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Abstract

This paper proposes an approach that leverages data on customer purchasing sensitivity to
quoted order-to-delivery times (ODTs) when designing middle-mile consolidation networks to
maximize the profit of e-commerce retailers. Our approach integrates quoted ODT-dependent
sales volume predictions into a new mixed-integer program (MIP) that simultaneously deter-
mines ODT quotes and a consolidation plan, characterized by the frequency of load dispatches
on each transportation lane. The objective of the MIP is to maximize sales revenue net ful-
fillment cost while ensuring that quoted ODTs are met with a high probability as set by the
retailer. We linearize the ODT chance constraints by approximating the waiting delay incurred
between load dispatches using convex piecewise-linear functions. To find high-quality solutions
for large, practically sized instances, we build an adaptive IP-based local search heuristic that
improves an incumbent solution by iteratively optimizing over a selected subset of commodity
ODT and/or route options, which is randomized and adjusted based on solver performance.
Results from a U.S.-based e-commerce partner show that our approach leads to a profit increase
of 10% when simply allowing a marginal change of one day to the current ODT quotes. In
general, we observe that integrating ODT-dependent customer purchasing estimation into a
decision model for joint ODT quotation and consolidation network design achieves an optimal
trade-off between revenue and fulfillment cost.

Keywords: E-commerce logistics; service network design; middle mile; customer time sensitivity.

1 Introduction

In 2022, over 20% of retail sales took place on a digital marketplace, making it the first year ever
for e-commerce revenue to exceed $1 trillion in the United States (USDOC, 2023). Oftentimes,

e-commerce profit margins are thin due to the high fulfillment costs of fast and free shipping, which



customers have grown accustomed to over the years. To remain profitable, e-retailers must operate
efficient and cost-effective fulfillment networks, while also taking their customers’ behaviors and
preferences into consideration. Thus, we consider the problem of jointly quoting customer-desirable
order-to-delivery times (ODTs) (i.e., the amount of time between when an order is placed and when
it gets delivered) and configuring a transportation plan to maximize the overall profit of an e-retailer.
The proposed approach allows planners to accurately identify which commodities to decrease ODT's
for increased revenue (with marginal impact on fulfillment costs) and which commodities, if any,
to increase ODTs for improved consolidation opportunities and decreased fulfillment costs (with
marginal impact on revenue).

Large e-retailers today must manage complex fulfillment networks to ship purchased products
directly to customers. Products may be stocked in and shipped from retailer fulfillment centers
(FCs) or they may be shipped directly from vendors. Depending on the shipment size, package
transportation carriers (e.g., UPS or FedEx), or less-than-truckload (LTL) trucking firms may be
used for shipping direct to customers. Such transportation carriers may offer multiple transit-
time options—each with its own shipping cost—to the e-retailer, who then decides which ODTs
to quote customers. Since customers are often sensitive to these promised delivery times, and
their likelihood of placing an order typically increases as the quoted time shortens (Fisher et al.,
2016; Cui et al., 2023), e-retailers collect data on customers’ online shopping behaviors, such as
clickstream activity, time spent on product pages, and shopping cart additions or removals, to
better understand how customers respond to factors like delivery-time promises (NetChoice, 2023).
For example, by systematically tracking the proportion of customers who finalize a purchase after
being quoted a specific delivery estimate, retailers can fit an error-minimizing statistical model to
better capture how the promised delivery time affects the likelihood of a sale across similar product
classes. In many cases, retailers develop their own proprietary approaches, leveraging unique data
and operational objectives to shape these curves and calibrate model parameters for more accurate,
data-driven predictions.

Since direct shipping to customers is expensive, large e-retailers have recently focused on design-
ing and building middle-mile consolidation networks for outbound shipping (Wayfair, 2021; Amazon
Science, 2021). In such networks, shipments are consolidated into larger loads and moved through
intermediate transfer locations prior to final delivery. These larger loads may be transported as full
truckload (TL) shipments or as larger LTL shipments; in either case, cost scale economies are such

that the e-retailer can reduce total transportation costs using this approach. However, designing a



middle-mile network is challenging, as shipments must be transferred at one or more intermediate
locations, thus substantially increasing the transportation plan complexity.

Greening et al. (2023) develop an optimization methodology for the design of middle-mile net-
works for shipments moving from vendor or FC origin locations to last-mile delivery (LMD) termi-
nals where shipments are handed off to a partner carrier for final delivery. A primary assumption in
that work is that the customer ODT quotes are fixed and must be satisfied with high likelihood by
shipments in a cost-minimizing transportation plan. The ODTs quoted to customers are often set
using historical transit times and consolidation networks are then configured to meet those quotes.
However, e-retailers now have an abundance of customer behavior data where the relationship be-
tween the quoted ODT and a customer’s likelihood of purchasing can be extracted (Cui et al.,
2023).

In this paper, we study how e-retailers can leverage this data by extending previous middle-mile
design methodology to dynamically determine the ODTs to quote to customers while simultaneously

optimizing the network transportation plan. Specifically, in this work, we:

develop a new mixed-integer programming (MIP) model, referred to as ODT quotation and
middle-mile consolidation (ODTQ-MMC), which jointly selects ODTs and designs the con-
solidation network to maximize profit for a large e-retailer while ensuring that ODTs are

satisfied with high probability;

— propose a linearization technique for the hyperparameterized approximation of chance con-
straints on shipments meeting ODT's that interpolates reciprocal functions with convex piecewise-
linear functions, yielding stronger upper bounds (0.88% and 1.66%, respectively, for our two

largest instance groups) in large-scale problems;

— build and demonstrate the effectiveness of an adaptive integer-programming-based (IP-based)
heuristic with randomized search neighborhoods that dynamically adjusts the focus of the
search as well as the size of the restricted MIP solved at each iteration based on the search

performance to find high-quality, profit-maximizing load plans;

— conduct a comprehensive case study using data provided by a large U.S.-based e-retailer to
demonstrate the value of incorporating customer behavior data into the planning of ODT-

constrained consolidation networks.

The remainder of this article is organized as follows. In Section 2, we discuss literature relevant



to the problem and solution approach. We then formulate the ODTQ-MMC problem in Section 3.
In Section 4, we propose an adaptive IP-based heuristic solution approach. In Section 5, we present
results from a computational case study. And finally, in Section 6, we make concluding remarks

and highlight potential areas of future work.

2 Literature Review

There is a large body of research on flow and load planning service network design (SND) problems
(see Crainic 2000, Wieberneit 2008, and Crainic et al. 2021 for reviews of SND in transporta-
tion), which share many similarities to the consolidation network design problems faced by large
e-retailers. In the more recent problems studied, customer expectations are assumed to be satisfied
by meeting fixed ODTs. The problem is then to determine a minimum-cost SND that meets these
time requirements. Quoting ODTs is not trivial and can even affect customer demand (Cui et al.,
2023).

There is a significant amount of research on calculating appropriate ODTs to quote for cus-
tomers of manufactured or make-to-order goods (Duenyas and Hopp 1995, Keskinocak et al. 2001,
Venkatadri et al. 2006, Selguk 2013, Feng and Zhang 2017, to name a few). These studies operate on
the assumption that decreasing delivery time promises increases demand, which is often modeled as
a linear function of time, except for Montreuil et al. 2013 who modeled several non-linear customer
behaviors. Recent works present empirical evidence to quantify the impact of (quoted) ODTs on
customer behavior and demand based on large data sets of e-retailers and difference-in-differences
estimations. Fisher et al. (2016) show the resulting increase in demand from a decrease in average
delivery time through a quasi-experiment, while Cui et al. (2020) demonstrate a decrease in sales
following increased delivery times through a natural experiment. Cui et al. (2023) study the impact
of quoted ODTs rather than actual delivery times, focusing on the informational aspect.

In this paper, instead of calculating commodity-specific ODTs to quote without considering the
network-wide logistics and related costs required to meet these times, as is done in the previously
mentioned work, we simultaneously select ODTs for the retailer’s full set of commodities such that
the profit, or revenue net logistics cost, is maximized. To the best of our knowledge, this problem
of jointly selecting location-dependent customer ODTs (that affect demand volume) within a load
planning SND model that meets delivery time requirements while maximizing profit has not been

studied. Thus, for the remainder of this section, we will review the most relevant flow and load



planning SND literature, as well as literature most relevant to the algorithmic solution approach
we propose.

Flow and load planning SND problems are modeled using flat (static) networks (Powell and
Sheffi, 1983; Crainic and Roy, 1988; Chouman and Crainic, 2015; Greening et al., 2023) or time-
expanded networks (Lin, 2001; Zhu et al., 2014; Hewitt, 2022). To meet customer delivery time
expectations in flat network models, waiting delays for transferred shipments are controlled by
setting truckload frequencies on arcs with positive truck flows. Initially, minimum weekly truckload
frequencies were set to ensure an upper bound on waiting delays (Powell and Sheffi, 1983) and later,
nonlinear average waiting delays were either penalized in the objective (Crainic and Roy, 1988) or
probabilistically-constrained using chance constraints (Greening et al., 2023). In time-expanded
networks, the time shipments spend moving between origins and destinations is explicitly modeled
and constrained to meet delivery time requirements; problems of this type are often referred to as
scheduled service network design (SSND) problems (Zhu et al., 2014; Hewitt, 2022). The detailed
modeling often leads to very large MIP sizes that are difficult to solve and rely on heuristic solution
approaches (Jarrah et al., 2009; Lindsey et al., 2016). The quality of solutions produced also
relies on the discretization of time used to capture shipment consolidation opportunities. More
recent work has developed approaches to dynamically determine exact dispatch times, removing
the need to pre-specify a time discretization (Boland et al., 2017; Hewitt, 2022). However, these
dynamic discretization discovery methods remain computationally expensive and rely on heuristic
solution approaches for realistically-sized instances. Because both arrival of demand and network
operations are assumed to occur continuously throughout the planning horizon and delivery time
requirements are variable, we elect a flat network representation and ensure quoted ODTs are
satisfied using probabilistic constraints.

In this work, we aim to select ODTs based on customer preferences while accounting for ful-
fillment costs such that the profit is maximized. A similar SND problem has been studied where a
carrier needs to design a transportation network that is price- and service-competitive with other
providers such that shippers choose to use their services and profit is maximized (Li and Tayur,
2005; Brotcorne et al., 2008; Ypsilantis and Zuidwijk, 2013; Wang et al., 2023). A common approach
is to use a bilevel programming model, where the carrier’s profit is maximized in the upper level and
the customers’ (or shippers’) costs as measured by origin-destination distances (Brotcorne et al.,
2008), system costs (Ypsilantis and Zuidwijk, 2013), or disutility (Tawfik and Limbourg, 2019;

Nicolet and Atasoy, 2023) are minimized in the lower level. Martin et al. (2021) study the case



where an express delivery provider maximizes their profit by determining the optimal set of guar-
anteed delivery times and associated prices (irrespective of origin or destination locations) given
customer sensitivities to delivery times. Their approach combines a product segmentation and pric-
ing problem and a time-space SSND problem with endogenous delivery quantities and due times.
In all the previously mentioned work, the authors study carrier networks which are much smaller
in scale (e.g., fewer locations, commodities, etc.) compared to e-commerce fulfillment networks.
Thus, instead of adapting the previous methodologies, we opt to develop a more scalable approach
in which pricing is fixed and customer ODT-sensitivities are determined outside of the optimization
model and embedded within our demand representation.

Efficient heuristics, such as IP-based local search (IPLS) (Franceschi et al., 2006; Archetti et al.,
2008), have been developed to provide high quality solutions for flow and load planning problems
(Erera et al., 2013; Lindsey et al., 2016). Given a challenging MIP to solve, IPLS iteratively
solves a restricted version of the MIP, obtained by fixing a subset of variables, in an attempt to
improve an incumbent solution (Hwang et al., 2011). We use this general framework to improve
both consolidation throughout the network and commodity ODT selection by iteratively solving
restricted MIPs with a subset of route and ODT variables fixed to the current solution.

