. Then, for each bucket index i = 1, . . . , Nb, we set bucket Bi as the union
of sub-buckets Bτi, q over every variable type τ and block q. According to the inclusion
of different variable types per bucket, we call the final construction multi-level-buckets.

After refining the composition of kernel and buckets, the solution to the restricted
problems (see step 5 of Algorithm 3) will now be addressed. Similar as in [3, 4], we add
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a constraint to enforce the activation of at least one binary or pure integer variable with
index in the current bucket by

∑
j∈Bbin

i ∪Bint
i

xj ≥

 ∑
j∈Bint

i

lj

+ 1. (10)

We excluded continuous variables from the definition of inequality (10) for two reasons:
(i) Continuous variables can exceed their lower bound by a small ε > 0 and be considered
active without a major influence on the objective value. (ii) An enforcement onto a single
continuous variable to exceed its lower bound by a constant, e.g., 1 (as above), can even
lead to infeasibility, as continuous variables can be influenced by scaling, see, e.g. [15].

Now, we are able to formulate the entire Dekomposition Kernel Search (DKS) frame-
work; see Algorithm 4.

Algorithm 4: Dekomposition Kernel Search

Input: Problem (1) with decomposition D and z ∈ R ∪ {+∞}.
Output: Solution xnew with znew ≤ z for problem (1) if one has been found.

1 Take the best solution x∗ to (a relaxation of) problem (1).
2 Use x∗ to determine sub-kernels Kτ

q and unite them to a kernel K.

3 Construct the multi-level buckets Bi for i = 1, . . . , Nb.
4 for i = 1, . . . , Nb do
5 Add the objective cutoff and (10) w.r.t. Bi to MIP(K ∪ Bi).
6 Solve MIP(K ∪ Bi) to obtain x̃ or message “MIP(K ∪ Bi) is infeasible”.
7 if MIP(K ∪ Bi) infeasible then
8 Continue with next iteration.
9 end

10 Set xnew ← x̃ and znew ← c>x̃.
11 Adjust the kernel K w.r.t. Bi and x̃.

12 end

5.3 Implementation Details

It remains to clarify how to define the buckets resulting from sub-kernels. Following [4],
we first find a number of buckets. This is used to split the variables that are not
in the kernel into equally sized buckets (possibly except for the last one). For clear
notation, we define the complement of a binary sub-kernel of block q ∈ {0} ∪ [k] as
K̄bin
q := {j ∈ Dcol

q : type(xj) = bin} \ Kbin
q . The analogous notation is used for K̄ int

q

and K̄con
q . As the different blocks and variable types may vary in absolute numbers of

variables, we compute the number of buckets Nb as a ratio averaged over block and
variable type. In particular, we define the set of block-variable combinations to take
into account with

C := {(q, τ) ∈ ({0} ∪ [k])× {bin, int} : (|Kτ
q | > 0) ∧ (|K̄τ

q | > 0)},

and set

Nb :=


1

|C|
∑

(q,τ)∈C

|Kτ
q |/|K̄τ

q |, if |C| > 0,

0, else.

It is noteworthy that we excluded the continuous variables in this calculation. This
originates from the observation that the number of active continuous variables is low
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in comparison to the overall number of continuous variables. Therefore, including the
continuous variables in the averaged ratio, the latter tends to zero and leads to many
but too small buckets. Accordingly, in each considered restricted problem, only a small
amount of additional unfixed variables is investigated which is not suited to obtain a
reasonable better solution.

Now, we need to explicitly define the sub-buckets. Hence, we consider a block index
q ∈ {0} ∪ [k], a variable type τ , and a bucket index i ∈ {1, . . . , Nb}. For clear notation,
we interpret the complement K̄τ

q of sub-kernel Kτ
q as an ordered tuple and denote

K̄τ
q [n0 : n1] as the subset of K̄τ

q containing its n0th to n1th element. Then, we set

n0 ←

⌈
|K̄τ

q |
Nb
· (i− 1)

⌉
+ 1 and n1 ←

⌈
|K̄τ

q |
Nb
· i

⌉
,

and define Bτi, q := K̄τ
q [n0 : n1]. As mentioned above, the final buckets Bi, i ∈ {1, . . . , Nb},

result from uniting. We note that the bucket sizes may differ by one per variable type
and block involved due to the rounding scheme used.

Finally, we would like to point out two extensions of the procedure presented. The
first extension is based on an observation on the values of the reduced costs and the
second extension tries to realize a balance between solution time and solution quality
by an adaptive MIP-gap control.

Logarithmic reduced costs grouping An analysis of several test instances revealed an
interesting pattern in the reduced costs. For each variable type, the variables could be
divided into groups with reduced costs in different orders of magnitude. In particular,
in Figure 3 we visualize the situation for the pure integer and continuous variables
of instance B from Table 1. We note that almost all binary variables of this instance
belonged to the initial kernel, whereas the rest showed reduced costs of zero. To simplify
the presentation on the logarithmic scale, values between 0 and 1 are presented as 1. For
example, one can observe that we could divide the 28 pure integer variables in Figure 3a
into a group of seven variables with reduced costs of about 200, three variables with
about 20, and the remaining 18 variables with values of 1. For a maximization problem,
it is considered that the higher the reduced cost of a variable the greater a notion
of importance in the optimal solution, see, e.g., [3]. In our case, this can be applied
analogously with low reduced costs due to the minimization problem, which gives rise
to the idea that variables of one group serve similar purposes and, thus, should be
investigated simultaneously in order to choose the “best” one. Hence, such a mechanism
investigates groups with low reduced costs before larger ones, trying to identify the
structure of the problem.

In detail, we algorithmically implemented the observation on the reduced costs as fol-
lows. For each variable type τ and block q, we compute the maximal reduced costs rmax

q,τ .

