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Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regres-
sion selects a subset of features that explains the relationship between covariates and the response in an
interpretable manner. To choose hyperparameters that control the sparsity level and amount of regulariza-
tion, practitioners commonly use k-fold cross-validation. However, cross-validation substantially increases
the computational cost of sparse regression as it requires solving many mixed-integer optimization problems
(MIOs) for each hyperparameter combination. To address this computational burden, we derive computa-
tionally tractable relaxations of the k-fold cross-validation loss, facilitating hyperparameter selection while
solving 50-80% fewer MIOs in practice. Our computational results demonstrate, across eleven real-world
UCI datasets, that exact MIO-based cross-validation can be competitive with mature software packages such

as glmnet and LOLearn —particularly when the sample-to-feature ratio is small.
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1. Introduction
Over the past fifteen years, Moore’s law has spurred an explosion of high-dimensional datasets
for scientific discovery across multiple fields (McAfee et al. 2012). These datasets often consist
of a design matrix X € R"*? of explanatory variables and an output vector y € R™ of response
variables. Accordingly, practitioners often aim to explain the response variables linearly via the
equation y = X3 + €. Using this equation, the vector of regression coefficients 3 € R? is inferred
by minimizing the least squares (LS) error of the residuals e.

Despite its computational efficiency, LS regression exhibits two practical limitations. First, when
p > n, there is not enough data to accurately infer 3 via LS, and LS regression generates estimators
which perform poorly out-of-sample due to the curse of dimensionality (Bithlmann and Van De Geer
2011, Gamarnik and Zadik 2022). Second, LS regression generically selects every feature, including
irrelevant ones. This is a significant challenge when regression coefficients are used for high-stakes
decision-making tasks and non-zero coefficients guide decisions.

To tackle the challenges of dimensionality and false discovery, sparse learning has emerged as a

popular methodology for explaining the relationship between inputs X and outputs y. A popular
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sparse learning model is ridge-regularized sparse regression, which admits the formulation (Bert-
simas and Van Parys 2020, Xie and Deng 2020, Hastie et al. 2020, Atamtiirk and Gémez 2020,
Kenney et al. 2021, Hazimeh et al. 2022, Liu et al. 2023)

. Yy 2 2
win S8l +ly - XBl; st [Blo<, (1)

where 7 € {1,...,p} and v > 0 are hyperparameters that respectively control the sparsity of 3
and the amount of /3 regularization (cf. Xu et al. 2008, Bertsimas and Copenhaver 2018), and we
assume that X and y have undergone standard preprocessing so that y is a zero-mean vector and
X has zero-mean, unit-variance columns, meaning v penalizes each feature equally.

Problem (1) is NP-hard (Natarajan 1995) and computationally challenging, and early mixed-
integer formulations could not scale to problems with thousands of features (Hastie et al. 2020).
In a more positive direction, by developing and exploiting tight conic relaxations of appropriate
substructures of (1), e.g., the perspective relaxation (Ceria and Soares 1999, Stubbs and Mehro-
tra 1999, Giinliik and Linderoth 2010), more recent mixed-integer optimization methods, such as
branch-and-bound (Hazimeh et al. 2022), can scale to larger instances with thousands of features.
We refer to Bertsimas et al. (2021), Atamtiirk and Gémez (2025) for reviews of perspective and
related relaxations.

To be sure, the aforementioned works solve (1) rapidly. Unfortunately, they do not address
arguably the most significant difficulty in performing sparse regression. The hyperparameters (7, 7)
are not known to the decision-maker ahead of time, as is often assumed in the literature for
convenience. Rather, they must be selected by the decision-maker, which is potentially much more
challenging than solving (1) for a single value of (7,v) (Hansen et al. 1992). Indeed, selecting (7,7)
typically involves minimizing a validation metric over a grid of values, which is computationally
expensive (Larochelle et al. 2007).

Perhaps the most popular validation procedure is hold-out (Hastie et al. 2009), where one omits
a portion of the data when training the model and then evaluates performance on this hold-out set
as a proxy for the model’s test set performance. However, hold-out validation is sometimes called
a high-variance approach (Hastie et al. 2009), because the validation errors can vary significantly
depending on the hold-out set selected.

To reduce the variance in this procedure, a number of authors have proposed what we call the
cross-validation paradigm. Early iterations of this paradigm, as reviewed by Stone (1978), suggest
solving Problem (1) a total of n times, each time leaving out a single data point i € {1,...,n},
and estimating out-of-sample performance via the average prediction error of each estimator on its
left-out observation. This approach is known as leave-one-out cross-validation (LOOCYV).

A popular variant of LOOCV, known as k-fold cross-validation, involves removing subsets of

n/k data points at a time and breaking the data into k folds in total, which significantly reduces
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the computational burden of cross-validation while having less variance than a hold-out approach
(Burman 1989, Arlot and Celisse 2010). However, even k-fold cross-validation may be prohibitive
in the case of MIOs such as (1). Indeed, as identified by Hastie et al. (2020), with a time limit of 3
minutes per MIO, using 10-fold cross-validation to choose between subset sizes 7 =1,...,50 in an
instance of Problem (1) with p =100 and n = 500 requires 25 hours of computational time.
For sparse regression, given a partition N,..., N, of [n], performing k-fold cross-validation
corresponds to selecting hyperparameters «,7 which minimize the function
_ly T BN ()2
h(y,m)=— ;%(y ] BN (7,7)) (2)

where 3Vi)(y,7) denotes an optimal solution to the following lower-level problem for any N;:
B9, € angamin. JBIE-+ |9 - X8I st Bla<, Q
€RP

v > 0 is a hyperparameter, 7 is a sparsity budget, X3 y®i) denote the dataset with the
data in N, removed, and we take ,B(Ni)('y,T) to be unique for a given 7,7 for convenience®. In
words, h(v,7) denotes the average prediction error on each left-out fold for a sparse regressor with
hyperparameters (v, 7) trained on the remaining folds.

We remark that if all sets AV, are taken to be singletons and k = n, minimizing h corresponds to
LOOCYV. Moreover, if k=2 and the term with j =2 is removed from h, optimizing h reduces to
minimizing the hold-out error. After selecting (v, 7), practitioners usually train a final model on
the entire dataset, by solving Problem (1) with the selected hyperparameter combination.

Our Approach: We propose techniques for obtaining strong bounds on validation metrics in
polynomial time and leverage these bounds to design algorithms for minimizing the cross-validation
error in Sections 2 and 3. By performing a perturbation analysis of perspective relaxations of
sparse regression problems, we construct convex relaxations of the k-fold cross-validation error,
which allows us to minimize it without explicitly solving MIOs at each data fold and for each
hyperparameter combination. This results in a branch-and-bound algorithm for hyperparameter
selection that is substantially more efficient than state-of-the-art methods such as grid search. As
an aside, we remark that as cross-validation is more general than hold-out validation, our convex
relaxations can be generalized immediately to the hold-out case.

In numerical experiments (Section 4), we assess the impact of our contributions. We observe on
real UCI datasets that our branch-and-bound scheme reduces the number of MIOs that need to be
solved by an average of 50%-80%. Further, we leverage our branch-and-bound scheme to design a
cyclic alternating minimization scheme that iteratively minimizes 7 and «. We observe that on real
UCI datasets, our scheme reduces the five-fold cross-validation error on underdetermined datasets

by an average of 20% compared to MCP and by a few percent compared to glmnet and LOLearn,
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although it is outperformed by these methods by 2%-40% on more overdetermined datasets. Our
experiments demonstrate that the techniques developed in Sections 2 and 3 could be integrated

within existing statistical software packages, when training an ML model involves solving a MIO.

1.1. Literature Review

Our work falls at the intersection of three areas of the optimization literature: (i) hyperparameter
selection techniques for optimizing the performance of a machine learning model by selecting hy-
perparameters that perform well on a validation set, (ii) bilevel approaches that reformulate and
solve hyperparameter selection problems as bilevel problems, and (iii) perspective reformulation
techniques for mixed-integer problems with logical constraints, as discussed above. To put our
contributions into context, we now review the two remaining areas of the literature.

