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Abstract

This paper proposes an approach that leverages data on customer purchasing sensitivity to
quoted order-to-delivery times (ODTs) when designing middle-mile consolidation networks to
maximize the profit of e-commerce retailers. Our approach integrates quoted ODT-dependent
sales volume predictions into a new mixed-integer program (MIP) that simultaneously deter-
mines ODT quotes and a consolidation plan, characterized by the frequency of load dispatches
on each transportation lane. The objective of the MIP is to maximize sales revenue net ful-
fillment cost while ensuring that quoted ODTs are met with a high probability as set by the
retailer. We linearize the ODT chance constraints by approximating the waiting delay incurred
between load dispatches using convex piecewise-linear functions. To find high-quality solutions
for large, practically sized instances, we build an adaptive IP-based local search heuristic that
improves an incumbent solution by iteratively optimizing over a selected subset of commodity
ODT and/or route options, which is randomized and adjusted based on solver performance.
Results from a U.S.-based e-commerce partner show that our approach leads to a profit increase
of 10% when simply allowing a marginal change of one day to the current ODT quotes. In
general, we observe that integrating ODT-dependent customer purchasing estimation into a
decision model for joint ODT quotation and consolidation network design achieves an optimal
trade-off between revenue and fulfillment cost.

Keywords: E-commerce logistics; service network design; middle mile; customer time sensitivity.

1 Introduction

In 2022, over 20% of retail sales took place on a digital marketplace, making it the first year ever

for e-commerce revenue to exceed $1 trillion in the United States (USDOC, 2023). Oftentimes,

e-commerce profit margins are thin due to the high fulfillment costs of fast and free shipping, which
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customers have grown accustomed to over the years. To remain profitable, e-retailers must operate

efficient and cost-effective fulfillment networks, while also taking their customers’ behaviors and

preferences into consideration. Thus, we consider the problem of jointly quoting customer-desirable

order-to-delivery times (ODTs) (i.e., the amount of time between when an order is placed and when

it gets delivered) and configuring a transportation plan to maximize the overall profit of an e-retailer.

The proposed approach allows planners to accurately identify which commodities to decrease ODTs

for increased revenue (with marginal impact on fulfillment costs) and which commodities, if any,

to increase ODTs for improved consolidation opportunities and decreased fulfillment costs (with

marginal impact on revenue).

Large e-retailers today must manage complex fulfillment networks to ship purchased products

directly to customers. Products may be stocked in and shipped from retailer fulfillment centers

(FCs) or they may be shipped directly from vendors. Depending on the shipment size, package

transportation carriers (e.g., UPS or FedEx), or less-than-truckload (LTL) trucking firms may be

used for shipping direct to customers. Such transportation carriers may offer multiple transit-

time options—each with its own shipping cost—to the e-retailer, who then decides which ODTs

to quote customers. Since customers are often sensitive to these promised delivery times, and

their likelihood of placing an order typically increases as the quoted time shortens (Fisher et al.,

2016; Cui et al., 2023), e-retailers collect data on customers’ online shopping behaviors, such as

clickstream activity, time spent on product pages, and shopping cart additions or removals, to

better understand how customers respond to factors like delivery-time promises (NetChoice, 2023).

For example, by systematically tracking the proportion of customers who finalize a purchase after

being quoted a specific delivery estimate, retailers can fit an error-minimizing statistical model to

better capture how the promised delivery time affects the likelihood of a sale across similar product

classes. In many cases, retailers develop their own proprietary approaches, leveraging unique data

and operational objectives to shape these curves and calibrate model parameters for more accurate,

data-driven predictions.

Since direct shipping to customers is expensive, large e-retailers have recently focused on design-

ing and building middle-mile consolidation networks for outbound shipping (Wayfair, 2021; Amazon

Science, 2021). In such networks, shipments are consolidated into larger loads and moved through

intermediate transfer locations prior to final delivery. These larger loads may be transported as full

truckload (TL) shipments or as larger LTL shipments; in either case, cost scale economies are such

that the e-retailer can reduce total transportation costs using this approach. However, designing a
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middle-mile network is challenging, as shipments must be transferred at one or more intermediate

locations, thus substantially increasing the transportation plan complexity.

Greening et al. (2023) develop an optimization methodology for the design of middle-mile net-

works for shipments moving from vendor or FC origin locations to last-mile delivery (LMD) termi-

nals where shipments are handed off to a partner carrier for final delivery. A primary assumption in

that work is that the customer ODT quotes are fixed and must be satisfied with high likelihood by

shipments in a cost-minimizing transportation plan. The ODTs quoted to customers are often set

using historical transit times and consolidation networks are then configured to meet those quotes.

However, e-retailers now have an abundance of customer behavior data where the relationship be-

tween the quoted ODT and a customer’s likelihood of purchasing can be extracted (Cui et al.,

2023).

In this paper, we study how e-retailers can leverage this data by extending previous middle-mile

design methodology to dynamically determine the ODTs to quote to customers while simultaneously

optimizing the network transportation plan. Specifically, in this work, we:

– develop a new mixed-integer programming (MIP) model, referred to as ODT quotation and

middle-mile consolidation (ODTQ-MMC), which jointly selects ODTs and designs the con-

solidation network to maximize profit for a large e-retailer while ensuring that ODTs are

satisfied with high probability;

– propose a linearization technique for the hyperparameterized approximation of chance con-

straints on shipments meeting ODTs that interpolates reciprocal functions with convex piecewise-

linear functions, yielding stronger upper bounds (0.88% and 1.66%, respectively, for our two

largest instance groups) in large-scale problems;

– build and demonstrate the effectiveness of an adaptive integer-programming-based (IP-based)

heuristic with randomized search neighborhoods that dynamically adjusts the focus of the

search as well as the size of the restricted MIP solved at each iteration based on the search

performance to find high-quality, profit-maximizing load plans;

– conduct a comprehensive case study using data provided by a large U.S.-based e-retailer to

demonstrate the value of incorporating customer behavior data into the planning of ODT-

constrained consolidation networks.

The remainder of this article is organized as follows. In Section 2, we discuss literature relevant
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to the problem and solution approach. We then formulate the ODTQ-MMC problem in Section 3.

In Section 4, we propose an adaptive IP-based heuristic solution approach. In Section 5, we present

results from a computational case study. And finally, in Section 6, we make concluding remarks

and highlight potential areas of future work.

2 Literature Review

There is a large body of research on flow and load planning service network design (SND) problems

(see Crainic 2000, Wieberneit 2008, and Crainic et al. 2021 for reviews of SND in transporta-

tion), which share many similarities to the consolidation network design problems faced by large

e-retailers. In the more recent problems studied, customer expectations are assumed to be satisfied

by meeting fixed ODTs. The problem is then to determine a minimum-cost SND that meets these

time requirements. Quoting ODTs is not trivial and can even affect customer demand (Cui et al.,

2023).

There is a significant amount of research on calculating appropriate ODTs to quote for cus-

tomers of manufactured or make-to-order goods (Duenyas and Hopp 1995, Keskinocak et al. 2001,

Venkatadri et al. 2006, Selçuk 2013, Feng and Zhang 2017, to name a few). These studies operate on

the assumption that decreasing delivery time promises increases demand, which is often modeled as

a linear function of time, except for Montreuil et al. 2013 who modeled several non-linear customer

behaviors. Recent works present empirical evidence to quantify the impact of (quoted) ODTs on

customer behavior and demand based on large data sets of e-retailers and difference-in-differences

estimations. Fisher et al. (2016) show the resulting increase in demand from a decrease in average

delivery time through a quasi-experiment, while Cui et al. (2020) demonstrate a decrease in sales

following increased delivery times through a natural experiment. Cui et al. (2023) study the impact

of quoted ODTs rather than actual delivery times, focusing on the informational aspect.

In this paper, instead of calculating commodity-specific ODTs to quote without considering the

network-wide logistics and related costs required to meet these times, as is done in the previously

mentioned work, we simultaneously select ODTs for the retailer’s full set of commodities such that

the profit, or revenue net logistics cost, is maximized. To the best of our knowledge, this problem

of jointly selecting location-dependent customer ODTs (that affect demand volume) within a load

planning SND model that meets delivery time requirements while maximizing profit has not been

studied. Thus, for the remainder of this section, we will review the most relevant flow and load

4



planning SND literature, as well as literature most relevant to the algorithmic solution approach

we propose.

Flow and load planning SND problems are modeled using flat (static) networks (Powell and

Sheffi, 1983; Crainic and Roy, 1988; Chouman and Crainic, 2015; Greening et al., 2023) or time-

expanded networks (Lin, 2001; Zhu et al., 2014; Hewitt, 2022). To meet customer delivery time

expectations in flat network models, waiting delays for transferred shipments are controlled by

setting truckload frequencies on arcs with positive truck flows. Initially, minimum weekly truckload

frequencies were set to ensure an upper bound on waiting delays (Powell and Sheffi, 1983) and later,

nonlinear average waiting delays were either penalized in the objective (Crainic and Roy, 1988) or

probabilistically-constrained using chance constraints (Greening et al., 2023). In time-expanded

networks, the time shipments spend moving between origins and destinations is explicitly modeled

and constrained to meet delivery time requirements; problems of this type are often referred to as

scheduled service network design (SSND) problems (Zhu et al., 2014; Hewitt, 2022). The detailed

modeling often leads to very large MIP sizes that are difficult to solve and rely on heuristic solution

approaches (Jarrah et al., 2009; Lindsey et al., 2016). The quality of solutions produced also

relies on the discretization of time used to capture shipment consolidation opportunities. More

recent work has developed approaches to dynamically determine exact dispatch times, removing

the need to pre-specify a time discretization (Boland et al., 2017; Hewitt, 2022). However, these

dynamic discretization discovery methods remain computationally expensive and rely on heuristic

solution approaches for realistically-sized instances. Because both arrival of demand and network

operations are assumed to occur continuously throughout the planning horizon and delivery time

requirements are variable, we elect a flat network representation and ensure quoted ODTs are

satisfied using probabilistic constraints.

In this work, we aim to select ODTs based on customer preferences while accounting for ful-

fillment costs such that the profit is maximized. A similar SND problem has been studied where a

carrier needs to design a transportation network that is price- and service-competitive with other

providers such that shippers choose to use their services and profit is maximized (Li and Tayur,

2005; Brotcorne et al., 2008; Ypsilantis and Zuidwijk, 2013; Wang et al., 2023). A common approach

is to use a bilevel programming model, where the carrier’s profit is maximized in the upper level and

the customers’ (or shippers’) costs as measured by origin-destination distances (Brotcorne et al.,

2008), system costs (Ypsilantis and Zuidwijk, 2013), or disutility (Tawfik and Limbourg, 2019;

Nicolet and Atasoy, 2023) are minimized in the lower level. Martin et al. (2021) study the case
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where an express delivery provider maximizes their profit by determining the optimal set of guar-

anteed delivery times and associated prices (irrespective of origin or destination locations) given

customer sensitivities to delivery times. Their approach combines a product segmentation and pric-

ing problem and a time-space SSND problem with endogenous delivery quantities and due times.

In all the previously mentioned work, the authors study carrier networks which are much smaller

in scale (e.g., fewer locations, commodities, etc.) compared to e-commerce fulfillment networks.

Thus, instead of adapting the previous methodologies, we opt to develop a more scalable approach

in which pricing is fixed and customer ODT-sensitivities are determined outside of the optimization

model and embedded within our demand representation.

Efficient heuristics, such as IP-based local search (IPLS) (Franceschi et al., 2006; Archetti et al.,

2008), have been developed to provide high quality solutions for flow and load planning problems

(Erera et al., 2013; Lindsey et al., 2016). Given a challenging MIP to solve, IPLS iteratively

solves a restricted version of the MIP, obtained by fixing a subset of variables, in an attempt to

improve an incumbent solution (Hwang et al., 2011). We use this general framework to improve

both consolidation throughout the network and commodity ODT selection by iteratively solving

restricted MIPs with a subset of route and ODT variables fixed to the current solution.

The work presented in this article builds upon that of Greening et al. (2023), where a flat

network model with probabilistically-constrained waiting delays is used to meet fixed customer ODT

expectations and solved using an IPLS. We use a similar nonlinear waiting delay constraint, but

linearize the nonlinear term with a convex piecewise function and linear programming techniques,

as opposed to using binary selecting variables, for better numerical performance for large instances.

We additionally extend the model to dynamically select which ODTs to promise customers (affecting

the volume that must be sent through the network) and optimize consolidation in such a way that

profit is maximized for the e-retailer. Since the resulting model is larger and more complex (due to

the selection of both a route and ODT for each commodity), we develop a new IPLS to find high-

quality solutions that is far more enhanced compared to Greening et al. (2023). Specifically, we

derive new neighborhood selection methods and provide our IPLS with the capability of dynamically

adjusting the focus of the search (i.e., selecting commodity routes, ODTs, or both) and the size of

the restricted MIP solved at each iteration based on the search performance.
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3 ODT Quotation and Middle-Mile Consolidation Model

In this section, we define the ODT quotation and middle-mile consolidation (ODTQ-MMC) problem

that maximizes profit by achieving an optimal trade-off between revenue and fulfillment costs while

ensuring ODT quotes are met with a defined probability.

