
A Robust Approach to Food Aid Supply Chains

Danique de Moor
University of Amsterdam, Amsterdam Business School.

Joris Wagenaar
Tilburg University, Department of Econometrics and Operations Research, Zero Hunger Lab.

Robert Poos
Tilburg University, Department of Econometrics and Operations Research.

Dick den Hertog
University of Amsterdam, Amsterdam Business School.

Hein Fleuren
Tilburg University, Department of Econometrics and Operations Research, Zero Hunger Lab.

One of the great challenges in reaching zero hunger is to secure the availability of sufficient nourishment in the

worst of times such as humanitarian emergencies. Food aid operations during a humanitarian emergency are

typically subject to a high level of uncertainty. In this paper, we develop a novel robust optimization model

for food aid operations during a humanitarian emergency, where we include uncertainty in the procurement

prices, which is one of the primary sources of uncertainty in practice. Due to the multi-period and dynamic

nature of food aid operations, we extend this robust optimization model to an adaptive robust optimization

model, in which part of the decisions is taken after some of the uncertainty has been revealed. Moreover,

we analyse a folding horizon approach for the nominal, robust, and adaptive robust optimization models in

which decisions can be altered in later time periods. We compare the different approaches based on a food

operations case in Syria. We show that the (adaptive) robust optimization approach outperforms the nominal

approach in the non-folding horizon case, while the nominal approach performs best in the folding horizon

case. Consequently, in case decisions have to be made early on, we show that applying robust optimization to

food aid operations can make a difference. However, in case small adaptations can be made to the decisions

taken in later time periods, then food aid operations can use a relatively simple approach in practice and

apply a folding horizon approach each month to optimize decisions.

Key words : OR in developing countries, Supply chain, humanitarian logistics, optimization, adjustable

robust optimization

1. Introduction

According to FAO et al. (2022) between 702 and 828 million people in the world suffered from

hunger in 2021. In addition, they state that about 3.1 billion people in the world experience nutrient

deficiencies. This means that more than one in three people in the world do not have access to

adequate food and healthy diets on a regular basis. Consequently, the United Nations (UN) adopted
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zero hunger as its second Sustainable Development Goal, making an urgent call for action by all

countries in a global partnership to fight hunger.

One of the great challenges in reaching zero hunger is securing the availability of sufficient

nourishment in the worst of times, namely during humanitarian emergencies. It is during these

humanitarian crises, like for instance the civil war in Syria, where food shortages are very common.

Unfortunately, these humanitarian emergencies are often long-lasting, ensuring protracted food aid

is necessary. To guarantee adequate food and healthy diets for beneficiaries caught in humanitarian

emergencies, humanitarian organizations like the United Nations’ World Food Programme (WFP)

are providing food aid and food assistance to those in need. Food aid consists of procuring,

transporting and delivering food to the beneficiaries, whereas food assistance takes food aid a step

further, by helping to (re)build and support communities to become self-sufficient in the future.

Humanitarian organizations providing food aid and assistance, often operate on restricted budgets.

Consequently, these organizations are not always able to secure and distribute adequate food to all

in need. Saving only one dollar a day already provides an adequate daily meal for two more people,

see Peters et al. (2021), emphasizing efficiency in food operations is key.

Literature survey

The focus of this paper is on food aid operations within the Humanitarian Supply Chain (HSC).

Generally, within HSCs the decisions to be made include the transfer modality selection, the food

basket design, the sourcing and procurement plan, and the routing and delivery plan. The transfer

modality selection details what type of modality to use; food in kind or direct food assistance.

With food in kind assistance, the organization procures, transports and distributes all commodities,

while direct food assistance is done through cash-based or voucher-based assistance, i.e., through

cash or vouchers, which can be redeemed at retailers, for fixed quantities of specific commodities.

The search for food basket designs started during World War 2, in which Cornfield formulated

the “Diet Problem” in order to find a diet or food basket satisfying the nutritional needs of a

soldier at minimum cost. It was only from 2000 onward, with the rise of calculating capacities

of computers and consequently the development of linear programming tools, solutions for both

linear as nonlinear large-scale diet problems where extensively published (see e.g., Briend et al.

(2003), Chastre et al. (2007), Ryan et al. (2014), Seljak (2006)). The sourcing and procurement plan

details what and how much of a commodity is procured at which supplier. According to Falasca and

Zobel (2011), the sourcing and procurement plan constitutes approximately 65% of the expenses

of humanitarian operations. Despite an increase in studies on this topic in recent years (see e.g.,

Ozpolat et al. (2015), Schiffling and Hughes (2017)), this rise is limited considering the eminent

role of the sourcing and procurement plan in HSC (Moshtari et al., 2021). The routing and delivery
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plan specifies by what means (e.g., trucks, boats, planes) and via which route the food is delivered

to the beneficiaries. Routing and delivery plans have been studied extensively in humanitarian

operations (see e.g., Balcik et al. (2008), Ozdamar and Demir (2012), Rancourt et al. (2015), Anuar

et al. (2021), Hu and Dong (2019)).

Peters et al. (2021) and Peters et al. (2022) are the first to integrate all these decisions in food

aid operations into one mathematical model. They construct a model that simultaneously optimizes

a capacitated, multi-commodity, multi-period network flow problem, accounting for the sourcing,

procurement, routing and delivery plan, and a diet problem, in which the transfer modality selection

is integrated. The inclusion of food basket selection adds a substantial amount of flexibility to the

model in comparison to previous models within this subject. By not specifying a subset of the

available commodities that make up a food basket, but only the nutrients required for a sufficient

daily ration, more beneficiaries receive food aid than with traditional supply chain models. This

innovative approach saw great results when implemented in real-life humanitarian supply chains of

the WFP, saving millions in operating costs.

Humanitarian organizations often operate in chaotic environments, which are subject to unpre-

dictability and uncertainty (see Sigala et al. (2020)). The lack of knowledge of demand for food

aid, procurement prices (especially regionally), and delays in harbors, lead to high uncertainties

during humanitarian emergencies and thus make the HSC a complex problem. There are various

approaches dealing with optimization under uncertainty, including stochastic programming and

robust optimization. In stochastic programming (see for example Ruszczyński and Shapiro (2003))

it is assumed that the underlying probability distribution is known. However, due to the lack of

data quality and quantity in humanitarian supply chains, full knowledge about the probability

distribution is hard to obtain. Robust optimization (e.g. Ben-Tal et al. (2009)) does not require any

knowledge of the underlying probability distribution. Instead, it assumes the uncertain parameters

reside within a so-called uncertainty set and requires the constraints to be hard constraints, i.e.,

constraints should hold for all possible realizations of the uncertain parameters lying within this

uncertainty set. Even with incomplete or limited information on the uncertain parameters, these

uncertainty sets are relatively easy to determine. Moreover, robust optimization models often remain

computationally tractable. Robust optimization therefore seems the appropriate approach in HSC

problems and has already been applied to HSC problems before (e.g. Ben-Tal et al. (2011), Balcik

and Yanıkoğlu (2020), Stienen et al. (2021)).

Robust optimization originates from the seventies, by the work of Soyster (1973). However, it

was not until the late nineties (Ben-Tal and Nemirovski, 1998, 1999; El Ghaoui and Lebret, 1997;

El Ghaoui et al., 1998) that the interest in the field of robust optimization was sparked. In robust

optimization, the decision variables have to be determined before any of the uncertainty is realized,
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i.e., the decision variables are “here-and-now”. However, humanitarian supply chains are often

multi-period and dynamic, hence it may be better to consider also “wait-and-see” variables, i.e.,

variables that can be decided on after part of the uncertainty has been realized. An extension to

robust optimization is adaptive robust optimization, first introduced by Ben-Tal et al. (2004), in

which part of the decisions can be made in a later stage, after more information on the uncertain

parameter values is known.

The model of Peters et al. (2021) does not capture the uncertainty present in HSCs. However,

they argue that their current solutions are not robust against uncertainties in the procurement

prices. Hence, in this paper we expand a nominal version of the model of Peters et al. (2021) to two

robust optimization models and two adaptive robust optimization models to capture the uncertainty

in procurement prices. Moreover, when decisions can be updated periodically, we analyse a Folding

Horizon approach for the nominal, robust, and adaptive robust optimization models. This means

that at the beginning of the planning period, HSCs estimate the future amount of commodities

needed to fulfill the demand for a given number of future periods. The supplier of the commodities

then develops an agreement where a reservation is placed for future periods against the costs that

apply in those periods and the HSCs can only deviate a certain percentage from the reservation

in future periods. For example, in the first time-period a reservation is made for 1 metric ton of

beans to be used in the third time-period where we can at most deviate 10% from this reservation.