Hyperparameter Selection Techniques for Machine Learning Problems: A wide variety of hyper-
parameter selection techniques have been proposed for machine learning problems such as sparse
regression, including grid search (Larochelle et al. 2007) as reviewed in Section 1, and random
search (cf. Bergstra and Bengio 2012). In random search, we let £ be a random sample from a
space of valid hyperparameters, e.g., a uniform distribution over [10~*,10%] x [p] for sparse regres-
sion. Remarkably, in settings with many hyperparameters, random search usually outperforms grid
search for a given budget on the number of training problems that can be solved, because valida-
tion functions often have a lower effective dimension than the number of hyperparameters present
in the model (Bergstra and Bengio 2012). However, grid search remains competitive for problems
with a small number of hyperparameters, such as sparse regression.

The modern era of hyperparameter selection strategies was ushered in by the increasing promi-
nence of deep learning methods in applications from voice recognition to drug discovery (see LeCun
et al. 2015, for a review). The volume of data available and the number of hyperparameters to be
selected have challenged the aforementioned methods and led to new techniques, including evolu-
tionary strategies, Bayesian optimization techniques (Frazier 2018) and bandit methods (Falkner
et al. 2018). However, in sparse regression problems where we aim to optimize two hyperparameters,
these methods are effectively equivalent to grid or random search. Further, none of these approaches
provide locally optimal hyperparameter combinations with respect to the LOOCV error, which
suggests there is room for improvement upon the state-of-the-art in sparse regression.

We point out that current approaches for hyperparameter selection are similar to existing meth-
ods for multi-objective mixed-integer optimization. While there has been recent progress in im-
proving multi-objective algorithms for mixed-integer linear programs (Lokman and Koéksalan 2013,
Stidsen et al. 2014), a direct application of these methods might be unnecessarily expensive. In-

deed, these approaches seek to compute the efficient frontier (Boland et al. 2015a,b), i.e., solving
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problems for all possible values of the regularization parameter. In contrast, we are interested in
only the combination of parameters that optimize a well-defined metric (e.g., the cross-validation
erTor).

Bilevel Optimization for Hyperparameter Selection: In a complementary direction, several au-
thors have proposed selecting hyperparameters via bilevel optimization (see Beck and Schmidt
2021, for a general theory), since Bennett et al. (2006) recognized that cross-validation is a special
case of bilevel optimization. Therefore, in principle, we could minimize the cross-validation error
in sparse regression by invoking bilevel techniques. Unfortunately, this approach seems intractable
in both theory and practice (Ben-Ayed and Blair 1990, Hansen et al. 1992). Indeed, standard
bilevel approaches such as dualizing the lower-level problem are challenging to apply in our context
because our lower-level problems are non-convex and cannot easily be dualized.

Although bilevel hyperparameter optimization is slow in its original implementation, several
authors have proposed making it more tractable by combining it with efficient modeling paradigms
to obtain locally optimal sets of hyperparameters. Among others, Sinha et al. (2020) recommend
taking a gradient-based approximation of the lower-level problem and thereby reducing the bilevel
problem to a single-level problem, Okuno et al. (2021) advocate selecting hyperparameters by
solving the KKT conditions of a bilevel problem, and Ye et al. (2022) propose solving bilevel
hyperparameter problems via difference-of-convex methods to obtain a stationary point.

Specializing our review to regression, three works aim to optimize the performance of regression
models on a validation metric. First, Takano and Miyashiro (2020) propose optimizing the k-fold
validation loss, assuming all folds share the same support. Unfortunately, although their assumption
improves their method’s tractability, it may lead to subpar statistical performance because using
the same set of non-zero regressors for all folds shares information between the folds. Second,
Stephenson et al. (2021) propose first-order methods for minimizing the leave-one-out error in
ridge regression problems (without sparsity constraints). However, it is unclear how to generalize
their approach to settings with sparsity constraints. Finally, perhaps closest to our work, Kenney
et al. (2021) propose a bisection algorithm for selecting the optimal sparsity parameter in a sparse
regression problem by approximately minimizing the k-fold cross-validation error. It is, however,
worth noting that this approach is not guaranteed to converge to an optimal sparsity parameter

with respect to the k-fold error, because it does not develop lower bounds on the k-fold error.

1.2. Structure

The rest of the paper is laid out as follows:

e In Section 2, we observe that validation metrics are potentially expensive to evaluate, because
they involve solving up to k+ 1 MIOs (in the k-fold case), and accordingly develop tractable

lower and upper bounds that can be computed without solving any MIOs.
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e In Section 3, we propose an efficient alternating minimization scheme for identifying locally
optimal hyperparameters with respect to the validation error. Specifically, in Section 3.1, we
develop an efficient scheme for minimizing the cross-validation error with respect to 7, and in
Section 3.2, we propose a scheme for optimizing with respect to ~.

e In Section 4, we benchmark our proposed approaches on real UCI datasets. The proposed ap-
proach leads to a 50-80% reduction in the number of MIOs solved compared to standard grid
search techniques. Moreover, it performs comparably to the glmnet, MCP and LOLearn soft-
ware packages in terms of solution quality, especially in relatively underdetermined settings,
thus demonstrating that the ideas in Sections 2-3 could be integrated within existing software

packages.

Notation

We let non-boldface characters such as b denote scalars, lowercase bold-faced characters such as
x denote vectors, uppercase bold-faced characters such as A denote matrices, and calligraphic
uppercase characters such as Z denote sets. We let [n] denote the running set of indices {1,...,n},
and ||z||o ;== [{j : ; # 0}| denote the ¢, pseudo-norm, i.e., the number of non-zero entries in .
Finally, we let e denote the vector of ones, and 0 denote the vector of all zeros.

Furthermore, we consistently use notation commonly found in the supervised learning literature.
We consider a setting where we observe covariates X := (x;,";...;x, ") € R"™? and response data
y:= (yi1,...y,) € R". With this notation, the ith row of X is denoted by ] € R?. We say that
(X,y) is a training set, and let 3 denote a regressor fitted on this training set. In cross-validation,
we are also interested in the behavior of 3 after leaving out portions of the training set. We let
(X @ y®) denote the training set with the ith data point left out, and denote by 3 the regressor
obtained after leaving out the ith point. Similarly, given a partition Ni,...,N; of [n] and j € [k],
we let (XWi), yNi)) denote the training set with the jth fold left out, and B%5) be the associated

Tegressor.

2. Convex Relaxations of k-fold Cross-Validation Error
In this section, we develop tractable upper and lower approximations of the k-fold cross-validation
error of a sparse regression model, which can be evaluated at a given (v,7) without solving any
MIOs. From a theoretical perspective, one of our main contributions is that, given & € R?, we show
how to construct bounds § ,& such that < T BWi) <€, which we can use to infer out-of-sample
predictions. In particular, we leverage this insight to bound from above and below the function:
k k
hv, ) =1/nY bty 1)=1/n 3" S (g2 B4 (4,7))7, (4)
Jj=1 Jj=14EN;

i.e., the k-fold cross-validation error. Note that (4) is a restatement of (2).
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2.1. Bounds on the Prediction Spread

Given any 0 < € <+, it is well-known that Problem (1) admits the conic quadratic relaxation:

D 2 D p
. Y—€ B; €
Cpersp = iDL ly — X8l + 2;4'525? s.t. Zziﬁﬂ (5)
i=1 7" i=1 i=1

BERP,z€[0,1]P 2
which is also known as the perspective relaxation (Ceria and Soares 1999, Xie and Deng 2020).
In the formulation, € is presumed to be a small number, and the associated regularization term
is added to ensure strong convexity. Note that here and throughout the rest of the paper, there
is an implicit dependence of (,esp On €. If integrality constraints z € {0,1}” are added to (5),
then the resulting mixed-integer optimization problem (MIO) is a reformulation of (1), where the
logical constraints ; =0 if z; =0 Vi € [p] are implicitly imposed via the domain of the perspective
function 3?/z;. Moreover, the optimal objective (,esp 0f (5) often provides tight lower bounds on

the objective value of (1) (Pilanci et al. 2015, Bertsimas and Van Parys 2020, Askari et al. 2022),

*

" ersp 18 Often a good estimator in its own right. As we establish in our

and the optimal solution 8
main results, the perspective relaxation can also be used to obtain accurate approximations of and
bounds on the k-fold cross-validation error.

Our first main result (Theorem 1) reveals that any optimal solution of (1) lies in an ellipsoid

centered at its continuous (perspective) relaxation, and whose radius depends on the duality gap:
THEOREM 1. Given any bound
— . _ 2 1 2
@2 min | X8 -yl + 518l s.t- I8l <, (6)
and any 0 < e <~ the inequality

( ;ersp - IB?VHO)—r (XTX+§H> ( ;ersp - BX/HO) S ('ITL - CPSTSP) (7>

*
persp

holds, where 3},,0 is an optimal solution of (6) and (3 is optimal to (5).