3.1 Problem Description

We consider the problem where a large e-commerce retailer must create a tactical plan for shipping

orders over time from known origin facilities (FCs or vendor locations), where ordered products are

ready for shipment, to known destinations (LMD facilities), where products are re-consolidated for

last-mile delivery. In this problem, vendors are external partner fulfillment locations from which the

retailer only ships to fulfill customer orders, whereas FCs are internal facilities within the fulfillment

network where the e-commerce company both fulfills orders and also re-consolidates shipments

from vendors and other FCs for dispatch. Examples of LMD facilities include those operated by

package transportation companies or postal services (e.g., UPS), branded delivery subsidiaries (e.g.,

Amazon Prime), and/or LTL carriers. The retailer has ODT-dependent (and planning horizon-

dependent) sales volume predictions estimated from customer behavior data, which they use to

select ODTs to quote customers for their orders. Shipments must move from their origins to their

LMD destinations to meet their ODT promises. The retailer ensures shipments arrive on time by

scheduling an adequate number of dispatches per planning horizon between facilities. To minimize

the cost of meeting these deadlines, the retailer consolidates shipments when appropriate into larger

loads (e.g., truckloads or larger LTL shipments) prior to dispatch. These consolidated loads are

then outsourced to third-party carriers for transportation. The ODTQ-MMC problem then is to

simultaneously determine the ODTs to quote customers and a joint set of shipment paths and load

dispatches that move customer shipments from origins to destinations such that profit is maximized.

Let (N ,L) define the retailer’s service network. The node set N consists of the facilities in

the network (i.e., vendor locations, FCs, LMD facilities, and transfer locations) and the directed

arc set L consists of the set of potential freight transportation legs connecting pairs of facilities. If

leg l ∈ L is used in the consolidation plan, all shipments moved on leg l throughout the planning

horizon must be assigned to a single mode m ∈ Ml; a leg-mode combination (l,m) is referred to

as a lane. The assigned mode indicates the type of freight transportation moving the shipments,

along with its associated cost parameters and individual load size bounds. A load is a consolidated
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set of customer shipments dispatched along a leg at a single point in time. For each lane (l,m),

we assume that each load of size q incurs a fixed-plus-linear cost, expressed as Alm +Blmq, and is

constrained by an upper bound Qmax
lm , a lower bound Qmin

lm , and a maximum frequency (or number)

of dispatches Flm. Load size bounds Qmax
lm and Qmin

lm serve as both physical constraints and as key

thresholds where cost parameters change. For example, truckload shipments generally have a lower

bound of 0, whereas LTL modes may enforce a minimum load size to qualify for discounted rates.

Additionally, the lane-specific maximum dispatch frequency Flm is necessary to reflect restrictions

on the number of loads dispatched via lane (l,m) over time, particularly for LTL shipments.

Shipment demand is modeled using a set of commodities K, where each commodity k ∈ K has

a fixed origin ok ∈ N and destination dk ∈ N . An individual commodity represents the aggregated

average shipment size (i.e., the volume) forecasted to flow between ok and dk per time (e.g., pounds

per week), meaning that many shipments of commodity k may be sent throughout the planning

horizon. Importantly, we consider that changes in commodity ODT quotes potentially have an

impact on the commodity’s forecasted demand volume and sales revenue. Thus, demand volume

inputs are expressed as ODT-quote-dependent constant rates per time. Let Tk be a set of feasible

ODTs for commodity k and let V t
k and St

k represent the demand volume and revenue (i.e., sales less

cost of goods sold), respectively, for commodity k when customers are quoted an ODT of t ∈ Tk.

We assume a single ODT t ∈ Tk is selected for each commodity k and is quoted to all customers at

dk throughout the planning horizon.

Let Rk represent the set of potential freight routes (or sequences of adjoined freight transporta-

tion legs) for commodity k. Each route r ∈ Rk connecting origin ok to destination dk is either a

direct route with a single leg or a consolidation route that uses multiple legs and includes shipment

transfers at transfer facilities in N . We assume that each shipment of commodity k follows the

same route throughout the planning horizon; that is, a unique freight route r ∈ Rk must be selected

as the consolidation plan for each commodity k. Associated with each route r is a handling cost

Cr, proportional to the number of transfers, and a fixed time Tr required to traverse the route,

which includes both the leg transit times and processing times at intermediate transfer facilities.

3.2 MIP Formulation

The ODTQ-MMC model developed in this paper is an extension of the middle-mile consolidation

with waiting delay (MMCW) model developed by Greening et al. (2023). As in the MMCW model,

the ODTQ-MMC uses a flat network representation of capacity allocation to legs and an associated
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representation of shipment consolidation into load dispatches such that selected ODTs are met with

the desired probability for each commodity. Freight transportation capacity decisions are modeled

as the frequency of load dispatches on lanes per time and depend on both the physical volume and

the delivery-time requirements of the commodities being transported on that lane.

A load plan satisfies the ODT requirement of commodity k if and only if the lead time of route

r ∈ Rk transporting commodity k does not exceed the commodity’s ODT requirement. The lead

time of a route is the sum of its fixed transit and processing time Tr and any waiting delay(s)

experienced at the origin and, if a route has multiple legs, at transfer facilities. The waiting delay

experienced at a location is the time a shipment waits until the next dispatch and is therefore

directly influenced by the frequency of load dispatches on the outbound leg. The number of load

dispatches on leg l is fl and the headway (i.e., the time between consecutive load dispatches) is 1
fl

time units; load dispatches, and resulting headway, are assumed deterministic and uncoordinated

throughout the network. If individual shipment sizes are small as compared to the capacity of

each load and shipments become available for pick up according to a homogeneous Poisson process,

the time between any individual shipment’s ready time at its origin until the next dispatch (or

the waiting delay) will be Uniform(0, 1
fl
), as the distribution of an observed set of Poisson points

on an interval of known length is uniform. When shipments are transferred at an intermediate

location, an individual shipment’s arrival time is uniformly-distributed on the headway interval of

the outbound leg. Thus, the waiting delay experienced by commodities on every leg l is a uniform

random variable Wl ∼ Uniform(0, 1
fl
).

The probabilistic lead time of a commodity transported by route r is then given by Tr+
∑

l∈r Wl,

and that commodity is considered on time if its lead time satisfies its ODT requirement with

probability at least p, specified by the retailer. Given an ODT-requirement of t, Greening et al.

(2023) showed that the chance constraint P
(
Tr +

∑
l∈r Wl ≤ t

)
≥ p is satisfied if

∑
l∈r

1

fl
≤ 1

ρtr
(t− Tr) , (1)

where ρtr ∈ [0, 1] is a conservatism parameter algorithmically determined that depends on p, t, and

Tr.

Non-linear constraints (1) include a sum of separable hyperbolic terms for each route. In contrast

to Greening et al. (2023), who reformulate these constraints using binary variables, we propose

another approach that interpolates the reciprocal function 1
fl

with the convex piecewise-linear

function g(fl) := maxn∈Z>0

{
−1

n(n+1) × fl +
2n+1
n(n+1)

}
, illustrated in Figure 1. This approximation

9



fl

1
fl

1+

+

1/2+
++

3/2+

1
+

2
+

3
+

4
+

5
+

Figure 1: Convex piecewise-linear approximation of waiting delays on leg l.

is sufficient, as load dispatch frequencies are integer. Thus, linear programming techniques can

be employed to linearize the ODT constraints (1). In particular, we consider for every leg l a

non-negative variable hl that represents the headway between truck dispatches on the leg. In an

effort to reflect operational realities, we include a minimum headway Hl for each leg l used in the

lead-time constraints.

Let binary variables xr indicate whether route r ∈ Rk is selected for commodity k ∈ K, ylm

indicate whether lane (l,m) ∈ L×Ml is used, and wkt indicate that the ODT quoted to customers

for commodity k is t ∈ Tk. Continuous variables vlm represent the total shipment volume assigned

to each lane (l,m) and ur represent the total ODT-dependent volume sent on route r ∈ Rk for

commodity k ∈ K. Finally, integer variables flm count the number of load dispatches per time on

lane (l,m). The ODT quotation and middle-mile consolidation (ODTQ-MMC) model is formulated

as follows:

max
∑
k∈K

∑
t∈Tk

St
kwkt −

∑
r∈Rk

Crur

−
∑
l∈L

∑
m∈Ml

(Almflm +Blmvlm) (2a)

s.t.
∑
r∈Rk

xr = 1, ∀ k ∈ K, (2b)

ur ≥
∑
t∈Tk

V t
kwkt − (1− xr)V

max
k , ∀ r ∈ Rk, ∀ k ∈ K, (2c)

∑
m∈Ml

vlm =
∑
k∈K

∑
{r∈Rk|r∋l}

ur, ∀ l ∈ L, (2d)

Qmin
lm flm ≤ vlm ≤ Qmax

lm flm, ∀m ∈ Ml, ∀ l ∈ L, (2e)

flm ≤ Flmylm, ∀m ∈ Ml, ∀ l ∈ L, (2f)
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∑
m∈Ml

ylm ≤ 1, ∀ l ∈ L, (2g)

∑
l∈r

hl ≤
∑
t∈Tk

1

ρtr
(t− Tr)wkt + |r| (1− xr) , ∀ r ∈ Rk, ∀ k ∈ K, (2h)

hl ≥
−1

n(n+ 1)
flm+

2n+ 1

n(n+ 1)
− 3

2
(1− ylm) , ∀n ∈ {1, . . . ,

⌈
1
Hl

⌉
−1}, ∀m ∈ Ml, ∀ l ∈ L,

(2i)

hl ≥ Hlylm, ∀m ∈ Ml, ∀ l ∈ L, (2j)∑
t∈Tk

wkt = 1, ∀ k ∈ K, (2k)

xr ∈ {0, 1}, ur ≥ 0, ∀ r ∈ Rk, ∀ k ∈ K, (2l)

ylm ∈ {0, 1}, vlm ≥ 0, flm ∈ Z≥0, ∀m ∈ Ml, ∀ l ∈ L, (2m)

wkt ∈ {0, 1}, ∀ t ∈ Tk, ∀ k ∈ K. (2n)

The objective maximizes revenue minus the total cost of transportation and handling. Constraints

(2b) ensure that one route is selected for each commodity. Constraints (2c) capture the ODT

adjusted demand volume for commodity k using route r with an ODT quote of t, where V max
k is

the maximum demand achievable for commodity k. Constraints (2d) determine the total volume

flowing on each leg l aggregated across commodities and allocate it to a selected lane (l,m). Con-

straints (2e) set the required load dispatch frequencies for each lane using upper and lower bounds

on load size. Constraints (2f) ensure the lane-specific maximum load dispatch frequency is not

exceeded. Constraints (2g) ensure that each leg uses at most one mode. Constraints (2h) ensure

the consolidation plan satisfies the ODT quote t for the selected route r. Note that if route r is

not selected, the second term on the right-hand side sufficiently relaxes the constraint on the leg

headways because hl ≤ 1 for each leg l ∈ L. Constraints (2i) and (2j) ensure that at optimality,

the headway of leg l satisfies hl = max{ 1
flm

, Hl} if ylm = 1. If, on the other hand, leg l is not

traversed (i.e., ylm = 0 for every m ∈ Ml), the constraint is sufficiently relaxed by the big M value

3
2 , as this is the largest y-intercept of the piecewise linear functions (as can be seen in Figure 1).

Constraints (2k) ensure that one ODT quote is selected for each commodity. Finally, Constraints

(2l)-(2n) define the variables.

For completeness, in Appendix A of the online Supplementary Material, we provide the equiv-

alent formulation of the ODTQ-MMC model with the binary linearization of Constraints (1) and

compare its performance with the MIP (2) using the problem instances from our computational

study. From our experiments, we find that the piecewise-linear interpolation provides stronger up-
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per bounds for large instances when solving the MIP with a commercial solver, as well as produces

similar solutions for all instance sizes when using our heuristic approach developed in Section 4.

Note that the ODTQ-MMC model is a tactical planning model that relies on aggregate aver-

age shipping volumes for commodities, assuming deterministic and uncoordinated dispatches, as

well as fixed transit and processing times. These assumptions simplify the modeling framework

by abstracting away short-term operational uncertainties. Consequently, this tactical modeling ap-

proach does not account for the operational possibility that, due to stochastic demand variations,

certain shipments may exceed the available capacity of the next dispatch. This could lead to delays

or require additional contingency planning to accommodate overflow shipments in an operational

setting.