Assuming Nb > 1, one computes the base value bq,τ = (rmax
q,τ )1/Nb . For bucket index

i = 1, . . . , Nb, the indices of variables with reduced costs in the interval (bi−1q, τ , b
i
q, τ ] are

assigned to bucket Bτi, q. For sub-buckets Bτ1, q, we define the lower bound to be −∞ in
order to respect the edge case, where variables have a reduce cost of below 1. The final
buckets Bi are then received by uniting over all blocks and variable types. Note that
such a procedure replaces the bucket construction described above, but probably leads
to the fact that the sizes of the buckets differ greatly. Though, it is noteworthy that the
amount of buckets Nb computed before stays the same, as throughout all blocks and
variable types the averaged ratio approximately equals the number of reasonable classes
for dividing logarithmically.

MIP-gap control We tried to figure out how to keep the solution time of the restricted
problems in step 6 of DKS (Algorithm 4) low, while maintaining an improving result.
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Figure 3: Reduced costs for pure integer/continuous variables on instance B.

An overall time limit for DKS (specified below) is distributed uniformly on the restricted
problems to investigate. If one problem requires less time, the saved time is distributed
among the subsequent problems. In the event that the time limit for a restricted problem
is reached, an adaptive adjustment of the MIP-gap is made.

Technically, we have implemented the adaptive MIP-gap control as follows. As intro-
duced in Section 5.1, consider the number of buckets Nb. We start by defining a current
gap ∆ = 0, a maximal gap ∆max ≥ 0, and a factor of δ = 1. If a problem reaches the
time limit, we increase ∆ for the consecutive problems by δ∆max/(Nb−1). Therefore, if
all problems hit the time limit, the last bucket is solved for the maximal gap ∆max. But,
if a problem hits the gap limit and, thus, finishes earlier than the time limit, we want
to give more time in order to find a better solution. Here, the factor δ comes into play.
We divide δ by two every time the hit limit changes from gap to time and vice versa. In
other terms, we try to find a gap which balances the allocated time and a desired high
solution quality via binary search.

Settings As DKS was implemented inside the SCIP framework, we fixed three decisive
SCIP-specific parameters in order to use DKS in all its extensions. First, we set the
parameter HEUR PRIORITY = −1102500, which can be considered as medium priority in
comparison to other heuristics. This enables DKS to use a current best solution, which
has hopefully been found by other heuristics before its run, instead of the solution to
the LP-relaxation when identifying the initial kernel. Second, we forced SCIP to call
DKS only at the root node after having already solved the LP-relaxation. On the
one hand, this gives other heuristics the chance to find a feasible solution which can
be used in DKS. On the other hand, we tried to leverage the character of DKS as a
construction heuristic, i.e., finding a feasible solution at the start which the remaining
solving process can work with. We note that DKS may consume a lot of time, as itself
solves constraint subproblems of the original one, which motivates its seldom use. This
does not prohibit a use of DKS on deeper levels of the branch-and-bound tree throughout
further experiments, but is simply out of scope for the current study. Third, we limited
DKS to use a maximum of ten percent of the overall time assigned to SCIP for the
solution of a problem. Clearly, such a value avoids the heuristic to consume all running
time, though we consider ten percent to be quite a lot.

Additionally, we set varying values for four internal, DKS-specific parameters, re-
sulting in three different settings to be investigated. A summary is given in Table 2. In
the following, we describe the parameter’s effect and the respective choice of values.

As described in Section 5.2, the decomposition information is used to identify a
kernel and the respective buckets. This can be avoided by setting a parameter called
use decomp to false. In such a case, the heuristic does not respect different blocks
and distinguishes by variable type only. The described (logarithmic) sorting in reduced
costs can be conducted in either case. Its (de)activation can be controlled by setting
sort redcost respectively.
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use decomp sort redcost add usecon add objcut

dks default True True True True

dks no cut True True True False

ks default False False False False

Table 2: Parameter combinations defining DKS settings.

The main part of the computing time required by DKS is devoted to solving the
resulting subproblems. Since trying to accomplish an exact solution of the subproblems
may lead to unreasonable long running times of the heuristic, we introduce the param-
eters add usecon and add objcut to overcome that issue. The parameter add usecon

enables the inclusion of constraint (10) und the parameter add objcut inserts a objective
function value cutoff constraint to avoid worse solutions.

For our computational study, we defined three different settings: dks default,
dks no cut, ks default. The first one enables every extension included and, thus,
serves as a default setting for DKS. In order to compare the specific use of the objec-
tive cutoff, we defined dks no cut which only differs to dks default in the use of the
mentioned constraint. Lastly, we wanted to compare these two settings to the basic KS
framework as presented in Algorithm 3. Hence, we forced the setting ks default to not
use the decomposition, as well as no additional constraints or sorting.

6 Computational Results

In this section we present computational results for the decomposition heuristics in-
troduced in Section 3, Section 4, and Section 5. All heuristics were implemented
in C and integrated as heuristic plugin in SCIP. The code is available at https:

//github.com/khalbig/decomposition-heuristics [36].

Computational setup All presented computational results were generated on a compute
cluster using compute nodes with Xeon E3-1240 v6 processors with 3.7 GHz and 32
GB RAM; see [19] for more details. The optimization problems are solved by using
SCIP 8.0.0 [11] linked with SoPlex 6.0.0 [11] as LP solver.

We used a time limit of 20 minutes. To avoid interactions between the presented
algorithms, in runs for one heuristic the other two were deactivated. Furthermore, we
have deactivated the only other decomposition heuristic in SCIP, namely GINS [24],
which, however, is not within the scope of this paper. Apart from that, all parameters
of SCIP that do not belong to one of the presented heuristics have been left at their
default settings.

Providing Decompositions To have a decomposition available, of course, the solver itself
could create such information. Widespread and efficient methods to create a decompo-
sition are, for example, specialized graph partitioning algorithms [5, 13, 32, 33, 35, 45]
or hypergraph partitioning [37, 38]. But in practice the user is aware of details of the
model and the underlying problem structure to generate an appropriate decomposition.
Usually such a decomposition is much more useful than a solver-created decomposition
and one saves the time of creation.