We note that Problem (6) is a restatement of Problem (1).
Proof of Theorem 1 Let

. € Toex B
— _ 2 = 2 e 8
fB):= _ min  1XB-yla+5l8l+ 2[,,] - (8)

=r(B)
denote the objective value of the perspective relaxation at a given 3, which can be decomposed in

a quadratic part ¢(3) and a convex nonlinear part r(3). We find that for any 3 € R?,

Q</3) = Q( ;ersp) + VQ( ;ersp)T(ﬁ - ﬂ;ersp) + (ﬁ - IB;ersp)T <XTX + %H) (/6 - B;ersp)7 and
T(/B) Z T( ;ersp) + ST(B - ﬁ;ersp)
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for s € Or(B}...,) (the subdifferential of ). Moreover, since 3}, is a minimizer of f =¢q+r, there

exists § € Or(B%,,.,) such that s+ Vq(B*,..,) =0. Adding the two inequalities, we find that

persp persp

* € * *
(16 - Bpersp)T (XTX + §]I> (16 _IBPeI‘Sp) S f(ﬁ) - f( persp)‘
Finally, setting 8 = 8},,, and using that f(83,,0) <4, we obtain the desired result. [

Using Theorem 1, we can compute bounds on h;(y,7) in (4) by solving problems of the form

. 2
min/max Y (v~ =] ) (9a)
iENj
N N T . € N _ (N N;
st (Buip—A)T (X7 XN 1 71) (Ble — B) < (@) —Gudi), (9b)

where 51(3@?;1) and Cf,/;fﬁ, are the optimal solution and objective value of the perspective relaxation

with fold N, removed, and aWi) is an associated upper bound. Bounds for the function h(vy,T)
then immediately follow by simply adding the bounds associated with h;(~,7) for all j € [k].
REMARK 1 (COMPUTABILITY OF THE BOUNDS). Observe that a lower bound on the k-fold error
can easily be computed by solving a convex quadratically constrained quadratic problem, while an
upper bound can be computed by noticing that the maximization problem (9) is a trust region
problem in 3, which can be reformulated as a semidefinite problem (Hazan and Koren 2016). One
could further tighten these bounds by imposing a sparsity constraint on 3, but this may not be

practically tractable.

2.2. Closed-form Bounds on the Prediction Spread

While solving the perspective relaxation (5) is necessary to solve the MIO (6) via branch-and-
bound (in particular, the perspective relaxation is the root node in a branch-and-bound scheme
(Mazumder et al. 2023)), the additional two optimization problems (9) are not. Moreover, solving
trust-region problems can be expensive in large-scale problems. Accordingly, in this section, we
present alternative bounds that may be weaker, but can be obtained in closed form. In numerical
experiments (Section 4), these closed-form bounds typically reduce the number of MIOs that need

to be solved by 50%-80% when compared to grid search.
THEOREM 2. Given any vector € € RP and any bound

_ . oz 2
@2 min | X8 -yl + 518l s.t- 18]l <, (10)

the inequalities

—1 -1
wTIB;ersp - \/(ﬂ - CPE”‘SP) wT (XTX + gﬂ) T S wTIB;MIO S w—r/@;ersp + \/(a - CPET‘SP) w—r <XTX + %H) (s

hold, where B, is an optimal solution of (10) and B},,,, is optimal to (5).

Proof of Theorem 2 From Theorem 1, we have the inequality

( ;ersp _IB;AIO)T (XTX + %H> ( ;ersp _161’\(/110) < (ﬂ_ CPQFSP)' (11>
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By the Schur Complement Lemma (see, e.g., Boyd et al. 1994), this is equivalent to

-1

— € * *
(U - Cpersp) (XTX + Q]I) = ( persp ﬂMIO)( persp IBMIO)T'
Next, we can left/right multiply this expression by an arbitrary matrix W € R™*?. This gives:
_ et "
(U - Cpersp)W <XTX + §H> WT (Wﬁpersp WIBMIO)(WBpersp WIBMIO)T'

In particular, setting W =z " for a vector € R? gives the inequality

-1

_ €
(’U, - CPeTSP>mT (XTX + iﬂ) T 2> (wT( persp IBMIO)) ’
which we rearrange to obtain the result. [J
COROLLARY 1. For any W € R™*P we have that
_ €\t .
(1 Gt (W (XTX4 51) W) 2 W8, ~ B0

Applying Theorem 2 to the problem

— (N . ) . Y
a9 > min | XN 8-y |5+ (18]35 st (1Bl < (12)
BERP 2
where & = x; was chosen as the reference vector, we have the bounds
-1
€, =] By — \/x;r (9T X WD 4+ 21) s (1) — (), (13)
_ —1
€. =x] Bietay +\/ (XWJ‘)TXWJ') + 5]1) a; (W) — ()Y (14)

where § < a:T,BMIO <&, where ,BMIO is the optimal solution of (12). We can then compute bounds

on the ith prediction error associated with fold j, namely

(Nj)*
( MIO — i)27

as formalized in Corollary 2.

COROLLARY 2. We have the following bounds on the ith prediction error associated with fold j
(yi—§& )* ifyi<§,
ma (4 =€, )% (0~ €.)°) 29,(7.7) 2 4 0 T le, 6l (15)
(g —w)® ifyi>&y
Moreover, since h(7y,7) =+ ijl ZieNj v; ;(7,7), we can compute lower and upper bounds on the
k-th fold cross-validation error by adding the individual bounds. Observe that the bounds computed
by summing disaggregated bounds could be substantially worse than those obtained by letting W
be a matrix with all omitted columns in the jth fold of X in the proof of Theorem 2. Nonetheless,
the approach outlined here may be the only feasible one in large-scale instances, as it is obtained
directly from the perspective relaxation without solving additional optimization problems, whereas

an aggregated approach would involve solving an auxiliary semidefinite optimization problem.
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Despite the loss in quality, we show in our computational sections that (combined with the methods
discussed in §3), the disaggregated bounds are sufficient to lead to a 50%-80% reduction in the
number of MIOs solved with respect to grid search.

We conclude this subsection with three remarks.

REMARK 2 (CHOICE OF THE STRONG CONVEXITY PARAMETER). While it may appear that
large values € result in tighter bounds in Theorem 2, we point out that large values also negatively
affect the quality of the lower bound (,ersp. Note that if X " X is invertible, then we can also set
€ =0 — the approach we use if n > p.

REMARK 3 (RELAXATION TIGHTNESS). If the perspective relaxation is tight, as occurs when n
is sufficiently large under certain assumptions on the data generation process (Pilanci et al. 2015,
Reeves et al. 2019) then { =& =x] erspy and Corollary 2’s bounds on the cross-validation error
are tight by definition. Otherwise, as pointed out in Remark 4, (15)’s bound quality depends on
the tightness of the relaxation and on how close the features x; are to the rest of the data.

REMARK 4 (INTUITION). Theorem 2 states that ' 8,0 ~ " 3},,.,, where the approximation
error is determined by two components. The quantity m is related to the strength of the

perspective relaxation, with a stronger relaxation resulting in a better approximation. The quantity

\/ x’ (X TX + %H)_l x is related to the likelihood that x is generated from the same distribution
as the rows of X, with larger likelihoods resulting in better approximations. Indeed, if n > p, each
column of X has 0 mean but has not been standardized, and each row of X is generated iid
from a multivariate Gaussian distribution, then "(:7@1):2—'— (XTX ) e~ T? (p,n — 1) is Hotelling’s
two-sample T-square test statistic (Hotelling 1931), used to test whether x is generated from the

same Gaussian distribution. Note that if # is drawn from the same distribution as the rows of X

(as may be the case in cross-validation), then E |27 (XTX) ™" :c} = nfr(f—bi;i)z) for n>p+2.