4 Adaptive IP-Based Local Search Heuristic

Real-world problems of this class are extremely difficult, if not impossible, for commercial solvers

to directly provide good solutions for within reasonable time limits. In this work, we develop a

local search matheuristic that iteratively solves restricted versions of the complete ODTQ-MMC

MIP in an attempt to find high-quality solutions to realistically-sized instances. In this section, we

describe how our adaptive IP-based local search (AIPLS) heuristic works to improve an ODTQ-

MMC solution (see Appendix B in the online Supplementary Material for more details, including

pseudocode).

Given an incumbent ODTQ-MMC solution, we fix all route variables xr and ODT variables

wkt to their current solution (i.e., all other variables remain free to change when solving the re-

stricted MIPs). Starting with the focus of improving ODT quotation, a randomized subset of

vendors is selected using the first of three defined neighborhood selection algorithms. All ODT

variables for commodities originating at the subset of selected vendors are freed for reoptimization

in the restricted MIP, while ODT variables for vendors not selected and all route variables remain

fixed to the incumbent solution. When the focus is to improve route selection, all ODT variables

are fixed to their current solution and a subset of route selection variables are freed for reopti-

mization. The AIPLS approach switches the search focus from improving ODT to route selection

after a fixed number of iterations and continues to alternate the focus in this manner to ensure

an approximately-equal amount of time is spent on each. After each iteration, if an improving

solution is found, the incumbent is updated. Additionally, if there are a number of consecutive
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non-improving iterations, the heuristic switches to the next neighborhood selection algorithm. The

magnitude of the restricted MIPs (or size of the neighborhood) depends on the solver performance;

that is, the number of variables freed for reoptimization increases (decreases) if the MIP gap is

below (above) a specified threshold for a number of consecutive iterations. The AIPLS approach

transitions to jointly optimizing routes and ODT selection once all single-focus improvements have

been found or a single-focus time limit has been exceeded. The AIPLS heuristic stops once the

running time exceeds the solve time limit or is no longer finding improving solutions.

5 Case Study

In this section, we present the results of a computational study designed to highlight the main

insights we discovered while working with a large U.S.-based e-commerce retailer to implement

the ODTQ-MMC model within their “large and bulky” business (e.g., furniture, large appliances,

lumber, etc.). We begin by showing the benefits of operating a private middle-mile consolidation

network as compared to sending all shipments directly from vendors to LMDs. Next, we demon-

strate the value of flexibility in ODT quotations by closely analyzing how it affects both cost

metrics and load plan characteristics. To do so, we provide minimal flexibility in ODT quotations

for the three smallest instances (i.e., those that can be solved to near optimality) and find that

the ODTQ-MMC model effectively increases profit by strategically selecting which commodities

to speed up for higher revenue or slow down to reduce fulfillment costs. We confirm this finding

and analyze trends in cost and load plan performance as flexibility increases by allowing greater

adjustments to ODT quotations for the largest instance. We conclude the study with an analysis

that highlights the importance of accurate data on customer sensitivity to ODT quotations when

using the ODTQ-MMC model. Specifically, we examine how varying customer sensitivities impacts

the ODT quotes and consolidation plan, as well as the effects of incorrect sensitivity assumptions.

The optimization models and AIPLS heuristic approach were coded in Python 3.9 using Gurobi

10.0.1 with the default settings for the MIP solver. All experiments were run on a Linux computing

cluster consisting of nodes using 24-core dual Intel Xeon Gold 6226 CPUs @ 2.7 GHz with 192GB of

RAM each. The AIPLS heuristic parameters were tuned using experiments that are not described

in more detail in this paper. However, in the online Supplementary Material, we provide detail

on the algorithms and selected parameters in Appendix B and assess the heuristic performance in

Appendix C.
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5.1 Middle-Mile Network Instances

We generate anonymized, realistic instances using our partner’s historical demand data for large and

bulky items to demonstrate our findings. We create 5 groups of synthetic instances, each containing

5 individually-built instances; within each group, LMD and FC locations remain unchanged, while

vendor locations vary across instances (see Figure 2 for an illustration of facility locations). We

choose this design to illustrate how a company might initially test this modeling approach on a

small core subset of its facilities with different potential vendor sets, then incrementally expand

by adding more facilities. Each instance includes the baseline expected weekly demand for a set

of origin-destination pairs (i.e., commodities), where origins can be either vendors or fulfillment

centers (FCs), and destinations are last-mile delivery (LMD) facilities. We estimate the baseline

expected demand volume, sales, and cost of goods sold (COGS) values for individual commodities

based on historical data, reflecting the values associated with the current ODT set by the company.

For each instance, we generate a set of lanes L ×Ml consisting of direct and consolidation freight

transportation lanes, and then generate a set of routes Rk and assign a baseline ODT requirement

for each commodity k ∈ K.

(a) Group 2 (b) Group 5

Figure 2: Example location maps for Groups 2 and 5.

In Table 1, we provide instance attributes; specifically, we include the instance group number,

number of small, medium, and large vendors (VND) and LMDs (categorized by volume sent and

received, respectively), number of FCs, number of commodities, and the average number of lanes,

routes, and baseline demand volume (i.e., volume expected for the baseline ODT quote) in pounds

for each group of instances. Group 5 is comparable to an average week for our partner, while

Groups 1-3 are designed to validate our heuristic and derive additional managerial insights.
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Table 1: Instance attributes.

Gr
Sm

VND

Med

VND

Lg

VND
FC

Sm

LMD

Med

LMD

Lg

LMD

Comm

|K|

Average across 5 Instances

Lanes Routes Vol (lbs)

1 0 0 15 2 5 0 6 127 539 583 337,815

2 0 10 20 3 10 5 8 507 2,123 2,634 811,697

3 0 25 25 4 20 10 10 1,404 5,827 8,046 1,812,373

4 160 85 45 8 60 30 18 18,320 76,926 116,784 9,334,262

5 200 100 50 8 70 35 20 25,161 104,987 160,639 11,354,653

When using the ODTQ-MMC model, each commodity has an ODT flexibility range, denoted

as ±d or [−d,+d′], where d and d′ represent the maximum number of days the ODT can deviate

from the baseline. For example, a range of ±2 allows the ODT to shift by −2, −1, 0, +1, or + 2

days from the baseline. This range limits changes to the baseline ODT, as well as reduces the

number of ODT binary variables. It also reflects real-world operations, where a company may

prefer to gradually adjust ODT quotes over time by using a tighter flexibility range. In this study,

all FC-originating commodities—representing less than 15% of the baseline demand volume for

Groups 1-3 and less than 5% for Groups 4-5—have an ODT flexibility range of ±0 days. This

choice aligns with our industry partner’s approach, since these commodities often consist of diverse

products with varying customer-ODT sensitivities. Furthermore, FC-outbound lanes are typically

fast-moving, with high dispatch frequencies driven by both the large consolidated shipment volume

and the need to accommodate vendor-originating commodities with similar ODTs but longer travel

times.

Each vendor-originating commodity can have its own flexibility range, however, we apply a

consistent flexibility range (i.e., ±1, ±2, etc.) across all vendor-originating commodities within

each instance of this study. Using this defined ODT flexibility range, we generate sets Tk of feasible

ODTs for each commodity k. In the computational experiments to follow, all commodities must

meet their quoted ODT with an 80% probability. Using the method described in Greening et al.

(2023), we pre-compute the conservatism hyperparameters ρtr for each route r ∈ Rk and ODT

quote t ∈ Tk for each commodity k ∈ K. We calculate the expected demand volume V t
k associated

with each quoted ODT t ∈ Tk for each commodity k ∈ K using the conversion curve shown in

Figure 3. Note that companies implementing the ODTQ-MMC model may use multiple conversion

curves, potentially one per commodity. For ease of exposition, we use a single curve representative

of a generic large and bulky item. However, it is possible to incorporate unique conversion curves
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without increasing computational complexity, as all parameters are pre-processed in the same way,

differing only in their numerical values defined by each conversion curve. For more details about

the instances (e.g., routes, baseline ODTs, conversion curve, etc.), refer to Appendix D in the online

Supplementary Material.

2 4 6 8 10 12 14 16
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Figure 3: Customer conversion curve.

5.2 Value of Middle-Mile Consolidation

In this section, we provide results that highlight the financial benefits of operating a middle-mile

consolidation network compared to shipping orders directly from origins to LMDs. To do this, we

analyze the solutions from two load planning models, both with fixed ODTs: one that direct-ships

all freight to LMD facilities (Directs±0), and another that optimizes the consolidation of freight

using private middle-mile transfer facilities (ODTQ-MMC±0). Both models maximize profit by

minimizing the cost of shipping demands from origins to destinations while meeting their baseline

ODT requirements. For these experiments, we directly solve the MIP models using the binary

linearization approach (3) (provided in Appendix A of the online Supplementary Material) with a

12-hour time limit1.

In Table 2, we report financial metrics for the first three instance groups including profit (defined

as sales net COGS and fulfillment cost), revenue (defined as sales net COGS), fulfillment cost,

fulfillment cost per pound (defined as fulfillment cost divided by total volume in pounds), and

profit margin (defined as profit divided by sales), MIP gaps, and the percentage of vendor volume

1We elect to report the binary linearization results due to the tighter MIP gaps after 12 hours for smaller instances

(see Appendix A of the online Supplementary Material for the formulation and comparison to the piecewise-linear

approach (2))
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sent through the private middle-mile network (as opposed to sending it via direct routes). All results

are averages across the 5 instances composing each group. We additionally provide illustrations of

the solutions for the first instance of Group 3 in Figure 4.

Table 2: Comparison of outsourcing all commodity shipments versus consolidating in network

without ODT flexibility.

Group Model
Profit

($)

Revenue

($)

Fulfillment

Cost ($)

Fulfillment

$ per lb

Profit

Margin

MIP

Gap

VND Vol

In-Ntwk

1
Directs±0 205,841 339,027 133,186 0.395 26.7% 0.0% 0.0%

ODTQ-MMC±0 233,484 339,027 105,543 0.313 30.3% 0.0% 84.5%

2
Directs±0 397,477 797,207 399,730 0.493 21.1% 0.0% 0.0%

ODTQ-MMC±0 540,102 797,207 257,105 0.317 28.7% 3.3% 95.9%

3
Directs±0 627,347 1,757,191 1,129,844 0.624 14.8% 0.0% 0.0%

ODTQ-MMC±0 1,165,461 1,757,191 591,730 0.327 27.5% 5.3% 97.1%

We observe, as one might expect, that allowing for consolidation provides substantial fulfillment

cost benefits, notably as the instance size grows in the number of vendors and commodities. Simi-

larly, we see that, even in the smallest instance size group containing only two FCs, the majority

of vendor volume consolidates at an FC when allowed. This consolidation allows for improved

economies of scale, drastically reducing the fulfillment cost per pound and improving the profit

margin. Evidence of increased consolidation is also seen in the solution maps in Figure 4, where

the ODTQ-MMC±0 solution in (b) clearly favors consolidating at nearby FC locations as compared

to the Directs±0 solution in (a).

5.3 Value of Coordinated ODT Quotation and Middle-Mile Consolida-

tion

We next report results that demonstrate the additional improvements gained by leveraging cus-

tomer behavior data when optimizing the consolidation network and ODT quotes simultaneously.

Specifically, we compare solutions generated by the ODTQ-MMC±0 and ODTQ-MMC±1 models

for the first three instance groups. As in the previous section, we directly solve the MIP models

using the binary linearization approach (3) (given in Appendix A of the online Supplementary

Material) with a 12-hour time limit.

In Table 3, we report the profit, revenue, fulfillment cost, fulfillment cost per pound, profit
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(a) Directs±0 (b) ODTQ-MMC±0

(c) ODTQ-MMC±1

Figure 4: Solution maps for Group 3 - Instance 1.

margin, MIP gaps, and the percentage of vendor volume sent through the private middle-mile

network. Note that the results for the ODTQ-MMC±0 model are the same as those reported in

Table 2 but are repeated here for ease of comparison with the ODTQ-MMC±1 model. Additionally,

we report load plan performance metrics in Table 4 and the number of commodity routes and ODT

quotes that change when optimizing for profit with a flexibility of ±1 day in Table 5. All results are

averages across the 5 instances composing each group. We provide an illustration of the ODTQ-

MMC±1 solution for the first instance of Group 3 in Figure 4 (c).

When comparing solutions for ODTQ-MMC±0 and ODTQ-MMC±1, we observe an approxi-

mate 10% increase in profit from simultaneously optimizing consolidation opportunities and ODT

quotes. This improvement results from both reduced fulfillment cost and increased revenue, lead-

ing to better fulfillment cost per pound and higher profit margins across all groups. The ODTQ-

MMC±1 model strategically slows down commodities with tight baseline ODT requirements (and

less time-sensitive customers), reducing dispatch frequencies and thereby lowering fulfillment costs.

It also speeds up commodities that fit into existing dispatches without needing extra capacity or
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Table 3: Comparison of ODTQ-MMC±0 and ODTQ-MMC±1 cost metrics.