SCIP 7.0 [24] has been extended by the necessary capabilities to read decomposi-
tions into a central storage, so heuristics and other plugins can query them. Classical
formats to store MIPs such as .mps, .lp, or SCIP’s own .cip format do not convey
decomposition information to the solver. A decomposition can be entered to SCIP as a
separate .dec-file, for example, which contains the row labels Drow of a decomposition
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Figure 4: Example of .dec-format with rearranged constraint matrix for the
MIPLIB 2017 instance binkar10 1 with decomposition from [50].

assigned to the respective block or to the linking rows. After scanning through the row
labels, the column labels Dcol are automatically determined by means of the row labels
to complete the decomposition information.

An example of the .dec-format with associated rearranged constraint matrix A is
shown in Figure 4. A .dec-file starts with a section that contains the number of blocks
and then follows for each block a section that lists the names of the rows that are part
of this block. Finally, the special section MASTERCONSS contains all rows belonging to
Lrow.

During the solution process the original problem (1) may be changed, for example,
by deleting rows or fixing columns in presolve [2, 22, 26]. Such model changes then also
lead to an appropriate adjustment of the decomposition information.

More details about the management of decompositions in SCIP can be found in [24].

Test sets We consider three sets of instances. The first set of instances is based on the
MIPLIB 2017 [28, 50] benchmark set. This set originally contains 240 instances, but we
removed the 8 infeasible instances since our heuristics are not designed to detect infeasi-
bility. Each instance has up to four decompositions. The first type of decomposition is
given by the publicly available decompositions at [50] (denoted by “miplib2017”). The
other three types are generated by GCG [21] version 3.0.2 using different parameters
and are accessible at [36]. For type “plain miplib” default parameters for the MIPLIB
2017 were used, for type “deactivate nonzero” the nonzero classifier was deactivated in
addition, and for type “hrcgpartition” the hypergraph method was activated in addition.
Trivial decompositions with only one block and decompositions that were immediately
recognized as duplicates were removed, as well as instances for which no decomposition
could be detected. The final test set contains 216 unique instances with up to four de-
compositions each, resulting in a test set with 694 instance-decomposition combinations.

The second set is based on 41 real-world supply chain management (SCM) instances
supplied by our industry partner SAP [40]. The most important components are stock
keeping, capacity restrictions, transport, production and demand fulfillment. A more
detailed description can be found in [23]. Since these instances contain many inde-
pendent components (see [22]), we selected only non-trivial integer and mixed-integer
components. In our case, a component is called non-trivial if it has at least 100 variables,
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including at least one integer variable, and if it cannot be solved to optimality within
10 seconds with SCIP 8.0.0. To avoid that some original instances are overrepresented
we removed some of the components, which belong to the same original instances and
have a similar size. The remaining components form our test set of 33 SCM instances.

The SCM instances were decomposed according to economic aspects. Each instance
covers a period of time, which is subdivided into so-called time buckets. Thus one pos-
sibility is to decompose according to time buckets (B). Another option is to decompose
according to organizational units of the supply network, called locations (L). A third
option is a decomposition according to products (P). In our instances products can be
raw materials as well as intermediate products and end products. The fourth and last
way is to decompose by production process models (S), which transform one or more
products into one or more other products.

The number of blocks is equivalent to the number of different time buckets, locations
and so on (denoted by “0”). Since this number can be very large, which is not always an
advantage, we have also remerged the blocks into 2 and 4 blocks respectively. So each
instance can have up to 12 different decompositions. After removing obvious duplicates
and decompositions with only one block we get a test set of 322 instance-decomposition
combinations.

The third set contains randomly generated supply chain management instances based
on real-world supply chain management models. They represent a fictive company
procuring components, producing cellphones of different types, transporting to distri-
bution centers, and satisfying costumers demand. This set contains 56 instances with
different number of time buckets and customers. Analogously to the SCM test set it
is decomposed in time buckets (B), locations (L) and products (P). Also the number
of blocks is determined in the same way. This test set is provided by SAP [40] and is
publicly available at [41]. We have selected all 56 instances with discrete time buckets
only and with lot size factor 3, and all corresponding nine types of decompositions.
This results in a test set of 504 instance-decomposition combinations and we refer to it
hereinafter as Cellphone.

Measurement In order to evaluate algorithmic performance of the presented heuristics,
we compare shifted geometric means of primal integrals, both for the test set as a whole
and also for insightful subgroups. The primal integral is an absolute measure for the
performance of heuristics. It takes the evolution of the incumbent solution over time
into account, thus favoring algorithms that find good solutions early. For a detailed
description of the primal integral see Berthold [8]. The best known solution for an
instance as base value is given by publicly available solutions (see [50]) and/or by results
of previous and for this paper used runs.

After computing the primal integral for each instance-decomposition combination, we
calculate the shifted geometric mean (SGM) of these values. For values w1, . . . , wN ≥ 0
we determine the SGM by

sgm(w1, . . . , wN , s) :=

(
N∏
i=1

(wi + s)

) 1
N

− s, (11)

where we use a shift value of s = 1. Compared to the arithmetic mean, outliers with
large absolute values are not overrepresented, and owing to the shift, very small values
are not overrepresented. For further discussion on evaluating computational results with
SGM see for example [1].