2.3. Further Improvements for Lower Bounds
Corollary 2 implies we obtain valid upper and lower bounds on the k-fold cross-validation loss A
at a given hyperparameter combination ~, 7 after solving k perspective relaxations and computing

n terms of the form

\/CL'ZT (X(Nj)TX(Nj) + %]1) 71;,31._

A drawback of Corollary 2 is that if x] 8,,,, = y; for each i € N}, i.e., the prediction of the
perspective relaxation (without the jth fold) is close to the response associated with point ¢, then
Corollary 2’s lower bound is 0. A similar situation can happen with the stronger bounds for h; (v, 7)
obtained from Theorem 1 and Problem (9). We now propose a different bound on h; (v, 7), which

is sometimes effective in this circumstance.
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First, define the function F(v,7) to be the in-sample training error without removing any folds

and with parameters (v, 7),

n

1 . Y
F(y,7):=—> (y;—2{B(y,7))* st. B(y,7)€ argmin SIBIE+1X8 -yl
[ BeRP: |Bllo<r
and let F;(v,7):= ZZE/\/ (yi — ] B(v,7))” denote the training error associated with the jth fold,

with 1/n 2521 Fj(v,7)=F(v,7). Observe that evaluating h involves solving k¥ MIOs, while evalu-

ating F' requires solving one.

PROPOSITION 1. For any v>0, any 7 € [p| and any j € [k], F;(v,7) < h;(7y,7). Moreover, we
have that F(y,7) < h(vy,T).

Proof of Proposition 1 Given j € [k], consider the following two optimization problems

n

min . —x B)%+ RAYE 16

ﬁeRP:|ﬁ|o<r;(‘y i B)"+ 5 1Bl (16)

min - z) 3)2 + v 2’ 17

scelil <, 2 =@ )"+ 5 10 (1)
J

let 3* be an optimal solution of (16), and let 37 be an optimal solution of (17). Since

S i@ B+ BB - 8+ J18*3  and

igN; igN;

L
S B+ Y (- B+ F 3= D (-2l B+ Y (-2l B+ 11187
iEN; 1EN; igN; 1EN;

we conclude that 37, (yi — x; 3*)* < Dien;, (Wi — x; (37)2. The result immediately follows. [
Next, we develop a stronger bound on the k-fold error, by observing that our original proof

technique relies on interpreting the optimal solution when training on the entire dataset as a

feasible solution when leaving out the jth fold, and that this feasible solution can be improved to

obtain a tighter lower bound. Therefore, given any z € {0,1}?, let us define the function:

. . Y . . . .
FO() =i LS @ XODB g st =00 5 =0Vje ],

BERP
JEPp]
to be the optimal training loss (including regularization) when we leave out the jth fold and have
the binary support vector z. Then, fixing v,7 and letting «* denote the optimal objective value
of (16), i.e., the optimal training loss on the entire dataset (including regularization) and W5 (z)

denote an optimal choice of 3 for this z, we have the following result:

PROPOSITION 2. For any T-sparse binary vector z, the following inequality holds:
wr < fOD () + Y (g -] BY ()] (18)
iENj
Proof of Proposition 2 The right-hand side of this inequality corresponds to the objective value
of a feasible solution to (16), while u* is the optimal objective value of (16). [
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COROLLARY 3. Let z denote a T-sparse binary vector. Then, we have the following bound on

the jth partial cross-validation error:
hi(y,7) > u = fN9(2), (19)

Proof of Corollary 8 The right-hand side of this bound is maximized by setting z to be a binary
vector which minimizes f“s)(z), and therefore this bound is valid for any z. O

We close this section with two remarks:

REMARK 5 (BOUND QUALITY). Observe that bound (19) is at least as strong as F';(~y,7) with
z encoding an optimal choice of support in (16). Indeed, if 3V3)(z) solves (16), then both bounds
agree and equal h;(~y,7) but otherwise (19) is strictly stronger. Moreover, since F';(-y, 7) is typically
nonzero, then the bound (19) is positive as well and can improve upon the lower bound in (15).
Finally, it is easy to construct examples in which the lower bound in (15) is stronger than (19) and
vice versa, so neither lower bound dominates the other; see Section EC.2.

REMARK 6 (COMPUTATIONAL EFFICIENCY). Computing lower bound (19) for each j € [k] re-
quires solving at least one MIO, corresponding to (16), which is a substantial improvement over
the &k MIOs required to compute h but may still be an expensive computation. However, using any
lower bound on u*, for example, corresponding to the optimal solution of a perspective relaxation,
gives valid lower bounds. Therefore, in practice, we suggest using a heuristic instead to bound h;
from below, e.g., rounding a perspective relaxation as suggested by Xie and Deng (2020), Bertsimas

et al. (2021), building upon the work of Pilanci et al. (2015).

3. Optimizing the Cross-Validation Loss
In this section, we present an efficient alternating minimization scheme that identifies (approxi-
mately) optimal hyperparameters (v,7) with respect to the k-fold cross-validation error as previ-
ously defined in (2), (4):
h 7)== 3 () (20)
ek

J
by iteratively minimizing 7 and ~. Specifically, with initialization 79,7y, we repeatedly solve the

following two optimization problems:

T, €argmin  h(y,T), (21)
T€(p]
Ye+1 €argmin - h(y,7), (22)
>0

until we either detect a cycle, converge to a locally optimal solution to (20), or exceed a user-
imposed limit on the number of iterations for this alternating minimization procedure. To develop
this scheme, in Section 3.1 we propose an efficient technique for solving Problem (21) (Algorithm

1), and in Section 3.2 we propose an efficient technique for (approximately) solving Problem (22).
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Our overall scheme alternates between solving the two minimization problems. Accordingly, our
scheme could also be used to identify an optimal choice of « if 7 is already known, e.g., in a context
where regulatory constraints specify the number of features that may be included in a model.
Our overall approach is motivated by three key observations. First, we design a method that
obtains local, rather than global, minima, because h is a highly non-convex function and even eval-
uating h requires solving £ MIOs, which suggests that global minima of A may not be attainable in
a practical amount of time at scale. Second, we use alternating minimization to seek local minima
because if either 7 or « is fixed, it is possible to efficiently optimize the remaining hyperparameter
with respect to h by leveraging the convex relaxations developed in the previous section. Third,
we should expect our alternating minimization scheme to perform well in practice, because sim-
ilar schemes are highly effective in other machine learning contexts, e.g., solving certain matrix

completion problems in polynomial time (Mazumder et al. 2011, Cifuentes and Moitra 2022).

3.1. Parametric Optimization of k-fold Error With Respect to Sparsity

Consider the following optimization problem, where « is fixed here and throughout this subsection:

min  h(vy,7) ::% Z Z (y; — x;g(/\fj))2’ (23)

melel JE[k] iEN;

. ) ¥ ) . .
st. BYe argmin  J|BJ3+ XN B -y 8 Vielk]
BERP: ||Bllo<T

Note that solving Problem (23) corresponds to performing one iteration of the alternating mini-
mization scheme described at the start of the section, namely minimizing h with respect to 7 with
~ fixed.

Problem (23) can be solved by complete enumeration, i.e., for each 7 € [p], we compute an optimal
BNi) for each j € [k] by solving an MIO. This involves solving (k + 1)p MIOs, which is extremely
expensive at scale. We now propose a technique for minimizing h without solving all these MIOs:

Algorithm 1 has two main phases, each implemented as a loop over sparsity budgets 7 and then
over folds j. In the first phase, we construct valid lower and upper bounds on h;(v,7) for each
j €[k] and each 7 without solving any MIOs. We begin by solving, for each potential sparsity
budget 7 € [p]|, the perspective relaxation with all data points included. Call this relaxation’s
objective value v,. We then solve each perspective relaxation that arises after omitting one data
fold N : j € [k], with objective values v, ; and solutions 3, ;. Next, we compute lower and upper
bounds on the k-fold error h;(v,7) using the methods derived in Section 2, which are summarized
in the routine compute_bounds described in Algorithm 2. By solving O(pk) relaxations (and no
MIOs), we have upper and lower estimates on the k-fold error that are often accurate in practice,

as described by Theorem 2.
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After completing the first loop in Algorithm 1, one may already terminate the algorithm. Indeed,
according to our numerical experiments in Section 4, this already provides high-quality solutions.
Alternatively, one may proceed with the second phase of Algorithm 1 and solve (21) to optimality,
at the expense of solving (a potentially large number of) MIOs.

In the second phase, Algorithm 1 identifies the cardinality 7* with the best lower bound (and
thus, in an optimistic scenario, the best potential value). Then, it identifies the index j* € [k] such
that partition N« has the largest uncertainty around the k-fold estimate hj«(7,7*), and solves an
MIO to compute the exact partial k-fold error. This process is repeated until (23) is solved within
a certain prescribed optimality tolerance €, or a suitable termination condition (e.g., a limit on
computational time) is met. Note that if an MIO were solved for all 7 and all folds of the data,
then we could immediately solve (23), and thus Algorithm 1 terminates in pk iterations of the
second phase in the worst case.