In the third time-period the costs for beans are much higher than expected, and we thus alter

our reservation to the minimum possible (0.9 metric ton). In this way, the supplier can make

the necessary preparations for supplying the commodities to the HSCs and at the same time it

enables the HSCs to deviate somewhat from the commitments in case of changes in prices. Ben-Tal

et al. (2005) were the first to demonstrate the benefits of implementing robust optimization to

solve flexible commitment contracts. As more knowledge about the uncertain parameters becomes

available over time, decisions can be revised in subsequent time periods based on the agreement

made in the first time period.

The approaches are tested on a simplified real-life food aid operation in Syria, for which we have

historical data available on the procurement prices.

Contributions

The main contributions of this paper are threefold.

First of all, we develop two novel robust optimization models for food aid operations in order to

include uncertainties in procurement prices, which is generally present within humanitarian supply

chains. We extend these robust optimization models to two adaptive robust optimization models. A

part of the decisions within food aid can be taken after some of the uncertainty has been revealed,
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and to this end, an adaptive robust optimization approach closely resembles how real-life operations

work.

Secondly, we compare the nominal, robust and adaptive robust approaches on a simplified real-life

case of a food aid operation in Syria. As WFP is currently using the nominal model of Peters et al.

(2022) in all their operations, it is important for WFP to know if using (adaptive) robust optimization

can be beneficial to their operations. We show that the adaptive robust optimization approach does

not differ much from the nominal approach applied in a folding horizon way. Consequently, in this

paper we show that HSCs could use a relatively simple approach in practice and apply a folding

horizon approach each month to optimize decisions. However, in case reservations of commodities

cannot be altered in subsequent time periods, we show that applying robust optimization to

humanitarian supply chains can make a difference.

Finally, we offer this simplified real-life case of a food aid operation in Syria and the corresponding

data to be used for educational and/or research purposes.

2. Humanitarian supply chain model

We consider a basic version of the humanitarian supply chain model as described in Peters et al.

(2021) as our nominal model without any of the uncertainties included. The objective of the model

is fulfilling the demand of food aid, which can be seen as the nutritional needs of all beneficiaries

together, at minimum cost. This demand is thus based on the number of beneficiaries in the

operation, the number of days the aid is needed, and the daily nutritional requirements an average

beneficiary needs. The model simultaneously optimizes the sourcing and procurement plan, routing

plan, food basket design, and transfer modality selection over a pre-defined period of time.

The food in kind consists of commodities which can be procured at various suppliers. The set

of suppliers are divided into international suppliers and regional suppliers. International suppliers

are suppliers of food commodities from outside the country facing the emergency, whereas regional

suppliers are suppliers within the borders of the country at risk. The flow of commodities is from

suppliers, possibly via different transshipment points, to beneficiaries at the final delivery points.

The food basket design entails the combination of food commodities satisfying the nutritional needs

of an average beneficiary per day. This part of the problem is integrated into the network flow

model by defining a ration variable that governs the commodities flowing into a delivery point. In

contrast to the manufacturing industry, where the fulfilled demand is variable and the end-product

is fixed, in this model all beneficiaries receive a food basket, i.e., the fulfilled demand is fixed,

and the end-product is variable. This means that in case there is a funding shortfall, instead of

supplying the full food basket to fewer beneficiaries, it supplies a less nutritious food basket to all

beneficiaries. The model developed in this paper includes both transfer modalities (food in kind
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and voucher-based assistance) by introducing local markets, which are modeled as suppliers that

are linked directly to delivery points, i.e., there are no transportation costs involved on this link.

Beneficiaries can then receive some or all of their commodities from these local markets through

vouchers.

The sets used in the humanitarian supply chain model are described in Table 1. Here, the time

periods correspond to the different months for which a planning is required in order to aid the

beneficiaries. A detailed description of all parameters and decision variables used is given in Table

2 and Table 3 respectively.

Table 1 Set notation

Set Description Definition Cardinality
N All nodes N
NS Suppliers ⊂N NS

NSI International suppliers ⊂NS NSI

NSR Regional suppliers ⊂NS NSR

NSL Local markets ⊂NS NSL

NT Transshipment points ⊂N NT

ND Delivery points ⊂N ND

NST NS ∪NT ⊂N NST

NT D NT ∪ND ⊂N NTD

K Commodities K
L Nutrients L
T Time periods T

The objective of the optimization model is to minimize the total operational costs. The different

costs considered in this model are procurement costs (PC), transportation costs (TC), handling

costs (HC) and storage costs (SC) described as follows:

PC =
∑
i∈NS

∑
j∈NT D

∑
k∈K

∑
t∈T

pPiktFijkt, (1)

TC =
∑
i∈NST

∑
j∈NT D

∑
k∈K

∑
t∈T

pTijktFijkt, (2)

HC =
∑
i∈NST

∑
j∈NT D

∑
k∈K

∑
t∈T

pHj Fijkt, (3)

SC =
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t∈T

pSi Fijkt. (4)

Using all these definitions, the mathematical model is given by:

min
F ,R,S

PC + TC + HC + SC (5a)

s.t.
∑

j∈NT D

Fijkt =
∑

j∈NST

Fjik,t−τ(j,i) i∈NT , k ∈K, t∈ T (5b)
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Table 2 Parameter notation

Parameter Description
cHit Handling capacity (in mt) at node i∈NT D in time period t∈ T .
cTijt Transportation capacity (in mt) from node i ∈NST to node j ∈NT D in time

period t∈ T .
cPikt Procurement capacity (in mt) for commodity k ∈ K at node i ∈ NS in time

period t∈ T .
pPikt Costs (in $/mt) of procuring 1 mt of commodity k ∈K at supply node i∈NS in

time period t∈ T .
pTijkt Costs (in $/mt) of moving 1 mt commodity k ∈K from node i∈NST to node

j ∈NST in time period t∈ T .
pHi Costs (in $/mt) of handling 1 mt commodity k ∈K at node i∈NT D.
pSit Costs (in $/mt) of storing 1 mt at node i∈NT in time period t∈ T .
dit Number of beneficiaries at delivery point i∈ND in time period t∈ T .
βkl Nutritional value for nutrient l ∈L per 100 gram of commodity k ∈K.
ηl Nutritional requirement for nutrient l ∈L (grams/average beneficiary/day).
γij Duration (days) of shipping from node i∈NST to j ∈NT D.
δt Number of days in time period t∈ T .

τi,j bγij+
δt
2

δt
c. Used to rescale the shipping duration from days to time periods.

α Used to convert from metric tons to 100 grams (= 10,000).
sfl Maximum shortfall in nutrient l ∈L as a fraction of the total nutrition required.

Table 3 Variable notation

Variable Description
Fijkt Amount of commodity k ∈ K transported between node i ∈ NST and node

j ∈NT D in time period t∈ T in metric tons.
Rkt Daily ration of commodity k ∈K provided in time period t∈ T in 100 grams to

a single average beneficiary.
Slt Realized shortfall of nutrient l ∈L in time period t∈ T to all beneficiaries as a

fraction of the total amount of nutrients needed.

∑
i∈NST

αFijkt = djtδtRkt j ∈ND, k ∈K, t∈ T (5c)∑
j∈NT D

Fijkt ≤ cPikt i∈NS , k ∈K, t∈ T (5d)∑
k∈K

Fijkt ≤ cTijt i∈NST , j ∈NT D, t∈ T (5e)∑
i∈NST

∑
k∈K

Fijkt ≤ cHjt j ∈NT D, t∈ T (5f)∑
k∈K

βklRkt ≥ ηl(1−Slt) l ∈L, t∈ T (5g)

Slt ≤ sfl l ∈L, t∈ T (5h)

F ≥ 0 (5i)

R≥ 0. (5j)
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Constraints (5b) make sure all transshipment points are balanced, i.e., the incoming flow of

commodities in a transshipment point must equal the outgoing flow. Constraints (5c) ensure the

incoming flow at delivery points equal the demanded rations per commodity for a given time period.