The work presented in this article builds upon that of Greening et al. (2023), where a flat
network model with probabilistically-constrained waiting delays is used to meet fixed customer ODT
expectations and solved using an IPLS. We use a similar nonlinear waiting delay constraint, but
linearize the nonlinear term with a convex piecewise function and linear programming techniques,
as opposed to using binary selecting variables, for better numerical performance for large instances.
We additionally extend the model to dynamically select which ODT's to promise customers (affecting
the volume that must be sent through the network) and optimize consolidation in such a way that
profit is maximized for the e-retailer. Since the resulting model is larger and more complex (due to
the selection of both a route and ODT for each commodity), we develop a new IPLS to find high-
quality solutions that is far more enhanced compared to Greening et al. (2023). Specifically, we
derive new neighborhood selection methods and provide our IPLS with the capability of dynamically
adjusting the focus of the search (i.e., selecting commodity routes, ODTs, or both) and the size of

the restricted MIP solved at each iteration based on the search performance.



3 ODT Quotation and Middle-Mile Consolidation Model

In this section, we define the ODT quotation and middle-mile consolidation (ODTQ-MMC) problem
that maximizes profit by achieving an optimal trade-off between revenue and fulfillment costs while

ensuring ODT quotes are met with a defined probability.

3.1 Problem Description

We consider the problem where a large e-commerce retailer must create a tactical plan for shipping
orders over time from known origin facilities (FCs or vendor locations), where ordered products are
ready for shipment, to known destinations (LMD facilities), where products are re-consolidated for
last-mile delivery. In this problem, vendors are external partner fulfillment locations from which the
retailer only ships to fulfill customer orders, whereas FCs are internal facilities within the fulfillment
network where the e-commerce company both fulfills orders and also re-consolidates shipments
from vendors and other FCs for dispatch. Examples of LMD facilities include those operated by
package transportation companies or postal services (e.g., UPS), branded delivery subsidiaries (e.g.,
Amazon Prime), and/or LTL carriers. The retailer has ODT-dependent (and planning horizon-
dependent) sales volume predictions estimated from customer behavior data, which they use to
select ODT's to quote customers for their orders. Shipments must move from their origins to their
LMD destinations to meet their ODT promises. The retailer ensures shipments arrive on time by
scheduling an adequate number of dispatches per planning horizon between facilities. To minimize
the cost of meeting these deadlines, the retailer consolidates shipments when appropriate into larger
loads (e.g., truckloads or larger LTL shipments) prior to dispatch. These consolidated loads are
then outsourced to third-party carriers for transportation. The ODTQ-MMC problem then is to
simultaneously determine the ODTs to quote customers and a joint set of shipment paths and load
dispatches that move customer shipments from origins to destinations such that profit is maximized.

Let (N, L) define the retailer’s service network. The node set N consists of the facilities in
the network (i.e., vendor locations, FCs, LMD facilities, and transfer locations) and the directed
arc set L consists of the set of potential freight transportation legs connecting pairs of facilities. If
leg [ € L is used in the consolidation plan, all shipments moved on leg [ throughout the planning
horizon must be assigned to a single mode m € M;; a leg-mode combination (I, m) is referred to
as a lane. The assigned mode indicates the type of freight transportation moving the shipments,

along with its associated cost parameters and individual load size bounds. A load is a consolidated



set of customer shipments dispatched along a leg at a single point in time. For each lane (I,m),
we assume that each load of size ¢ incurs a fixed-plus-linear cost, expressed as A, + Bing, and is

min
lm »

max

constrained by an upper bound Qj*,

a lower bound @ and a maximum frequency (or number)

of dispatches Fj,,. Load size bounds Q}** and }I;rin serve as both physical constraints and as key
thresholds where cost parameters change. For example, truckload shipments generally have a lower
bound of 0, whereas LTL modes may enforce a minimum load size to qualify for discounted rates.
Additionally, the lane-specific maximum dispatch frequency Fj,, is necessary to reflect restrictions
on the number of loads dispatched via lane (I, m) over time, particularly for LTL shipments.

Shipment demand is modeled using a set of commodities K, where each commodity k& € K has
a fixed origin o, € N and destination dy € N. An individual commodity represents the aggregated
average shipment size (i.e., the volume) forecasted to flow between oy and dj, per time (e.g., pounds
per week), meaning that many shipments of commodity k& may be sent throughout the planning
horizon. Importantly, we consider that changes in commodity ODT quotes potentially have an
impact on the commodity’s forecasted demand volume and sales revenue. Thus, demand volume
inputs are expressed as ODT-quote-dependent constant rates per time. Let 7, be a set of feasible
ODTs for commodity k and let V) and S}, represent the demand volume and revenue (i.e., sales less
cost of goods sold), respectively, for commodity k when customers are quoted an ODT of ¢t € Ty.
We assume a single ODT t € T}, is selected for each commodity k and is quoted to all customers at
dy, throughout the planning horizon.

Let Ry, represent the set of potential freight routes (or sequences of adjoined freight transporta-
tion legs) for commodity k. Each route r € Ry connecting origin o to destination dj is either a
direct route with a single leg or a consolidation route that uses multiple legs and includes shipment
transfers at transfer facilities in . We assume that each shipment of commodity k follows the
same route throughout the planning horizon; that is, a unique freight route r € Ry must be selected
as the consolidation plan for each commodity k. Associated with each route r is a handling cost
C., proportional to the number of transfers, and a fixed time 7, required to traverse the route,

which includes both the leg transit times and processing times at intermediate transfer facilities.

3.2 MIP Formulation

The ODTQ-MMC model developed in this paper is an extension of the middle-mile consolidation
with waiting delay (MMCW) model developed by Greening et al. (2023). As in the MMCW model,

the ODTQ-MMC uses a flat network representation of capacity allocation to legs and an associated



representation of shipment consolidation into load dispatches such that selected ODTs are met with
the desired probability for each commodity. Freight transportation capacity decisions are modeled
as the frequency of load dispatches on lanes per time and depend on both the physical volume and
the delivery-time requirements of the commodities being transported on that lane.

A load plan satisfies the ODT requirement of commodity k if and only if the lead time of route
r € Ry, transporting commodity k& does not exceed the commodity’s ODT requirement. The lead
time of a route is the sum of its fixed transit and processing time 7, and any waiting delay(s)
experienced at the origin and, if a route has multiple legs, at transfer facilities. The waiting delay
experienced at a location is the time a shipment waits until the next dispatch and is therefore
directly influenced by the frequency of load dispatches on the outbound leg. The number of load
dispatches on leg [ is f; and the headway (i.e., the time between consecutive load dispatches) is %
time units; load dispatches, and resulting headway, are assumed deterministic and uncoordinated
throughout the network. If individual shipment sizes are small as compared to the capacity of
each load and shipments become available for pick up according to a homogeneous Poisson process,
the time between any individual shipment’s ready time at its origin until the next dispatch (or
the waiting delay) will be Uniform(0, %), as the distribution of an observed set of Poisson points
on an interval of known length is uniform. When shipments are transferred at an intermediate
location, an individual shipment’s arrival time is uniformly-distributed on the headway interval of
the outbound leg. Thus, the waiting delay experienced by commodities on every leg [ is a uniform
random variable W; ~ Uniform(0, %)

The probabilistic lead time of a commodity transported by route r is then given by 70+, W7,
and that commodity is considered on time if its lead time satisfies its ODT requirement with
probability at least p, specified by the retailer. Given an ODT-requirement of ¢, Greening et al.
(2023) showed that the chance constraint P (T, + >, W; < t) > p is satisfied if

Stele-m, (1)

e ft e
where p!. € [0,1] is a conservatism parameter algorithmically determined that depends on p, t, and
T
Non-linear constraints (1) include a sum of separable hyperbolic terms for each route. In contrast

to Greening et al. (2023), who reformulate these constraints using binary variables, we propose

another approach that interpolates the reciprocal function % with the convex piecewise-linear

function g(f;) == maxpez., {n(%{l_l) X fi+ %}, illustrated in Figure 1. This approximation



Figure 1: Convex piecewise-linear approximation of waiting delays on leg .

is sufficient, as load dispatch frequencies are integer. Thus, linear programming techniques can
be employed to linearize the ODT constraints (1). In particular, we consider for every leg [ a
non-negative variable h; that represents the headway between truck dispatches on the leg. In an
effort to reflect operational realities, we include a minimum headway H; for each leg [ used in the
lead-time constraints.

Let binary variables x, indicate whether route r € Ry is selected for commodity k& € K, yim,
indicate whether lane (I,m) € £ x M, is used, and wy; indicate that the ODT quoted to customers
for commodity k is t € Ti. Continuous variables vy, represent the total shipment volume assigned
to each lane (I,m) and u, represent the total ODT-dependent volume sent on route r € Ry, for
commodity k € K. Finally, integer variables fi,,, count the number of load dispatches per time on
lane (I,m). The ODT quotation and middle-mile consolidation (ODTQ-MMC) model is formulated

as follows:

max Z Z S]i’wkt — Z Cq«ur - Z Z (Almflm + Blmvlm) (2&)

kek \teTy reRy leL meM,

s.t. Z z, =1, Vk ek, (2b)
rER
up > Viwgy — (1= ) VI, Vre Ry, Vi ek, (2¢)

teTy
Svm=Y_ > u, VieL, (2d)

meM; ke {reRy|ral}
Q%nflm < Ulm < ng—ilelm7 Vm € Ml7 Vie 'C7 (26)
flm < -Flmylmv Vm e Mlv Vie 'Cv (2f)

10



> ym <1, VieL, (2¢)

meM;

1
<Y —(t-T)ww+|r|(1-2,), VreRy,VkeKk, (2h)
ler teTh Pr

—1 n+1 3
hy > -~ (1- L., |4 -1 l
12 n(n+1)fzm+n(n+1) 5 (1=ym), Vnedl, ,{HJ L VYme M, VieL,
(2i)

hl > Hlylmv Vm e Ml7 Vie ‘C’ (2J)
> wpe =1, VkeKk, (2K)
teTk
x, € {0,1}, ur >0, Vre Ry Vke K, (21)
Yim € {0,1}, vim 2 0, frm € Z>0, Vme M, VieL, (2m)
wie € {0, 1}, VteTg, Vk € K. (2n)

The objective maximizes revenue minus the total cost of transportation and handling. Constraints
(2b) ensure that one route is selected for each commodity. Constraints (2c) capture the ODT
adjusted demand volume for commodity k using route r with an ODT quote of ¢, where V" is
the maximum demand achievable for commodity k. Constraints (2d) determine the total volume
flowing on each leg I aggregated across commodities and allocate it to a selected lane (I,m). Con-
straints (2e) set the required load dispatch frequencies for each lane using upper and lower bounds
on load size. Constraints (2f) ensure the lane-specific maximum load dispatch frequency is not
exceeded. Constraints (2g) ensure that each leg uses at most one mode. Constraints (2h) ensure
the consolidation plan satisfies the ODT quote ¢ for the selected route r. Note that if route r is
not selected, the second term on the right-hand side sufficiently relaxes the constraint on the leg
headways because h; < 1 for each leg [ € £. Constraints (2i) and (2j) ensure that at optimality,
the headway of leg [ satisfies h; = max{f%m,Hl} if yy = 1. If, on the other hand, leg [ is not

traversed (i.e., yp, = 0 for every m € M), the constraint is sufficiently relaxed by the big M value

3
29

as this is the largest y-intercept of the piecewise linear functions (as can be seen in Figure 1).
Constraints (2k) ensure that one ODT quote is selected for each commodity. Finally, Constraints
(21)-(2n) define the variables.

For completeness, in Appendix A of the online Supplementary Material, we provide the equiv-
alent formulation of the ODTQ-MMC model with the binary linearization of Constraints (1) and

compare its performance with the MIP (2) using the problem instances from our computational

study. From our experiments, we find that the piecewise-linear interpolation provides stronger up-
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per bounds for large instances when solving the MIP with a commercial solver, as well as produces
similar solutions for all instance sizes when using our heuristic approach developed in Section 4.
Note that the ODTQ-MMC model is a tactical planning model that relies on aggregate aver-
age shipping volumes for commodities, assuming deterministic and uncoordinated dispatches, as
well as fixed transit and processing times. These assumptions simplify the modeling framework
by abstracting away short-term operational uncertainties. Consequently, this tactical modeling ap-
proach does not account for the operational possibility that, due to stochastic demand variations,
certain shipments may exceed the available capacity of the next dispatch. This could lead to delays
or require additional contingency planning to accommodate overflow shipments in an operational

setting.