The SGM for one setting for a set of instance-decomposition combinations is com-
pared to the SGM for the same set of instance-decomposition combinations running
without all presented three heuristics. A ratio less than 1 indicates an improvement in
performance.
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Table 3: Number of instances on which DPS was called or found an accepted
feasible solution

Test set Setting #Called #Found

Miplib (#694)

default 338 76
reopt 338 98
lp 76 24
lp reopt 76 32

SCM (#322)

default 182 93
reopt 182 104
lp 143 71
lp reopt 143 73

Cellphone (#504)

default 504 482
reopt 504 482
lp 430 60
lp reopt 430 60

6.1 Dynamic Partition Search

In the following we analyze the performance of DPS. The construction heuristic was
called at two different times—as first heuristic after the presolving process, i.e., pre-root
(default) and as first heuristic after root node computation (lp). In the first case, we
use for each linking constraint i ∈ Lrow as initial partition the evenly divided right-hand
side, in the second case, the LP solution is available and thus the initial partition bases
on it. Either way, we respect the minimal and maximal activity of each row i of Ãqxq.
Furthermore, we run each with (reopt or lp reopt) and without reoptimization. Thus
we consider four different settings.

First, we examine how many times DPS was called on the three different test sets
with the four different settings, and how many times DPS successfully found a feasi-
ble solution. These results are given in Table 3. An instance-decomposition combi-
nation is counted in column “Called” if the heuristic was called at least once on it.
Although DPS is called only at the root node, it can get called several times on one
instance-decomposition combination, because of restarts in SCIP. In column “Found”
all instance-decomposition combinations are counted on which DPS successfully found
at least one feasible solution.

Now we look exemplarily at a few numbers of Table 3. On Miplib running pre-root
DPS could get called on 338 out of 694 instance-decomposition combinations. Due to
general restrictions it is not possible to call DPS in every case. This restrictions are, for
example, nonlinear linking constraints (such as orbitope constraints) due to upgrading
of constraints during presolving, or a high estimated memory usage that could exceed
the memory limit due to a high number of blocks. In addition, running after-root the
solving process might not have reached the calling point. In 76 out of these 338 cases
DPS successfully found a feasible solution. If reoptimization is activated, DPS found pre-
root on 22 instance-decomposition combinations in addition a feasible solution, whereby
the reoptimization step run successfully in 74 cases. Obviously, the reoptimization step
can only find a solution if DPS has already found one before. However, the first solution
is sometimes not accepted by SCIP because the objective value is considered infinite
or because exactly this solution has already been fed in by another heuristic. It is
noteworthy that on Cellphone running pre-root DPS could get called in every case
and also in almost all cases an accepted solution was found.

In the following, we evaluate the performance of the heuristic using the primal in-

20



Table 4: Ratio of SGM’s of primal integral grouped by decomposition for DPS
for test set Miplib

deactivate nonzeros hrcgpartition miplib2017 plain miplib best all
setting #93 #94 #89 #62 #124 #338

default 1.69 1.60 1.50 1.53 1.48 1.58
reopt 1.72 1.58 1.50 1.54 1.47 1.59
lp 1.14 1.11 1.05 1.11 1.07 1.10
lp reopt 1.13 1.10 1.03 1.11 1.06 1.09

tegral. To get more meaningful results and not dilute them, we need to clean our data
first. We remove an instance-decomposition combination for all settings if any of the
following occurs: (i) SCIP did not terminate in a clean way for one setting; (ii) our
heuristic was not called at least for one setting; (iii) the primal integral is less than 10−4

for all settings. Property (ii) would not measure the performance of the heuristic but
rather the performance variability of the used compute nodes. Instance-decomposition
combinations with Property (iii) would lead to extreme ratios, which do not give a
reliable statement of the performance.

In Table 4, Table 5, and Table 6 the ratios of the primal integrals for the three test
sets are given. Column “all” first gives the number of instance-decomposition combi-
nations after cleaning the data and then the ratio of the shifted geometric means of
the primal integral for all four settings. For column “best” we select for every unique
instance the corresponding decomposition that yields the best ratio of the primal inte-
grals. So, assuming we know which of the given decompositions is best for DPS, this
is the achievable performance improvement. The other columns subdivide all instance-
decomposition combinations of column “all” according to the type of decomposition.

In Table 4 for test set Miplib, one can see that after clean up 338 out of 694
instance-decomposition combinations are left corresponding to 124 individual instances.
Unfortunately, no performance improvement can be measured, even if the best decompo-
sition is selected. Decompositions of type miplib2017 still seem to be the most suitable
for DPS.

However, we can spot some instances where DPS achieves a strong performance
improvement. For example, running pre-root on instance proteindesign121hz512p9

DPS is the only root heuristic that can find a feasible solution for all four types of
decompositions, whereby the initial partition leads directly to a feasible solution and no
update is necessary. The solution of DPS is the only one until the time limit is reached
and SCIP stops with a MIP-gap of 5%. In contrast, SCIP without DPS restarts and
the first feasible solution is found after 45 branching nodes by the LP relaxation. The
run stops with a MIP-gap of 8%. Comparing the settings, DPS drastically reduced the
primal integral by about 78% on this instance. As a second example, running after-
root on instance lotsize with decomposition deactivate nonzeros or plain miplib the
solution fed by DPS reduces the MIP-gap from 244% to 67% and with reoptimization
to 37%. This leads to a reduction of the primal integral of 27% without reoptimization
and 38% with reoptimization.