Constraints (5d)-(5f) are capacity constraints, i.e., they set a capacity restriction on respectively

the amount procured, transported and handled. Constraints (5g) ensure the total nutritional value

of a certain nutrient l within a given time period t going to a single beneficiary is greater or equal

than the required nutritional value for that nutrient, or there is a shortage of Slt. For every nutrient,

this shortage may never be larger than the maximum shortfall for that nutrient, given by sfl as

modeled in constraints (5h). Constraints (5i) and (5j) are the nonnegativity constraints for the flow

variables F and ration variables R respectively.

3. Robust optimization formulation

In reality, the biggest uncertainty occurs in the procurement prices of commodities at regional

suppliers and local markets, since those are located in the country at risk. There is much less

uncertainty in the procurement prices at international suppliers. This is observed by WFP (2022)

and Al-Saidi (2023), both stating that a global food crisis fuelled by climate shocks, the COVID-19

pandemic, and the war in Ukraine pushes local food prices up especially in countries at risk.

Consequently, we assume that uncertainty is present in the procurement prices for regional suppliers

and local markets and that the procurement prices for commodities at international suppliers do

not face uncertainties. However, from a mathematical perspective, our formulation can easily be

adapted to take uncertainties in international markers into account as well. Moreover, we assume

uncertainty in procurement prices for each commodity k and time t to be the same for all suppliers

in the same market. This is because local markets are located within the same region and regional

suppliers are positioned within the same country. Hence, we capture the uncertainty per market

m∈M= {NSR,NSL}. Observe that our formulation can easily be adapted to take different levels

of uncertainties per supplier into account by stating that each supplier is its own market.

In order to formulate the robust optimization model, we make a distinction in procurement prices

between international suppliers and regional and local suppliers:

pPikt =


θik if i∈NSI
µikt if i∈NSR ∪NSL, t= 1

µikt + ζmikt if i∈NSR ∪NSL, t≥ 2.

(6)

Here θ ∈ RNSIK is the nominal value of the procurement prices at international suppliers, µ ∈

R(N−NSI )KT is the nominal value of the procurement prices at regional and local suppliers, mi

denotes the market m∈M to which supplier i belongs, and ζ ∈R|M|KT denotes the uncertainty in



de Moor et al.: Robust optimization in Food Aid Supply Chains
9

procurement prices at regional and local markets. Note that the prices for t= 1 are known, but the

prices for t≥ 2 are uncertain.

We assume that the uncertain parameters lie within an ellipsoidal uncertainty set given by

U = {ζ : ζ>Σ−1ζ ≤Ω2}, (7)

where Σ represents the covariance matrix of the procurement prices per market, which is positive

semi-definite, and Ω represents the safety parameter, limiting the amount of uncertainty to be

covered by the robust approach. By using an ellipsoidal uncertainty set, we reduce the conservative

approach of box-uncertainty, by ensuring that the uncertain parameters do not take on their

worst-case values simultaneously, while still maintaining a large probability of constraint satisfaction

(Ben-Tal et al. (2009)).

3.1. Robust formulation of the HSC model

Since the uncertain procurement prices appear in the objective, we can use a similar method as

Ben-Tal et al. (2009), by defining an epigraph variable q for the procurement costs at all regional

and local suppliers at t≥ 2 to obtain the following robust optimization problem:

min
F ,R,S,q

q+
∑

i∈NSR∪NSL

∑
k∈K

∑
j∈NTD

µik1Fijk1 +
∑
i∈NSI

∑
k∈K

∑
t∈T

∑
j∈NT D

θiktFijkt

+ TC + HC + SC (8a)

s.t. (µ+Aζ)
>
F P ≤ q ∀ζ ∈ U (8b)

(5b)− (5j),

where µ, F P ∈ R(N−NSI )K(T−1), with FP
ikt =

∑
j∈NT D

Fijkt restricted to i ∈ NSR ∪NSL for t ≥ 2,

as defined before, and A ∈ R(N−NSI )K(T−1)×MK(T−1) is a linear transformation matrix such that

(Aζ)ikt = ζmikt for every i∈NSR ∪NSL, k ∈K, and t∈ T . In this way, Aζ has the same dimension

as F P . We can rewrite constraint (8b) to:

µ>F P + Ω

√
(A>F P )

>
ΣA>F P ≤ q. (9)

Hence, we can consider the LHS of (8b) as a random variable with expected value µ>F P and

standard deviation
√

(A>F P )>ΣA>F P . Thus, Constraint (8b) can be equivalently written as:

µ>F P + Ω
∥∥L>A>F P

∥∥
2
≤ q, (10)

where L denotes the Cholesky factor for Σ. In this way, we obtain an equivalent second order

cone optimization problem without uncertainty. Under the assumption that µ>F P is normally
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distributed, using this ellipsoidal uncertainty set with Ω representing the (1− ε)-percentile of a

standard normal distribution, hence leads to the probability guarantee

P
((
µ+ ξ)>F P

)
≤ q
)
≥ 1− ε, (11)

see also Ben-Tal et al. (2009).

3.2. Finding a Pareto robust optimal solution

The robust formulation has in practice usually multiple optimal solutions. This optimality is

measured with respect to the worst-case scenarios of the uncertain parameters. This means that

there might exist alternative RO optimal solutions which yield different objective values based on

the average scenario (see Iancu and Trichakis (2014)). Consequently, in case of multiple optimal

RO solutions, among those solutions we want to find a Pareto robustly optimal solution, that is,

the one which yields the best objective value regarding the average scenario.

As proposed by Iancu and Trichakis (2014), we first solve the RO formulation to obtain the

optimal objective value q∗ with respect to the worst case scenario. Subsequently, we solve RO once

more, in which we change the objective to the nominal objective (5a), since the expected value of

the robust objective (8a) equals the nominal objective. In this way, we minimize the costs for the

expected scenario, instead of the worst case scenario. Furthermore, we add the constraint:

q= q∗,

to make sure that the robust objective value regarding the worst case scenario is the same as after

solving RO the first time. This is called the Pareto Robust Optimization model (PRO).

4. Adaptive robust optimization formulation

In the robust optimization formulation, decisions regarding the flow variables F and the food basket

design variables R are done at the start of the planning period, they are here-and-now decisions.

However, suppose, that one commodity suddenly becomes cheaper than was considered at the

start of the planning period. As a result of the change in price, one might want to change the

ration or transport of commodities in the future. This means that the flow and food basket design

variables are actually wait-and-see variables, since each variable can depend on the procurement

costs of (different) commodities at (different) suppliers. In this section we will adapt the nominal

optimization model of Section 2 to an adaptive robust optimization model.
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4.1. Linear decision rules

In general, problems that contain adaptive robust inequality constraints are NP-hard (see Ben-Tal

et al. (2004)). Therefore, decision rules are often restricted to a certain class of functions to make

the problem tractable. We are restricting ourselves to decision rules that are affinely dependent on

ζ as previously used in Ben-Tal et al. (2004); Bertsimas and Goyal (2009); Rocha and Kuhn (2012);

Iancu et al. (2013); Gounaris et al. (2013). To this end, we define a linear decision rule for Fijkt,

with t≥ 2, as follows:

Fijkt =


F̄ijkt +

∑
m∈M;
k∗∈K

vijkt,mk∗tζmk∗t, if i∈NS ,

F̄ijkt +
∑

m∈M;
k∗∈K;
t∗≤t

vijkt,mk∗t∗ζmk∗t∗ if i∈NT ,

=

F̄ijkt + (vtijkt)
>ζt, if i∈NS ,

F̄ijkt +
∑
t∗≤t

(vt
∗
ijkt)

>ζt
∗
, if i∈NT , (12)

where F̄ijkt and vijkt,mk∗t are the coefficients to be determined, and vtijkt,ζ
t ∈ R|M|K for every

t∈ {2, . . . , T}. Observe that the flow from a supply node to a transshipment or delivery node does

not depend on the uncertainty in procurement costs at earlier points in time since the actual price

at the moment of procurement is known. However, the flow from a transshipment node to another

transshipment or delivery node does depend on the uncertainty in procurement costs at earlier

points in time since time t is not the same as the time of procurement (t∗ ≤ t). Since transport

between transshipment nodes is possible, it is hard to keep track of the time of procurement, hence

we take into account all uncertainties at earlier points in time.

As with the Robust Optimization formulation, we assume that the uncertain parameters lie

within the ellipsoidal uncertainty set given in (7).