To solve each MIO in Algorithm 1, we invoke a Generalized Benders Decomposition scheme
(Geoffrion 1972), which was specialized to sparse regression problems by Bertsimas and Van Parys
(2020), enhanced with some ideas from the optimization literature summarized in the works Bert-
simas et al. (2020), Hazimeh and Mazumder (2020). For the sake of conciseness, we defer these
implementation details to Appendix EC.1.

Algorithm 1 in Action: Figure 1 depicts visually the lower and upper bounds on A from
Algorithm 2 (left) and after running Algorithm 1 to completion (right) on a synthetic sparse
regression instance generated in the fashion described by Bertsimas et al. (2020) and restated
in Section EC.1.2 for completeness, with k =mn, n =200,p =20, v = 1/\/n, Tirue = 10, p = 0.7,
v =1, where 7 € {2,...,19}, we have the tolerance parameters r = kp and € = 1072, and us-
ing the outer-approximation method of Bertsimas and Van Parys (2020) as our solver for each
MIO with a time limit of 60s. We observe that Algorithm 1 solved 1694 MIOs to identify the
optimal 7, which is a 53% improvement over complete enumeration. Interestingly, when 7 =
19, the perspective relaxation is tight after omitting any fold of the data and we have tight
bounds on the LOOCYV error without solving any MIOs. In Section 4.1, we test Algorithm 1
on real datasets and find that it reduces the number of MIOs that need to be solved by 50-
80% with respect to complete enumeration. For more information on how the bounds evolve
over time, we provide a GIF with one frame each time a MIO is solved at the link https:

//drive.google.com/file/d/1EZdNw1VIsEEn1udGGM7v2nGpB7tzZvz4/view?usp=sharing.

3.2. Parametric Optimization of k-fold Error With Respect to ~
In this section, we propose a technique for approximately minimizing the k-fold error with respect

to the regularization hyperparameter . Note that this corresponds to performing half an iteration


https://drive.google.com/file/d/1EZdNwlV9sEEnludGGM7v2nGpB7tzZvz4/view?usp=sharing
https://drive.google.com/file/d/1EZdNwlV9sEEnludGGM7v2nGpB7tzZvz4/view?usp=sharing
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Algorithm 1: Computing optimal sparsity parameter for k-fold error

Data: v: /3 regularization parameter; € > 0: desired optimality tolerance; r: budget on
number of MIOs
Result: Cardinality with best estimated k-fold error

for 7 € [p] do
Uy minge]}gpyze[o,up HX,B — y||§ + % Z?:l 512/21 s.t. e’z <T

for j € [k] do
Uy,; ¢ MiNgerp 20,1 [ X W) 3 —yWi |2 + 1 S B zist e z<T

Br.js Zrj € ATEMiNgepp Le(01)r [ XWNDB—yWND|5+ 2570 B /zist. e z<T
Z, ;< round(z, )

Uy j < mingege || XNDB—yWN |24+ 237 BZst. B;=0if 2, =0 Vi€ [p]

¢ (1),¢Y () < compute_bounds(Nj, B ;, 7, Uy j, Ur. ;)

LB« min e > e ¢7(7); UB < min,¢p, > iem S U(r); // Bounds on k-fold

num_mip <0

repeat
T—argming e, i 67 (T) 5 // Cardinality with best bound
J* «argmax;ep {7 (7) = CF(7)} 5 // Fold with largest k-fold uncertainty
B* < argmingcgp .c(0.1yp | XN B —yW, H2+ S B2 zist el z<T; // Solve

the training problem with fold j\/j* left out.
hjs (7, T )(—ZleN (y; TB*) ; // Evaluate valid loss on held-out fold Nj.
Gr(T) 4= by (7, 7), GH(T) 4= Dy (7,7)
LB« min e 32 ;5ep 6 (T)
UB < mincep 350 6 (7)
num_map <— num_maip + 1
until (UB — LB)/UB<e or num_mip > r;

return argmin, ¢i, > icu i (7, 7); // Cardinality with best error

of the alternating minimization scheme described at the start of the section, namely approximately
minimizing h with respect to v with 7 fixed.

We begin with two observations from the literature. First, as observed by Stephenson et al.
(2021), the LOOCV error h(y,7) is often quasi-convex with respect to v when 7 = p. Second,
Bertsimas et al. (2021) and Bertsimas and Cory-Wright (2022) report that, for sparsity-constrained
problems, the optimal support does not often change as we vary . Combining these observations
suggests that, after optimizing 7 with v fixed, a good strategy for minimizing h with respect to ~
is to fix the optimal support zi) with respect to each fold j and invoke a root-finding method to

find a v which locally minimizes h.
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Algorithm 2: compute_bounds(N;, 3,7, v,u)
Data: N;: fold left out; 3: optimal solution of perspective relaxation with N left out; v:

lower bound of the objective value of MIO with all data; v: optimal objective value
of perspective relaxation with N left out; u: upper bound of the objective value of
MIO with N left out

Result: Lower and upper bounds on the k-fold error attributable to fold j

for i e NV, do

G x] B \/mj (X(NJ' X)) 4 € ]1)

& al B+ \/w: (X(N T XN ]1)

GiF 0, ¢ < max{(y; — )% (€ —v:)*}

if §; >y; then

‘ G = max{(;", (€—)%}
if £ <y; then

| GE e max{Gh, (i — €)?}
return (max(z? —u, ZieNj ¢h), Zie,\/j CzU)

1 1694

Lower Bound

Lower Bound
——— Upper Bound ~——— Upper Bound
15000 15000

10000 10000

5000 | h 5000 |

Figure 1  Comparison of initial bounds on LOOCV (k-fold with k =n) from Algorithm 2 (left) and bounds after
running Algorithm 1 (right) for a synthetic sparse regression instance where p = 20, n = 200, Terue = 10,
for varying 7; see Section EC.1.2 for a full description of our synthetic data generation process. The

black number in the top middle depicts the iteration number of the method.

Accordingly, we now use the fact that v and 23 fully determine B%W5) to rewrite

. Yy oA
min §HIBH§+HX’6—ZIH§ st. B;,=0if 2, =0,

BERP
x_ (7 T -t T
as B = §]I+X2 X: X:'y,
where X; denotes a matrix with the columns of x such that z; = 1.

Therefore, we fix each zi) and substitute the resulting expressions for each 3%3) into the k-

fold error. This substitution yields the following univariate optimization problem, which can be
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solved via standard root-finding methods to approximately minimize the k-fold loss via a local
approximation:

migl Z <yi —a/ Diag(z"7)) <%H+ X(Nj)TDiag(z(Nj))X(Nj)T) Diag(z(Nj))X(Nj)Ty(Nj)> :
v>

JE[K] iEN;

(24)

Details on minimizing v using Julia are provided in EC.1.1.

4. Numerical Experiments

We now present numerical experiments testing our proposed methods. First, in Section 4.1, we
isolate the algorithmic impact of Algorithm 1 when optimizing the k-fold cross-validation error with
respect to the sparsity parameter 7. Then, in Section 4.2, we evaluate the statistical performance
of the entire alternating minimization pipeline proposed in Section 3 (jointly minimizing v and 7)

against widely used sparse regression software packages.

4.1. Exact k-fold Optimization
We first assess whether Algorithm 1 significantly reduces the number of MIOs that need to be solved
to minimize the k-fold CV error with respect to 7, compared to grid search. We set either k=n
or k=10, corresponding to leave-one-out and 10-fold cross-validation problems (23) respectively.