4 Adaptive IP-Based Local Search Heuristic

Real-world problems of this class are extremely difficult, if not impossible, for commercial solvers
to directly provide good solutions for within reasonable time limits. In this work, we develop a
local search matheuristic that iteratively solves restricted versions of the complete ODTQ-MMC
MIP in an attempt to find high-quality solutions to realistically-sized instances. In this section, we
describe how our adaptive IP-based local search (AIPLS) heuristic works to improve an ODTQ-
MMC solution (see Appendix B in the online Supplementary Material for more details, including
pseudocode).

Given an incumbent ODTQ-MMC solution, we fix all route variables x, and ODT variables
Wyt to their current solution (i.e., all other variables remain free to change when solving the re-
stricted MIPs). Starting with the focus of improving ODT quotation, a randomized subset of
vendors is selected using the first of three defined neighborhood selection algorithms. All ODT
variables for commodities originating at the subset of selected vendors are freed for reoptimization
in the restricted MIP, while ODT variables for vendors not selected and all route variables remain
fixed to the incumbent solution. When the focus is to improve route selection, all ODT variables
are fixed to their current solution and a subset of route selection variables are freed for reopti-
mization. The AIPLS approach switches the search focus from improving ODT to route selection
after a fixed number of iterations and continues to alternate the focus in this manner to ensure
an approximately-equal amount of time is spent on each. After each iteration, if an improving

solution is found, the incumbent is updated. Additionally, if there are a number of consecutive
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non-improving iterations, the heuristic switches to the next neighborhood selection algorithm. The
magnitude of the restricted MIPs (or size of the neighborhood) depends on the solver performance;
that is, the number of variables freed for reoptimization increases (decreases) if the MIP gap is
below (above) a specified threshold for a number of consecutive iterations. The AIPLS approach
transitions to jointly optimizing routes and ODT selection once all single-focus improvements have
been found or a single-focus time limit has been exceeded. The AIPLS heuristic stops once the

running time exceeds the solve time limit or is no longer finding improving solutions.

5 Case Study

In this section, we present the results of a computational study designed to highlight the main
insights we discovered while working with a large U.S.-based e-commerce retailer to implement
the ODTQ-MMC model within their “large and bulky” business (e.g., furniture, large appliances,
lumber, etc.). We begin by showing the benefits of operating a private middle-mile consolidation
network as compared to sending all shipments directly from vendors to LMDs. Next, we demon-
strate the value of flexibility in ODT quotations by closely analyzing how it affects both cost
metrics and load plan characteristics. To do so, we provide minimal flexibility in ODT quotations
for the three smallest instances (i.e., those that can be solved to near optimality) and find that
the ODTQ-MMC model effectively increases profit by strategically selecting which commodities
to speed up for higher revenue or slow down to reduce fulfillment costs. We confirm this finding
and analyze trends in cost and load plan performance as flexibility increases by allowing greater
adjustments to ODT quotations for the largest instance. We conclude the study with an analysis
that highlights the importance of accurate data on customer sensitivity to ODT quotations when
using the ODTQ-MMC model. Specifically, we examine how varying customer sensitivities impacts
the ODT quotes and consolidation plan, as well as the effects of incorrect sensitivity assumptions.

The optimization models and AIPLS heuristic approach were coded in Python 3.9 using Gurobi
10.0.1 with the default settings for the MIP solver. All experiments were run on a Linux computing
cluster consisting of nodes using 24-core dual Intel Xeon Gold 6226 CPUs @ 2.7 GHz with 192GB of
RAM each. The AIPLS heuristic parameters were tuned using experiments that are not described
in more detail in this paper. However, in the online Supplementary Material, we provide detail
on the algorithms and selected parameters in Appendix B and assess the heuristic performance in

Appendix C.
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5.1 Middle-Mile Network Instances

We generate anonymized, realistic instances using our partner’s historical demand data for large and
bulky items to demonstrate our findings. We create 5 groups of synthetic instances, each containing
5 individually-built instances; within each group, LMD and FC locations remain unchanged, while
vendor locations vary across instances (see Figure 2 for an illustration of facility locations). We
choose this design to illustrate how a company might initially test this modeling approach on a
small core subset of its facilities with different potential vendor sets, then incrementally expand
by adding more facilities. Each instance includes the baseline expected weekly demand for a set
of origin-destination pairs (i.e., commodities), where origins can be either vendors or fulfillment
centers (FCs), and destinations are last-mile delivery (LMD) facilities. We estimate the baseline
expected demand volume, sales, and cost of goods sold (COGS) values for individual commodities
based on historical data, reflecting the values associated with the current ODT set by the company.
For each instance, we generate a set of lanes £ x M; consisting of direct and consolidation freight
transportation lanes, and then generate a set of routes Ry and assign a baseline ODT requirement

for each commodity k € K.

% LMD V¥ Vendor [ |FC

(b) Group 5

Figure 2: Example location maps for Groups 2 and 5.

In Table 1, we provide instance attributes; specifically, we include the instance group number,
number of small, medium, and large vendors (VND) and LMDs (categorized by volume sent and
received, respectively), number of FCs, number of commodities, and the average number of lanes,
routes, and baseline demand volume (i.e., volume expected for the baseline ODT quote) in pounds
for each group of instances. Group 5 is comparable to an average week for our partner, while

Groups 1-3 are designed to validate our heuristic and derive additional managerial insights.
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Table 1: Instance attributes.

ar Sm Med Lg FC Sm Med Lg Comm Average across 5 Instances
VND VND VND LMD LMD LMD K| Lanes Routes Vol (Ibs)
1 0 0 15 2 5 0 6 127 539 583 337,815
2 0 10 20 3 10 5 8 507 2,123 2,634 811,697
3 0 25 25 4 20 10 10 1,404 5,827 8,046 1,812,373
4 160 85 45 8 60 30 18 18,320 76,926 116,784 9,334,262
5 200 100 50 8 70 35 20 25,161 104,987 160,639 11,354,653

When using the ODTQ-MMC model, each commodity has an ODT flexibility range, denoted
as +d or [—d,+d'|, where d and d’ represent the maximum number of days the ODT can deviate
from the baseline. For example, a range of £2 allows the ODT to shift by —2, —1, 0, +1, or + 2
days from the baseline. This range limits changes to the baseline ODT, as well as reduces the
number of ODT binary variables. It also reflects real-world operations, where a company may
prefer to gradually adjust ODT quotes over time by using a tighter flexibility range. In this study,
all FC-originating commodities—representing less than 15% of the baseline demand volume for
Groups 1-3 and less than 5% for Groups 4-5—have an ODT flexibility range of +0 days. This
choice aligns with our industry partner’s approach, since these commodities often consist of diverse
products with varying customer-ODT sensitivities. Furthermore, FC-outbound lanes are typically
fast-moving, with high dispatch frequencies driven by both the large consolidated shipment volume
and the need to accommodate vendor-originating commodities with similar ODTs but longer travel
times.

Each vendor-originating commodity can have its own flexibility range, however, we apply a
consistent flexibility range (i.e., £1, £2, etc.) across all vendor-originating commodities within
each instance of this study. Using this defined ODT flexibility range, we generate sets T of feasible
ODTs for each commodity k. In the computational experiments to follow, all commodities must
meet their quoted ODT with an 80% probability. Using the method described in Greening et al.
(2023), we pre-compute the conservatism hyperparameters p’ for each route r € Ry and ODT
quote t € Ty, for each commodity k € K. We calculate the expected demand volume V}! associated
with each quoted ODT ¢ € T for each commodity k& € K using the conversion curve shown in
Figure 3. Note that companies implementing the ODTQ-MMC model may use multiple conversion
curves, potentially one per commodity. For ease of exposition, we use a single curve representative

of a generic large and bulky item. However, it is possible to incorporate unique conversion curves
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without increasing computational complexity, as all parameters are pre-processed in the same way,
differing only in their numerical values defined by each conversion curve. For more details about
the instances (e.g., routes, baseline ODTs, conversion curve, etc.), refer to Appendix D in the online

Supplementary Material.

1.5% |
1.25% +
1% |
0.75% |

0.5% |

Customer Conversion

2 4 6 8 10 12 14 16
ODT Quoted (days)

Figure 3: Customer conversion curve.

5.2 Value of Middle-Mile Consolidation

In this section, we provide results that highlight the financial benefits of operating a middle-mile
consolidation network compared to shipping orders directly from origins to LMDs. To do this, we
analyze the solutions from two load planning models, both with fixed ODTs: one that direct-ships
all freight to LMD facilities (Directs£0), and another that optimizes the consolidation of freight
using private middle-mile transfer facilities (ODTQ-MMC=+0). Both models maximize profit by
minimizing the cost of shipping demands from origins to destinations while meeting their baseline
ODT requirements. For these experiments, we directly solve the MIP models using the binary
linearization approach (3) (provided in Appendix A of the online Supplementary Material) with a
12-hour time limit®.

In Table 2, we report financial metrics for the first three instance groups including profit (defined
as sales net COGS and fulfillment cost), revenue (defined as sales net COGS), fulfillment cost,
fulfillment cost per pound (defined as fulfillment cost divided by total volume in pounds), and
profit margin (defined as profit divided by sales), MIP gaps, and the percentage of vendor volume

'We elect to report the binary linearization results due to the tighter MIP gaps after 12 hours for smaller instances
(see Appendix A of the online Supplementary Material for the formulation and comparison to the piecewise-linear

approach (2))
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sent through the private middle-mile network (as opposed to sending it via direct routes). All results
are averages across the 5 instances composing each group. We additionally provide illustrations of

the solutions for the first instance of Group 3 in Figure 4.

Table 2: Comparison of outsourcing all commodity shipments versus consolidating in network

without ODT flexibility.

Profit Revenue Fulfillment  Fulfillment Profit MIP  VND Vol

Group Model
(3) (%) Cost (3) $ per 1b Margin ~ Gap  In-Ntwk
L Directs£0 205,841 339,027 133,186 0.395 26.7% 0.0% 0.0%
ODTQ-MMC+0 233484 339,027 105,543 0.313 30.3%  0.0%  84.5%
9 Directs£0 397,477 797,207 399,730 0.493 21.1% 0.0% 0.0%
ODTQ-MMC+0 540,102 797,207 257,105 0.317 28.7%  3.3%  95.9%
, Directs+0 627,347 1,757,191 1,129,844 0.624 14.8%  0.0% 0.0%
ODTQ-MMC+0 1,165,461 1,757,191 591,730 0.327 27.5%  53%  97.1%

We observe, as one might expect, that allowing for consolidation provides substantial fulfillment
cost benefits, notably as the instance size grows in the number of vendors and commodities. Simi-
larly, we see that, even in the smallest instance size group containing only two FCs, the majority
of vendor volume consolidates at an FC when allowed. This consolidation allows for improved
economies of scale, drastically reducing the fulfillment cost per pound and improving the profit
margin. Evidence of increased consolidation is also seen in the solution maps in Figure 4, where
the ODTQ-MMC=0 solution in (b) clearly favors consolidating at nearby FC locations as compared
to the Directs£0 solution in (a).

5.3 Value of Coordinated ODT Quotation and Middle-Mile Consolida-
tion

We next report results that demonstrate the additional improvements gained by leveraging cus-
tomer behavior data when optimizing the consolidation network and ODT quotes simultaneously.
Specifically, we compare solutions generated by the ODTQ-MMC=+0 and ODTQ-MMC=+1 models
for the first three instance groups. As in the previous section, we directly solve the MIP models
using the binary linearization approach (3) (given in Appendix A of the online Supplementary
Material) with a 12-hour time limit.

In Table 3, we report the profit, revenue, fulfillment cost, fulfillment cost per pound, profit
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Figure 4: Solution maps for Group 3 - Instance 1.

margin, MIP gaps, and the percentage of vendor volume sent through the private middle-mile
network. Note that the results for the ODTQ-MMC=0 model are the same as those reported in
Table 2 but are repeated here for ease of comparison with the ODTQ-MMC+1 model. Additionally,
we report load plan performance metrics in Table 4 and the number of commodity routes and ODT
quotes that change when optimizing for profit with a flexibility of +1 day in Table 5. All results are
averages across the 5 instances composing each group. We provide an illustration of the ODTQ-
MMC=+1 solution for the first instance of Group 3 in Figure 4 (c).