Group Model
Profit

($)

Revenue

($)

Fulfillment

Cost ($)

Fulfillment

$ per lb

Profit

Margin

MIP

Gap

VND Vol

In-Ntwk

1
ODTQ-MMC±0 233,484 339,027 105,543 0.313 30.3% 0.0% 84.5%

ODTQ-MMC±1 257,402 357,133 99,731 0.283 31.8% 0.0% 85.7%

2
ODTQ-MMC±0 540,102 797,207 257,105 0.317 28.7% 3.3% 95.9%

ODTQ-MMC±1 594,022 841,247 247,225 0.290 29.9% 1.8% 97.7%

3
ODTQ-MMC±0 1,165,461 1,757,191 591,730 0.327 27.5% 5.3% 97.1%

ODTQ-MMC±1 1,276,525 1,858,493 581,968 0.305 28.5% 3.7% 98.3%

higher dispatch frequencies, effectively increasing revenue at no additional cost. In other cases, the

increased fulfillment cost of sending more volume is outweighed by the additional revenue earned.

Consequently, more vendor volume flows through the middle-mile network in the ODTQ-MMC±1

solution at a lower total cost. One final metric to note is the increasing MIP gaps as the instance

size grows, highlighting the need for a heuristic approach when solving larger instances.

Table 4: Comparison of ODTQ-MMC±0 and ODTQ-MMC±1 load plan performance metrics.

Group Model
Vol-Wtd

ODT

Vol-Wtd

Route

Length

Avg Load

Disp Freq
Loads/Week

Vol-Wtd

Utilization

LTL TL LTL TL TL

1
ODTQ-MMC±0 6.6 1.8 2.1 2.6 61 63 74.0%

ODTQ-MMC±1 6.3 1.8 2.1 2.3 49 64 76.0%

2
ODTQ-MMC±0 7.0 2.2 1.9 2.8 48 190 79.0%

ODTQ-MMC±1 6.7 2.2 1.9 2.7 18 185 85.0%

3
ODTQ-MMC±0 8.0 2.2 1.7 2.8 77 384 87.2%

ODTQ-MMC±1 7.4 2.2 1.6 2.7 30 385 90.6%

In Table 4, we provide additional load plan metrics including the volume-weighted average

ODT quoted (in days), volume-weighted average route length (measured by number of legs in

the route), average load dispatch frequency and number of loads per week for LTL and truckload

(TL), and volume-weighted average truckload utilization (similarly, fill rate). We observe that when

optimizing for profit with an ODT flexibility of ±1 day, the volume-weighted ODTs quoted decrease

while the volume-weighted route lengths remain unchanged. Meaning that, on average, customers

receive faster ODT quotes even though commodities still travel the same distance to maintain cost-

saving consolidation opportunities. Despite faster quotes for the same distance traveled, we actually

observe improved consolidation when ODTs have limited flexibility, as evidenced by increased
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volume-weighted utilization of dispatched truckloads. The main reason for this improvement is

that the model decides to strategically slow down or speed up certain commodities by adjusting

ODT values, as previously discussed. We also see a reduced reliance on LTL freight, accompanied by

a marginal increase in the number of truckloads. Thus, volumes previously shipped direct via LTL

are consolidated into truckloads with only marginally increasing the total number of dispatches,

resulting in improved fill rates.

Table 5: Differences in vendor-originating commodities’ (i.e., Kv ⊆ K) routes and ODT quotes for

ODTQ-MMC±1 compared to ODTQ-MMC±0.

Gr |Kv |
Rts

Diff

ODTs

Diff

Rts&ODT

Diff

Decr ODT Unchg ODT Incr ODT

Ct
Vol-Wtd

Sales Marg
Ct

Vol-Wtd

Sales Marg
Ct

Vol-Wtd

Sales Marg

1 105 27.0 72.0 21.4 49.0 45.6% 33.0 41.4% 23.0 41.9%

2 438 68.4 288.8 56.2 212.6 42.4% 149.2 41.1% 76.2 36.8%

3 1,244 185.4 915.6 156.4 775.0 41.6% 328.4 40.4% 140.6 35.3%

We next examine route and ODT changes for vendor-originating commodities (denoted Kv ⊆

K). Specifically, Table 5 compares ODTQ-MMC±0 and ODTQ-MMC±1 by showing the average

number of vendor-originating commodities that take a different route, quote a different ODT, or

change both (i.e., those counted in both the different route and different ODT categories). We also

report the average number of decreased, unchanged, and increased ODTs and their volume-weighted

commodity sales margin (defined as sales net COGS divided by sales).

We observe that the most significant change is in the selection of a different ODT to quote,

with 69%, 66%, and 74% of commodities in each group, respectively, with a different ODT. In

fact, in each group, over 80% of the commodities whose routes change in the ODTQ-MMC±1 load

plan also have a different ODT quote. Interestingly, when studying the change in ODTs, we find

that the volume-weighted sales margins are highest for commodities whose ODT quotes decrease

and lowest for those whose ODT quotes increase. We use this observation later in Appendix E

of the online Supplementary Material when attempting to build a profit-maximizing load plan by

pre-selecting appropriate ODTs to quote customers, as opposed to leveraging customer behavior

data when simultaneously optimizing ODTs to quote and the consolidation plan.
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5.4 Impact and Trends of Increased Flexibility

We next study the value of increasing ODT flexibility when maximizing profit. To do this, we

solve the Group 5 instances with varying levels of ODT flexibility. The purpose of this analysis is

to compare solutions as flexibility increases and identify the trends and overall impact; thus, each

instance with a flexibility of ±2 days or greater uses the solution with one less day of flexibility as

a warm-start solution (e.g., ODTQ-MMC±2 uses the ODTQ-MMC±1 solution as a warm start).

Also recall that a flexibility range of ±2 days allows the ODT to shift by −2, −1, 0, +1, or +2 days

from the baseline. In Table 6, we present load plan performance metrics for each flexibility range,

namely the fulfillment cost per pound, volume-weighted average route length, average number of

load dispatch frequencies and loads per week for each freight mode, the volume-weighted average

truckload utilization, and the resulting profit. Each row represents the average across the group

with the defined flexibility when solved with the AIPLS heuristic (with piecewise-linear linearization

approach (2)) for 6 hours. Note that higher flexibility rows have a larger aggregate solve time

because they use the previous row as a warm start. One can imagine that a retailer wants to

gradually increase their flexibility in selecting different ODT quotes over time and would therefore

have the previous flexibility level’s solution when opting to increase flexibility.

Table 6: Comparison of average load plan performance metrics for Group 5 instances with varying

ODT flexibility.

ODT

Flex

Fulfillment

$ per lb

Vol-Wtd

Route

Length

Avg Load

Disp Freq
Loads/Week

Vol-Wtd

Utilization
Profit

($ millions)

LTL TL LTL TL TL

[−0,+0] 0.336 2.241 1.92 2.95 840 2,525 83.9% 8.98

[−0,+1] 0.321 2.259 1.61 2.94 309 2,463 86.9% 9.14

[−1,+0] 0.324 2.255 1.90 3.16 789 2,652 87.4% 9.86

[−1,+1] 0.318 2.260 1.63 3.16 379 2,626 88.4% 9.94

[−2,+2] 0.320 2.259 1.78 3.38 385 2,818 88.6% 10.58

[−3,+3] 0.322 2.264 1.81 3.52 357 2,931 88.4% 10.89

[−4,+4] 0.321 2.265 1.84 3.54 267 2,946 88.4% 10.97

[−5,+5] 0.320 2.267 1.86 3.55 236 2,950 88.5% 10.99

[−6,+6] 0.320 2.268 1.86 3.56 220 2,952 88.6% 11.00

We first note that any level of flexibility leads to increased profits, decreased fulfillment cost

per pound, and increased volume-weighted truckload utilization as compared to no flexibility. In

other words, as one might expect, providing flexibility proves beneficial in improving load plans.
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(a) −0,+1 (b) −1,+0

(c) −1,+1

Figure 5: Percent change in volume, as compared to the [−0,+0] solution, across commodities for

one West Coast vendor with different ODT flexibilities.

Even when providing limited flexibility (i.e., [−0,+1] or [−1,+0]), the model increases profit by

either speeding up commodities for increased revenue (with marginal impact on fulfillment cost)

or slowing down commodities for improved consolidation opportunities (with marginal impact on

revenue). Interestingly, upon closer inspection of the load plans, we notice that when allowing the

ODTs to change by one day (i.e., [−1,+1]), the proportion of commodities whose ODT decreases or

increases is approximately the same as in the [−1,+0] and [−0,+1] solutions, respectively. We also

observe that, on average, 97% of the commodities with decreased ODTs in the [−1,+0] solutions

also have decreased ODTs in the [−1,+1] solutions, whereas only 38% of the commodities with

increased ODTs in the [−0,+1] solutions also have increased ODTs in the [−1,+1] solutions. Thus,

both speeding up or slowing down have benefits when applied separately; however, the benefits are

even greater when applied simultaneously, and can lead to a different subset of commodities with

altered ODT quotes. We illustrate this finding in Figure 5, which compares the three flexible load

plans to the [−0,+0] solution for one West Coast vendor. Interestingly, while no ODTs increase

in the [−0,+1] solution, 5 ODTs increase in the [−1,+1] solution, as evidenced by a decrease in
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commodity volume.
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Figure 6: Distributions of volume-weighted ODT offerings.

Another observation is that fulfillment cost per pound improves given any flexibility, and remains

largely unchanged even as flexibility increases and more volume is shipped. This suggests that,

as the model ships more volume, it continues to maintain, or even slightly enhance, overall cost

efficiencies. We also observe that the marginal benefit of flexibility, as measured by profit, decreases

as the flexibility range increases, and that once the model has 4 or more days of flexibility, the load

plans converge to the same percentage of decreased, unchanged, and increased ODT quotes. In

Figure 6, we see what can be described as the ODT quotes settling. As flexibility increases, the

shape of the volume-weighted ODT distribution remains largely the same across different flexibility

levels. Using the customer conversion curve shown in Figure 3, the average quoted ODT settles just

below 6 days—approximately 1.75 days below the average baseline ODT—as flexibility increases.
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5.5 Effects of Customer ODT Sensitivity

In this section, we analyze how varying customer sensitivities impact the ODT quotes and consolida-

tion plan. To accomplish that, we solve the ODTQ-MMC±3 MIP model (with binary linearization

approach (3) in Appendix A of the online Supplementary Material) for Group 1 instances using

five different sensitivity levels. Specifically, we calculate the change in demand using the curve

shown in Figure 3 and then increase (decrease) that value by 50% and 100% to simulate increased

(decreased) sensitivity to ODT quotes. We show examples for commodities with baseline ODTs of

8 days and 10 days in Figure 7, where the change in demand for the curve in Figure 3 is denoted

as Original. We present the results in Table 7, where each row represents the average across the 5

instances composing Group 1 solved to optimality.
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Figure 7: Change in demand for different sensitivity levels.

Table 7: Comparison of customer sensitivity effects on solutions when solving Group 1 instances.

Model Sensitivity
Profit

($)

Profit

Increase

Fulfillment

Cost ($)

Volume

Shipped (lbs)

Fulfillment

$ per lb

Vol-Wtd

ODT

ODTQ-MMC±0 - 233,484 - 105,543 337,815 0.313 6.6

ODTQ-MMC±3 −100% 249,408 6.9% 89,619 337,815 0.266 8.9

ODTQ-MMC±3 −50% 255,776 9.6% 96,912 348,579 0.278 6.2

ODTQ-MMC±3 Original 271,528 16.4% 104,169 369,357 0.282 5.9

ODTQ-MMC±3 +50% 289,168 24.0% 111,558 393,385 0.284 5.7

ODTQ-MMC±3 +100% 307,523 31.9% 117,462 414,907 0.283 5.5

The results show that customer ODT-sensitivity plays an important role in consolidation plan-

ning when explicitly considered as a decision in the model; specifically, the level of sensitivity
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correlates with resulting profit. We observe that when customers are less sensitive to changes in

ODTs, the ODTQ-MMC±3 model improves profit (as compared to ODTQ-MMC±0) by reducing

fulfillment cost. This is especially evident in the case where customers are completely insensitive to

ODT quotes (i.e., −100%) as shown by the high volume-weighted ODT quote of 8.9 days. When

customers are very sensitive to ODT quotes, the model elects to spend more on fulfillment cost

in order to decrease ODTs and earn much higher revenues and resulting profit. Therefore, when

using models that incorporate customer conversion in consolidation planning, it is critical to ensure

that the estimated conversion curves are accurate, as they will affect the resulting plan. In the

next section, we present experimental results that demonstrate how assuming incorrect customer

ODT-sensitivity can impact these plans.

5.6 Performance Under Inaccurate ODT Sensitivity

In this section, we report results on the effects of planning under incorrect ODT-sensitivity as-

sumptions. To do so, we first generate load plans and selected commodity ODTs assuming the

original sensitivities shown in Figure 3. Then, we evaluate the performance of those plans when

the actual realized customer sensitivities for all commodities are adjusted by ±50% or ±100%,

as demonstrated in Figure 7. Because changes in customer sensitivities affect demand volume,

the original consolidation plans may require operational adjustments if volume on certain lanes

exceeds the planned capacity. To address this, we implement two approaches to adapt the load

plans accordingly. The first approach, called “Add LTL,” adds capacity to the original load plan

via LTL shipments whenever planned truckload capacity is insufficient to meet realized demand.