Both F and R are wait-and-see variables. However, defining a decision rule for the adjustable

variable R is superfluous since we can eliminate this variable from problem (5) by substituting

the expression for R obtained from equality constraint (5c) in constraint (5g) for all j ∈ND, k ∈K
and t∈ T except for those j and t for which djt = 0. Observe that as long as there exists a j ∈ND
for all t∈ T such that djt 6= 0, we do not need any constraint for j and t for which djt equals zero.

Moreover, if this is the case, the nonnegativity of Rkt, i.e., constraint (5j), is already satisfied for

all k ∈K and t∈ T . Hence, we can replace constraints (5c), (5g) and (5j) by constraints (13a) and

(13b): ∑
k∈K

∑
i∈NST

βk`Fijkt ≥
djtδt
α

η` (1−S`t) j ∈ND, `∈L, t∈ T , (13a)

dj′t
∑
i∈NST

Fijkt = djt
∑
i∈NST

Fij′kt j, j′ ∈ND, dj′t, djt 6= 0, k ∈K, t∈ T . (13b)
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There are two difficulties with imposing a decision rule for the adaptive variables F . First of all,

equality constraints cannot be satisfied for all uncertain variables. Secondly, since our problem is

non-fixed recourse (procurement prices depend linearly on the uncertain variables), using just a

linear decision rule for F results in quadratic uncertainty. One can deal with equality constraints

(5b) by first substituting the linear decision rule for F and subsequently grouping terms multiplied

with ζ and setting them equal to zero (Gorissen et al., 2015), to obtain the following equivalent set

of constraints:

∑
j∈NT D

vt
∗

ijkt =
∑

j∈NST

vt
∗

jik,t−τ(j,i), i∈NT , k ∈K, t∗ < t− τ(j, i), t∈ {2, . . . , T}, (14a)∑
j∈NT D

v
t−τ(j,i)
ijkt =

∑
j∈NST

v
t−τ(j,i)

jik,t−τ(j,i), i∈NT , k ∈K, t∈ {2, . . . , T}, (14b)∑
j∈NT D

vt
∗

ijkt = 0, i∈NT , k ∈K, t− τ(j, i)< t∗ ≤ t, t∈ {2, . . . , T}, (14c)∑
j∈NST

F̄jik,t−τ(j,i) =
∑

j∈NT D

F̄ijkt, i∈NT , k ∈K, t∈ T . (14d)

In the same way one can deal with equality constraints (13b) to obtain the following equivalent set

of constraints:

djt
∑
i∈NT

vt
∗

ij′kt = dj′t
∑
i∈NT

vt
∗

ijkt, j, j′ ∈ND, djt, dj′t 6= 0, k ∈K,2≤ t∗ < t, t∈ {3, . . . , T}, (15a)

djt
∑
i∈NST

vtij′kt = dj′t
∑
i∈NST

vtijkt, j, j′ ∈ND, djt, dj′t 6= 0, k ∈K, t≥ 2, (15b)

dj′t
∑
i∈NST

F̄ijkt = djt
∑
i∈NST

F̄ij′kt, j, j′ ∈ND, djt, dj′t 6= 0, k ∈K, t∈ T . (15c)

To deal with the fact that our problem is non-fixed recourse, we use the exact S-lemma to obtain

an exact tractable robust counterpart of the robust linear constraint with quadratic uncertainty,

which will be explained in more detail in Section 4.2.

Adaptive robust formulation of the HSC model

The nominal formulation (5) can be extended to a fully adaptive robust formulation, by first of

all substituting expression (12) for the flow variables in objective (5a). This leads to the following

objective function for the adaptive robust formulation:

min
F̄ ,V ,q

q

s.t. r(F̄ ) + s(F̄ ,V )Tζ+ ζTQ(V )ζ ≤ q ∀ζ ∈ U ,
(16)

where F̄ is the vector comprising all F̄ijkt, V is the matrix consisting of all vt
∗
ijkt with i ∈ NST ,

j ∈NT D, k ∈K, t ∈ T, t∗ ≤ t ∈ {2, . . . , T}, and ζ =
(

(ζ2)
>
, . . . , (ζT )

>
)>

. We refer to Appendix A
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for a complete derivation of the reformulation of the objective and the explicit expressions for

r(F̄ ),s(F̄ ,V ) and Q(V ).

Secondly, constraints (5b) are replaced by constraints (14a) - (14d), and constraints (5c), (5h),

and (5j) are replaced by constraints (13a), (15a) - (15c). Furthermore, we substitute the linear

decision rule (12) for the flow variables, where t∈ {2, . . . , T}, into constraints (5d) - (5f), (5i), (13a)

and (13b). We then obtain robust linear constraints, which we can rewrite as constraints without

uncertainty, using the KKT conditions and Cholesky factor L̂ as is done in Section 3. This leads in

total to the following adaptive robust optimization problem with quadratic uncertainty:

min
F̄ ,V ,S,q

q (17a)

s.t. r(F̄ ) + s
(
F̄ ,V

)>
ζ+ ζ>Q(V )ζ ≤ q ∀ζ ∈ U

(17b)

(14a)− (14d)

(15a)− (15c)∑
j∈NT D

F̄ijk1 ≤ cPik1 i∈NS , k ∈K

(17c)∑
k∈K

F̄ijk1 ≤ cTij1 i∈NS , j ∈NT D

(17d)∑
i∈NST

∑
k∈K

F̄ijk1 ≤ cHj1 j ∈NT D

(17e)∑
j∈NT D

F̄ijkt + Ω

∥∥∥∥∥L̂>
( ∑
j∈NT D

v0,t,0
ijkt

)∥∥∥∥∥
2

≤ cPikt i∈NS , k ∈K, t∈ {2, . . . , T}

(17f)∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L̂>
(∑
k∈K

v0,t,0
ijkt

)∥∥∥∥∥
2

≤ cTijt i∈NS , j ∈NT D, t∈ {2, . . . , T}

(17g)∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L̂>
(∑
k∈K

v1−t,0
ijkt

)∥∥∥∥∥
2

≤ cTijt i∈NT , j ∈NT D, t∈ {2, . . . , T}

(17h)∑
i∈NST

∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L̂>
(∑
i∈NT

∑
k∈K

v1−tS ,0
ijkt

)∥∥∥∥∥
2

≤ cHjt j ∈NT D, t∈ {2, . . . , T}

(17i)∑
i∈NST

∑
k∈K

βklF̄ijk1 ≥
η`(1−S`1)dj1δ1

α
j ∈ND, `∈L

(17j)
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∑
i∈NST

∑
k∈K

βklF̄ijkt−Ω

∥∥∥∥∥L̂>
(∑
i∈NT

∑
k∈K

βklv
1−tS ,0
ijkt

)∥∥∥∥∥
2

≥ η`(1−S`t)djtδt
α

j ∈ND, `∈L, t∈ {2, . . . , T}
(17k)

S`t ≤ sf` `∈L, t∈ T
(17l)

F̄ijk1 ≥ 0 i∈NST , j ∈NT D, k ∈K
(17m)

F̄ijkt−Ω
∥∥L̂> (v0,t,0

ijkt

)∥∥
2
≥ 0 i∈NS , j ∈NT D, k ∈K, t∈ {2, . . . , T}

(17n)

F̄ijkt−Ω
∥∥L̂> (v1−t,0

ijkt

)∥∥
2
≥ 0, i∈NT , j ∈NT D, k ∈K, t∈ {2, . . . , T}

(17o)

where

v0,t,0
ijkt =

(
0, . . . ,0,

(
vtijkt

)>
,0, . . . ,0

)>
∈R|M|KT

v1−t,0
ijkt =

((
v1
ijkt

)>
, . . . ,

(
vt−1
ijkt

)>
,
(
vtijkt

)>
,0, . . . ,0

)>
∈R|M|KT

v1−tS ,0
ijkt =

((
v1
ijkt

)>
, . . . ,

(
vt−1
ijkt

)>
,
∑
i∈NS

(
vtijkt

)>
,0, . . . ,0

)>
∈R|M|KT .

We refer the reader to Appendix B for a more detailed description of the reformulation of the

capacity constraints.

4.2. Exact reformulation using S-lemma

Since U is an ellipsoidal uncertainty set, we can use the exact S-lemma to obtain an exact tractable

reformulation of constraint (17b).

Lemma 1 (S-lemma). Let qa, qb :Rn→R be two quadratic functions such that

qa(z) = zTQaz+uTa z+ ca

qb(z) = zTQbz+uTb z+ cb,

and suppose there is a z̄ ∈Rn such that qa(z̄)> 0. If

qa(z)≥ 0 =⇒ qb(z)≥ 0 ∀z,

then

∃λ≥ 0, s.t. qb(z)≥ λqa(z) ∀z.