When comparing solutions for ODTQ-MMC+0 and ODTQ-MMC=1, we observe an approxi-
mate 10% increase in profit from simultaneously optimizing consolidation opportunities and ODT
quotes. This improvement results from both reduced fulfillment cost and increased revenue, lead-
ing to better fulfillment cost per pound and higher profit margins across all groups. The ODTQ-
MMC=+1 model strategically slows down commodities with tight baseline ODT requirements (and
less time-sensitive customers), reducing dispatch frequencies and thereby lowering fulfillment costs.

It also speeds up commodities that fit into existing dispatches without needing extra capacity or
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Table 3: Comparison of ODTQ-MMC40 and ODTQ-MMC=1 cost metrics.

Profit Revenue Fulfillment  Fulfillment Profit MIP  VND Vol

Group Model
(%) (%) Cost ($) $ per 1b Margin  Gap  In-Ntwk
. ODTQ-MMC=0 233,484 339,027 105,543 0.313 30.3% 0.0% 84.5%
ODTQ-MMC=+1 257,402 357,133 99,731 0.283 31.8% 0.0% 85.7%
9 ODTQ-MMC=0 540,102 797,207 257,105 0.317 28.7% 3.3% 95.9%
ODTQ-MMC=1 594,022 841,247 247,225 0.290 29.9% 1.8% 97.7%
3 ODTQ-MMC+0 1,165,461 1,757,191 591,730 0.327 27.5% 5.3% 97.1%
ODTQ-MMC+1 1,276,525 1,858,493 581,968 0.305 28.5% 3.7% 98.3%

higher dispatch frequencies, effectively increasing revenue at no additional cost. In other cases, the
increased fulfillment cost of sending more volume is outweighed by the additional revenue earned.
Consequently, more vendor volume flows through the middle-mile network in the ODTQ-MMC4=1
solution at a lower total cost. One final metric to note is the increasing MIP gaps as the instance

size grows, highlighting the need for a heuristic approach when solving larger instances.

Table 4: Comparison of ODTQ-MMC+0 and ODTQ-MMC=1 load plan performance metrics.

Avg Load Vol-Wtd
Vol-Wtd  Vol-Wtd Loads/Week
Group Model Disp Freq Utilization
oDT Route
Length LTL TL LTL TL TL

L ODTQ-MMC=0 6.6 1.8 2.1 2.6 61 63 74.0%
ODTQ-MMC=+1 6.3 1.8 2.1 2.3 49 64 76.0%

) ODTQ-MMC=0 7.0 2.2 1.9 28 48 190 79.0%
ODTQ-MMC=+1 6.7 2.2 1.9 27 18 185 85.0%

5 ODTQ-MMC=0 8.0 2.2 1.7 28 7 384 87.2%
ODTQ-MMC=+1 7.4 2.2 1.6 2.7 30 385 90.6%

In Table 4, we provide additional load plan metrics including the volume-weighted average
ODT quoted (in days), volume-weighted average route length (measured by number of legs in
the route), average load dispatch frequency and number of loads per week for LTL and truckload
(TL), and volume-weighted average truckload utilization (similarly, fill rate). We observe that when
optimizing for profit with an ODT flexibility of £1 day, the volume-weighted ODTs quoted decrease
while the volume-weighted route lengths remain unchanged. Meaning that, on average, customers
receive faster ODT quotes even though commodities still travel the same distance to maintain cost-
saving consolidation opportunities. Despite faster quotes for the same distance traveled, we actually

observe improved consolidation when ODTs have limited flexibility, as evidenced by increased
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volume-weighted utilization of dispatched truckloads. The main reason for this improvement is
that the model decides to strategically slow down or speed up certain commodities by adjusting
ODT values, as previously discussed. We also see a reduced reliance on LTL freight, accompanied by
a marginal increase in the number of truckloads. Thus, volumes previously shipped direct via LTL
are consolidated into truckloads with only marginally increasing the total number of dispatches,

resulting in improved fill rates.

Table 5: Differences in vendor-originating commodities’ (i.e., K, C K) routes and ODT quotes for

ODTQ-MMC=+1 compared to ODTQ-MMC=0.

a | Rts ODTs Rts&ODT Decr ODT Unchg ODT Incr ODT
r
! Diff Diff Diff Vol-Wtd Vol-Wtd Vol-Wtd
Ct Ct Ct
Sales Marg Sales Marg Sales Marg

1 105 27.0 72.0 21.4 49.0 45.6% 33.0 41.4% 23.0 41.9%

2 438 68.4  288.8 56.2 212.6 42.4% 149.2 41.1% 76.2 36.8%

3 1,244 1854  915.6 156.4 775.0 41.6% 328.4 40.4% 140.6 35.3%

We next examine route and ODT changes for vendor-originating commodities (denoted I, C
K). Specifically, Table 5 compares ODTQ-MMC=+0 and ODTQ-MMC=+1 by showing the average
number of vendor-originating commodities that take a different route, quote a different ODT, or
change both (i.e., those counted in both the different route and different ODT categories). We also
report the average number of decreased, unchanged, and increased ODT's and their volume-weighted
commodity sales margin (defined as sales net COGS divided by sales).

We observe that the most significant change is in the selection of a different ODT to quote,
with 69%, 66%, and 74% of commodities in each group, respectively, with a different ODT. In
fact, in each group, over 80% of the commodities whose routes change in the ODTQ-MMC+=+1 load
plan also have a different ODT quote. Interestingly, when studying the change in ODTs, we find
that the volume-weighted sales margins are highest for commodities whose ODT quotes decrease
and lowest for those whose ODT quotes increase. We use this observation later in Appendix E
of the online Supplementary Material when attempting to build a profit-maximizing load plan by
pre-selecting appropriate ODTs to quote customers, as opposed to leveraging customer behavior

data when simultaneously optimizing ODTs to quote and the consolidation plan.
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5.4 Impact and Trends of Increased Flexibility

We next study the value of increasing ODT flexibility when maximizing profit. To do this, we
solve the Group 5 instances with varying levels of ODT flexibility. The purpose of this analysis is
to compare solutions as flexibility increases and identify the trends and overall impact; thus, each
instance with a flexibility of £2 days or greater uses the solution with one less day of flexibility as
a warm-start solution (e.g., ODTQ-MMC=2 uses the ODTQ-MMC=1 solution as a warm start).
Also recall that a flexibility range of £2 days allows the ODT to shift by —2, —1, 0, 4+1, or 42 days
from the baseline. In Table 6, we present load plan performance metrics for each flexibility range,
namely the fulfillment cost per pound, volume-weighted average route length, average number of
load dispatch frequencies and loads per week for each freight mode, the volume-weighted average
truckload utilization, and the resulting profit. Each row represents the average across the group
with the defined flexibility when solved with the AIPLS heuristic (with piecewise-linear linearization
approach (2)) for 6 hours. Note that higher flexibility rows have a larger aggregate solve time
because they use the previous row as a warm start. One can imagine that a retailer wants to
gradually increase their flexibility in selecting different ODT quotes over time and would therefore

have the previous flexibility level’s solution when opting to increase flexibility.

Table 6: Comparison of average load plan performance metrics for Group 5 instances with varying

ODT flexibility.

Avg Load Vol-Wtd

oDT Fulfillment  Vol-Wtd Loads/Week Profit
Flex $ per 1b Route Disp Freq Ytilization ($ millions)
Length LTL TL LTL TL TL

[-0,+0] 0.336 2.241 1.92  2.95 840 2,525 83.9% 8.98
[—0,+1] 0.321 2.259 1.61 294 309 2,463 86.9% 9.14
[—1,40] 0.324 2.255 1.90 3.16 789 2,652 87.4% 9.86
[—1,41] 0.318 2.260 1.63 3.16 379 2,626 88.4% 9.94
[—2,+2] 0.320 2.259 1.78 3.38 385 2,818 88.6% 10.58
[—3,+3] 0.322 2.264 1.81 3.52 357 2,931 88.4% 10.89
[—4,+4] 0.321 2.265 1.84 3.54 267 2,946 88.4% 10.97
[—5,+5] 0.320 2.267 1.86  3.55 236 2,950 88.5% 10.99
[—6,+6] 0.320 2.268 1.86  3.56 220 2,952 88.6% 11.00

We first note that any level of flexibility leads to increased profits, decreased fulfillment cost
per pound, and increased volume-weighted truckload utilization as compared to no flexibility. In

other words, as one might expect, providing flexibility proves beneficial in improving load plans.
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Figure 5: Percent change in volume, as compared to the [—0, +0] solution, across commodities for

one West Coast vendor with different ODT flexibilities.

Even when providing limited flexibility (i.e., [-0,+1] or [—1,+0]), the model increases profit by
either speeding up commodities for increased revenue (with marginal impact on fulfillment cost)
or slowing down commodities for improved consolidation opportunities (with marginal impact on
revenue). Interestingly, upon closer inspection of the load plans, we notice that when allowing the
ODTs to change by one day (i.e., [-1, +1]), the proportion of commodities whose ODT decreases or
increases is approximately the same as in the [—1,40] and [—0, +1] solutions, respectively. We also
observe that, on average, 97% of the commodities with decreased ODTs in the [—1,40] solutions
also have decreased ODTs in the [—1,+1] solutions, whereas only 38% of the commodities with
increased ODTs in the [0, +1] solutions also have increased ODTs in the [—1, 41] solutions. Thus,
both speeding up or slowing down have benefits when applied separately; however, the benefits are
even greater when applied simultaneously, and can lead to a different subset of commodities with
altered ODT quotes. We illustrate this finding in Figure 5, which compares the three flexible load
plans to the [—0,+0] solution for one West Coast vendor. Interestingly, while no ODTs increase

in the [—0,+1] solution, 5 ODTs increase in the [—1,41] solution, as evidenced by a decrease in
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commodity volume.
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Figure 6: Distributions of volume-weighted ODT offerings.

Another observation is that fulfillment cost per pound improves given any flexibility, and remains
largely unchanged even as flexibility increases and more volume is shipped. This suggests that,
as the model ships more volume, it continues to maintain, or even slightly enhance, overall cost
efficiencies. We also observe that the marginal benefit of flexibility, as measured by profit, decreases
as the flexibility range increases, and that once the model has 4 or more days of flexibility, the load
plans converge to the same percentage of decreased, unchanged, and increased ODT quotes. In
Figure 6, we see what can be described as the ODT quotes settling. As flexibility increases, the
shape of the volume-weighted ODT distribution remains largely the same across different flexibility
levels. Using the customer conversion curve shown in Figure 3, the average quoted ODT settles just

below 6 days—approximately 1.75 days below the average baseline ODT—as flexibility increases.
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5.5 Effects of Customer ODT Sensitivity

In this section, we analyze how varying customer sensitivities impact the ODT quotes and consolida-
tion plan. To accomplish that, we solve the ODTQ-MMC=+3 MIP model (with binary linearization
approach (3) in Appendix A of the online Supplementary Material) for Group 1 instances using
five different sensitivity levels. Specifically, we calculate the change in demand using the curve
shown in Figure 3 and then increase (decrease) that value by 50% and 100% to simulate increased
(decreased) sensitivity to ODT quotes. We show examples for commodities with baseline ODTs of
8 days and 10 days in Figure 7, where the change in demand for the curve in Figure 3 is denoted
as Original. We present the results in Table 7, where each row represents the average across the 5

instances composing Group 1 solved to optimality.
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(a) Baseline ODT of 8 days (b) Baseline ODT of 10 days

Figure 7: Change in demand for different sensitivity levels.

Table 7: Comparison of customer sensitivity effects on solutions when solving Group 1 instances.