Commodity routes and transportation modes remain fixed as specified in the original plan, but LTL

shipments are added as needed to accommodate excess volume without modifying the scheduled

truckload frequencies. The second approach, called “Reject,” assumes capacity is fixed, and any

demand exceeding the planned capacity cannot be fulfilled. While the model is allowed to choose

which excess demand to reject, all demand included in the original plan must still be shipped. This

prevents the model from rejecting planned lower-profit demands in favor for unplanned higher-profit

demands when capacity is exceeded. In practice, since the shipper operates in the e-commerce sec-

tor, we assume that once capacity is fully utilized, the corresponding commodities are marked as

out-of-stock.

In Table 8, we report the performance metrics for load plans generated under incorrect ODT-

sensitivity assumptions, and corrected using the Add LTL and Reject approaches, alongside the
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metrics for load plans optimized with the correct ODT-sensitivity assumptions (as shown in Table

7). Each row is the average across the 5 Group 1 instances solved to optimality.

Table 8: Comparison of realized customer-sensitivity effects on ODTQ-MMC±3 solutions when

planned ODT sensitivity is inaccurate for Group 1 instances.

Model
Planned

Sensitivity

Realized

Sensitivity
Profit ($)

Profit

Increase

Fulfillment

Cost ($)

Volume

Shipped (lbs)

Fulfillment

$ per lb

Vol-Wtd

Utilization

ODTQ-MMC±0 - - 233,484 - 105,543 337,815 0.313 74.0%

Baseline

−100% −100% 249,408 6.9% 89,619 337,815 0.266 79.9%

−50% −50% 255,776 9.6% 96,912 348,579 0.278 77.9%

Original Original 271,528 16.4% 104,169 369,357 0.282 77.8%

+50% +50% 289,168 24.0% 111,558 393,385 0.284 78.2%

+100% +100% 307,523 31.9% 117,462 414,907 0.283 79.8%

Add LTL Original

−100% 235,544 0.9% 103,484 337,815 0.307 68.3%

−50% 253,556 8.6% 103,807 353,586 0.294 73.0%

+50% 285,974 22.6% 108,057 385,127 0.281 81.0%

+100% 301,067 29.1% 111,299 400,899 0.278 83.0%

Reject Original

−100% 235,422 0.8% 103,185 336,892 0.307 68.2%

−50% 253,507 8.6% 103,669 353,157 0.294 73.0%

+50% 280,751 20.4% 104,842 376,429 0.279 79.8%

+100% 286,521 22.9% 105,082 380,350 0.276 80.9%

As expected, using inaccurate sensitivity data results in lower profits than when using accurate

data. The ODTQ-MMC±3 load plans yielding the lowest profits occur when customers are less

sensitive than planned. In these cases, fewer customers purchase items when promised faster

delivery, reducing overall sales, while others continue to buy despite slower delivery promises.

Because these slower-delivery customers remain willing to purchase, planned capacity on some

lanes is exceeded, necessitating either additional LTL shipments or the rejection of those potential

sales. Both options reduce profit, either through higher fulfillment costs or lost revenue. Note

also that the Reject plan marginally reduces fulfillment costs compared to the Original plan in row

4, due to smaller LTL shipment sizes. We also observe a decrease in volume-weighted truckload

utilization when customer sensitivity is lower, as a result of reduced sales.

When customers are more sensitive than anticipated, profit improves because the increase in

sales outweighs the additional fulfillment costs, whether the original plan is adjusted by either

rejecting excess demand or by adding LTL capacity to fulfill it. Of course, when the plan is

optimized for more sensitive customers, even higher profits are achieved by determining the optimal
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trade-off between revenue and fulfillment costs. Unsurprisingly, these plans also exhibit the highest

volume-weighted truckload utilizations. In both adjustment plans, increased demand improves

truckload utilization across lanes, with some reaching full capacity. On these fully utilized lanes,

any excess demand is either fulfilled via LTL in the Add LTL plan or rejected in the Reject plan,

avoiding the need to dispatch additional, partially-filled truckloads.

Overall, these experiments confirm the importance of accurate ODT sensitivity data, as inac-

curate assumptions lead to reduced profits relative to optimal plans. Nevertheless, they also show

that even extreme errors do not eliminate the benefits of the ODTQ-MMC model.

6 Conclusion and Future Work

In this work, we studied the integrated design of order-to-delivery time quotes and middle-mile

network consolidation, with the goal of improving the profitability of large e-retailers by leveraging

customer ODT sensitivity data and feasible transportation consolidation options. To optimize this

design, we proposed the ODTQ-MMC MIP model which directly incorporates demand fluctuations,

as influenced by ODTs quoted to customers, into the fulfillment network consolidation plan. The

model simultaneously decides the ODT of each commodity to quote customers and optimizes the

consolidation plan required to meet the quoted ODTs with a high probability guarantee set by the

retailer. To linearize the ODT chance constraints, we approximated a reciprocal function repre-

senting the incurred waiting delay using a convex piecewise-linear function and linear programming

techniques.

Finding high-quality solutions for large-scale cases within reasonable time limits is currently near

impossible when solving the proposed MIP directly with a commercial solver. Thus, we developed

an adaptive IP-based heuristic solution approach which works to improve an incumbent solution

by iteratively solving restricted MIPs as defined by randomized neighborhoods. To find initial

improvements quickly, the approach begins by either optimizing ODT quotation or route selection.

Once these improvements have been found, the approach transitions to jointly optimizing ODT

quotation and route selection. The approach adapts to the problem instance being solved by

alternating between three neighborhood generation algorithms as progress stalls and by adjusting

the size of the restricted MIP, as defined by the number of variables freed for reoptimization, based

on solver performance at the current size.

We then conducted a thorough case study using data from a large U.S.-based e-retailer special-
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izing in large and bulky items to demonstrate the potential financial and consolidation benefits e-

retailers can obtain by incorporating customer ODT sensitivity data directly into their middle-mile

consolidation models. In the study, we first observed that large e-retailers can achieve significant

cost savings by operating their own private middle-mile network, as compared to outsourcing all

transportation directly from vendors to LMDs. We then found that additional savings and im-

proved profit margins could be realized by simply allowing for ODT quotes to minimally change

by 1 day when solving the ODTQ-MMC model. We also observed how adjusting ODTs could lead

to a better trade-off between revenue and fulfillment cost as ODT flexibility increases. We then

analyzed the effects of adjusting customer ODT sensitivity and found, as expected, that customer

sensitivity plays an important role in determining the ODTs to quote and the consolidation plan

required to meet such quotes. We concluded with a study on the effects of planning under incorrect

ODT-sensitivity assumptions and confirmed that accurate sensitivity data is crucial, but also found

that the ODTQ-MMC remains useful under moderate misestimations.

A natural extension to this work is to incorporate customer sensitivity data at the product level

(i.e., multiple commodities may need to be defined for a single origin-destination pair). This exten-

sion would lead to much larger problems that become even more challenging to solve, potentially

requiring different modeling and heuristic approaches. Another extension is to look at the fairness

of the ODTs being quoted to different geographic areas. For example, there may be regions where

ODTs are increased because they are hard to reach cost-effectively. However, when creating plans

to maximize profit, the difficulty lies in putting an appropriate cost on fairness or determining

alternative measures of fairness that are more easily constrained.

An additional component which we have not yet considered is that customers may be willing to

pay for faster shipping options. If a retailer has additional data on the price customers are willing

to pay for reduced ODTs, the model can potentially be adapted to balance revenue from sales

and shipping fees with logistics costs by determining the ODT and shipping price to offer and the

consolidation plan required to meet those promises.

Finally, future work could explore addressing demand uncertainty from errors in customer sensi-

tivity estimates. Investigating the trade-off between flexibility and efficiency under such uncertainty

presents a valuable direction for further research.
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7 Data Availability

The data and code that support the results of this study are publicly available at https://github.

com/lgreening/middle-mile.
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Appendix A Alternative Linearization Approach

To formulate ODTQ-MMC using the binary linearization approach introduced in Greening et al.

(2023), replace binary variables ylm in (2) with binary variables zlmω, which indicate whether lane

(l,m) ∈ L × Ml is used with a load dispatch frequency of ω ∈ Flm. With this representation,

Constraints (2i) and (2j) are replaced by Constraints (3i). For convenience, see Tables 9 and 10 for

the problem parameters and variables, respectively.

Set Description

K Set of commodities.

Tk Set of feasible ODTs for commodity k ∈ K.

Rk Set of potential freight routes for commodity k ∈ K.

L Set of freight transportation legs within the consolidation network.

Ml Set of transportation modes for leg l ∈ L.

Flm Set of feasible dispatch frequencies for loads sent via transportation mode m ∈ Ml on leg l ∈ L;

Flm = {1, . . . , Flm}.

Parameter Description

Flm Maximum number of load dispatches permitted on leg l ∈ L when using transportation mode m ∈ Ml.

St
k Sales revenue for commodity k ∈ K when customers are quoted an ODT of t ∈ Tk for commodity k ∈ K.

Cr Handling cost of route r ∈ Rk for commodity k ∈ K.

Alm Fixed cost of a load sent via transportation mode m ∈Ml on leg l ∈ L.

Blm Variable cost per pound of a load sent via transportation mode m ∈Ml on leg l ∈ L.

V t
k Demand volume of commodity k ∈ K when customers are quoted an ODT of t ∈ Tk.

V max
k Maximum demand volume achievable for commodity k ∈ K.

Qmin
lm Minimum size of a load sent via transportation mode m ∈Ml on leg l ∈ L.

Qmax
lm Maximum size of a load sent via transportation mode m ∈ Ml on leg l ∈ L.

Tr Fixed transit and processing time of route r ∈ Rk for commodity k ∈ K.

ρtr Algorithmically determined conservatism parameter that depends on on-time probability guarantee p,

quoted ODT t ∈ Tk, and fixed time Tr of route r ∈ Rk for commodity k ∈ K.

|r| Length of (or number of legs in) route r ∈ Rk for commodity k ∈ K.

Hl Minimum headway of leg l ∈ L.

Table 9: Set and parameter definitions.

The ODTQ-MMC model with the binary linearization technique is formulated as follows:

max
∑
k∈K

∑
t∈Tk

St
kwkt −

∑
r∈Rk

Crur

−
∑
l∈L

∑
m∈Ml

(Almflm +Blmvlm) (3a)

s.t.
∑

r∈Rk

xr = 1, ∀ k ∈ K, (3b)

ur ≥
∑
t∈Tk

V t
kwkt − (1− xr)V

max
k , ∀ r ∈ Rk, ∀ k ∈ K, (3c)

∑
m∈Ml

vlm =
∑
k∈K

∑
{r∈Rk|r∋l}

ur, ∀ l ∈ L, (3d)
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Variable Description

xr ∈ {0, 1} Indicate whether route r ∈ Rk is selected to transport commodity k ∈ K.

zlmω ∈ {0, 1} Indicate that ω ∈ Flm load dispatches are sent via transportation mode m ∈Ml on leg l ∈ L.

flm ∈ Z≥0 Counts the number of loads dispatched on leg l ∈ L using transportation mode m ∈ Ml.

wkt ∈ {0, 1} Indicate customers are quoted an ODT of t ∈ Tk for commodity k ∈ K.

ur ≥ 0 Total demand volume transported via route r ∈ Rk for commodity k ∈ K.

vlm ≥ 0 Total demand volume transported via transportation mode m ∈Ml on leg l ∈ L.

hl ≥ 0 Headway between load dispatches on leg l ∈ L.

Table 10: Variable definitions.

Qmin
lm flm ≤ vlm ≤ Qmax

lm flm, ∀m ∈ Ml, ∀ l ∈ L, (3e)∑
m∈Ml

∑
ω∈Flm

zlmω ≤ 1, ∀ l ∈ L, (3f)

∑
l∈r

hl ≤
∑
t∈Tk

1

ρtr
(t− Tr)wkt + |r| (1− xr) , ∀ r ∈ Rk, ∀ k ∈ K, (3g)

∑
t∈Tk

wkt = 1, ∀ k ∈ K, (3h)

hl =
∑

m∈Ml

∑
{ω∈Flm |ω≤ 1

Hl
}

1

ω
zlmω, ∀ l ∈ L, (3i)

flm =
∑

ω∈Flm

ωzlmω, ∀m ∈ Ml, ∀ l ∈ L. (3j)

Constraints (3b)-(3e),(3g),(3h) function the same as Constraints (2b)-(2e),(2h),(2k). Constraints

(3f) replace Constraints (2f) and (2g) and select at most one load dispatch frequency per lane.