A proof can be found in Polik and Terlaky (2007).
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Theorem 1. F and V satisfy constraints (17b) if and only if there exists a λ ∈ R such that F

and V satisfy (
λΣ̂−1−Q(V ) − 1

2
s(F̄ ,V )

− 1
2
s(F̄ ,V )T −r(F̄ )−λΩ2 + q

)
�O.

A proof can be found in Appendix C.

Using Theorem 1, we obtain the following exact semidefinite programming (SDP) reformulation

of problem (17):

min
F̄ ,V ,S,q,λ

q

s.t.

(
λΣ̂−1−Q(V ) − 1

2
s(F̄ ,V )

− 1
2
s(F̄ ,V )T −r(F̄ )−λΩ2 + q

)
�O.

(14a)− (14d)

(17d)− (17j)

λ≥ 0.

(18)

4.3. Finding the best ARO solution

Similar as for the robust formulation, the adaptive robust formulation also might have multiple

optimal solutions. Those optimal solutions may yield possibly better objective values for scenarios

other than the worst-case scenarios. Hence we want to find the solution which yields the best

objective value regarding the average scenario. To this end, we first solve the ARO formulation (18)

to obtain the optimal objective value q∗ with respect to the worst case scenario. Subsequently, we

solve ARO once more, in which we change the objective to

E
[
r(F ) + s(F,V )>ζ + ζ>Q(V )ζ

]
= r(F ) + s(F,V )>µ+ tr(Q(V )Σ) +µ>Q(V )µ

= r(F ) + tr(Q(V )Σ). (19)

By changing the objective to (19), we minimize the costs for the expected scenario, instead of the

worst case scenario. Furthermore, we also add the constraint:

q≤ q∗,

to make sure that the objective value regarding the worst case scenario is just as good as after

solving ARO the first time. We term this model the Pareto Adaptive Robust Optimization model

(PRO-A).
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5. Flexible commitment contract

An important aspect of the ARO approach is that new decisions can be taken, once part of the

uncertainty has been revealed, whereas both the NO and RO approaches deal with complete

uncertainty. In order to have a relatively fair comparison between the NO, RO and ARO approaches

we introduce a Folding Horizon (FH) approach for NO and RO. In the first time period procurement

commitments are made based on price estimations for future time periods, whereafter part of the

uncertainty is revealed in the later time periods and the commitments can be altered to a certain

degree.

The procurement prices of the first period are known (pPik1), and there is an estimate on the

procurement prices for future time periods: p∗Pikt, t≥ 2. With this information we solve the Nominal

and Robust optimization problem to obtain solutions, Fijk1, for t= 1 and commitments F ∗ijkt for

t≥ 2. At the beginning of each following period, the actual procurement prices of that period are

revealed and we solve the nominal and robust problem again with the additional constraint that

one can only deviate from the commitments made in the first period by a certain percentage per:∣∣∣∣∣ ∑
j∈NTD

Fijkt−
∑

j∈NTD

F ∗ijkt

∣∣∣∣∣≤ per
∑

j∈NTD

F ∗ijkt i∈NS, k ∈K, t∈ T ,

The ARO approach does not have restrictions towards commitments made in the first period.

Thus, in order to have a fair comparison, such restrictions need to be included. To that end, we

solve the ARO approach with the following additional constraint:

Ω

∣∣∣∣∣L> ∑
j∈NTD

v0,t,0
ijkt

∣∣∣∣∣≤ per
∑

j∈NTD

F̄ijkt i∈NS, k ∈K, t∈ T ,

Here, we restrict the ARO approach to deviate from commitments made in the first period by at

most a per percentage, similar as in the NO and RO FH approach.

6. Case study

In this section we discuss results of applying the nominal model (equations (5)-(5j)), the robust

optimization model (equations (8a),(10), (5d) - (5j)), and the adaptive robust optimization model

(18) to a real-life case, based on the food assistance operation during the aftermath of the civil war

and humanitarian disaster in Syria in 2017. Section 6.1 describes the case study in further detail,

whereafter Section 6.2 presents general results of the three different methods. Finally, Section 6.3

shows the results of the three methods when we use a folding horizon approach.
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6.1. Case description

There are 7 relevant demand places where beneficiaries are located (Ar Raqqa, Hassakeh, Idleb,

Jubb al Jarrah, Daraa, Dayr Az Zor, Hassakeh, and Qamishli) of which 3 locations have local

markets (Hassakeh, Daraa and Dayr Az Zor). Furthermore, there are 5 regional suppliers (Aleppo,

As Suweida, Damascus, Hama, and Homs), and we have three international suppliers (Amman,

Beirut, and Gaziantep). All regional suppliers and demand locations are transshipment points as

well. Figure 1 shows the 15 different nodes and the available connections between the nodes. As

can be seen, not all nodes are connected to each other, since plenty of border crossings were closed

during the civil war (see WFP (2017); USAID (2020)).

Figure 1 Map of Syria with all supply and demand nodes.

Table 4 gives an overview of the number of beneficiaries present at each of the seven demand

locations and Table 5 shows the nutrient requirements that each beneficiary needs on average per

day. Together, these tables translate to the total demand at a location.

In total we consider 24 different types of food, all with their own nutritional values. As explained

in Section 2, we assume there is negligible uncertainty in procurement prices at international

suppliers and the procurement prices at international suppliers are constant over time. We refer
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Location Number of beneficiaries
Ar Raqqa 10,000
Hassakeh 10,000
Dara 20,000
Dayr Az Zor 25,000
Qamishli 5,000
Jubb al-Jarrah 2,000
Idleb 5,000

Table 4

Demand in example cases.

Nutrient Requirements
Energy (kcal) 2,100

Protein(g) 52.50
Fat (g) 89.25

Calcium (mg) 1,100
Iron (mg) 22

Vitamin A (ug) 500
Thiamine B1 (mg) 0.9
Riboflavin B2 (mg) 1.4

Nicacin B3 (mg) 12
Folate (ug) 160

Vitamin C (mg) 28
Table 5 Main nutrient requirements

to the online dataset for an overview of the time to traverse and the cost of using an edge, the

nutritional values of each commodity, and the procurement prices used in our case studya.

6.2. General results

All numerical experiments for this case study are conducted on an Intel Core i7-8665U 1.90GHz

Windows computer with 32.0GB of RAM. All computations are implemented using YALMIP

(Löfberg, 2004) in MATLAB (R2022b). Computations involving the nominal model are conducted

with Gurobi 9.1.1, while computations involving the robust and the adaptive robust model are

conducted with Mosek 9.3.18 (MOSEK ApS, 2022).

We compare the nominal model (NO), the robust model (RO), the Pareto robust model (PRO),

the adaptive robust model (ARO), and the Pareto adaptive robust model (PRO-A) with each

other based on performance in the nominal, worst-case and expected objective value. Moreover, we

explore the differences in procurement and food baskets between the nominal model and the robust

model. We do this for different levels of uncertainty, i.e., we vary the safety parameter Ω from 0 to

5, with Ω = 0 indicating there is no uncertainty present and the higher the value of Ω the more

uncertainty is considered when applying one of the robust models.

Table 6 shows that when solving the nominal scenario, i.e., ζ = 0, NO has the lowest objective

value. This makes sense since NO optimizes the problem without taking uncertainty into account.

We see that RO performs worst under the nominal scenario which can be explained due to the

fact that RO only considers here-and-now decisions, opposed to ARO and PRO-A also considering

wait-and-see decisions. We see that there is not much difference between the performance of RO

and PRO under the nominal scenario. Moreover, the more uncertainty there is included in the

model (Ω≥ 1), the bigger the difference between the robust approaches and the nominal approach

a http://doi.org/10.5281/zenodo.8091487

http://doi.org/10.5281/zenodo.8091487
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become. This is as expected since the robust approaches consider the worst-case scenario across the

uncertainty and the NO approach only considers the nominal situation.

In the worst case situation, both ARO and PRO-A perform best, followed by the robust models

and NO respectively. NO does not take any uncertainty into account making its solution non-robust

against the worst-case scenario, resulting in the highest objective value. This result is amplified in

case more uncertainty is included. Since, opposed to RO and PRO, ARO, and PRO-A can wait

with certain decisions until some of the uncertainty is revealed, ARO and PRO-A have the lowest

worst-case objective. Note that the objective values of ARO and PRO-A under the nominal and

worst-case scenario are the same. This is because the nominal scenario is in fact the worst-case

scenario for ARO in our situation.