The results for test set SCM are given in Table 5. After cleanup, 182 out of
322 instance-decomposition combinations are left, belonging to 21 individual instances.
Whereas no performance improvement can be seen for setting default on the whole test
set, even if the best decomposition is selected, the situation changes with reoptimization.
Assuming we know which is the most useful decomposition, we get an 8% improvement.
Running pre-root the performance varies between the different types of decomposition,
with only decompositions by location (L) with more than two blocks leading to an av-
erage improvement up to 4%. Running after-root we get an improvement of 2% and
4%, respectively, assuming we know the best decomposition. Looking at the different
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Table 5: Ratio of SGM’s of primal integral grouped by decomposition for DPS
for test set SCM

B L P S best all

2 4 0 2 4 0 2 4 0 2 4 0
setting #21 #21 #19 #18 #10 #10 #16 #16 #13 #11 #12 #15 #21 #182

default 1.29 1.60 1.67 1.31 0.96 0.98 1.35 1.31 1.52 2.07 1.58 1.57 1.09 1.42
reopt 1.29 1.58 1.67 1.08 0.99 1.00 1.39 1.27 1.44 1.85 1.60 1.58 0.92 1.38
lp 1.04 1.10 1.19 1.20 1.02 1.28 0.96 0.94 1.24 1.29 1.19 1.24 0.98 1.13
lp reopt 1.06 1.10 1.20 1.18 1.03 1.28 0.98 0.97 1.24 1.30 1.21 1.24 0.96 1.13

Table 6: Ratio of SGM’s of primal integral grouped by decomposition for DPS
for test set Cellphone

B L P best all

2 4 0 2 4 0 2 4 0
setting #56 #56 #56 #56 #56 #56 #56 #56 #56 #56 #504

default 1.93 1.99 1.89 1.95 2.01 1.86 2.02 2.13 1.91 1.68 1.96
reopt 2.00 2.05 0.99 1.36 1.40 0.82 2.01 1.81 0.82 0.65 1.39
lp 1.06 1.05 1.03 1.08 1.07 1.02 1.39 1.64 1.03 0.98 1.14
lp reopt 1.07 1.05 1.03 1.08 1.05 1.02 1.41 1.64 1.03 0.97 1.14

types of decomposition, an improvement can be observed on decompositions by product
(P) with maximal four blocks. Note that the figures with best decomposition can be
even worse than over one type of decompositions or over all possible decompositions.
Although seeming counterintuitive at first sight, this results from taking a different
amount of figures into account, when calculating the shifted geometric means. In partic-
ular, the number of instance-decomposition combinations varies between various types
of decompositions. This phenomenon also occurs in further tables of this paper.

Considering these results, one can derive the following appropriate control for using
DPS on SCM: If a decomposition by product (P) with maximal 4 blocks is available,
DPS is called on SCM after-root. Given a decomposition by location (L) with more
than two blocks DPS is called pre-root. The reoptimization step should be deactivated,
although it leads to a big performance improvement if one knows the best decomposition.
In all other cases DPS is switched off.

On this test set we could also observe an interesting behavior. These instances
are supply chain management problems and therefore have a special structure based
mainly on a network with a multi-commodity flow. They contain many flow conservation
constraints at the network nodes, thus these constraints can also be linking ones. Since
these are equations with side equal to zero, the initial partition value running pre-root
is zero for every block. Consequently, if the incoming flow corresponds to one block and
the outgoing flow to another block, there can be no commodity flow at this network
node for the initial partition. Nevertheless, DPS can find a solution directly or after
some iterations, because, for example, unfulfilled demand is penalized in the original
objective function. When iterating, the partition is updated only to the extent that a
feasible solution is found. Reoptimization can subsequently improve the objective value
but parts of the commodity flow are still fixed to zero. Running after node the initial
partition is derived from the LP solution. If there is a positive flow in the LP solution,
also the partition value is not zero for every block and, thus, the commodity flow is
not fixed to zero. Thus reoptimization has better possibilities to improve the objective
value. Calling pre-root DPS can nonetheless lead to an improvement in performance
since at this early stage in the solving process only few other heuristics are able to find
feasible solutions.

Finally, we take a look at the results for test set Cellphone in Table 6. After

22



cleanup, still all 504 instance-decomposition combinations are left, belonging to 56 indi-
vidual instances. Again no performance improvement can be seen for setting default,
even if the best decomposition is selected, but the situation changes with reoptimization.
Assuming we know which is the best decomposition, we get a remarkable improvement
of 35%. The performance varies widely between the different types of decomposition.
Whereas using decompositions with two or four blocks leads to a clear performance
degradation, using decompositions with a higher block number depending on the prob-
lem structure leads to a clear performance improvement.

Running after-root the results are not such extreme. Knowing the best decomposition
we could get an improvement of 2% and 3%, respectively, but there is no specific type
of decomposition which leads to that improvement.

The types of decomposition L 0 and P 0 with reoptimization and calling DPS pre-
root lead by far to the best results on Cellphone. An appropriate control for a call
of DPS on Cellphone could be that DPS is called pre-root with reoptimization if and
only if a decomposition by location (L) or product (P) with a block number determined
by the number of locations or products is available. Otherwise DPS is switched off.

In summary for all test sets, the performance of DPS depends strongly on the struc-
ture of the instance and on the used decomposition. Whereas Miplib is very inhomo-
geneous and the decompositions are mostly automatically generated, SCM and Cell-
phone are known to be supply chain management problems and the decompositions
have been created according to economic aspects. In particular, we know the structure
of the Cellphone instances, which are very similar and only scaled in size. We observed
that the more we know about the instances and decompositions of a test set, the better
the performance, as the heuristic can be adjusted accordingly.

6.2 Penalty Alternating Direction Method

For the following performance analysis PADM was called at two different times—as
first heuristic after the presolving process, i.e., pre-root (default), and as first heuristic
after root node computation (lp). In the first case, we initialize for each linking variable

j ∈ Lcol right-hand side ξb,τj with zero; see Figure 2. In the second case, the LP solution

is available and thus ξb,τj is initialized with the LP solution value of the corresponding
linking variable. Furthermore, we run each with (reopt or lp reopt) and without
reoptimization. Thus we investigate four different settings.

In Table 7 we see how often PADM was called and found a solution. This table is
structured in the same way as Table 3 for the results of DPS. For Miplib and SCM our
heuristic is able to find a feasible, accepted solution in 50 to 70 percent if it was called.
For the Cellphone test set it is noticeable that for decompositions with a block number
given by the number of time buckets, locations or products in the model (“0”), and for all
decompositions running after-root, the heuristic could not get called at all. The reason
is that the linking constraints could not get assigned appropriately to one block. This
issue could in principle be overcome, but we would like to keep the implementation of
PADM applicable to MIPs in general, and we also do not want to completely restructure
the decomposition within PADM, so we did not invest any further work.