Constraints (3i) are used to linearize (1) by introducing the binary variables zlmω to select the

number of loads dispatched ω on lane (l,m) from the set Flm = {1, . . . , Flm}. Constraints (3j)

define the number of loads dispatched on lane (l,m). Note that this formulation is structured to

allow a direct comparison with the piecewise linearization approach (2). Here, headway variables

hl and dispatch frequency variables flm are unnecessary; Constraints (3i) and (3j) simply provide

definitions for convenience.

In Table 11, we present results for the binary linearization formulation (3) and the piecewise-

linear linearization formulation (2), each allowing for ±1-day change to ODT quotes (i.e., ODTQ-

MMC±1). We solve the instances described in Section 5 of the paper using a commercial MIP solver

with a 12-hour time limit to obtain an upper bound (UB). We then apply the adaptive IP-based

local search (AIPLS) defined in Section 4 of the paper, also with a 12-hour time limit, to obtain

the best objective values. Finally, we report the percentage improvement of the piecewise-linear

approach relative to the binary approach for both the upper bounds and objective values. Each

row represents the average across the 5 instances composing the groups.
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Table 11: Comparison of the ODTQ-MMC±1 12-hour MIP upper bound (UB) and AIPLS objective for

the binary linearization formulation (3) and the piecewise-linear approximation formulation (2).

Gr
Binary Piecewise-linear % Improvement

MIP UB AIPLS Obj MIP UB AIPLS Obj MIP UB AIPLS Obj

1 $ 257,405 $ 257,259 $ 261,918 $ 257,259 -1.75% 0.00%

2 $ 604,498 $ 593,712 $ 629,920 $ 593,239 -4.21% -0.08%

3 $ 1,323,695 $1,274,579 $ 1,353,364 $1,275,403 -2.24% 0.06%

4 $ 8,746,708 $7,900,475 $ 8,670,151 $7,901,352 0.88% 0.01%

5 $11,182,499 $9,962,851 $10,996,492 $9,951,478 1.66% -0.11%

Bold font indicates a better value (i.e., lower for MIP UB and higher for AIPLS Obj).

We observe that the binary linearization approach tends to solve small instances of ODTQ-

MMC±1 better than the piecewise-linear approximation approach but often struggles to produce

strong upper bounds for larger instances when solving the full MIP model with a commercial solver.

In fact, the piecewise-linear approximation produces a stronger upper bound for 9 of the 10 larger

instances. Thus, we elect to report the best MIP results throughout Section 5 of the paper but use

the piecewise-linear approximation formulation when using the AIPLS approach.

It is also worth noting that when there is no flexibility in ODT selection (i.e., ODTQ-MMC±0),

both formulations can be simplified for better solver performance by removing the ODT selection

binary variables and related constraints.

Appendix B AIPLS Heuristic Algorithms

This appendix provides a comprehensive overview of the AIPLS heuristic solution approach, in-

cluding complete pseudocode and illustrative examples for each neighborhood selection method.

For convenience, Table 12 summarizes relevant heuristic parameter definitions.

The AIPLS heuristic, presented in Algorithm 1, iteratively improves an existing feasible solution

by solving restricted versions of the full MIP. After initialization, each iteration follows the same

pattern:

1. Define a Neighborhood. Lines 3–12 select which route-selection variables R(i) and which

ODT-quotation variables T (i) will be freed for reoptimization. Identifying search neighbor-

hoods that quickly yield good solutions is a key step in designing a high-performing local

search procedure.

2. Solve the Restricted MIP. Once the variables to be reoptimized are chosen, the heuristic
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Table 12: Heuristic parameter definitions.

Parameter Description

Trun ∈ R≥0 Heuristic runtime.

T ∈ R≥0 Heuristic runtime limit.

iter ∈ Z≥0 Number of consecutive iterations for which the objective value improves by

less than 0.005% relative to its previous value.

iterNH ∈ Z≥0 Number of consecutive iterations for which the objective value improves by

less than 0.01% relative to its previous value.

neighborhood select ∈ {1, 2, 3} Neighborhood generation algorithm.

focus ∈ {Q, R, J} Focus of heuristic search for neighborhood generation, where Q,R, and J

represent ODT quote, route, and joint optimization, respectively.

αfocus ∈ [0.01, αmax] Proportion of routes to add to the neighborhood for focus ∈ {Q, R, J}.

αmax ∈ [0.8, 1] Upper bound on proportion of routes to include in the neighborhood.

focusCt ∈ Z≥0 Number of consecutive iterations current focus is used to generate a neigh-

borhood.

focusQCt ∈ Z≥0 Number of non-improving cycles (of 6 iterations) with focus on ODT quote

improvement (focus = Q).

focusRCt ∈ Z≥0 Number of non-improving cycles (of 6 iterations) with focus on route improve-

ment (focus = R).

mipICtfocus ∈ Z≥0 The number of consecutive iterations minGap ≤ 0.02 for focus ∈ {Q, R, J}.

mipDCtfocus ∈ Z≥0 The number of consecutive iterations minGap > 0.02 for focus ∈ {Q, R, J}.

mipIncrfocus ∈ Z>0 Step size (multiplied by 0.02) used to increase neighborhood size variable

αfocus for focus ∈ {Q, R, J}.

mipDecrfocus ∈ Z>0 Step size (multiplied 0.02) used to decrease neighborhood size variable αfocus

for focus ∈ {Q, R, J}.

R′ ⊆ { r ∈
⋃

k∈KRk} Subset of routes that may be freed for reoptimization based on current search

focus.

η ∈ [10, 265] Size of the tabu list of previously selected vendors that cannot be re-selected

for Neighborhood 2.

tabuη Tabu list of past η vendors selected for Neighborhood 2.

D′ ⊆ {dk|k ∈ K} Subset of commodity LMD destinations for selection using Neighborhood 3.

TMIP ∈ R≥0 Restricted MIP solve time.

minGap ∈ {True, False} Indicates if restricted MIP gap is less than or equal to 0.02.

fixes all other variables to the current incumbent solution and solves the resulting subproblem.

This process (Line 13 in Algorithm 1) is detailed in Algorithm 5, which applies a warm start

using the incumbent solution. If the subproblem returns an improvement, the incumbent is

updated.

3. Update Heuristic Parameters. After each restricted MIP solve, Lines 14–25 in Algo-

rithm 1 update heuristic parameters. Specifically, Line 14 in Algorithm 1 calls Algorithm 6

to adjust the neighborhood size parameters and search focus based on how well the restricted
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Algorithm 1: Adaptive IP-based local search

Input: MIP, initial feasible solution (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), current best objective value (val), commodity set (K),

commodity route sets (Rk, ∀ k ∈ K), commodity ODT sets (Tk, ∀ k ∈ K), solve time limit (T ), commodity

volumes (V k
t , ∀ k ∈ K) for baseline ODT t, initial focus size variables (αfocus, ∀ focus ∈ {Q,R, J}),

commodity origin distance dictionary (D), maximum size of tabu list (η)

Result: Improved feasible solution and improved objective value

1 Set Trun ← 0, iter ← 0, iterNH ← 0, neighborhood select← 1, focus← Q, α← αQ, focusCt← 1,

focusQCt← 0, focusRtCt← 0, mipICtfocus ← 0∀ focus ∈ {Q,R, J}, mipDCtfocus ← 0∀ focus ∈ {Q,R, J},

mipIncrfocus ← 1∀ focus ∈ {Q,R, J}, mipDecrfocus ← 1∀ focus ∈ {Q,R, J}, mipICt← mipICtQ,

mipDCt← mipDCtQ, mipIncr ← mipIncrQ, mipDecr ← mipDecrQ, R′ ← { r ∈
⋃

k∈KRk | x̂r = 1},

tabuη ← ∅, D′ ← {dk | k ∈ K};

2 while Trun ≤ T do

3 if neighborhood select = 1 then

4 R(i) ← Algorithm 2 with inputs (R′, α,K, {R′
k ⊆ R

′}k∈K, (V t
k )k∈K);

5 else if neighborhood select = 2 then

6 (R(i), tabuη)← Algorithm 3 with inputs (R′, α,K, {R′
k ⊆ R

′}k∈K, (V t
k )k∈K, D, tabuη , η);

7 else

8 (R(i), D′)← Algorithm 4 with inputs (R′, α,K, {R′
k ⊆ R

′}k∈K,D′);

9 if focus = R then

10 Set T (i)
k ← ∅, ∀ k ∈ K;

11 else

12 Set T (i)
k ← {t ∈ Tk |Rk ∩R(i) ̸= ∅}, ∀ k ∈ K;

13 ((x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), val, iter, iterNH , TMIP, minGap) ← Algorithm 5 with inputs

(MIP, (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), val, K, {Rk}k∈K, {Tk}k∈K, R(i), {T (i)
k }k∈K, iter, iterNH);

14 (focus, focusQCt, focusRCt, R′, α, mipIncr, mipICt, mipDecr, mipDCt, iter, iterNH) ← Algorithm 6 with

inputs (minGap, mipICt, mipDCt, mipIncr, mipDecr, α, αmax, focus, focusCt, focusQCt, focusRCt,

(x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), iter, iterNH , T , Trun, {Rk}k∈K);

15 if focus = END then

16 end;

17 if iterNH ≥ 5 then

18 if neighborhood select = 1 then

19 neighborhood select← 2;

20 else if neighborhood select = 2 then

21 neighborhood select← 3;

22 else

23 neighborhood select← 1;

24 Set iterNH ← 0;

25 Trun ← Trun + TMIP, focusCt← focusCt+ 1;

26 end

27 return (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), val

MIP performed. If the MIP gap remains small for multiple consecutive iterations, the al-

gorithm gradually increases the number of freed decision variables, broadening the search.
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Conversely, if the solver struggles to achieve a small gap, the algorithm reduces the neighbor-

hood size to keep subproblems tractable. In addition, if a particular neighborhood-selection

method fails to produce a better solution within a set number of iterations, the heuristic

switches to the next method (Lines 17–24 in Algorithm 1).

Algorithm 2: Route Set R(i) Selection for AIPBLS Neighborhood 1 (Greening et al., 2023)

Input: Focused route set (R′ ⊆
(
∪{k∈K}Rk

)
), focus size variable (α), commodity set (K), commodity focused route

set (R′
k ⊆ Rk, ∀ k ∈ K), commodity volumes (V t

k , ∀ k ∈ K) for baseline ODT t

Result: Selected route subset (R(i))

1 Set R(i) ← ∅;

2 Set O ← {ok | k ∈ K};

3 Set V̂ ←
∑

k∈K V t
k ;

4 while |R(i)| < α|R′| and O ̸= ∅ do

5 Set πo ← 1
V̂

∑
{k∈K | ok=o} V

t
k , ∀ o ∈ O;

6 Select origin os randomly from O using probability mass function π;

7 R(i) ←R(i) ∪
(
∪{k∈K | ok=os}R

′
k

)
;

8 O ← O \ {os};

9 V̂ ← V̂ −
∑

{k∈K | ok=os} V t
k ;

10 end

11 return R(i)

The search focus alternates between improving ODT quotation (focus = Q) and route selection

(focus = R) every six iterations, as specified in Algorithm 6. By design, AIPLS first attempts

to achieve quick improvements by handling these more restrictive, single-focus subproblems. For

instance, when the focus is on ODT quotation, R′ is limited to the set of routes currently used in the

incumbent solution and only ODT decision variables are freed. Similarly, when the focus is on route

selection, the algorithm fixes ODT decision variables and expands R′ to include all possible routes.

The heuristic alternates between these single-focuses until it no longer makes improvement or hits

the single-focus solve time limit (23T ). It then uses the joint focus (focus = J), simultaneously

improving both ODT and route decisions.

Within each iteration, the neighborhood is chosen via one of three methods:

• Neighborhood 1 (Algorithm 2; see Figure 8) biases vendor selection toward those with larger

outbound demand. It uses random-weighted probabilities proportional to a vendor’s total vol-

ume. Once a vendor is chosen, all routes (and/or commodities, if focusing on ODT quotation)

associated with that vendor are freed for reoptimization.