Model Sensitivity Profit Profit Fulfillment Volume Fulfillment  Vol-Wtd
(3) Increase Cost ($) Shipped (1bs) $ per Ib oDT
ODTQ-MMC=0 - 233,484 - 105,543 337,815 0.313 6.6
ODTQ-MMC=3 —100% 249,408 6.9% 89,619 337,815 0.266 8.9
ODTQ-MMC=3 —50% 255,776 9.6% 96,912 348,579 0.278 6.2
ODTQ-MMC=3 Original 271,528 16.4% 104,169 369,357 0.282 5.9
ODTQ-MMC=+3 +50% 289,168 24.0% 111,558 393,385 0.284 5.7
ODTQ-MMC=+3 +100% 307,523 31.9% 117,462 414,907 0.283 5.5

The results show that customer ODT-sensitivity plays an important role in consolidation plan-

ning when explicitly considered as a decision in the model; specifically, the level of sensitivity
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correlates with resulting profit. We observe that when customers are less sensitive to changes in
ODTs, the ODTQ-MMC=3 model improves profit (as compared to ODTQ-MMC=0) by reducing
fulfillment cost. This is especially evident in the case where customers are completely insensitive to
ODT quotes (i.e., —100%) as shown by the high volume-weighted ODT quote of 8.9 days. When
customers are very sensitive to ODT quotes, the model elects to spend more on fulfillment cost
in order to decrease ODTs and earn much higher revenues and resulting profit. Therefore, when
using models that incorporate customer conversion in consolidation planning, it is critical to ensure
that the estimated conversion curves are accurate, as they will affect the resulting plan. In the
next section, we present experimental results that demonstrate how assuming incorrect customer

ODT-sensitivity can impact these plans.

5.6 Performance Under Inaccurate ODT Sensitivity

In this section, we report results on the effects of planning under incorrect ODT-sensitivity as-
sumptions. To do so, we first generate load plans and selected commodity ODTs assuming the
original sensitivities shown in Figure 3. Then, we evaluate the performance of those plans when
the actual realized customer sensitivities for all commodities are adjusted by £50% or £100%,
as demonstrated in Figure 7. Because changes in customer sensitivities affect demand volume,
the original consolidation plans may require operational adjustments if volume on certain lanes
exceeds the planned capacity. To address this, we implement two approaches to adapt the load
plans accordingly. The first approach, called “Add LTL,” adds capacity to the original load plan
via LTL shipments whenever planned truckload capacity is insufficient to meet realized demand.
Commodity routes and transportation modes remain fixed as specified in the original plan, but LTL
shipments are added as needed to accommodate excess volume without modifying the scheduled
truckload frequencies. The second approach, called “Reject,” assumes capacity is fixed, and any
demand exceeding the planned capacity cannot be fulfilled. While the model is allowed to choose
which excess demand to reject, all demand included in the original plan must still be shipped. This
prevents the model from rejecting planned lower-profit demands in favor for unplanned higher-profit
demands when capacity is exceeded. In practice, since the shipper operates in the e-commerce sec-
tor, we assume that once capacity is fully utilized, the corresponding commodities are marked as
out-of-stock.

In Table 8, we report the performance metrics for load plans generated under incorrect ODT-

sensitivity assumptions, and corrected using the Add LTL and Reject approaches, alongside the
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metrics for load plans optimized with the correct ODT-sensitivity assumptions (as shown in Table

7). Each row is the average across the 5 Group 1 instances solved to optimality.

Table 8: Comparison of realized customer-sensitivity effects on ODTQ-MMC=3 solutions when

planned ODT sensitivity is inaccurate for Group 1 instances.

Planned Realized Profit Fulfillment Volume Fulfillment Vol-Wtd
Model Profit ($)
Sensitivity — Sensitivity Increase Cost ($) Shipped (1bs) $ per Ib Utilization
ODTQ-MMC=0 - - 233,484 - 105,543 337,815 0.313 74.0%
—100% —100% 249,408 6.9% 89,619 337,815 0.266 79.9%
—50% —50% 255,776 9.6% 96,912 348,579 0.278 77.9%
Baseline Original Original 271,528 16.4% 104,169 369,357 0.282 77.8%
+50% +50% 289,168 24.0% 111,558 393,385 0.284 78.2%
+100% +100% 307,523 31.9% 117,462 414,907 0.283 79.8%
—100% 235,544 0.9% 103,484 337,815 0.307 68.3%
—50% 253,556 8.6% 103,807 353,586 0.294 73.0%
Add LTL Original
+50% 285,974 22.6% 108,057 385,127 0.281 81.0%
+100% 301,067 29.1% 111,299 400,899 0.278 83.0%
—100% 235,422 0.8% 103,185 336,892 0.307 68.2%
—-50% 253,507 8.6% 103,669 353,157 0.294 73.0%
Reject Original
+50% 280,751 20.4% 104,842 376,429 0.279 79.8%
+100% 286,521 22.9% 105,082 380,350 0.276 80.9%

As expected, using inaccurate sensitivity data results in lower profits than when using accurate
data. The ODTQ-MMC+3 load plans yielding the lowest profits occur when customers are less
sensitive than planned. In these cases, fewer customers purchase items when promised faster
delivery, reducing overall sales, while others continue to buy despite slower delivery promises.
Because these slower-delivery customers remain willing to purchase, planned capacity on some
lanes is exceeded, necessitating either additional LTL shipments or the rejection of those potential
sales. Both options reduce profit, either through higher fulfillment costs or lost revenue. Note
also that the Reject plan marginally reduces fulfillment costs compared to the Original plan in row
4, due to smaller LTL shipment sizes. We also observe a decrease in volume-weighted truckload
utilization when customer sensitivity is lower, as a result of reduced sales.

When customers are more sensitive than anticipated, profit improves because the increase in
sales outweighs the additional fulfillment costs, whether the original plan is adjusted by either
rejecting excess demand or by adding LTL capacity to fulfill it. Of course, when the plan is

optimized for more sensitive customers, even higher profits are achieved by determining the optimal
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trade-off between revenue and fulfillment costs. Unsurprisingly, these plans also exhibit the highest
volume-weighted truckload utilizations. In both adjustment plans, increased demand improves
truckload utilization across lanes, with some reaching full capacity. On these fully utilized lanes,
any excess demand is either fulfilled via LTL in the Add LTL plan or rejected in the Reject plan,
avoiding the need to dispatch additional, partially-filled truckloads.

Overall, these experiments confirm the importance of accurate ODT sensitivity data, as inac-
curate assumptions lead to reduced profits relative to optimal plans. Nevertheless, they also show

that even extreme errors do not eliminate the benefits of the ODTQ-MMC model.

6 Conclusion and Future Work

In this work, we studied the integrated design of order-to-delivery time quotes and middle-mile
network consolidation, with the goal of improving the profitability of large e-retailers by leveraging
customer ODT sensitivity data and feasible transportation consolidation options. To optimize this
design, we proposed the ODTQ-MMC MIP model which directly incorporates demand fluctuations,
as influenced by ODTs quoted to customers, into the fulfillment network consolidation plan. The
model simultaneously decides the ODT of each commodity to quote customers and optimizes the
consolidation plan required to meet the quoted ODTs with a high probability guarantee set by the
retailer. To linearize the ODT chance constraints, we approximated a reciprocal function repre-
senting the incurred waiting delay using a convex piecewise-linear function and linear programming
techniques.

Finding high-quality solutions for large-scale cases within reasonable time limits is currently near
impossible when solving the proposed MIP directly with a commercial solver. Thus, we developed
an adaptive IP-based heuristic solution approach which works to improve an incumbent solution
by iteratively solving restricted MIPs as defined by randomized neighborhoods. To find initial
improvements quickly, the approach begins by either optimizing ODT quotation or route selection.
Once these improvements have been found, the approach transitions to jointly optimizing ODT
quotation and route selection. The approach adapts to the problem instance being solved by
alternating between three neighborhood generation algorithms as progress stalls and by adjusting
the size of the restricted MIP, as defined by the number of variables freed for reoptimization, based
on solver performance at the current size.

We then conducted a thorough case study using data from a large U.S.-based e-retailer special-
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izing in large and bulky items to demonstrate the potential financial and consolidation benefits e-
retailers can obtain by incorporating customer ODT sensitivity data directly into their middle-mile
consolidation models. In the study, we first observed that large e-retailers can achieve significant
cost savings by operating their own private middle-mile network, as compared to outsourcing all
transportation directly from vendors to LMDs. We then found that additional savings and im-
proved profit margins could be realized by simply allowing for ODT quotes to minimally change
by 1 day when solving the ODTQ-MMC model. We also observed how adjusting ODTs could lead
to a better trade-off between revenue and fulfillment cost as ODT flexibility increases. We then
analyzed the effects of adjusting customer ODT sensitivity and found, as expected, that customer
sensitivity plays an important role in determining the ODTs to quote and the consolidation plan
required to meet such quotes. We concluded with a study on the effects of planning under incorrect
ODT-sensitivity assumptions and confirmed that accurate sensitivity data is crucial, but also found
that the ODTQ-MMC remains useful under moderate misestimations.

A natural extension to this work is to incorporate customer sensitivity data at the product level
(i.e., multiple commodities may need to be defined for a single origin-destination pair). This exten-
sion would lead to much larger problems that become even more challenging to solve, potentially
requiring different modeling and heuristic approaches. Another extension is to look at the fairness
of the ODTs being quoted to different geographic areas. For example, there may be regions where
ODTs are increased because they are hard to reach cost-effectively. However, when creating plans
to maximize profit, the difficulty lies in putting an appropriate cost on fairness or determining
alternative measures of fairness that are more easily constrained.

An additional component which we have not yet considered is that customers may be willing to
pay for faster shipping options. If a retailer has additional data on the price customers are willing
to pay for reduced ODTs, the model can potentially be adapted to balance revenue from sales
and shipping fees with logistics costs by determining the ODT and shipping price to offer and the
consolidation plan required to meet those promises.

Finally, future work could explore addressing demand uncertainty from errors in customer sensi-
tivity estimates. Investigating the trade-off between flexibility and efficiency under such uncertainty

presents a valuable direction for further research.
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7 Data Availability

The data and code that support the results of this study are publicly available at https://github.

com/lgreening/middle-mile.
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Appendix A Alternative Linearization Approach

To formulate ODTQ-MMC using the binary linearization approach introduced in Greening et al.

(2023), replace binary variables y;,,, in (2) with binary variables 2., which indicate whether lane

(I,m) € L x M, is used with a load dispatch frequency of w € Fy,,,. With this representation,

Constraints (2i) and (2j) are replaced by Constraints (3i). For convenience, see Tables 9 and 10 for

the problem parameters and variables, respectively.

Set Description

K Set of commodities.

Tr Set of feasible ODTs for commodity k € K.

R Set of potential freight routes for commodity k € K.

L Set of freight transportation legs within the consolidation network.

M, Set of transportation modes for leg | € L.

Fim Set of feasible dispatch frequencies for loads sent via transportation mode m € M; on leg | € L;
Fim ={1,..., Fim}.

Parameter Description

Fim Maximum number of load dispatches permitted on leg [ € £ when using transportation mode m € M;.

S,tv Sales revenue for commodity k € K when customers are quoted an ODT of t € T, for commodity k € K.

Chr Handling cost of route r € Ry, for commodity k € K.

Aim Fixed cost of a load sent via transportation mode m € M; on leg [ € L.

Bim Variable cost per pound of a load sent via transportation mode m € M; on leg l € L.

V; Demand volume of commodity k € K when customers are quoted an ODT of t € Ty.

Vnax Maximum demand volume achievable for commodity k € K.

Qﬁril“ Minimum size of a load sent via transportation mode m € M; on leg l € L.

Qax Maximum size of a load sent via transportation mode m € M; on leg l € L.

T Fixed transit and processing time of route r € Ry, for commodity k € K.

A Algorithmically determined conservatism parameter that depends on on-time probability guarantee p,
quoted ODT t € Ty, and fixed time T} of route r € Ry for commodity k € K.

7| Length of (or number of legs in) route r € Ry, for commodity k € K.

H; Minimum headway of leg | € L.

Table 9: Set and parameter definitions.

The ODTQ-MMC model with the binary linearization technique is formulated as follows:

max Z Z Stwpe — Z Cruy fz Z (A fim + Bimvim) (3a)

keK \teTy TERE leL meM;
st Y @ =1, VkeKk, (3b)
TER
up > Y Viwgr — (1 — ) Vi, Vr e Ry, Yk €K, (3¢)
teTy
Dvm=> > u, ViecrL, (3d)
meM; ke {reRg|rol}
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Variable Description

zr € {0,1} Indicate whether route r € Ry is selected to transport commodity k € K.

Zimw € {0,1}  Indicate that w € Fy,,, load dispatches are sent via transportation mode m € M; on leg ! € L.
fim € Z>o Counts the number of loads dispatched on leg I € £ using transportation mode m € M;.

wg € {0,1} Indicate customers are quoted an ODT of t € T for commodity k € K.

ur >0 Total demand volume transported via route r € Ry for commodity k € K.
Vim > 0 Total demand volume transported via transportation mode m € M; on leg l € L.
h; >0 Headway between load dispatches on leg | € L.