Now, we evaluate the performance of PADM using the primal integral. The results
are given in Table 8, 9 and 10, which are structured in the same way as the corresponding
tables for the evaluation of DPS in Section 6.1 and the data is also cleaned up beforehand.

On Miplib, see Table 8, 124 instance-decomposition combinations belonging to 52
individual instances are left after cleanup. Unfortunately, no performance improvement
can be measured, even if the best decomposition is selected. With setting lp or lp reopt

the ratios are partially neutral, but this is also due to the fact that PADM could get called
less often. Note again that the ratio for the best decomposition can be worse than the
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Table 7: Number of instances on which PADM was called or found an accepted
feasible solution

Test set Setting #Called #Found

Miplib (#694)

default 126 63
reopt 126 68
lp 30 15
lp reopt 30 16

SCM (#322)

default 136 95
reopt 136 95
lp 100 56
lp reopt 100 56

Cellphone (#504)

default 247 247
reopt 247 247
lp 0 0
lp reopt 0 0

Table 8: Ratio of SGM’s of primal integral grouped by decomposition for PADM
for test set Miplib

deactivate nonzeros hrcgpartition miplib2017 plain miplib best all
setting #29 #32 #35 #28 #52 #124

default 1.32 1.19 1.29 1.42 1.29 1.30
reopt 1.31 1.15 1.30 1.45 1.27 1.29
lp 1.00 1.06 1.05 1.00 1.06 1.03
lp reopt 0.99 1.06 1.05 1.00 1.05 1.03
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Table 9: Ratio of SGM’s of primal integral grouped by decomposition for PADM
for test set SCM

B L P S best all

2 4 0 2 4 0 2 4 0 2 4 0
setting #21 #17 #7 #18 #10 #9 #18 #17 #9 #5 #4 #1 #26 #136

default 1.47 1.96 5.01 1.30 0.90 0.89 1.27 1.37 0.99 1.01 1.01 1.02 1.17 1.35
reopt 1.41 1.99 5.04 1.04 0.92 0.90 1.30 1.40 1.00 1.02 1.04 1.00 0.97 1.32
lp 1.11 1.09 2.26 1.28 1.06 0.93 1.14 1.12 1.22 1.03 1.04 0.98 0.99 1.15
lp reopt 1.12 1.10 2.25 1.27 1.07 0.94 1.15 1.12 1.23 1.07 1.00 1.00 0.98 1.15

Table 10: Ratio of SGM’s of primal integral grouped by decomposition for
PADM for test set Cellphone

B L P best all

2 4 0 2 4 0 2 4 0
setting #49 #40 #0 #51 #49 #0 #30 #28 #0 #52 #247

default 2.10 2.40 - 2.19 2.27 - 2.34 2.20 - 2.01 2.24
reopt 2.15 2.36 - 2.20 2.28 - 2.34 2.20 - 2.00 2.25

ratio for all instance-decomposition combinations because not all types of decompositions
exist for each instance.

However, we can identify some cases where PADM provides a strong performance
improvement. Having a look at instance net12, we observe that PADM could get called
pre-root if one of the types hrcgpartition, miplib2017 or plain miplib of decompositions
was used. In all three cases, PADM successfully fed in a feasible solution, which could
not get improved by the reoptimization step. Running without PADM SCIP finds the
first feasible solution after 46 branching nodes. The primal integral was reduced by
our heuristic to about 42%. Also on 50v-10 with decomposition deactivate nonzeros
running after-root PADM is successful. Without reoptimization the found solution is
not an improving solution and the ratio of the primal integral is neutral, but with
reoptimization the found solution improves the current primal bound and the primal
integral is reduced by approx. 29%.

The results for test set SCM are given in Table 9. On the complete test set there is
no performance improvement but looking at the best decomposition or single types of
decompositions one can observe a performance improvement up to 11%. Especially the
type L 0 stands out positively across all settings. The degradation in performance for
decompositions by location into two blocks comes mainly from the 9 additional instances
that inherently have only two locations. Therefore, the supply chain management prob-
lems with multiple locations in this test set appear to have the ideal structure to be
solved by PADM using the corresponding decomposition. To get an overall performance
boost one should call PADM only if a decomposition of type L 0 is available and other-
wise disable PADM.

Finally, we take a look at the results for Cellphone in Table 10. A ‘-’ marks that
PADM could not get called for this setting and type of decomposition. The rows for
lp and lp reopt are not displayed since PADM could not get called at all. If PADM
was called, it found a feasible solution in all cases. However, we can not observe an
improvement in performance for one of the considered (sub-)sets and it is also noteworthy
that the ratios all fall within the same range. Investigating the results in more detail,
we were able to find a possible explanation for this behavior: The pre-root heuristic
Shift-and-Propagate [10] seems to be a powerful tool for this kind of instances, since in
the comparison run without our decomposition heuristics the first solution was mostly
found by it. Comparing the solution quality, one can see that Shift-and-Propagate
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Table 11: Number of instances on which DKS was called or found an accepted
feasible solution

Test set Setting #Called #Found

Miplib (#694)
dks default 376 178
dks no cut 376 256
ks default 379 262

SCM (#322)
dks default 121 27
dks no cut 121 75
ks default 121 75

Cellphone (#504)
dks default 359 0
dks no cut 359 321
ks default 360 270

outscored PADM in all cases. Even enabling the reoptimization step does not improve
the situation, as it was successful in only two cases and otherwise the solution limits
have been reached. It might appear that this is just wasting computation time for a
useless solution from PADM, but the fact is that Shift-and-Propagate is no longer called
if a feasible solution already exists, such as fed in by PADM. Thus, the performance
degradation comes mainly from disabling Shift-and-Propagate, which also explains the
consistent degradation across the types of decompositions, since Shift-and-Propagate is
independent of decomposition information.