We compare the performance of two approaches. First, a standard grid search approach (Grid),
where we solve the inner MIO in (23) for all combinations of cardinality 7 € [p] and all folds of the
data j € [k], and select the hyperparameter combination which minimizes the objective. To ensure
the quality of the resulting solution, we solve all MIOs to optimality (without any time limit).
Second, we consider using Algorithm 1 with parameter r = oo (thus solving MIOs to optimality
until the desired optimality gap e for problem (23) is proven). We test regularization parameter
~ €{0.01,0.02,0.05,0.10,0.20,0.50,1.00} in Algorithm 1, and solve all MIOs via their perspective
reformulations, namely

) '}/ p /82 p
e IXB—yls+ 2;% 5.t ;zj <,

using Mosek 10.0. Since the approach Grid involves solving O(kp) MIOs (without a time limit),
we are limited to testing these approaches on small datasets, and accordingly use the Diabetes,
Housing, Servo, and AutoMPG datasets for this experiment, as described by Gémez and Prokopyev
(2021). Moreover, we remark that the specific solution times and the number of nodes expanded
by each method are not crucial, as those could vary substantially if relaxations other than the
perspective are used, different solvers or solution approaches are used, or if advanced techniques are
implemented (but both methods would be affected in the same way). Thus, we focus our analysis

on relative performance.
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Figures 2 and 3 summarize the percentage reduction of the number of MIOs and the number of
branch-and-bound nodes achieved by Algorithm 1 over Grid, computed as

# MIOg,;q — # MIO 5, 4 L # nodesg,;q — # nodes,y, 4
£~ Reduction in nodes = £
# MIOg,,, # nodesg,;,

where # MIO,,, ; and # nodes,,, , indicate the number of MIOs or branch-and-bound nodes used

Reduction in MIOs =

)

by Algorithm 1. Tables 1 and 2 present the detailed computational results.
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Figure 2  Reduction in the number of MIOs solved (left) and the total number of branch-and-bound nodes (right)
when using Algorithm 1 for leave-one-out cross-validation, when compared with Grid (i.e., indepen-
dently solving O(pn) MIOs) in four real datasets. The distributions shown in the figure correspond to
solving the same instance with different values of . All MIOs are solved to optimality, without imposing

any time limits.
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Figure 3  Distribution of the reduction in the number of MIOs solved (left) and the total number of branch-and-
bound nodes (right) when using Algorithm 1 for 10-fold cross-validation, when compared with Grid (i.e.,
independently solving O(pk) MIOs) in four real datasets (across different regularization parameters).
The distributions shown in the figure correspond to solving the same instance with different values of

~. All MIOs are solved to optimality, without imposing any time limits.
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Table 1 Comparison between using Algorithm 1 and solving O(pn) MIOs independently (Grid) for

leave-one-out cross-validation in four real datasets, for different values of regularization 7. Times reported are in

minutes and correspond to the time to solve all required mixed-integer optimization problems to optimality. No

time limits are imposed on the MIQOs. Algorithm 1 consistently reduces the number of calls to the MIO solver by

50-80%.

Dataset p o0~ Grid Algorithm 1 Improvement
Time # MIO Nodes|Time # MIO Nodes| Time # MIO Nodes
0.01 68 3,978 126,085 37 1,714 59,406| 45% 56% 53%
0.02 52 3,978  82,523| 37 1,768 52,264 30% 56% 37%
0.06] 42 3,978 42411 29 1,898  27,652| 29% 52% 35%
Diabetes 11 442 0.10 39 3,978 31,116 26 1,852 16,202 34% 53% 48%
0.20 35 3,978 22,165 20 1,332 9,278| 42% 67% 58%
0.50 32 3,978 11,889 16 1,152 4,852 50% 1% 59%
1.00 34 3,978 9,278 14 833 2,501| 58% 79% 73%
0.01| 247 6,072 512,723| 102 1,906 217,918| 59% 69% 57%
0.02| 187 6,072 324,238| 65 1,843 141,493| 65% 70% 56%
0.05| 166 6,072 216,116] 92 1,879  93,543| 45% 69% 57%
Housing 13 506 0.10| 40 6,072 96,387 19 1,880  40,664| 51% 69% 58%
0.20 82 6,072 68,581 36 1,661 25,171| 55% 73% 63%
0.50 90 6,072 60,067 34 1,281 20,761| 62% 79% 65%
1.00| 107 6,072 49,770 24 976 13,460| 77% 84% 73%
0.01| 466 3,006 1,669,537| 276 1,194 940,831| 41% 60% 44%
0.02| 110 3,006 811,432 53 1,016 400,817| 52% 66% 51%
0.05| 44 3,006 324,877 25 986 160,369| 77% 84% 73%
Servo 19 167 0.10 23 3,006 162,223 9 686 58,326 59% 7% 64%
0.20 15 3,006 76,739 8 900  33,098| 48% 70% 57%
0.50 10 3,006 40,197 4 566  10,496| 56% 81% 74%
1.00 8 3,006 25,683 4 488 6,738 52% 84% 74%
0.01{1,100 9,408 6,772,986| 590 3,131 3,532,057 46% 67% 48%
0.02]1,356 9,408 3,900,417 450 2,846 1,888,766| 67% 70% 52%
0.05| 519 9,408 2,286,681 227 2,808 1,133,175 56% 70% 50%
AutoMPG 25 392 0.10| 355 9,408 1,548,369 145 2,751 687,187| 59% 1% 56%
0.20] 143 9,408 629,020| 65 2,686 283,755 54% 71% 55%
0.50 66 9,408 176,950 28 2,272  58,464| 58% 76% 67%
1.00 68 9,408 116,982 38 1,528  30,120| 43% 84% 74%

We observe that across these four datasets, Algorithm 1 reduces the number of MIOs that need
to be solved by an average of 70% for leave-one-out cross-validation and by 52% for 10-fold cross-
validation. The overall number of branch-and-bound nodes is reduced by an average of 57% for
leave-one-out cross-validation and 35% for 10-fold cross-validation (the reduction in computational
times is similar to the reduction of nodes). Note that MIOs with strong continuous relaxations are
less likely to be solved to optimality by Algorithm 1. In general, these MIOs are also easier to solve
to optimality, thus resulting in smaller improvements in the number of nodes and solution times
than those suggested by the number of MIOs solved. Nonetheless, this discrepancy is relatively

small, indicating that the proposed approach is still effective in avoiding solving several non-trivial

MIOs.
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Table 2 Comparison between using Algorithm 1 and solving O(pk) MIOs independently (Grid) for 10-fold cross
validation in four real datasets, for different values of regularization v. Times reported are in minutes, and
correspond to the time to solve all required mixed-integer optimization problems to optimality. No time limits are

imposed on the MIOs.

Grid Algorithm 1 Improvement
Time # MIO Nodes|Time # MIO Nodes|Time # MIO Nodes
0.01 3 396 11,666 2 242 8,224| 14% 39% 30%

Dataset p n v

0.02 2 396 8,371 2 235 6,785| 12% 41% 19%
0.05 2 396 4,436 2 228  3,430| 10% 42% 23%
Diabetes 11 442 0.10 2 396 3,185 2 247 2,277 10% 38% 29%
0.20 1 396 2,268 1 206 1,536| 8% 48% 32%
0.50 1 396 1,233 1 149 643 26% 62% 48%
1.00 1 396 872 1 93 287 42% % 67%

0.01 25 600 48,069 19 321 35,227| 25% 4% 2%
0.02 19 600 34,915 14 310 25,090 28% 48% 28%
0.05 14 600 21,350 10 303 14,933| 29% 50% 30%
Housing 13 506 0.10 10 600 11,012 7 300 7,308| 31% 50% 34%
0.20 9 600 7,406 5 230 3,524| 46% 62% 52%
0.50 9 600 6,168 3 141 1,977 62% 7% 68%
1.00 8 600 4,993 2 66 930| 77% 89% 81%

0.01 15 288 148,168 12 191 128,592| 16% 34% 13%
0.02 8 288 77,457 7 190 67,416| 10% 34% 13%
0.05 3 288 29,056 3 157 23,653 16% 45% 19%
Servo 19 167 0.10 2 288 15,951 2 146 12,562 16% 49% 21%
0.20 1 288 8,117 1 155 6,275| 12% 46% 23%
0.50 1 288 4,028 1 201 2,922 3% 30% 2%
1.00 1 288 2,541 1 206 1,768 1% 28% 30%

0.01| 111 936 691,816 76 389 460,187| 31% 58% 33%
0.02 68 936 401,905 44 374 264,179| 35% 60% 34%
0.05| 42 936 225,318| 30 396 161,639 28% 58% 28%
AutoMPG 25 392 0.10 30 936 149,243 20 389 98,261| 35% 58% 34%
0.20 14 936 61,534 10 389 41,323| 32% 58% 33%
0.50 7 936 17,865 4 318 8,550 43% 66% 52%
1.00 6 936 10,848 3 251 4,480 48% 73% 59%

We observe that solution times for both methods decrease on a given dataset as 7 increases (as
expected, since the perspective reformulation is stronger). Interestingly, while the improvements
of Algorithm 1 over Grid (in terms of time, MIOs solved, and nodes) are more pronounced in
regimes with large regularization +, this effect on -y is slight: Algorithm 1 consistently results in
improvements over 40% (and often more) even for the smallest values of v tested. These results
indicate that the relaxations of the bilevel optimization (23) derived in §2 are sufficiently strong
to avoid solving most of the MIOs that traditional methods such as Grid would solve, without
sacrificing solution quality. The proposed methods are especially beneficial for settings where k
is large, that is, in the settings that would require more MIOs and are more computationally

expensive using standard approaches.
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The resulting approach still requires solving several MIOs, but, as we show throughout the rest of
this section, approximating each MIO with its perspective relaxation yields similarly high-quality

statistical estimators at a fraction of the computational cost.