Table 10: Variable definitions.

Qi fim < Vim < QI fum, Vme M, VieL, (3¢)

S ame <1, ViecrL, (3f)

meM| wEFm

1

<> S (t—T)w+|r|(1-2,), VreRy VkeK, (3g)
ler teT, T

> wk =1, Vk ek, (3h)
teTy

=Y > %zlmw, VieL, (3i)

MEM{wEF m | w7}

frm = Waime, Yme M, VieL. (3j)

wEFm

Constraints (3b)-(3e),(3g),(3h) function the same as Constraints (2b)-(2e),(2h),(2k). Constraints
(3f) replace Constraints (2f) and (2g) and select at most one load dispatch frequency per lane.
Constraints (3i) are used to linearize (1) by introducing the binary variables zj,, to select the
number of loads dispatched w on lane (I,m) from the set Fy,, = {1,..., F,}. Constraints (3j)
define the number of loads dispatched on lane (I,m). Note that this formulation is structured to
allow a direct comparison with the piecewise linearization approach (2). Here, headway variables
h; and dispatch frequency variables fj,,, are unnecessary; Constraints (3i) and (3j) simply provide
definitions for convenience.

In Table 11, we present results for the binary linearization formulation (3) and the piecewise-
linear linearization formulation (2), each allowing for +1-day change to ODT quotes (i.e., ODTQ-
MMC+1). We solve the instances described in Section 5 of the paper using a commercial MIP solver
with a 12-hour time limit to obtain an upper bound (UB). We then apply the adaptive IP-based
local search (AIPLS) defined in Section 4 of the paper, also with a 12-hour time limit, to obtain
the best objective values. Finally, we report the percentage improvement of the piecewise-linear
approach relative to the binary approach for both the upper bounds and objective values. Each

row represents the average across the 5 instances composing the groups.
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Table 11: Comparison of the ODTQ-MMC=1 12-hour MIP upper bound (UB) and AIPLS objective for

the binary linearization formulation (3) and the piecewise-linear approximation formulation (2).

Binary Piecewise-linear % Improvement
G MIP UB AIPLS Obj MIP UB AIPLS Obj MIP UB  AIPLS Obj
1 $ 257,405 $ 257,259 $ 261,918 $ 257,259 -1.75% 0.00%
2 $ 604,498 $ 593,712 $ 629,920 $ 593,239 -4.21% -0.08%
3 $ 1,323,695  $1,274,579 $ 1,353,364  $1,275,403 -2.24% 0.06%
4 $ 8,746,708  $7,900,475 $ 8,670,151  $7,901,352 0.88% 0.01%
5 $11,182,499  $9,962,851 $10,996,492  $9,951,478 1.66% -0.11%

Bold font indicates a better value (i.e., lower for MIP UB and higher for ATPLS Obj).

We observe that the binary linearization approach tends to solve small instances of ODTQ-
MMC4=1 better than the piecewise-linear approximation approach but often struggles to produce
strong upper bounds for larger instances when solving the full MIP model with a commercial solver.
In fact, the piecewise-linear approximation produces a stronger upper bound for 9 of the 10 larger
instances. Thus, we elect to report the best MIP results throughout Section 5 of the paper but use
the piecewise-linear approximation formulation when using the AIPLS approach.

It is also worth noting that when there is no flexibility in ODT selection (i.e., ODTQ-MMC=0),
both formulations can be simplified for better solver performance by removing the ODT selection

binary variables and related constraints.

Appendix B AIPLS Heuristic Algorithms

This appendix provides a comprehensive overview of the AIPLS heuristic solution approach, in-
cluding complete pseudocode and illustrative examples for each neighborhood selection method.
For convenience, Table 12 summarizes relevant heuristic parameter definitions.

The AIPLS heuristic, presented in Algorithm 1, iteratively improves an existing feasible solution
by solving restricted versions of the full MIP. After initialization, each iteration follows the same

pattern:

1. Define a Neighborhood. Lines 3-12 select which route-selection variables R and which
ODT-quotation variables 7 will be freed for reoptimization. Identifying search neighbor-
hoods that quickly yield good solutions is a key step in designing a high-performing local

search procedure.

2. Solve the Restricted MIP. Once the variables to be reoptimized are chosen, the heuristic
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Table 12: Heuristic parameter definitions.

Parameter Description

Trun € Rzo Heuristic runtime.

T eRx>o Heuristic runtime limit.

iter € Z>o Number of consecutive iterations for which the objective value improves by

iteryg € ZZO

neighborhood_select € {1,2,3}

focus € {Q, R, J}
Qfocus € [0-017 Oémax]
Qmax € [087 1]
focusCt € Z>q
focusQCt € Z>q
focusRCt € Z>q
mipIthocus € ZZO
mipDClyocus € Lo
mipIner focus € Z>0
mipDecrfocus € Z>0
R CA{r e Ugex Re}
n € [10, 265]

tabuy

D' C {di|k € K}

Tamip € Ryo

less than 0.005% relative to its previous value.

Number of consecutive iterations for which the objective value improves by
less than 0.01% relative to its previous value.

Neighborhood generation algorithm.

Focus of heuristic search for neighborhood generation, where @, R, and J
represent ODT quote, route, and joint optimization, respectively.
Proportion of routes to add to the neighborhood for focus € {Q, R, J}.
Upper bound on proportion of routes to include in the neighborhood.
Number of consecutive iterations current focus is used to generate a neigh-
borhood.

Number of non-improving cycles (of 6 iterations) with focus on ODT quote
improvement (focus = Q).

Number of non-improving cycles (of 6 iterations) with focus on route improve-
ment (focus = R).

The number of consecutive iterations minGap < 0.02 for focus € {Q, R, J}.
The number of consecutive iterations minGap > 0.02 for focus € {Q, R, J}.
Step size (multiplied by 0.02) used to increase neighborhood size variable
Ofocus for focus € {Q, R, J}.

Step size (multiplied 0.02) used to decrease neighborhood size variable & focys
for focus € {Q, R, J}.

Subset of routes that may be freed for reoptimization based on current search
focus.

Size of the tabu list of previously selected vendors that cannot be re-selected
for Neighborhood 2.

Tabu list of past 7 vendors selected for Neighborhood 2.

Subset of commodity LMD destinations for selection using Neighborhood 3.
Restricted MIP solve time.

minGap € {True, False} Indicates if restricted MIP gap is less than or equal to 0.02.

fixes all other variables to the current incumbent solution and solves the resulting subproblem.
This process (Line 13 in Algorithm 1) is detailed in Algorithm 5, which applies a warm start
using the incumbent solution. If the subproblem returns an improvement, the incumbent is

updated.

. Update Heuristic Parameters. After each restricted MIP solve, Lines 14-25 in Algo-
rithm 1 update heuristic parameters. Specifically, Line 14 in Algorithm 1 calls Algorithm 6

to adjust the neighborhood size parameters and search focus based on how well the restricted
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Algorithm 1: Adaptive IP-based local search

1

Input: MIP, initial feasible solution (&, 9, f,§, h, @, W), current best objective value (val), commodity set (K),
commodity route sets (R, Vk € K), commodity ODT sets (Tx, Vk € K), solve time limit (7"), commodity
volumes (V*, Vk € K) for baseline ODT ¢, initial focus size variables (afocus, ¥ focus € {Q, R, J}),
commodity origin distance dictionary (D), maximum size of tabu list ()

Result: Improved feasible solution and improved objective value

Set Trun <= 0, iter <= 0, itery g < 0, neighborhood_select <— 1, focus <~ Q, a <+ ag, focusCt <+ 1,

focusQCt +— 0, focusRtCt < 0, mipICtsocys < OV focus € {Q, R, J}, mipDClsocys < OV focus € {Q, R, J},
miapInerfocys < 1V focus € {Q, R, J}, mipDecrfocys < 1V focus € {Q, R, J}, mipICt < mipICtg,

mipDCt < mipDCtq, mipIncr < mipIncrg, mipDecr <— mipDecrq, R’ + {7 € Upcx Ri |Zr = 1},

tabuy < 0, D' «+ {di |k € K};

2 while Tryn < T do

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

if neighborhood_select = 1 then
‘ R « Algorithm 2 with inputs (R/, a, K, {R}, € R'}rex, VHrek);
else if neighborhood_select = 2 then
‘ (R, tabu,) < Algorithm 3 with inputs (R/, o, K, {R} C R'}rek, (VB kek, D, tabuy,m);
else
‘ (RW, D') « Algorithm 4 with inputs (R/, a, K, {R}, € R'}rexc, D');
if focus = R then
‘ Set TV 0, Vk € K;
else
| Set T {t € Tu | R NRW £ 0, Vk € K;
(2,0, f. 9, fz,ﬂ,ﬁ/), val, iter, iter nmr, Tarp, minGap) < Algorithm 5 with inputs
(MIP, (2,9, f, 5, h, 0, ), val, K, {Ri}rerc, {Titrerx, RO, {T brex, iter, iternm);
(focus, focusQCt, focusRCt, R', o, mipIncr, mipICt, mipDecr, mipDC', iter, iter ) < Algorithm 6 with
inputs (minGap, mipICt, mipDC't, mipIncr, mipDecr, &, amax, focus, focusCt, focusQCt, focusRC't,
(&,9, f, 9, h, 6, ®), iter, itern g, Ty Trun, {Ri}oer);
if focus = END then
‘ end;
if iteryg > 5 then
if neighborhood_select = 1 then
‘ neighborhood_select < 2;
else if neighborhood_select = 2 then
‘ netghborhood_select < 3;
else
‘ neighborhood_select + 1;
Set iteryg < 0;
Trun < Trun + Thvip,  focusCt <+ focusCt + 1;
end
return (&, 9, f.0,h,4, w), val

MIP performed. If the MIP gap remains small for multiple consecutive iterations, the al-

gorithm gradually increases the number of freed decision variables, broadening the search.
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Conversely, if the solver struggles to achieve a small gap, the algorithm reduces the neighbor-
hood size to keep subproblems tractable. In addition, if a particular neighborhood-selection
method fails to produce a better solution within a set number of iterations, the heuristic

switches to the next method (Lines 17-24 in Algorithm 1).

Algorithm 2: Route Set R() Selection for AIPBLS Neighborhood 1 (Greening et al., 2023)

10

11

Input: Focused route set (R’ C (u{ke,C}Rk)), focus size variable («), commodity set (K), commodity focused route
set (R}, C Ry, Yk € K), commodity volumes (V}, Vk € K) for baseline ODT ¢
Result: Selected route subset (R(9))
Set R() « ¢;
Set O + {ox |k € K};
Set V Ywer Vi
while |[R®W| < a|R/| and O # 0 do
Set mo + % Z{kelc\ok:o} Vlf, Yoe€ O;
Select origin os randomly from O using probability mass function ;
RO ROU (Ugpek | o =00} RY);
O« O\ {os};
Vev— 2o {heK | op=os} Vit
end

return R®)

The search focus alternates between improving ODT quotation (focus = @) and route selection

(focus = R) every six iterations, as specified in Algorithm 6. By design, AIPLS first attempts

to achieve quick improvements by handling these more restrictive, single-focus subproblems. For

instance, when the focus is on ODT quotation, R’ is limited to the set of routes currently used in the

incumbent solution and only ODT decision variables are freed. Similarly, when the focus is on route

selection, the algorithm fixes ODT decision variables and expands R’ to include all possible routes.

The heuristic alternates between these single-focuses until it no longer makes improvement or hits

the single-focus solve time limit (37°). It then uses the joint focus (focus = J), simultaneously

improving both ODT and route decisions.