• Neighborhood 2 (Algorithm 3; see Figure 9) biases vendor selection toward one with larger
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Algorithm 3: Route Set R(i) Selection for AIPBLS Neighborhood 2

Input: Focused route set (R′ ⊆
(
∪{k∈K}Rk

)
), focus size variable (α), commodity set (K), commodity focused route

set (R′
k ⊆ Rk, ∀ k ∈ K), commodity volumes (V t

k , ∀ k ∈ K) for baseline ODT t, commodity origin distance

dictionary (D) (origins are keys and list of other origins in ascending order of distance from key are values),

tabu list (tabuη) of past η vendors selected

Result: Selected route subset (R(i)) and updated tabu list (tabuη)

1 Set R(i) ← ∅;

2 Set O ← {ok | k ∈ K};

3 Set V̂ ←
∑

{k∈K|ok /∈tabuη} V t
k ;

4 Set πo ← 1
V̂

∑
{k∈K | ok=o} V

t
k , ∀ o ∈ O \ tabuη ;

5 Select origin os randomly from O \ tabuη using probability mass function π;

6 R(i) ←R(i) ∪
(
∪{k∈K | ok=os}R

′
k

)
;

7 O ← O \ {os};

8 tabuη ← (tabuη , os);

9 if |tabuη | > η then

10 Remove earliest added origin from tabuη ;

11 Set nearby list← D[os];

12 Set j ← 1;

13 while |R(i)| < α|R′| and O ̸= ∅ do

14 Set o← nearby list[j];

15 R(i) ←R(i) ∪
(
∪{k∈K | ok=o}R′

k

)
;

16 O ← O \ {o};

17 Set j ← j + 1;

18 end

19 return R(i), tabuη

Algorithm 4: Route Set R(i) Selection for AIPBLS Neighborhood 3

Input: Focused route set (R′ ⊆
(
∪{k∈K}Rk

)
), focus size variable (α), commodity set (K), commodity focused route

sets (R′
k ⊆ Rk, ∀ k ∈ K), LMD subset (D′)

Result: Selected route subset (R(i)) and updated LMD subset (D′)

1 Set D(i) ← ∅;

2 Set R(i) ← ∅;

3 while |R(i)| < α|R′| do

4 Select destination d randomly from D′;

5 if d /∈ D(i) then

6 R(i) ←R(i) ∪
(
∪{k∈K | dk=d}R′

k

)
;

7 D(i) ← D(i) ∪ {d};

8 D′ ← D′ \ {d};

9 if D′ = ∅ then

10 Set D′ ← {dk | k ∈ K};

11 end

12 return R(i), D′
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Algorithm 5: Internal MIP solver for AIPLS

Input: MIP, feasible solution (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), current best objective value (val), commodity set (K), commodity

route sets (Rk, ∀ k ∈ K), commodity ODT sets (Tk, ∀ k ∈ K), neighborhood route selection set (R(i)),

neighborhood lead time selection set (T (i)
k , ∀ k ∈ K), non-improving iteration count (iter), non-improving

neighborhood iteration count (iterNH)

Result: Improved feasible solution (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ) and objective value (val)

1 Add constraints xr = x̂r, ∀ r ∈
(
∪{k∈K}Rk

)
\R(i) and wkt = ŵkt, ∀ t ∈ Tk\T

(i)
k , ∀ k ∈ K to MIP;

2 Solve MIP using (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ) as warm-start solution;

3 TMIP ← MIP solving time;

4 newval← MIP solution’s objective value;

5 if newval > val then

6 Set (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ)← MIP solution;

7 if newval − val ≤ val ∗ 0.00005 then

8 Set iter ← 0, iterNH ← 0;

9 else if newval − val ≤ val ∗ 0.0001 then

10 Set iter ← 0, iterNH ← iterNH + 1;

11 else

12 Set iter ← iter + 1, iterNH ← iterNH + 1;

13 Set val← newval;

14 else

15 Set iter ← iter + 1, iterNH ← iterNH + 1;

16 if MIP solution gap < 0.02 then

17 Set minGap ← True;

18 else

19 Set minGap ← False;

20 return (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), val, iter, iterNH , TMIP, minGap

outbound demand, then adds geographically nearby vendors. Once a vendor is chosen, all

routes (and/or commodities, if focusing on ODT quotation) associated with that vendor are

freed for reoptimization. To avoid repeatedly selecting the same initial large-demand vendor,

the chosen vendor is appended to a tabu list, preventing reselection for a certain number of

iterations.

• Neighborhood 3 (Algorithm 4; see Figure 10) randomly chooses LMDs from a list D′ without

replacement, ensuring all LMDs appear eventually. All routes (and/or commodities) destined

for the selected LMDs are freed for reoptimization.

All three neighborhood-selection methods aim to free a sufficient number of route and/or ODT

variables, as controlled by the focus, to keep the restricted MIPs solvable within a 5-minute time

limit, yet still large enough to produce meaningful improvements.

Finally, the AIPLS heuristic terminates when it either reaches the runtime limit T or fails
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Algorithm 6: Update AIPLS heuristic variables

Input: Indicator if MIP gap was below threshold (minGap), count of consecutive iterations MIP gap was below

(mipICt) or above (mipDCt) mipGap [and saved counts for each focus (mipICtfocus,mipDCtfocus)], step

size to increase (mipIncr) or decrease (mipDecr) neighborhood size [and saved step sizes for each focus

(mipIncrfocus,mipDecrfocus)], focus size variable (α) [and saved sizes for each focus (αfocus)], maximum

possible focus size parameter (αmax), current search focus (focus), count of consecutive iterations for current

focus (focusCt), count of search focus non-improving cycles with ODT (focusQCt) or routes (focusRCt)

focus, feasible solution (x̂, v̂, f̂ , ŷ, ĥ, û, ŵ), non-improving iteration count (iter), non-improving neighborhood

iteration count (iterNH), solve time limit (T ), current runtime (Trun), commodity route sets (Rk, ∀ k ∈ K)

Result: Updated AIPLS variables

1 if minGap = True then

2 mipICt← mipICt+ 1, mipDecr ← 1, mipDCt← 0;

3 if mipICt ≥ 6 then

4 Set α← min{αmax, α+ 0.02 ∗mipIncr}, mipIncr ← mipIncr + 1, mipICt← 0;

5 else

6 mipDCt← mipDCt+ 1, mipIncr ← 1, mipICt← 0;

7 if mipDCt ≥ 3 then

8 α← max{0.01, α− 0.02 ∗mipDecr}, mipDecr ← mipDecr + 1, mipDCt← 0;

9 if focus = J and iter ≥ 30 then

10 focus← END;

11 return focus;

12 else if
[
Trun ≥ 2

3
T or (focusQCt ≥ 2 and focusRCt ≥ 2)

]
and focus ̸= J then

13 focus← J , R′ ← { r ∈
⋃

k∈KRk}, iter ← 0, iterNH ← 0, α← αJ , mipIncr ← mipIncrJ ,

mipICt← mipICtJ , mipDecr ← mipDecrJ , mipDCt← mipDCtJ ;

14 else if focusCt ≥ 6 and focus ̸= J then

15 αfocus ← α, mipIncrfocus ← mipIncr, mipICtfocus ← mipICt, mipDecrfocus ← mipDecr,

mipDCtfocus ← mipDCt;

16 if focus = Q then

17 focus← R, R′ ← { r ∈
⋃

k∈KRk};

18 if iter ≥ 10 then

19 focusQCt← focusQCt+ 1;

20 else

21 focus← Q, R′ ← { r ∈
⋃

k∈KRk | x̂r = 1};

22 if iter ≥ 10 then

23 focusRCt← focusRCt+ 1;

24 α← αfocus, mipIncr ← mipIncrfocus, mipICt← mipICtfocus, mipDecr ← mipDecrfocus,

mipDCt← mipDCtfocus, focusCt← 0;

25 return focus, focusQCt, focusRCt, R′, α, αfocus ∀ focus ∈ {Q,R}, mipIncr, mipIncrfocus ∀ focus ∈

{Q,R}, mipICt, mipICtfocus ∀ focus ∈ {Q,R}, mipDecr, mipDecrfocus ∀ focus ∈

{Q,R}, mipDCt, mipDCtfocus ∀ focus ∈ {Q,R}, iter, iterNH ;

to improve the solution after a number of consecutive iterations (Lines 15–16 in Algorithm 1).

By gradually alternating the search focus, selecting neighborhoods that target the most impactful
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VND FC LMD

π

0 1|R(1)| = 0

(a) Vendors assigned probabilities π

according to total volume.

π

0 1|R(1)| = 8

(b) Vendor selected at random; R(1)

updated to include all routes origi-

nating at selected vendor (including

routes not in current solution).

π

0 1|R(1)| = 12

(c) Vendor probabilities updated; next

vendor selected at random; R(1) up-

dated.

π

0 1|R(1)| = 20

(d) Vendor probabilities updated; next

vendor selected at random; R(1) up-

dated.

π

0 1|R(1)| = 20

(e) Size of R(1) meets minimum re-

quirement (i.e., |R(1)| ≥ 16) to opti-

mize.

π

0 1|R(2)| = 0

(f) Routes optimized; next iteration

subset R(2) initialized; vendors prob-

abilities π reset to (a).

Figure 8: Illustration of Neighborhood 1 vendor selection in a single iteration of the AIPLS heuristic,

focusing on route improvement. Vendors are colored by their πo value (Line 5 in Alg. 2) and randomly

chosen—without replacement—with probability πo (Line 6 in Alg. 2). This process continues until the route

set R(1) contains at least 16 routes (or ⌈αR · |R′|⌉ with αR = 0.3 and |R′| = 52) to free for optimization.

Note that |Rk| = 4, but only the incumbent route is shown for clarity.

vendors or LMDs, and adapting the size of each subproblem to solver performance, AIPLS aims to

efficiently discover high-quality solutions.

Appendix C Performance of the AIPLS Heuristic

In this section, we present results that evaluate the effectiveness of our AIPLS heuristic approach,

compared with directly solving the MIP model using a commercial solver. In Table 13, we compare

the solutions for the ODTQ-MMC±1 model obtained by running the MIP for 12 hours with those

produced by the AIPLS approach after 1, 3, 6, and 12 hours. To compute the gap for the AIPLS

approach objective value, we use the 12-hour MIP upper bound (UB). We also report the percentage
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VND FC LMD

π

0 1

ODTs

5 6 7 8|R(1)| = 0

(a) Vendors assigned probabilities π

according to total volume.

π

0 1

ODTs

5 6 7 8|R(1)| = 1

(b) One vendor randomly selected;

R(1) updated to include commodity

routes in current solution.

ODTs

5 6 7 8|R(1)| = 3

(c) Nearest vendor selected; R(1) up-

dated.

ODTs

5 6 7 8|R(1)| = 5

(d) Next closest vendor selected; up-

dated R(1) meets size requirement

(i.e., |R(1)| ≥ 4) to optimize.

+1

+0

−1

−1

−1

ODTs

5 6 7 8|R(1)| = 5

(e) ODTs optimized for selected ven-

dor commodities.

ODTs

5 6 7 8

π

0 1|R(2)| = 0

(f) Vendor selected in (b) cannot be

selected; vendor probabilities updated.

Figure 9: Illustration of Neighborhood 2 vendor selection in a single iteration of the AIPLS heuristic,

focusing on ODT optimization. One vendor is chosen at random (with probability proportional to its total

outbound volume πo, Line 5 in Alg. 3), and additional nearby vendors are iteratively added untilR(1) contains

at least ⌈αQ · |R′|⌉ routes. Here, because the focus is on ODT optimization, R′ is the set of currently selected

routes for each commodity (i.e., |R′| = |K|). Once sufficient routes are added, the associated ODT decision

variables are freed for reoptimization. The initially chosen vendor cannot be reselected until at least 75%

of the other vendors have been chosen. In this example, ⌈0.3 · 13⌉ = 4 routes must be added, and each

commodity is using its direct route.

improvement in both the objective value and the MIP gap when comparing the 12-hour AIPLS

solutions to the 12-hour MIP solutions. The results are the average of the 5 instances in each

group. Note that the MIP solutions for Groups 1, 2, and 3 are from the MIP formulation with the

binary linearization (3) approach, as these provided stronger upper bounds (see Appendix A for

the comparison to the piecewise-linear approach (2)).

For the smallest three groups, the MIP solver and the AIPLS approach produce comparable

results, validating the heuristic’s effectiveness. However, as the instance size increases, AIPLS
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VND FC LMD

|R(1)| = 0

(a) One LMD randomly selected with

equal probability.

|R(1)| = 24

(b) R(1) updated to include all routes

for commodities destined for selected

LMD; size of R(1) meets minimum re-

quirement to optimize.

|R(2)| = 0

(c) Routes optimized for selected

commodities; selected LMD removed;

R(2) initialized.

|R(2)| = 0

(d) Next LMD randomly selected from

remaining LMDs.

|R(2)| = 20

(e) R(2) updated; size of R(2) meets

minimum requirement to optimize.

|R(3)| = 0

(d) Routes optimized for selected

commodities; selected LMD removed;

R(3) initialized.

Figure 10: Illustration of Neighborhood 3 over two iterations of the AIPLS heuristic, focusing on route

selection. As in Figure 8 with a focus on route improvement, at least 16 routes must be added to R(i) for

each iteration. One LMD is randomly chosen—without replacement—from the current subset D′, and all

commodity routes destined for that LMD are freed for reoptimization. If D′ is exhausted, it resets to the

full set of LMDs.

becomes the stronger solution approach. Specifically, for both Groups 4 and 5, the AIPLS approach

yields nearly 10% higher profits and reduces the MIP gap by approximately 50%. We also observe

that the AIPLS approach quickly finds high-quality solutions (as evidenced by the 1-hour AIPLS

solutions) and continues to make marginal improvements given additional time. In particular, the

1-hour solutions already achieve 80% and 90% of the objective improvements, and similarly 98%

and 99% of the final objective values, for Groups 4 and 5, respectively.
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Table 13: Comparison of 12-hour MIP to 1-hour, 3-hour, 6-hour, and 12-hour AIPLS performances for

ODTQ-MMC±1.