The solutions found of each of the models are also evaluated against the expected objective value

over the uncertainty. For NO, RO, and PRO, this means that the found solutions are evaluated

against the nominal scenario, since in taking the expectation of both the objectives of the nominal

and the robust models we obtain the nominal objective. For ARO we have substituted the worst-case

solution of ARO in the expectation of the objective as given by (19). Finally, for PRO-A, we have

applied the method that as in Section 4.2. As can be seen, the ARO and PRO-A approaches are

approximately as good as the NO approach in terms of expected behaviour, whereas they perform

much better on the worst-case scenario.

Ω Nominal value Worst-case value Expected value
NO RO PRO ARO PRO-A NO RO PRO ARO PRO-A NO RO PRO ARO PRO-A

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.29 3.30 3.30 3.71 3.71 3.71 3.30 3.30 3.29 3.30 3.29 3.07 3.01
2 3.29 3.53 3.51 3.31 3.31 4.14 4.08 4.08 3.31 3.31 3.29 3.53 3.51 3.19 3.18
3 3.29 4.05 4.05 3.31 3.31 4.56 4.23 4.23 3.31 3.31 3.29 4.05 4.05 3.23 3.23
4 3.29 4.12 4.12 3.32 3.32 4.98 4.28 4.28 3.32 3.32 3.29 4.12 4.12 3.26 3.26
5 3.29 4.29 4.29 3.34 3.34 5.40 4.29 4.29 3.34 3.34 3.29 4.29 4.29 3.33 3.33

Table 6 Nominal (NO), robust optimization (RO), Pareto robust optimization (PRO), adaptive robust

optimization (ARO), and Pareto adaptive robust optimization (PRO-A) approach are evaluated at the nominal,

worst-case, and expected scenarios based on their costs in millions.

Table 7 shows the computation times of the four approaches. As can be seen, NO, RO, and

PRO, are fast in finding solutions, whereas ARO and PRO-A are significantly slower, but still have

computation times that are acceptable for usage in practice.

In order to gain more insight in how the solutions differ under different levels of uncertainty, we

have created Figures 2-4.

Figure 2 shows the distribution between international, regional and local procurement for the

NO approach (Ω = 0) and the RO approach for different levels of uncertainty. As can be seen in
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Ω NO RO PRO ARO PRO-A
0 0.06 0.06 0.12 0.30 0.30
1 0.06 0.11 0.20 240 547
2 0.06 0.13 0.24 196 532
3 0.06 0.13 0.18 301 629
4 0.06 0.13 0.22 331 695
5 0.06 0.13 0.20 364 644

Table 7 Computation times in seconds of the nominal (NO), robust optimization (RO), Pareto robust

optimization (PRO), adaptive robust optimization (ARO) and Pareto adaptive robust optimization (PRO-A)

approach for Ω = {0, . . . ,5}.

Figure 2a, the aid mainly comes from local and regional markets in case of little uncertainty in the

procurement prices, and by increasing the uncertainty factor, there is a higher dependency on the

international markets. More specifically, the uncertainty leads to Gaziantep and Amman becoming

more and more important, see Figure 2b.

Figure 3 shows the food basket composition for different levels of uncertainty. With increasing

safety level Ω, bulgur and beans are replaced by wheat. This means that bulgur and beans are

procured regionally and locally and are therefore volatile to uncertainty. With increasing level of

uncertainty, as we can see from Figure 2, the commodities are procured more from international

suppliers, in which case wheat is the better option to procure.

Finally, Figure 4 shows how much of the objective cost is attributed to procurement and

transportation for different levels of uncertainty with respect to Ω = 0. The proportion of the

objective cost attributed to transportation increases with increasing level of uncertainty. Since most

of the food is bought at international markets for larger levels of uncertainty, this makes sense since

this leads to longer transportation routes and hence more expensive transportation.

6.3. Folding Horizon results

In this section we will present results on the Folding Horizon approach as presented in Section

5. All methods make a commitment, based on price expectations, in the first time period about

procurement’s in future time periods. The actual procurement prices are only known just before

the actual time period, and then small adjustments (per percentage) can be made towards the

commitments. In this situation, the RO and PRO approach, as well as the ARO and PRO-A

approach gave almost identical results, and thus we choose to only show the results for the RO and

ARO approach respectively.

The three methods are evaluated on a nominal scenario, a worst-case scenario, and the average

scenario. In the nominal scenario, the procurement prices in periods t > 1 are identical to the

expected prices which were used in period t= 1 to make the commitments. A worst-case scenario is
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(a)

(b)

Figure 2 Proportion of total weight procured attributed to international, regional and local suppliers at t = {2,3}

for Ω ∈ {0, . . . ,7} using the Nominal Approach (Ω = 0).

obtained by uniformly drawing 500 scenarios from the uncertainty set and then solving the three

approaches for each of the 500 scenarios and identifying per method the worst-case scenario. In

previous results we have used a theoretical worst-case objective, however, this objective cannot be

formulated in case the decisions can be altered. Consequently, we identify the worst-case based

on drawing scenarios from the uncertainty set. For an overview of how we generate the scenarios

uniformly from the ellipsoidal uncertainty set, we refer to Dezert and Musso (2001). The average

scenario is obtained by computing the average objective value over those 500 scenarios.

Table 8 shows the results for different values of per, the percentage by which one can deviate from

the commitments made in the first time period. First of all, if per= 0, the results are comparable to

Table 6. The results for the nominal scenario are identical, but not for the worst-case and average
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Figure 3 Food basket composition in percentage of total weight procured for different levels of uncertainty at

t = {2,3}.

Figure 4 Relative change in percentage of objective costs attributed to procurement versus transport for Ω =

{1, . . . ,5} with respect to Ω = 0.

scenario. This is due to the fact that we now consider 500 scenarios, instead of the theoretical

worst-case and average scenario.

The nominal approach only considers the nominal scenario when making decisions, thus those

decisions do not change in case the nominal scenario turns out to be the true scenario. The

commitments made by the RO and ARO approaches change, even if the nominal scenario is true.
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This is because both approaches include the possibility that other scenarios are true, and thus make

more conservative decisions. Furthermore, as can be seen, the more uncertainty there is, the larger

the difference in objective value between the RO approach and the other two approaches.

A second observation that can be made is regarding the RO approach. For this approach, the

nominal scenario turns out to be the worst-case scenario as well. This indicates that the solution

will be better or identical in all other tested scenarios, as also shown by the average scenario, as the

average objective is always smaller or equal to the nominal/ worst-case scenario.

Finally, the NO and ARO approach outperform the RO approach both on the nominal, the

worst-case, and the average scenario for all levels of uncertainty and percentages on which the

methods can differ from commitments.

7. Conclusion and future research

Humanitarian organizations often operate on budgets originating from donors and efficiency is

thus key. Therefore, we have developed a novel robust optimization model taking into account

different levels of uncertainty in procurement prices of food at local and regional suppliers. This

robust optimization model is extended to an adaptive and a pareto adaptive robust optimization

model, in which the flow and ration variables are considered to be wait-and-see variables instead of

here-and-now variables. Since humanitarian operations are often multi-period and dynamic, this

reflects reality in a better way.

We test our four different robust approaches and a nominal approach (no uncertainty included)

on a case study based on the aftermath of the civil war in Syria in 2017. We show that the (pareto)

adaptive robust optimization approach performs approximately as good as the nominal model

on the nominal scenario. However, our adaptive approach outperforms the nominal approach on

the worst-case scenario, showing the added value of using robust optimization during food aid

operations.

In actual operations of WFP, commitments are made in the first period, which can later on be

changed, based on the procurement prices at that time. To that end, we analyze a Folding Horizon

approach for the nominal, robust, and adaptive robust optimization models. It turns out that in

our situation, where transportation times are less than a day, it is better to optimize decisions every

month instead of only once at the start. Consequently, WFP could use a relatively simple approach

in practice and apply a folding horizon approach each month to optimize decisions.