Within each iteration, the neighborhood is chosen via one of three methods:

e Neighborhood 1 (Algorithm 2; see Figure 8) biases vendor selection toward those with larger
outbound demand. It uses random-weighted probabilities proportional to a vendor’s total vol-
ume. Once a vendor is chosen, all routes (and/or commodities, if focusing on ODT quotation)

associated with that vendor are freed for reoptimization.
e Neighborhood 2 (Algorithm 3; see Figure 9) biases vendor selection toward one with larger
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Algorithm 3: Route Set R() Selection for AIPBLS Neighborhood 2

Input: Focused route set (R’ C (UgkexcyRe)), focus size variable (), commodity set (K), commodity focused route
set (R}, € R, Yk € K), commodity volumes (th, Vk € K) for baseline ODT ¢, commodity origin distance
dictionary (D) (origins are keys and list of other origins in ascending order of distance from key are values),
tabu list (tabuy) of past 7 vendors selected

Result: Selected route subset (R(?) and updated tabu list (tabus,)

1 Set R « p;
2 Set O« {or |k € K};
8 Set Ve 32 (xcxfop gtabuy) Vi
4 Set mo < % 2o {keK | op=o} Vi, Vo e O\ tabuy;
5 Select origin os randomly from O \ tabu, using probability mass function ;
6 R RO U (Uprex | op=0.1R1);
7 O+ O\ {os};
8 tabu, < (tabuy, 0s);
9 if |tabu,| > n then
10 Remove earliest added origin from tabuy;
11 Set nearby_list < Dlos];
12 Set j < 1;
13 while |[R(®| < a|R/| and O # 0 do

14 Set o « nearby_list[j];

15| RO RO U (Ugrex|o=0) R)5
16 O« O\ {o};

17 Set j 7+ 1;

18 end

19 return R(), tabu,

Algorithm 4: Route Set R(Y) Selection for AIPBLS Neighborhood 3

Input: Focused route set (R’ C (UgrexcyRi)), focus size variable (), commodity set (K), commodity focused route
sets (R}, € Ry, Yk € K), LMD subset (D’)
Result: Selected route subset (R()) and updated LMD subset (D’)
1 Set D) « @;
2 Set R + ¢;
3 while |[R(| < o|R/| do

4 Select destination d randomly from D’;
5 if d ¢ D then
6 RO RO U (Ugrex |a=ayR})
7 DO « DO Y {d};
8 D'+ D'\ {d};
9 if D’ =0 then

10 ‘ Set D' + {di |k € K};

11 end

12 return R(®) D’
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Algorithm 5: Internal MIP solver for ATPLS

10

11

12

13

14

15

16

17

18

19

20

Input: MIP, feasible solution (&, ¢, f, 4§, h, @, ), current best objective value (val), commodity set (K), commodity

route sets (R, ¥k € K), commodity ODT sets (T, Yk € K), neighborhood route selection set (R(9),

neighborhood lead time selection set (’Tk,(i)7 Vk € K), non-improving iteration count (iter), non-improving

neighborhood iteration count (iter )

Result: Improved feasible solution (&, 9, f, 4, h,a, w) and objective value (val)

Add constraints =, = &, Vr € (U{keIC}Rk) \R® and wyy = gy, YVt € 7}\775“, Vk e K to MIP;

Solve MIP using (%, 9, £y, h,, W) as warm-start solution;

Twvitp < MIP solving time;
newval < MIP solution’s objective value;
if newval > val then
Set (2,9, f,§, h, @, ) < MIP solution;
if newval — val < val * 0.00005 then
‘ Set iter <~ 0, iterypg < 0;
else if newval — val < val * 0.0001 then
‘ Set iter < 0, iterypg < iteryg + 1;
else

‘ Set iter < iter + 1, iteryg < iteryg + 1;

Set val + newwal;
else
‘ Set iter < iter + 1, iternyg < iteryg + 1;
if MIP solution gap < 0.02 then
‘ Set minGap < True;
else

‘ Set minGap < False;

return (2,9, f,9, h, 4, W), val, iter, itery g, Tvip, minGap

outbound demand, then adds geographically nearby vendors. Once a vendor is chosen, all
routes (and/or commodities, if focusing on ODT quotation) associated with that vendor are
freed for reoptimization. To avoid repeatedly selecting the same initial large-demand vendor,
the chosen vendor is appended to a tabu list, preventing reselection for a certain number of

iterations.

Neighborhood 3 (Algorithm 4; see Figure 10) randomly chooses LMDs from a list D" without
replacement, ensuring all LMDs appear eventually. All routes (and/or commodities) destined

for the selected LMDs are freed for reoptimization.

All three neighborhood-selection methods aim to free a sufficient number of route and/or ODT

variables, as controlled by the focus, to keep the restricted MIPs solvable within a 5-minute time

limit, yet still large enough to produce meaningful improvements.

Finally, the AIPLS heuristic terminates when it either reaches the runtime limit 7" or fails
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Algorithm 6: Update ATPLS heuristic variables

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Input: Indicator if MIP gap was below threshold (minGap), count of consecutive iterations MIP gap was below
(mipICt) or above (mipDC't) mipGap [and saved counts for each focus (mipICtfocys, mipDClfocys)], step
size to increase (mipIncr) or decrease (mipDecr) neighborhood size [and saved step sizes for each focus
(mipIner focus, mipDecr focys)], focus size variable (a) [and saved sizes for each focus (afocus)], maximum
possible focus size parameter (amax ), current search focus (focus), count of consecutive iterations for current
focus (focusC't), count of search focus non-improving cycles with ODT (focusQC't) or routes (focusRCt)
focus, feasible solution (&, v, f.9,h, 4, W), non-improving iteration count (iter), non-improving neighborhood
iteration count (iterpy ), solve time limit (7"), current runtime (Trun), commodity route sets (R, Vk € K)

Result: Updated AIPLS variables

if minGap = True then

miplCt < mipICt+ 1, mipDecr < 1, mipDCt <+ 0;

if mipICt > 6 then

Set a < min{a@max, @ + 0.02 * mipIncr}, mipIncr < mipIncr +1, mipICt < 0;

else

mipDCt < mipDCt+ 1, miplncr < 1, mipICt + 0;

if mipDCt > 3 then

a + max{0.01,« — 0.02 * mipDecr}, mipDecr < mipDecr +1, mipDCt « 0;

if focus = J and iter > 30 then

focus + END;

return focus;

else if [Trun > %T or (focusQCt > 2 and focusRCt > 2)] and focus # J then

focus <= J, R’ {r€Upex Re}, iter+ 0, idterng 0, a<ay, miplncr < miplnery,

miplCt < mipICty, mipDecr <— mipDecry, mipDCt < mipDCty;

else if focusCt > 6 and focus # J then

Qfocus & @,  MipIncryoeys < mipIner,  miplCtyocys < miplCt, mipDecrfoeys < mipDecr,

mipDCltocys < mipDCH;

if focus = @Q then

focus <= R, R’ {7 € Upex Rr};

if iter > 10 then

‘ focusQCt + focusQCt + 1;

else

focus — Q, R {recUpck Rilar =1}

if iter > 10 then

‘ focusRCt < focusRCt + 1;

Q< Qfocus, miplner < mipIncryocys, miplCt < miplCtyrocys, mipDecr < mipDecrfocys,

mipDCt < mipDClyocys, focusCt < 0;

return focus, focusQCt, focusRCt, R/, o, & focus V focus € {Q, R}, mipIncr, mipInerfocys ¥V focus €
{Q, R}, mipICt, mipICtfocys V focus € {Q, R}, mipDecr, mipDecr focys ¥V focus €
{Q, R}, mipDCt, mipDCltyocys V¥ focus € {Q, R}, iter, iterypr;

to improve the solution after a number of consecutive iterations (Lines 15-16 in Algorithm 1).

By gradually alternating the search focus, selecting neighborhoods that target the most impactful
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(a) Vendors assigned probabilities =  (b) Vendor selected at random; R()  (c) Vendor probabilities updated; next
according to total volume. updated to include all routes origi- vendor selected at random; R} up-
nating at selected vendor (including dated.

routes not in current solution).

T
[RW| = 20 [RW| = 20 [R®| =0 0 1
(d) Vendor probabilities updated; next  (e) Size of R(}) meets minimum re- (f) Routes optimized; next iteration
vendor selected at random; R(1) up- quirement (i-e., \Ru)\ > 16) to opti- subset R2) initialized; vendors prob-

dated. mize. abilities 7 reset to (a).

Figure 8: Tllustration of Neighborhood 1 vendor selection in a single iteration of the AIPLS heuristic,
focusing on route improvement. Vendors are colored by their m, value (Line 5 in Alg. 2) and randomly
chosen—without replacement—with probability 7, (Line 6 in Alg. 2). This process continues until the route
set R™) contains at least 16 routes (or [ap - |R’|] with ag = 0.3 and |R’| = 52) to free for optimization.

Note that |Ri| = 4, but only the incumbent route is shown for clarity.

vendors or LMDs, and adapting the size of each subproblem to solver performance, AIPLS aims to

efficiently discover high-quality solutions.

Appendix C Performance of the AIPLS Heuristic

In this section, we present results that evaluate the effectiveness of our AIPLS heuristic approach,
compared with directly solving the MIP model using a commercial solver. In Table 13, we compare
the solutions for the ODTQ-MMC=1 model obtained by running the MIP for 12 hours with those
produced by the AIPLS approach after 1, 3, 6, and 12 hours. To compute the gap for the AIPLS

approach objective value, we use the 12-hour MIP upper bound (UB). We also report the percentage
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(a) Vendors assigned probabilities 7

according to total volume.

(b) One vendor randomly selected;
RM) updated to include commodity

routes in current solution.
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(d) Next closest vendor selected; up-

dated R meets size requirement

(e) ODTs optimized for selected ven-

dor commodities.

(f) Vendor selected in (b) cannot be

selected; vendor probabilities updated.

(i.e., |[RMW| > 4) to optimize.

Figure 9: TIllustration of Neighborhood 2 vendor selection in a single iteration of the AIPLS heuristic,
focusing on ODT optimization. One vendor is chosen at random (with probability proportional to its total
outbound volume 7,, Line 5 in Alg. 3), and additional nearby vendors are iteratively added until R(Y) contains
at least [aq-|R’[| routes. Here, because the focus is on ODT optimization, R’ is the set of currently selected
routes for each commodity (i.e., |R’| = |K|). Once sufficient routes are added, the associated ODT decision
variables are freed for reoptimization. The initially chosen vendor cannot be reselected until at least 75%
of the other vendors have been chosen. In this example, [0.3 - 13] = 4 routes must be added, and each

commodity is using its direct route.

improvement in both the objective value and the MIP gap when comparing the 12-hour AIPLS
solutions to the 12-hour MIP solutions. The results are the average of the 5 instances in each
group. Note that the MIP solutions for Groups 1, 2, and 3 are from the MIP formulation with the
binary linearization (3) approach, as these provided stronger upper bounds (see Appendix A for
the comparison to the piecewise-linear approach (2)).

For the smallest three groups, the MIP solver and the AIPLS approach produce comparable

results, validating the heuristic’s effectiveness. However, as the instance size increases, AIPLS
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(d) Next LMD randomly selected from  (e) R(?) updated; size of R(?) meets (d) Routes optimized for selected
remaining LMDs. minimum requirement to optimize. commodities; selected LMD removed;

R3) initialized.

Figure 10: Tllustration of Neighborhood 3 over two iterations of the ATPLS heuristic, focusing on route
selection. As in Figure 8 with a focus on route improvement, at least 16 routes must be added to R() for
each iteration. One LMD is randomly chosen—without replacement—from the current subset D’, and all
commodity routes destined for that LMD are freed for reoptimization. If D’ is exhausted, it resets to the

full set of LMDs.

becomes the stronger solution approach. Specifically, for both Groups 4 and 5, the AIPLS approach
yields nearly 10% higher profits and reduces the MIP gap by approximately 50%. We also observe
that the AIPLS approach quickly finds high-quality solutions (as evidenced by the 1-hour AIPLS
solutions) and continues to make marginal improvements given additional time. In particular, the
1-hour solutions already achieve 80% and 90% of the objective improvements, and similarly 98%

and 99% of the final objective values, for Groups 4 and 5, respectively.
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Table 13: Comparison of 12-hour MIP to 1-hour, 3-hour, 6-hour, and 12-hour AIPLS performances for
ODTQ-MMC=1.