In conclusion, we could observe promising results for PADM on certain subsets.
Performance might be improved, especially on Cellphone, by adapting the algorithm
specifically to the test set under consideration and changing the default parameters of
SCIP. We explicitly decided against this in order to be able to apply PADM to general
MIPs and also do not want to interfere with the behavior of the software SCIP per
se. In spite of this, PADM can provide a strong performance improvement in particular
cases and especially the results for the real-world supply chain management instances
(SCM) are quite pleasing.

6.3 Decomposition Kernel Search

For DKS, we introduced three different settings to investigate which are summarized in
Table 2. In similar fashion to Table 3 and Table 7, we compare calls of and feasible
solutions found by DKS. As we see in Table 11, every setting was called for almost the
same amount of times. The slight difference can be explained by ill-posed decompo-
sitions for the requirements of DKS. In particular, the absence of kernel variables or
the (estimated) usage of too much memory can lead to skip the heuristic. In terms of
found solutions, dks default shows a significant less number. Since the objective cutoff
constraint is the only difference between dks default and dks no cut, we attribute the
smaller number to this property. We note that it does not imply that dks default

fails to find solutions, but only focuses on strictly improving ones. An extreme of this
phenomenon can be observed regarding the Cellphone test set. As explained later
on, dks default seems to not find improving solutions due to the problem type of the
instances in the test set.

We follow the presentation from previous subsections and, hence, consider the per-
formance of DKS regarding the primal integral. Further, all instances were cleaned
according to Section 6.1. We start by showing the performance of all three settings on
the Miplib test set in Table 12. One observes that the standard ks default achieves

26



Table 12: Ratio of SGM’s of primal integral grouped by decomposition for DKS
for test set Miplib

deactivate nonzeros hrcgpartition miplib2017 plain miplib best all
setting #108 #105 #100 #66 #124 #379

dks default 1.13 1.09 1.13 1.16 1.03 1.18
dks no cut 1.12 1.07 1.11 1.15 1.01 1.16
ks default 1.03 1.01 1.04 1.02 1.02 1.06

Table 13: Ratio of SGM’s of primal integral grouped by problem type for DKS
for test set Miplib

BP IP MBP MIP PIP all
setting #49 #48 #193 #77 #12 #379

dks default 1.03 0.82 1.10 1.54 1.31 1.13
dks no cut 0.98 0.80 1.12 1.46 1.30 1.12
ks default 0.81 1.02 1.03 1.16 1.30 1.03

(a) Ratio of SGM’s of primal integral grouped by problem type for DKS for test
set Miplib over all decompositions

BP IP MBP MIP PIP all
setting #16 #16 #64 #24 #4 #124

dks default 0.95 0.72 1.02 1.31 1.49 1.03
dks no cut 0.82 0.72 1.06 1.23 1.48 1.01
ks default 0.81 1.03 1.03 1.09 1.48 1.02

(b) Ratio of SGM’s of primal integral grouped by problem type for DKS for test
set Miplib with best decompositions

a slightly better result on all decomposition types compared to the DKS-settings, but
also fails to improve the runs without any Kernel Search framework.

Due to the ambiguous figures and as DKS was initially proposed for binary problems
only, we present in addition a distinction by problem type. Here and in the remaining
subsection, we differ between

− binary problems (BP), containing binary variables only,

− integer problems (IP), containing pure integer and binary variables,

− pure integer problems (PIP), containing pure integer variables only,

− mixed-binary problems (MBP), containing continuous and binary variables, and

− mixed-integer problems (MIP), containing all three types of variables.

Having a look in the split by problem type in Table 13, setting ks default attains
an improvement of nearly 19% on average on BPs over all decompositions and only has
slightly negative performance on the biggest problem type class MBP. All three settings
fail to tackle mixed- or pure-integer problems. Particularly noteworthy, however, is the
performance of dks default and dks no cut on IPs which show binary and pure integer
variables, but no continuous ones. Here, we achieve an improvement of 18% and 20%
on average and even 28% with the best decomposition. We emphasize that its reason
lies in the application of logarithmically reduced cost sorting, as well as the multi-level
structured buckets. Hence, one could try to call DKS inside the SCIP framework only
when trying to tackle IPs with decomposition information.

On the SCM test set, we investigate the split over decomposition types first. Here, we
observe that dks default performs on average slightly worse than without the heuristic,
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Table 14: Ratio of SGM’s of primal integral grouped by decomposition for DKS
for test set SCM

B L P S best all

2 4 0 2 4 0 2 4 0 2 4 0
setting #14 #14 #14 #11 #5 #5 #10 #10 #9 #10 #10 #9 #14 #121

dks default 1.01 1.00 1.01 1.01 1.03 1.02 1.02 1.01 1.02 1.01 1.01 1.02 1.00 1.01
dks no cut 1.56 1.58 1.66 1.74 1.09 1.09 1.05 1.05 1.02 1.04 1.04 1.02 1.53 1.27
ks default 1.54 1.54 1.55 1.72 1.07 1.07 1.03 1.03 1.02 1.04 1.03 1.02 1.54 1.24

Table 15: Ratio of SGM’s of primal integral grouped by problem type for DKS
for test set SCM

MBP MIP all
setting #27 #94 #121

dks default 1.01 1.02 1.01
dks no cut 0.99 1.35 1.27
ks default 1.00 1.32 1.24

(a) Ratio of SGM’s of primal integral grouped by
problem type for DKS for test set SCM over all
decompositions

MBP MIP all
setting #3 #11 #14

dks default 0.98 1.01 1.00
dks no cut 0.97 1.71 1.53
ks default 1.00 1.72 1.54

(b) Ratio of SGM’s of primal integral grouped by
problem type for DKS for test set SCM with best
decompositions

even when considering the best decomposition per instance. For the other two settings,
the results are slightly to majorly worse, also showing no clear pattern. Hence, we also
investigate the problem-type-wise presentation.