In this paper we observed that the nominal approach applied in a folding horizon way is at least

as good as the ARO approach. We conjecture that this might be the case more general, especially

when there is only uncertainty in the objective function. It is striking that in most papers on ARO

there is no comparison with the nominal folding horizon approach.
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per Ω
Nominal scenario Worst-case scenario Average scenario
NO RO ARO NO RO ARO NO RO ARO

0.00

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.30 3.45 3.46 3.46 3.29 3.30 3.30
2 3.29 3.53 3.31 3.52 3.68 3.54 3.28 3.52 3.30
3 3.29 4.05 3.31 3.52 4.08 3.60 3.28 4.05 3.30
4 3.29 4.12 3.32 3.65 4.16 3.68 3.29 4.12 3.33
5 3.29 4.29 3.34 3.66 4.29 3.71 3.28 4.29 3.33

0.05

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.29 3.45 3.46 3.46 3.29 3.30 3.29
2 3.29 3.52 3.29 3.52 3.68 3.53 3.28 3.52 3.29
3 3.29 4.04 3.30 3.58 4.09 3.59 3.28 4.04 3.29
4 3.29 4.12 3.30 3.65 4.15 3.65 3.29 4.12 3.29
5 3.29 4.29 3.30 3.66 4.29 3.66 3.28 4.29 3.29

0.1

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.29 3.45 3.46 3.45 3.29 3.30 3.29
2 3.29 3.52 3.29 3.52 3.68 3.53 3.28 3.51 3.29
3 3.29 4.04 3.30 3.58 4.08 3.60 3.28 4.03 3.31
4 3.29 4.11 3.30 3.65 4.15 3.65 3.29 4.11 3.29
5 3.29 4.29 3.30 3.66 4.29 3.66 3.28 4.29 3.28

0.25

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.29 3.45 3.46 3.45 3.29 3.30 3.29
2 3.29 3.51 3.29 3.52 3.67 3.53 3.28 3.50 3.29
3 3.29 4.02 3.29 3.58 4.07 3.60 3.28 4.01 3.30
4 3.29 4.10 3.29 3.65 4.14 3.65 3.29 4.10 3.29
5 3.29 4.29 3.29 3.66 4.29 3.66 3.28 4.29 3.28

0.5

0 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
1 3.29 3.30 3.29 3.45 3.45 3.45 3.29 3.30 3.29
2 3.29 3.49 3.29 3.52 3.66 3.53 3.28 3.49 3.29
3 3.29 3.98 3.29 3.58 4.05 3.59 3.28 3.98 3.29
4 3.29 4.07 3.29 3.65 4.12 3.65 3.29 4.07 3.29
5 3.29 4.29 3.29 3.66 4.29 3.66 3.28 4.29 3.29

Table 8 Nominal (NO), robust optimization (RO), and adapative robust optimization (ARO) approach are

evaluated at the nominal, worst-case, and expected scenario based on their costs in millions by means of a Folding

Horizon.

An interesting avenue for further research is to find robust solutions for uncertain delivery times

of the food aid due to delays in the harbor. Moreover, it could be interesting to use a different

uncertainty set than the ellipsoidal uncertainty set for the procurement prices. Finally, in our

current approach the procurement prices estimated for future periods are identical, because we use

the average over the past prices for all future periods. It would be more realistic to estimate future

procurement prices using a more advanced forecasting method. Note that this would only change

our results, but would not influence our methodology.



de Moor et al.: Robust optimization in Food Aid Supply Chains
25

Acknowledgements

The first author of this paper is funded by NWO grant 406.18.EB.003.

References

M. Al-Saidi. Caught off guard and beaten: The ukraine war and food security in the middle east. Front.

Nutr., 10, 2023. URL http://doi/org/10.3389/fnut.2023.983346.

W.K. Anuar, L.S. Lee, S. Pickl, and H. Seow. Vehicle routing optimisation in humanitarian operations: A

survey on modelling and optimisation approaches. Applied Sciences, 11, 2021.
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Appendices

A. ARO objective formulation

PC =
∑

j∈NT D

F̄ijk1

 ∑
i∈NSI

∑
k∈K

θik1 +
∑

i∈NS\NSI

∑
k∈K

µik1

+

∑
i∈NSI

∑
k∈K

∑
t≥2

(
θikt

∑
j∈NTD

(
F̄ijkt +

(
vtijkt

)>
ζt
))

+

∑
i∈NS\NSI

∑
k∈K

∑
t≥2

(
(µikt + ζmikt)

∑
j∈NTD

(
F̄ijkt +

(
vtijkt

)>
ζt
))

=
∑
i∈NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

θiktF̄ijkt +
∑

i∈NS\NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

µiktF̄ijkt+[ ∑
i∈NSR

∑
j∈NT D

F̄ij12, . . . ,
∑
i∈NSL

∑
j∈NT D

F̄ijK2, . . . ,
∑

i∈NSR

∑
j∈NT D

F̄ij1T , . . . ,
∑
i∈NSL

∑
j∈NT D

F̄ijKT

]
︸ ︷︷ ︸

(F̄P,MRL )
>

ζ+

∑
i∈NSI

∑
k∈K

∑
t≥2

(
θikt

∑
j∈NTD

(
vtijkt

)>
ζt

)
+

∑
i∈NS\NSI

∑
k∈K

∑
t≥2

(
µikt

∑
j∈NTD

(
vtijkt

)>
ζt

)
+

∑
m∈M

∑
k∈K

∑
t≥2

(
ζmkt

∑
i∈m

∑
j∈NT D

(
vtijkt

)>
ζt

)
+

=
∑
i∈NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

θiktF̄ijkt +
∑

i∈NS\NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

µiktF̄ijkt +
(
F̄ P,M
RL

)>
ζ+ ∑

i∈NS\NSI

∑
j∈NT D

∑
k∈K

µik2(v2
ijk2)>, . . . ,

∑
i∈NS\NSI

∑
j∈NT D

∑
k∈K

µikT (vTijkT )>


︸ ︷︷ ︸

(vµ)
>

ζ+

[ ∑
i∈NSI

∑
j∈NT D

∑
k∈K

θik2(v2
ijk2)>, . . . ,

∑
i∈NSI

∑
j∈NT D

∑
k∈K

θikT (vTijkT )>

]
︸ ︷︷ ︸

(vθ)>

ζ+

∑
t≥2

(ζt)
>

[ ∑
i∈NSR

∑
j∈NTD

vtij1t, . . . ,
∑

i∈NSR

∑
j∈NTD

vtijKt,
∑
i∈NSL

∑
j∈NTD

vtij1t, . . . ,
∑
i∈NSL

∑
j∈NTD

vtijKt

]>
︸ ︷︷ ︸

(V t)PM

ζt

=
∑
i∈NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

θiktF̄ijkt +
∑

i∈NS\NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

µiktF̄ijkt + ζ>F̄ PM
RL + (vµ +vθ)

>
ζ+

ζ>

(V 2)
PM

. . .

(V T )
PM


︸ ︷︷ ︸

Q(V )

ζ,
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where the first equation follows from substitution of (6) and (12) in the expression for PC as given

by (1). The second, third and fourth equations follow from organizing the terms and rewriting every

product term including ζmkt or ζt in a product term including ζ.

TC =
∑
i∈NS

∑
j∈NT D

∑
k∈K

pTijk1F̄ijk1+

∑
i∈NS

∑
j∈NT D

∑
k∈K

∑
t≥2

pTijkt
(
F̄ijkt + (vtijkt)

>ζt
)

+
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pTijkt

(
F̄ijkt +

∑
2≤t∗≤t

(vt
∗

ijkt)
>ζt

∗

)

= F̄>pT +

[∑
i∈NS

∑
j∈NT D

∑
k∈K

pTijk2

(
v2
ijk2

)>
, . . . ,

∑
i∈NS

∑
j∈NT D

∑
k∈K

pTijkT
(
vTijkT

)>]
︸ ︷︷ ︸(

vS
pT

)>
ζ+

[∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pTijkt
(
v2
ijkt

)>
,
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥3

pTijkt
(
v3
ijkt

)>
, . . . ,

∑
i∈NT

∑
j∈NT D

∑
k∈K

pTijkT
(
vTijkT

)>]
︸ ︷︷ ︸(

vT
pT

)>
ζ,

where the first equation follows from substitution of (12) in (2). The second equation follows from

rewriting all terms in vector notation.