4.2. Statistical Results With Real Data

In this section, we investigate the performance of our alternating minimization procedure as de-

scribed in Section 3 (called MIO throughout the section) on a suite of eleven real datasets from

the UCI repository. Specifically, we use the following experimental setup for the MIO method:

e We use a grid of ten different values of v log-uniformly distributed on [107%,10%], with o = ﬁ

e We set T, =2 and Ty.. to be the largest integer such that 7Ty, logTimax < min(n,p) when
optimizing 7 in this experiment? as in Gamarnik and Zadik (2022).

e We impose a limit of at most 10 iterations of alternating minimization on minimizing the k-fold
cross-validation error with respect to v and with respect to 7 (terminating early if (v, 7;) =
(Ve—1,Te-1))-

e For tractability, for the overdetermined (underdetermined) instances, we impose a time limit of
120s (600s) for each MIO solved when cross-validating 7, and a time limit of 3600s (7200s) for
fitting the final MIO once all hyperparameters are fixed. When we exceed a time limit, we use
the best regression model found by the MIO solver at that time.

We refer to this implementation of our alternating minimization approach as “MIO” (short for

mixed-integer optimization).

We compare against the following state-of-the-art methods, using built-in functions to approx-
imately minimize the cross-validation loss with respect to the method’s hyperparameters via grid
search, and subsequently fit a regression model on the entire dataset with these cross-validated
parameters (see also Bertsimas et al. (2020) for a detailed discussion of these approaches):

e The ElasticNet method in the ubiquitous glmnet package, with grid search on their parameter
a€{0,0.1,0.2,...,1}

e The Minimax Concave Penalty (MCP) as implemented in the R package ncvreg, using the
cv.ncvreg function with default parameters to minimize the five-fold cross-validation error.

e The LOLearn.cvfit method implemented in the LOLearn R package (cf. Hazimeh and Mazumder
2020), with five folds, a grid of 10 different values of v and default parameters otherwise.

Note that we use default parameters for glmnet, MCP, and LOLearn to reflect typical practitioner

usage. In particular, we do not impose an explicit cardinality budget for ElasticNet or MCP because

neither method provides a parameter option to do so. Similarly, we do not explicitly impose a

cardinality constraint in LOLearn, because LOLearn penalizes rather than constrains cardinality.
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We compare performance in terms of the Mean Squared Error, namely
1 n
MSE(B) =~ s —x, 3)2,
(B):==2 (vi—x/B)

=1

which can either be taken over the validation set (CV)-that is, the objective (2) we attempt to
minimize—or over an unseen test set (MSE), acting as a proxy for generalization error.

To measure the validation and test set errors, we repeat the following procedure five times and
report the average result: we randomly shuffle the data into 80% training/validation and 20% test
data, perform five-fold cross-validation on the 80% training/validation data, fit a model with the
cross-validated (7,7) on the combined 80% train/validation data, and evaluate the model’s test-set
performance on the remaining 20% test data. We also report the average value of 7, the cross-
validated sparsity, for each method. Note that the use of a “2” after the dataset name indicates
that a dataset includes second-order interactions, in order to increase the computational difficulty
of processing the dataset.

We observe in Tables 3-4 that MIO performs comparably to widely used methods for most
datasets, especially when they are relatively underdetermined. In particular, across the five most
underdetermined datasets considered, it yields a five-fold cross-validation error 21.2% lower than
MCP, 7.3% lower than glmnet, and 1.5% lower than LOLearn. However, it admittedly yields a higher
average cross-validation error on the more overdetermined datasets (by 14.6%, 37.6% and 27.4%
respectively). In terms of test-set errors, for the five most underdetermined datasets, MIO performs
6.9% better than MCP, 2.1% better than glmnet, and 4.2% better than LOLearn on average.
However, it performs 1.9%, 18.2%, and 19.1% worse on the more overdetermined datasets in terms
of test-set error, respectively. The worst performance of MIO on the most overdetermined datasets
could be partly due to deriving regressors that are 37% sparser than MCP, 62% sparser than
glmnet, and 47% sparser than LOLearn on the most overdetermined datasets. All in all, our results
show that exact MIO-based cross-validation performs best on relatively underdetermined problems,
whereas for highly overdetermined datasets, standard packages such as glmnet or LOLearn remain
preferable from both statistical and computational perspectives.

Finally, we note that the average runtime across all datasets was 47510s for MIO (median: 69.90s,
range: 0.42s-541511s), 0.180s for MCP, 1.154s for glmnet, and 0.841s for LOLearn, respectively.
This shows that while our scheme is significantly slower than state-of-the-art regression packages
with sophisticated codebases, our cross-validation scheme does return reasonable results on real-
world datasets. Thus, the ideas in this paper could potentially be integrated within these software
packages. For instance, one could apply the ideas in this paper to enhance the LOBnB software

package Hazimeh et al. (2022) by incorporating a cross-validation scheme.
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Table 3

Average (£ one standard deviation) performance of five-fold versions of the methods across a suite of

real-world datasets where the ground truth is unknown (and may not be sparse), sorted by how overdetermined

the dataset is (n/p), and separated into the underdetermined and overdetermined cases, where 7:=||3|o denotes

the sparsity of the regression model 3. In underdetermined settings, MIO often yields competitive or lower

out-of-sample MSEs than MCP, glmnet, and LOLearn, whereas in more overdetermined settings, glmnet or

LOLearn tend to yield lower out-of-sample MSEs.

Dataset n p MIO MCP

T (A% MSE T CcvV MSE
Wine 6497 11 60 0.567 £ 0.003 0.545 £ 0.021 10.8 £ 0.447  0.543 £+ 0.005 0.543 £ 0.020
AutoMPG 392 25 11 £ 0 10.192 £ 0.722  9.595 + 2.901 16.6 £ 1.817 9.079 £ 0.486 9.043 £ 1.970
Hitters 263 19 8.6 £ 0.894 0.077 £ 0.006 0.079 £ 0.02 12.8 + 4.604 0.08 £ 0.008 0.081 £ 0.024
Prostate 97 8 3.8+ 1304 0.53 £0.035 0.609 %+ 0.159 5.8 £2.168 0.572 £ 0.051 0.574 £ 0.153
Servo 167 19 7.6 £ 2.608 0.785 £ 0.106 0.769 £ 0.173 14.000 £ 1.000 0.752 £ 0.062  0.723 £ 0.212
Housing?2 506 91 226 £ 3.05 19.182 £ 1.57 16.776 £ 7.548 34.2 £ 5.718 16.311 £+ 2.325 16.879 £ 3.449
Toxicity 38 9 3.6 £ 1.342  0.036 + 0.009 0.05 £ 0.037 2.6 £ 0.894 0.049 £ 0.01  0.057 £ 0.049
Steam 25 8 34+114 0463 £ 0.084 0.490 £+ 0.300 2.6 £0.894 0.629 £ 0.103 0.532 £ 0.200
Alcohol2 44 21 3.6 £ 1.517 0.225 £ 0.032  0.256 £+ 0.094 1.8 £0.447 0.238 £ 0.035 0.258 & 0.047
TopGear 242 373 18.2 +£10.134 0.046 £ 0.006  0.049 £ 0.005 7.4 £ 1.517 0.061 £ 0.006 0.061 £+ 0.018
Bardet 120 200 18.8 £ 5.891 0.007 =0 0.009 £ 0.003 5.6 £1.14 0.009 £ 0.002 0.009 + 0.002
Table 4  Average (* one standard deviation) performance of five-fold versions of the methods across a suite of

real-world datasets where the ground truth is unknown (and may not be sparse), sorted by how overdetermined

the dataset is (n/p), and separated into the underdetermined and overdetermined cases (cont).