Here, the performance of DKS on scm test set over all decompositions, as displayed
in Table 15a, shows comparable to not using DKS on MBPs, whereas general MIPs are
treated slightly worse by dks default and quite worse by dks no cut and ks default.
Though, considering to have the best decomposition at hand, see Table 15b, both DKS-
settings achieve an improvement of 2-3% on the remaining three MBPs. On MIPs,
dks default seems to cancel the solution process early enough such that its performance
is comparable, but the other two settings seem to fail heavily on such problem types.

On the Cellphone test set, we start by giving a similar decomposition-wise evalu-
ation in Table 16. Here, an analogous picture shows. When we compare to Table 11,
dks default did not find a new (better) solution. Hence, it used computation time to
execute, but did not result in any improvement which ends up with the slight underper-
formance. The other two settings dks no cut and ks default worsen the performance
by a lot, presumably not terminating in time due to the absence of an objective cutoff.
We assume that the overall negative performance results from the problem structure in
the Cellphone test set. All instances are general MIPs which are hard to tackle for
kernel search frameworks, as we could already observe on SCM and Miplib.

In conclusion, KS and DKS frameworks show promising results on (mixed-)binary

Table 16: Ratio of SGM’s of primal integral grouped by decomposition for DKS
for test set Cellphone

B L P best all

2 4 0 2 4 0 2 4 0
setting #40 #40 #40 #40 #40 #40 #40 #40 #40 #40 #360

dks default 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.08 1.01 1.02
dks no cut 1.21 1.18 1.13 1.21 1.20 1.17 1.21 1.18 1.23 1.10 1.19
ks default 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20
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problems, for which the original algorithm was introduced in [4]. Having a good de-
composition at hand, it appears beneficial on these problem types to run the heuristic.
In contrast, the heuristics struggle on mixed-/pure-integer problems in general which
does not recommend their use on them. Nevertheless, the extensions included in DKS
enable to achieve a great performance on problems which only consist of binary and
pure integer problems at the same time, making it advisable to call DKS on such types.

7 Conclusion

In this paper, we propose three heuristics exploiting decompositions for solving mixed-
integer problems. We restrict ourselves to decompositions specified by the user. Since
the user usually has a concrete idea of the underlying problem structure, it is guaranteed
that this information is made available to a particular heuristic and thus for the entire
solution process. This also saves the usually time-consuming automatic generation of a
decomposition. Finally, the simple transmission of a decomposition by means of a text
file makes it easy for the user to try out many different decompositions and to select one
which is convenient to solving an instance.

All heuristics presented in this publication were included for testing in the non-
commercial solver SCIP and the complete source code is accessible to everyone. The
results of the tests are comprehensible, as two of the three test sets used (Miplib, SCM,
Cellphone), including decompositions, are publicly available.

The numerical results clearly show that using one of the proposed heuristics only
makes sense if the provided instance and decomposition are constructed such that the
respective heuristic can work on it efficiently. For DPS, it would be ideal if the linking
constraints are designed in such a way that the blocks involved request a similar share
of the resources (i.e. right-hand sides) in a good or optimal solution. The proposed
equal distribution of the right-hand side for initialization of the partition then opens up
good possibilities for DPS to find a beneficial solution within few iterations. If the equal
distribution is not present or unknown, we suggest to use the LP relaxation to determine
an initial partition. In contrast, PADM deals with decompositions with linking variables
only. Since good solutions are typically sparse (see Figure 2) and we therefore initialize
the values ξ with zero, the user ideally chooses a decomposition where it is expected that
especially the linking variables are zero in a good solution. Initialization based on the LP
solution may be preferable if this is not known or if relatively many variables are expected
to be nonzero. For DKS, we observed no clear tendency towards a specific decomposition
property leading to constantly good results. However, when the underlying problem
shows binary and integer variables, but no continuous ones, the leverage of any available
decomposition with DKS appears beneficial. Since a user typically deals with the same
problem class over and over again (e.g. daily production schedule with varying demand),
the user can easily find out which of the presented heuristics are appropriate and also
choose a suitable decomposition.

Finally, two research tasks should be addressed which can be looked at based on the
methods presented here. The extent to which parallel computing of individual blocks
of a decomposition is beneficial is not examined, but it would be interesting to see how
the heuristics may profit from using multiprocessor architectures or parallel computing
clusters. DPS is directly parallelizable and for PADM a variant is presented in which
the subproblems can be processed in parallel. However, the success of KS, and thus
DKS, seems to depend on passing information about the (adapted) kernel of the current
iteration to the solution of consecutive buckets. Solving unions of the kernel with each
bucket in parallel therefore requires a restructuring of the algorithm which may affect
its functionality.

As decompositions can be provided by simple but structured text files, the question
arises whether machine learning approaches can distinguish between (dis)advantageous
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decompositions. Even further, such approaches may be applicable to construct ben-
eficial decompositions given some fixed problem type. In such context, the terms
“(dis)advantageous” and “beneficial” surely depend on the specific setting which, for
example, can be based on one of the decomposition heuristics described here.
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[11] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doorn-
malen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig,
A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Matter,
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rano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner,
D. Weninger, and J. Witzig. Enabling research through the scip optimization suite 8.0.
ACM Trans. Math. Softw., 49(2), jun 2023. ISSN 0098-3500. doi: 10.1145/3585516. URL
https://doi.org/10.1145/3585516.

[13] R. Borndörfer, C. E. Ferreira, and A. Martin. Decomposing Matrices into Blocks. SIAM
J. Optim., 9(1):236–269, 1998.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1–122, Jan. 2011. ISSN 1935-8237. doi: 10.1561/2200000016. URL
http://dx.doi.org/10.1561/2200000016.
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