HC =
∑
i∈NS

∑
j∈NTD

∑
k∈K

pHj F̄ijk1 +
∑
i∈NS

∑
j∈NTD

∑
k∈K

∑
t≥2

pHj

(
F̄ijkt +

(
vtijkt

)>
ζt
)

+

∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pHj

(
F̄ijkt +

∑
2≤t∗≤t

(
vt
∗

ijkt

)>
ζt
∗

)

=
∑
i∈NST

∑
j∈NT D

∑
k∈K

∑
t∈T

pHj F̄ijkt +

[∑
i∈NS

∑
j∈NT D

∑
k∈K

pHj
(
v2
ijk2

)>
, . . . ,

∑
i∈NS

∑
j∈NT D

∑
k∈K

pHj
(
vTijkT

)>]
︸ ︷︷ ︸(

vS
pH

)>
ζ+

[∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pHj
(
v2
ijkt

)>
,
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥3

pHj
(
v3
ijkt

)>
, . . . ,

∑
i∈NT

∑
j∈NT D

∑
k∈K

pHj
(
vTijkT

)>]
︸ ︷︷ ︸(

vT
pH

)>
ζ,

where the first equation follows from substitution of (12) in (3). The second equation follows from

rewriting all terms including the uncertain parameter in vector notation.

SC =
∑
i∈NT

∑
j∈NT D

∑
k∈K

pSi F̄ijk1 +
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pSi

(
F̄ijkt +

∑
2≤t∗≤t

(
vt
∗

ijkt

)>
ζt
∗

)
=
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t∈T

pSi F̄ijkt+



de Moor et al.: Robust optimization in Food Aid Supply Chains
30 [∑

i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥2

pSi
(
v2
ijkt

)>
,
∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t≥3

pSi
(
v3
ijkt

)>
, . . . ,

∑
i∈NT

∑
j∈NT D

∑
k∈K

pSi
(
vTijkT

)>]
︸ ︷︷ ︸(

v
pS

)>
ζ,

where the first equation follows from substitution of (12) in (4) and the second equation follows

from rewriting all terms including the uncertain parameter in vector notation.

Hence, if we take

r(F̄ ) =
∑
i∈NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

θiktF̄ijkt +
∑

i∈NS\NSI

∑
j∈NT D

∑
k∈K

∑
t∈T

µiktF̄ijkt+∑
i∈NT

∑
j∈NT D

∑
k∈K

∑
t∈T

pSi F̄ijkt +
∑
i∈NST

∑
j∈NT D

∑
k∈K

∑
t∈T

(
pTijkt + pHj

)
F̄ijkt

and

s
(
F̄ ,V

)
= F̄ PM

RL +vµ +vθ +vSpT +vTpT +vSpH +vTpH +vpS ,

using the epigraph formulation we obtain problem (16).

B. ARO reformulation

Capacity constraints (17f):

∑
j∈NT D

Fijkt ≤ cPikt i∈NS, k ∈K, t∈ {2, . . . , T},∀ζ ∈ U

⇐⇒
∑

j∈NT D

F̄ijkt +
∑

j∈NT D

(vtijkt)
>ζt ≤ cPikt i∈NS, k ∈K, t∈ {2, . . . , T},∀ζ ∈ U

⇐⇒
∑

j∈NT D

F̄ijkt +
∑

j∈NT D

[
0, . . . ,0, (vtijkt)

>,0, . . . ,0
]
ζ ≤ cPikt i∈NS, k ∈K,∈ {2, · · · , T},∀ζ ∈ U

⇐⇒
∑

j∈NT D

F̄ijkt + Ω

∥∥∥∥∥L>
( ∑
j∈NT D

v0,t,0
ijkt

)∥∥∥∥∥
2

≤ cPikt i∈NS , k ∈K, t∈ {2, · · · , T}.

Capacity constraints (17g) - (17h):

∑
k∈K

Fijkt ≤ cTijt i∈NST , j ∈NT D, t∈ {2, . . . , T},∀ζ ∈ U

⇐⇒


∑
k∈K

F̄ijkt +

(∑
k∈K

vtijkt

)>
ζt ≤ cTijt i∈NS, j ∈NT D, t∈ {2, · · · , T},∀ζ ∈ U∑

k∈K
F̄ijkt +

∑
t∗≤t

(∑
k∈K

vt
∗
ijkt

)>
ζt
∗ ≤ cTijt i∈NT , j ∈NT D, t∈ {2, · · · , T},∀ζ ∈ U

⇐⇒


∑
k∈K

F̄ijkt +
∑
k∈K

[
0, . . . ,0, (vtijkt)

>,0, . . . ,0
]>
ζ ≤ cTijt i∈NS, j ∈NT D, t∈ {2, · · · , T},∀ζ ∈ U∑

k∈K
F̄ijkt +

∑
k∈K

[
(v1
ijkt)

>, . . . , (vt−1
ijkt)

>,0, . . . ,0
]>
ζ ≤ cTijt i∈NT , j ∈NT D, t∈ {2, · · · , T},∀ζ ∈ U
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⇐⇒


∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L>
(∑
k∈K

v0,t,0
ijkt

)∥∥∥∥∥
2

≤ cTijt i∈NS, j ∈NT D, t∈ {2, · · · , T}

∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L>
(∑
k∈K

v1−t,0
ijkt

)∥∥∥∥∥
2

≤ cTijt i∈NT , j ∈NT D, t∈ {2, · · · , T}.

Capacity constraints (17i):∑
i∈NST

∑
k∈K

Fijkt ≤ cHjt i∈NT D, t∈ {2, . . . , T} ,∀ζ ∈ U

⇐⇒
∑
i∈NST

∑
k∈K

F̄ijkt +

(∑
i∈NT

∑
k∈K

vtijkt

)>
ζ ≤ cHjt i∈NT D,∈ {2, · · · , T},∀ζ ∈ U

⇐⇒
∑
i∈NST

∑
k∈K

F̄ijkt +
∑
i∈NT

∑
k∈K

(
v1−tS ,0
ijkt

)>
ζ ≤ cHjt i∈NT D, t∈ {2, · · · , T},∀ζ ∈ U

⇐⇒
∑
i∈NST

∑
k∈K

F̄ijkt + Ω

∥∥∥∥∥L>
(∑
i∈NT

∑
k∈K

v1−tS ,0
ijkt

)∥∥∥∥∥
2

≤ cHjt i∈NT D, t∈ {2, · · · , T}.

C. Proof of Theorem 1

Let qb(ζ) =−ζ>Q(V )ζ−s(F̄ ,V )>ζ− r(F̄ ) + q and let qa(ζ) = Ω2−ζ>Σ−1ζ, where r(F̄ ), s(F̄ ,V )

and Q(V ) are given in Appendix A. Then for all ζ: qa(ζ)≥ 0 implies qb(ζ)≥ 0. Therefore, we can

apply the S-lemma and we get ∃λ≥ 0 such that qb(ζ)≥ λqa(ζ) for all ζ. Replacing qa(ζ) and qb(ζ)

by their expressions we get

∃λ≥ 0 s.t. − ζ>Q(V )ζ− s(F̄ ,V )>ζ− r(F̄ ) + q≥ λ(Ω2− ζ>Σ−1ζ) ∀ζ

⇐⇒∃λ≥ 0 s.t. ζ>(λΣ−1−Q(V ))ζ− s(F̄ ,V )>ζ− r(F̄ )−λΩ2 + c≥ 0 ∀ζ

⇐⇒∃λ≥ 0 s.t.

(
ζ
1

)>(
λΣ−1−Q(V ) − 1

2
s(F̄ ,V )

− 1
2
s(F̄ ,V )> −r(F̄ )−λΩ2 + q

)(
ζ
1

)
≥ 0 ∀ζ

⇐⇒∃λ≥ 0 s.t.

(
λΣ−1−Q(V ) − 1

2
s(F̄ ,V )

− 1
2
s(F̄ ,V )> −r(F̄ )−λΩ2 + q

)
�O.

To see why the last equivalence holds, let X =

(
λΣ−1−Q(V ) − 1

2
s(F̄ ,V )

− 1
2
s(F̄ ,V )> −r(F̄ )−λΩ2 + q

)
. Suppose there

exists a y such that y>Xy< 0 and suppose the last entry of y is nonzero, say α. Take λ= 1
α

. Then

(λy)>X(λy)< 0. This is a contradiction since

(
ζ
1

)>
X

(
ζ
1

)
≥ 0 for all ζ. Now suppose that the

last entry of y equals zero. Since the mapping y 7→ yTXy is continuous, there exists a ȳ 6= 0 such

that ȳ>X̄y< 0 and the last entry of ȳ is nonzero. By the previous argument, we again obtain a

contradiction (Hall., n.d.).
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