Gr
MIP AIPLS % Impr

12-hr

Obj

12-hr Upper

Bound (UB)

MIP

Gap

1-hr Obj

(UB Gap)

3-hr Obj

(UB Gap)

6-hr Obj

(UB Gap)

12-hr Obj

(UB Gap)

12-hr Obj

(UB Gap)

1 $ 257,402 $ 257,402 0.0%
$ 257,249

(0.1%)

$ 257,259

(0.1%)

$ 257,259

(0.1%)

$ 257,259

(0.1%)

- 0.1%

(NA)

2 $ 594,022 $ 604,498 1.8%
$ 592,806

(2.0%)

$ 593,208

(1.9%)

$ 593,239

(1.9%)

$ 593,239

(1.9%)

- 0.1%

(-7.6%)

3 $1,276,525 $ 1,323,695 3.7%
$1,254,855

(5.5%)

$1,273,433

(3.9%)

$1,275,267

(3.8%)

$1,275,403

(3.8%)

- 0.1%

(-2.5%)

4 $7,283,192 $ 8,670,151 19.0%
$7,777,779

(11.5%)

$7,805,826

(11.1%)

$7,887,990

(9.9%)

$7,901,352

(9.7%)

8.5%

(48.9%)

5 $8,989,957 $10,996,492 22.3%
$9,857,422

(11.6%)

$9,886,124

(11.2%)

$9,941,056

(10.6%)

$9,951,478

(10.5%)

10.7%

(53.0%)

Values in italics indicate binary linearization (3) approach was used.

Appendix D Additional Instance Details

In this section, we provide additional details about the instances used in the computational study.

To generate representative baseline demand volumes for each commodity, we first cluster our part-

ner’s vendors and LMDs into size categories of small, medium, or large based on total outbound and

inbound volume, respectively. We then generate empirical demand distributions for each vendor-

LMD size group pair (e.g., a small vendor sending demand to a medium LMD) and sample volumes

from the appropriate distribution for each commodity. We follow a similar approach to generate

FC-to-LMD demand volume; however, FCs are not categorized by size (i.e., all are treated as one

size).

We generate a set of legs for each instance consisting of direct and consolidation freight trans-

portation legs. Direct freight transportation legs connect vendors to LMDs, while consolidation

freight transportation legs include vendor-to-FC, FC-to-FC, and FC-to-LMD connections. In the

consolidation network, each FC can serve as an intermediate transfer facility. The truckload freight

mode, with a trailer capacity of 12,000 pounds, is available for all legs. However, to resemble oper-

ations in our e-commerce partner’s network, LTL freight modes are restricted to LMD-inbound legs

only. We define three LTL freight modes, each corresponding to a specific capacity range: [0,2000),

[2000,2700), or [2700,4000) pounds, respectively. We allow a maximum of 40 truckloads and 5 LTL

loads per week on each leg. Estimates of freight mode costs are derived using actual costs provided
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by our partner. Additionally, LTL shipments require more transit time than truckload shipments,

since they do not move direct. Thus, we calculate the transit time required for an LTL shipment

by multiplying the truckload transit time by a factor (greater than 1) provided by our partner.

We assume all LTL freight modes require the same transit time per leg. We also impose a mini-

mum headway Hl of 1 day (or 1
7 of a week, as implemented in the model) when constraining route

lead times. This fairly conservative value results in a consolidation plan that assumes shipments

spend at least half a day, on average, at transfer locations; in essence, this prevents the model from

planning unreasonably short transfer times.

For each instance, we generate a set of routes Rk for commodity k using a more flexible version

of the guidelines followed by our partner, while still adhering to industry standards (e.g., allowing

no more than two transfers per route). The set Rk contains the following geographic routes: (i)

a direct route from origin to LMD, (ii) the shortest-distance two-leg route using a single transfer

facility, (iii) a two-leg route using the transfer facility closest to the origin, (iv) a two-leg route

using the transfer facility closest to the LMD, and (v) a three-leg route using the transfer facilities

in (iii) and (iv), if they are not the same. If any routes are geographically identical, only one is

kept in the set. For geographic routes (ii)-(v), the FC-to-LMD leg may use either the truckload

or LTL freight mode, each with a different transit time. Because the conservatism hyperparameter

ρtr depends on the fixed transit time Tr of route r (which is determined by mode choice) and is

multiplied by the binary variable wkt in Constraints (2h), we duplicate geographic routes (ii)-(v)

and restrict (using side constraints) one of the routes to truckload and the other to an LTL freight

mode. Therefore, each commodity k can have up to 9 routes in Rk.

The freight mode, load dispatch frequency, and related cost of each vendor-originating direct

route are pre-computed in a pre-processing step. We then incorporate the cost of a direct route r

into the route objective coefficient Cr. This pre-processing step reduces the computational burden

when solving the models, as each lane (i.e., the direct leg and all associated modes) representing

a direct route can be removed from the set of lanes L ×Ml, and similarly, from the set of legs L.

This significantly reduces the number of decision variables and related constraints.

Each commodity is assigned a baseline ODT requirement consistent with our partner’s approach,

ensuring that every commodity k can feasibly utilize any route in its route set Rk, provided there

are sufficient dispatches per week. Although it is possible to define a unique relationship between

quoted ODTs and demand volume conversion for each commodity, in the computational exper-

iments presented in this paper, we use a single representative conversion curve estimated from
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aggregated historical demand data, for ease of exposition. Based on the confidential company data

we analyzed, we find that a reversed S-shaped curve frequently characterizes customer purchasing

behavior across commodities: customer sensitivity to ODT changes is highest near the baseline

ODT (typically around 1 week for large and bulky items) but declines when the promise time is

significantly shorter or longer. While the experiments in this paper use a single representative

curve, it is possible to use the ODTQ-MMC with many different conversion curves (up to one per

commodity) without increasing the computational burden. Note also that this planning model

can be adjusted and solved for different selling periods during the year to address seasonality, new

product introductions, or changing demand levels.

We assume a linear relationship between commodity demand volume V t
k and the revenue (sales

minus COGS) St
k generated from that volume. To calculate the expected demand volume V t

k for

a commodity k when quoted ODT t using the curve shown in Figure 3, we multiply the baseline

demand volume by the ratio of the conversion rate for the selected ODT to the conversion rate for

the baseline ODT requirement. For example, if the model reduces a commodity’s quoted ODT from

the baseline requirement of 10 days to 8 days, the demand volume for that commodity increases

by a factor of 1.22 (i.e., 0.0109 divided by 0.0089). Consequently, the revenue associated with that

demand volume also increases by the same factor.

Appendix E Benefits of an Integrated Optimization Framework

In this section, we present four simpler, alternative approaches for maximizing profit to demon-

strate the value of using a comprehensive model which jointly optimizes ODTs and the consolida-

tion plan, as the ODTQ-MMC model does. In the first approach (ODT−1), all vendor-originating

commodity ODTs decrease (similarly, speed up) by 1 day; we then optimize the ODTQ-MMC±0

model to determine the consolidation plan. In the second approach (ODTM±1), we categorize

the vendor-originating commodities by high-, mid-, and low-sales margin, where sales margin is a

commodity-based calculation of sales net COGS divided by sales, and ODTs decrease by 1 day, do

not change, or increase by 1 day, respectively. We assign 65%, 25%, and 10% of vendor-originating

commodities to groups categorized by high-, mid-, and low-profit margin, respectively. Other pro-

portions were tested, but this combination leads to the highest profit solutions. After manually

adjusting commodity ODTs, we again optimize the ODTQ-MMC±0 model to determine the con-

solidation plan. The third approach (OptODT±1) optimizes the ODTs of the ODTQ-MMC±0
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solution. That is, we fix the routes and capacities (i.e., modes and load dispatch frequencies) to

those of the ODTQ-MMC±0 solution and then solve the ODTQ-MMC±1 model to optimize ODT

selection. In the final approach (OptODTCap±1), we fix routes according to the ODTQ-MMC±0

solution, and then solve the ODTQ-MMC±1 model to simultaneously optimize ODTs and leg

capacities (i.e., mode and number of load dispatches).

To compare optimal load plans, we solve Group 1 instances using the ODTQ-MMC±1 MIP

model (with the binary linearization approach (3)). In Table 14, we report financial metrics, as

well as the percentage of vendor volume sent through the private middle-mile network (VND Vol

In-Ntwk) and volume-weighted ODT. In Table 15, we report load plan-related metrics to compare

the performance of the approaches. In both tables, the rows represent the average across the 5

instances composing Group 1.

Table 14: Alternative approach financial metrics for Group 1 instances.

Model Profit
Profit

Increase
Revenue

Fulfillment

Cost

Profit

Margin

Fulfillment

Cost per lb

Vnd Vol

In-Ntwk

Vol-Wtd

ODT

ODTQ-MMC±0 $233,484 - $339,027 $105,543 30.3% $0.313 84.5% 6.6

ODT−1 $239,775 2.7% $362,369 $122,594 29.2% $0.341 82.5% 5.8

ODTM±1 $240,083 2.8% $358,393 $118,310 29.8% $0.336 84.0% 6.0

OptODT±1 $247,549 6.0% $353,841 $106,292 30.9% $0.304 84.5% 6.2

OptODTCap±1 $252,415 8.1% $355,907 $103,491 31.3% $0.295 84.6% 6.3

ODTQ-MMC±1 $257,402 10.2% $357,133 $ 99,731 31.8% $0.283 85.7% 6.3

As one may expect, the approaches that explicitly optimize ODTs yield the highest profit,

further improving as the number of optimized decisions increases. Although the ODT−1 approach

generates the greatest revenue by reducing every commodity’s ODT by one day, meeting these tight

deadlines necessitates more load dispatches and/or utilizing more direct routes, thereby increasing

fulfillment cost. In contrast, other profit-maximizing approaches achieve a better overall profit by

allowing some commodity ODTs to increase, which reduces the number of load dispatches required

and thus lowers fulfillment cost. Therefore, these other approaches increase profit by determining

the best trade-off between revenue and fulfillment cost.

Both OptODTCap±1 and ODTQ-MMC±1 incur lower fulfillment costs and generate higher

revenue compared to ODTQ-MMC±0. Upon close inspection of the load plans, we observe that

the models slow down commodities with tight baseline ODT-time requirements (needing a high

frequency of load dispatches per week) while speeding up commodities that can simply be added

to previously scheduled trucks (without increasing the total number of dispatches). Thus, even
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as volume increases, fulfillment costs can actually decrease because models that optimize both

ODTs and load dispatch frequencies identify a more cost-effective mix of commodities to ship (and

associated ODTs to quote).

Table 15: Comparison of load plan metrics when solving Group 1 instances.

Model
Vol-Wtd

Route Length

Avg Load

Disp Freq
Loads/Week Vol-Wtd

TL Utilization
LTL TL LTL TL

ODTQ-MMC±0 1.83 2.1 2.6 61 63 74.0%

ODT−1 1.78 2.3 3.1 89 72 65.4%

ODTM±1 1.80 2.2 3.0 73 72 66.2%

OptODT±1 1.84 2.1 2.6 61 63 77.6%

OptODTCap±1 1.84 2.1 2.4 59 61 77.3%

ODTQ-MMC±1 1.82 2.1 2.3 49 64 76.0%

When we compare the ODTQ-MMC±0 and OptODT±1 solutions, both of which use the same

routes, modes, and weekly load dispatches (see Table 15), we find that OptODT±1 better leverages

existing capacities by more efficiently filling truckloads and substituting less profitable commodities

with more profitable commodities. In doing so, OptODT±1 strategically slows down (and reduces

the volume of) less profitable commodities whenever the current consolidation plan can still satisfy

the faster ODTs of the more profitable commodities. This adjustment allows additional volume

from more profitable commodities to fit within the shipment, thus increasing overall profit. In fact,

in every situation where a commodity’s ODT slows down, at least one leg in its selected route

is near maximum capacity and also transports one or more commodities whose ODT speeds up.

Consequently, the reduced volume of the slowed commodities frees up space on the nearly full leg,

allowing more profitable commodities to fit within the shipment. Interestingly, and now perhaps

less surprisingly, we observe that OptODT±1 outperforms all other approaches, including ODTQ-

MMC±1, in volume-weighted truckload utilization. The slight increase in fulfillment cost compared

to the ODTQ-MMC±0 solution arises from the ability to adjust the size of LTL shipments, which

incur a variable cost per pound.

In conclusion, our results show that even for small instances, a comprehensive approach that

simultaneously optimizes ODTs and the consolidation plan yields the most profitable outcome. In

fact, the ODTQ-MMC±1 also outperforms all other approaches in profit margin, fulfillment cost,

and fulfillment cost per pound, as well as decreases reliance on LTL and sends the highest volume

of vendor freight through the middle-mile network.
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