Dataset n p glmnet LOLearn

T (6)% MSE T cv MSE
Wine 6497 11 11+ 0 0.542 4+ 0.005 0.543 £ 0.02 10.6 & 0.548  0.542 + 0.005 0.543 + 0.02
AutoMPG 392 25 22.6 +£1.949 8.627 £ 0.493 9.201 + 2.436 15.8 +£4.266 9.099 + 0.616 9.061 £ 2.351
Hitters 263 19 14.4 +4.561 0.077 £ 0.006 0.082 £ 0.023 10.6 + 5.55  0.075 + 0.006 0.08 + 0.021
Prostate 97 8 6.8 £ 1.095 0.507 £ 0.051  0.581 &+ 0.154 5.6 = 2.408 0.508 £ 0.048 0.569 £ 0.183
Servo 167 19 16 & 1.414 0.693 £ 0.051  0.726 £ 0.211 10.2 £ 3.493 0.696 £ 0.079  0.746 + 0.221
Housing2 506 91 86 + 2.915 12.317 4+ 0.282 12.867 4+ 2.133  58.6 4+ 9.099 13.669 £ 0.997 12.818 £ 2.009
Toxicity 38 9 6 + 0.707  0.041 £ 0.009  0.047 + 0.029 3+1.871 0.037 £ 0.012 0.062 + 0.049
Steam 25 8 4.4 + 0.894 0.492 + 0.14  0.507 £ 0.200 2.2 +0.447 0.475 +£ 0.179  0.499 + 0.103
Alcohol2 44 21 8.8 £+ 4.087 0.253 + 0.05 0.263 £ 0.058 7.6 £6.269 0.220 + 0.021  0.272 4+ 0.072
TopGear 242 373 39.4 + 21.686 0.045 + 0.004 0.047 + 0.014 28.8 + 37.626  0.050 + 0.010  0.049 + 0.015
Bardet 120 200 29.8 &£ 6.907 0.007 £ 0.001  0.008 £ 0.003 30.4 £ 13.446 0.007 £ 0.000 0.009 £ 0.004
5. Conclusion

In this paper, we propose a new optimization-based approach for selecting hyperparameters via
cross-validation in ridge-regularized sparse regression problems, by leveraging perspective relax-
ations and bounds on the cross-validation error. The proposed approach substantially decreases
the number of MIOs and branch-and-bound nodes explored to optimize the cross-validation loss.
Overall, these results suggest that perspective relaxations can help to make exact MIO-driven
cross-validation practically viable, and could be incorporated into existing sparse regression soft-

ware when training models already require solving MIOs. As future work, it could be interesting
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to explore how strong convex relaxations can help accelerate MIO-driven cross-validation in other

contexts, e.g., when designing optimal decision trees or neural networks.
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Endnotes

1. This assumption seems plausible, as the training objective is strongly convex for a fixed binary support vector,
and therefore for each binary support vector there is indeed a unique solution. One could relax this assumption by
defining h(7y,7) to be the minimum cross-validation error over all training-optimal solutions ,B(i>, as is commonly
done in the bilevel optimization literature, giving what is called an optimistic formulation of a bilevel problem (see
Beck and Schmidt 2021, for a review). However, this would make the cross-validation error less tractable.

2. We previously tried setting Tmax = p. We found that this yielded the same optimal hyperparameters, but increased
the total runtime of the method substantially.
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Supplementary Material

EC.1. Implementation Details
To solve each MIO in Algorithm 1, we invoke a Generalized Benders Decomposition scheme (Ge-
offrion 1972), which was specialized to sparse regression problems by Bertsimas and Van Parys

(2020). For any fixed ~, 7, the method proceeds by minimizing a piecewise linear approximation of
Y57 )
fy)=min 5> X8yl (EC.1)
JEP]
with respect to the support z, until it converges to an optimal solution or encounters a time limit.
We now discuss two enhancements that improve this method’s performance in practice.
Warm-Starts: as noted by Bertsimas et al. (2021), a greedily rounded solution to the Boolean
relaxation constitutes an excellent warm-start for a Generalized Benders Decomposition scheme.
Therefore, when computing the lower and upper bounds on h;(v,7) for each 7 by solving a per-
spective relaxation, we save the greedily rounded solution to the relaxation in memory, and provide
the relevant rounding as a high-quality warm-start before solving the corresponding MIO.
Screening Rules: as observed by Atamtiirk and Gémez (2020), if we have an upper bound on the
optimal value of f(z,7v), say f, an optimal solution to the Boolean relaxation of minimizing (EC.1)
over z € [0,1]7, say (B,z), and a lower bound on the optimal value of h(z,7) from the Boolean
relaxation, say f, then, letting §j;) be the 7th largest value of 38 in absolute magnitude, we have
the following screening rules:
o It 37 <Bf yyand f— - (87— BE)) > f then z; =0.
o If 37> 57, and f+5-(67 — B 1) > f then 2, =1.
Accordingly, to reduce the dimensionality of our problems, we solve a perspective relaxation for
each fold of the data with 7 = 7, as a preprocessing step, and screen out the features where z; =0
at T = Tmax (for this fold of the data) before running Generalized Benders Decomposition.
As reported by Atamtiirk and Gémez (2020), screening rules often reduce the number of decision

variables in an MIO by 20%-97%, with the most significant benefits when - is relatively large, and

the duality gap between an MIO and its perspective relaxation is relatively small.

EC.1.1. Implementation Details for Section 3.2

In our numerical experiments, we find local minimizers of our approximation of h by invoking
the ForwardDiff function in Julia to automatically differentiate our approximation of h, and
subsequently identify local minima via the Order0 method in the Roots.jl package, which is
designed to be a robust root-finding method. To avoid convergence to a low-quality local minimum,

we run the search algorithm initialized at the previous iterate +;_; and ten points log-uniformly
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distributed in [107%,10%], and set 7; to be a local minimum with the smallest estimated error.
Moreover, to ensure numerical robustness, we require that 4; remains within the bounds [107%,10%]
and project «y; onto this interval if it exceeds these bounds (this almost never occurs in practice,
because the data is preprocessed to be standardized). This approach is highly efficient in practice,

particularly when the optimal support does not vary significantly with ~.

EC.1.2. Synthetic Data Generation Process
For our synthetic experiments, we follow the experimental setup in Bertsimas et al. (2020). Given
a fixed number of features p, number of data points n, true sparsity 1 < 7,4 < p, autocorrelation
parameter 0 < p <1 and signal to noise parameter v:

1. The rows of the model matrix are generated iid from a p-dimensional multivariate Gaussian
distribution (0, X), where %;; = pl*=Jl for all 4, j € [p].

2. A “ground-truth” vector B, is sampled with exactly 7i,, non-zero coefficients. The position
of the non-zero entries is randomly chosen from a uniform distribution, and the value of the
non-zero entries is either 1 or —1 with equal probability.

3. The response vector is generated as y = X Bi,wc + €, Where each ¢; is generated iid from a
scaled normal distribution such that /v = || X Buuell2/]€]|2-

4. We standardize X,y to normalize and center them.

EC.2. Non-dominance of Relaxations (15) and (19)
In this section, we construct examples demonstrating that the lower bounds in (15) and (19) are
non-dominated by each other.

Problem (15) can be stronger than Problem (19): Consider a setting with

1 1
n=3 p=1XxX=|2|, y=[2].k=3
3 5

and hyperparameters y=1, 7=1.

Then, since the sparsity constraint is not binding (for either the problem of training over the
entire dataset or with one fold left out), our lower-level problems all reduce to ridge regression in
one dimension, and our perspective relaxations are all tight. In particular, the full-data training
problem admits an optimal solution §* =40/29 with an optimal objective value of 2.414. On the
other hand, on leaving out the third observation and training on the first two folds, we obtain
B* =10/11 with training objective 0.455, with a fold-3 contribution to the LOOCYV error of 5.165.
In particular, the lower bound from (15) is 625/121, which is larger than the lower bound from
(19), namely 625/319.
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Problem (15) can be weaker than Problem (19): Consider a setting with

11 0
n=3 p=2 X=-20|, y=|(3],k=3
21 3

and hyperparameters v =1, 7 =1, where we focus on leaving out the first fold. Then, the optimal
full-data solution is 8* = (0,6/5) with objective value 72/5. On the other hand, if we leave out the
first observation then the optimal solution becomes 8* = (0,2) with objective value 12, and optimal
value of the perspective relaxation of 10.714. Accordingly, the lower bound on the LOOCYV error
of fold 1 from (19) is 2.4, while the lower bound from (15) is 9/7 < 2.4. Thus, (15) can be weaker
than (19) even when using the optimal value of the MIO and perspective relaxation for upper and

lower bounds in (15).
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