MIP AIPLS % Impr
r
12-hr 12-hr Upper ~ MIP 1-hr Obj  3-hr Obj  6-hr Obj  12-hr Obj 12-hr Obj
Obj Bound (UB) Gap (UB Gap) (UB Gap) (UB Gap) (UB Gap) (UB Gap)
$ 257,249 $ 257,259 $§ 257,259 $§ 257,259 - 0.1%
1 § 257,402 $ 257,402 0.0%
(0.1%) (0.1%) (0.1%) (0.1%) (NA)
$ 592,806 $ 593,208 $ 593,239 $ 593,239 - 0.1%
2 $ 594,022 $§ 604,498  1.8%
(2.0%) (1.9%) (1.9%) (1.9%) (-7.6%)
$1,254,855 $1,273,433  $1,275,267  $1,275,403 - 0.1%
3 $1,276,525  $ 1,523,695 3.7%
(5.5%) (3.9%) (3.8%) (3.8%) (-2.5%)
$7,777,779  $7,805,826  $7,887,990  $7,901,352 8.5%
4 $7,283,192 $ 8,670,151 19.0%
(11.5%) (11.1%) (9.9%) (9.7%) (48.9%)
$9,857,422  $9,886,124  $9,041,056  $9,951,478 10.7%
5 $8,989,957  $10,996,492  22.3%
(11.6%) (11.2%) (10.6%) (10.5%) (53.0%)

Values in italics indicate binary linearization (3) approach was used.

Appendix D Additional Instance Details

In this section, we provide additional details about the instances used in the computational study.
To generate representative baseline demand volumes for each commodity, we first cluster our part-
ner’s vendors and LMDs into size categories of small, medium, or large based on total outbound and
inbound volume, respectively. We then generate empirical demand distributions for each vendor-
LMD size group pair (e.g., a small vendor sending demand to a medium LMD) and sample volumes
from the appropriate distribution for each commodity. We follow a similar approach to generate
FC-to-LMD demand volume; however, FCs are not categorized by size (i.e., all are treated as one
size).

We generate a set of legs for each instance consisting of direct and consolidation freight trans-
portation legs. Direct freight transportation legs connect vendors to LMDs, while consolidation
freight transportation legs include vendor-to-FC, FC-to-FC, and FC-to-LMD connections. In the
consolidation network, each FC can serve as an intermediate transfer facility. The truckload freight
mode, with a trailer capacity of 12,000 pounds, is available for all legs. However, to resemble oper-
ations in our e-commerce partner’s network, LTL freight modes are restricted to LMD-inbound legs
only. We define three LTL freight modes, each corresponding to a specific capacity range: [0,2000),
[2000,2700), or [2700,4000) pounds, respectively. We allow a maximum of 40 truckloads and 5 LTL

loads per week on each leg. Estimates of freight mode costs are derived using actual costs provided
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by our partner. Additionally, LTL shipments require more transit time than truckload shipments,
since they do not move direct. Thus, we calculate the transit time required for an LTL shipment
by multiplying the truckload transit time by a factor (greater than 1) provided by our partner.
We assume all LTL freight modes require the same transit time per leg. We also impose a mini-
mum headway H; of 1 day (or % of a week, as implemented in the model) when constraining route
lead times. This fairly conservative value results in a consolidation plan that assumes shipments
spend at least half a day, on average, at transfer locations; in essence, this prevents the model from
planning unreasonably short transfer times.

For each instance, we generate a set of routes Ry for commodity k using a more flexible version
of the guidelines followed by our partner, while still adhering to industry standards (e.g., allowing
no more than two transfers per route). The set R}, contains the following geographic routes: (i)
a direct route from origin to LMD, (ii) the shortest-distance two-leg route using a single transfer
facility, (iii) a two-leg route using the transfer facility closest to the origin, (iv) a two-leg route
using the transfer facility closest to the LMD, and (v) a three-leg route using the transfer facilities
in (iii) and (iv), if they are not the same. If any routes are geographically identical, only one is
kept in the set. For geographic routes (ii)-(v), the FC-to-LMD leg may use either the truckload
or LTL freight mode, each with a different transit time. Because the conservatism hyperparameter
pt depends on the fixed transit time 7, of route r (which is determined by mode choice) and is
multiplied by the binary variable wy; in Constraints (2h), we duplicate geographic routes (ii)-(v)
and restrict (using side constraints) one of the routes to truckload and the other to an LTL freight
mode. Therefore, each commodity k£ can have up to 9 routes in Ry.

The freight mode, load dispatch frequency, and related cost of each vendor-originating direct
route are pre-computed in a pre-processing step. We then incorporate the cost of a direct route r
into the route objective coefficient C,.. This pre-processing step reduces the computational burden
when solving the models, as each lane (i.e., the direct leg and all associated modes) representing
a direct route can be removed from the set of lanes £ x M;, and similarly, from the set of legs L.
This significantly reduces the number of decision variables and related constraints.

Each commodity is assigned a baseline ODT requirement consistent with our partner’s approach,
ensuring that every commodity k can feasibly utilize any route in its route set Ry, provided there
are sufficient dispatches per week. Although it is possible to define a unique relationship between
quoted ODTs and demand volume conversion for each commodity, in the computational exper-

iments presented in this paper, we use a single representative conversion curve estimated from
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aggregated historical demand data, for ease of exposition. Based on the confidential company data
we analyzed, we find that a reversed S-shaped curve frequently characterizes customer purchasing
behavior across commodities: customer sensitivity to ODT changes is highest near the baseline
ODT (typically around 1 week for large and bulky items) but declines when the promise time is
significantly shorter or longer. While the experiments in this paper use a single representative
curve, it is possible to use the ODTQ-MMC with many different conversion curves (up to one per
commodity) without increasing the computational burden. Note also that this planning model
can be adjusted and solved for different selling periods during the year to address seasonality, new
product introductions, or changing demand levels.

We assume a linear relationship between commodity demand volume V) and the revenue (sales
minus COGS) S} generated from that volume. To calculate the expected demand volume V}' for
a commodity k& when quoted ODT t using the curve shown in Figure 3, we multiply the baseline
demand volume by the ratio of the conversion rate for the selected ODT to the conversion rate for
the baseline ODT requirement. For example, if the model reduces a commodity’s quoted ODT from
the baseline requirement of 10 days to 8 days, the demand volume for that commodity increases
by a factor of 1.22 (i.e., 0.0109 divided by 0.0089). Consequently, the revenue associated with that

demand volume also increases by the same factor.

Appendix E Benefits of an Integrated Optimization Framework

In this section, we present four simpler, alternative approaches for maximizing profit to demon-
strate the value of using a comprehensive model which jointly optimizes ODTs and the consolida-
tion plan, as the ODTQ-MMC model does. In the first approach (ODT—1), all vendor-originating
commodity ODTs decrease (similarly, speed up) by 1 day; we then optimize the ODTQ-MMC=0
model to determine the consolidation plan. In the second approach (ODTM=1), we categorize
the vendor-originating commodities by high-, mid-, and low-sales margin, where sales margin is a
commodity-based calculation of sales net COGS divided by sales, and ODTs decrease by 1 day, do
not change, or increase by 1 day, respectively. We assign 65%, 25%, and 10% of vendor-originating
commodities to groups categorized by high-, mid-, and low-profit margin, respectively. Other pro-
portions were tested, but this combination leads to the highest profit solutions. After manually
adjusting commodity ODTs, we again optimize the ODTQ-MMC=0 model to determine the con-
solidation plan. The third approach (OptODT=1) optimizes the ODTs of the ODTQ-MMC=0
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solution. That is, we fix the routes and capacities (i.e., modes and load dispatch frequencies) to
those of the ODTQ-MMC40 solution and then solve the ODTQ-MMC+1 model to optimize ODT
selection. In the final approach (OptODTCap=1), we fix routes according to the ODTQ-MMC=0
solution, and then solve the ODTQ-MMC=1 model to simultaneously optimize ODTs and leg
capacities (i.e., mode and number of load dispatches).

To compare optimal load plans, we solve Group 1 instances using the ODTQ-MMC=£1 MIP
model (with the binary linearization approach (3)). In Table 14, we report financial metrics, as
well as the percentage of vendor volume sent through the private middle-mile network (VND Vol
In-Ntwk) and volume-weighted ODT. In Table 15, we report load plan-related metrics to compare
the performance of the approaches. In both tables, the rows represent the average across the 5

instances composing Group 1.

Table 14: Alternative approach financial metrics for Group 1 instances.

Model Profit Profit Revenue Fulfillment Profit Fulfillment  Vnd Vol  Vol-Wtd
Increase Cost Margin  Cost per Ib  In-Ntwk oDT
ODTQ-MMC+0  $233,484 - $339,027 $105,543 30.3% $0.313 84.5% 6.6
ODT-1 $239,775 2.7% $362,369 $122,594 29.2% $0.341 82.5% 5.8
ODTM=+1 $240,083 2.8% $358,393 $118,310 29.8% $0.336 84.0% 6.0
OptODT=1 $247,549 6.0% $353,841 $106,292 30.9% $0.304 84.5% 6.2
OptODTCap+1  $252,415 8.1% $355,907 $103,491 31.3% $0.295 84.6% 6.3
ODTQ-MMC+1  $257,402 10.2% $357,133 $ 99,731 31.8% $0.283 85.7% 6.3

As one may expect, the approaches that explicitly optimize ODTs yield the highest profit,
further improving as the number of optimized decisions increases. Although the ODT—1 approach
generates the greatest revenue by reducing every commodity’s ODT by one day, meeting these tight
deadlines necessitates more load dispatches and/or utilizing more direct routes, thereby increasing
fulfillment cost. In contrast, other profit-maximizing approaches achieve a better overall profit by
allowing some commodity ODTs to increase, which reduces the number of load dispatches required
and thus lowers fulfillment cost. Therefore, these other approaches increase profit by determining
the best trade-off between revenue and fulfillment cost.

Both OptODTCap+1 and ODTQ-MMC=+1 incur lower fulfillment costs and generate higher
revenue compared to ODTQ-MMC=0. Upon close inspection of the load plans, we observe that
the models slow down commodities with tight baseline ODT-time requirements (needing a high
frequency of load dispatches per week) while speeding up commodities that can simply be added

to previously scheduled trucks (without increasing the total number of dispatches). Thus, even
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as volume increases, fulfillment costs can actually decrease because models that optimize both
ODTs and load dispatch frequencies identify a more cost-effective mix of commodities to ship (and

associated ODT's to quote).

Table 15: Comparison of load plan metrics when solving Group 1 instances.

Avg Load

Vol-Wtd Loads/Week Vol-Wtd

Model Disp Freq e
Route Length TL Utilization
LTL TL LTL TL

ODTQ-MMC=0 1.83 2.1 2.6 61 63 74.0%
ODT-1 1.78 2.3 3.1 89 72 65.4%
ODTM=+1 1.80 2.2 3.0 73 72 66.2%
OptODT=1 1.84 2.1 2.6 61 63 77.6%
OptODTCap=+1 1.84 2.1 2.4 59 61 77.3%
ODTQ-MMC=+1 1.82 2.1 2.3 49 64 76.0%

When we compare the ODTQ-MMC=+0 and OptODT=1 solutions, both of which use the same
routes, modes, and weekly load dispatches (see Table 15), we find that OptODT=+1 better leverages
existing capacities by more efficiently filling truckloads and substituting less profitable commodities
with more profitable commodities. In doing so, OptODT=1 strategically slows down (and reduces
the volume of) less profitable commodities whenever the current consolidation plan can still satisfy
the faster ODTs of the more profitable commodities. This adjustment allows additional volume
from more profitable commodities to fit within the shipment, thus increasing overall profit. In fact,
in every situation where a commodity’s ODT slows down, at least one leg in its selected route
is near maximum capacity and also transports one or more commodities whose ODT speeds up.
Consequently, the reduced volume of the slowed commodities frees up space on the nearly full leg,
allowing more profitable commodities to fit within the shipment. Interestingly, and now perhaps
less surprisingly, we observe that OptODT=1 outperforms all other approaches, including ODTQ-
MMC41, in volume-weighted truckload utilization. The slight increase in fulfillment cost compared
to the ODTQ-MMC40 solution arises from the ability to adjust the size of LTL shipments, which
incur a variable cost per pound.

In conclusion, our results show that even for small instances, a comprehensive approach that
simultaneously optimizes ODTs and the consolidation plan yields the most profitable outcome. In
fact, the ODTQ-MMC=1 also outperforms all other approaches in profit margin, fulfillment cost,
and fulfillment cost per pound, as well as decreases reliance on LTL and sends the highest volume

of vendor freight through the middle-mile network.
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