
Variational Theory and Algorithms for a Class of Asymptotically

Approachable Nonconvex Problems

Hanyang Li ∗ Ying Cui †

July 4, 2023 (Revision: December 26, 2023)

Abstract

We investigate a class of composite nonconvex functions, where the outer function is the
sum of univariate extended-real-valued convex functions and the inner function is the limit of
difference-of-convex functions. A notable feature of this class is that the inner function can be
merely lower semicontinuous instead of continuously differentiable. It covers a range of impor-
tant yet challenging applications, including the composite value functions of nonlinear programs
and the value-at-risk constraints. We propose an asymptotic decomposition of the composite
function that guarantees epi-convergence to the original function, leading to necessary optimal-
ity conditions for the corresponding minimization problem. The proposed decomposition also
enables us to design a numerical algorithm such that any accumulation point of the generated
sequence, if exists, satisfies the newly introduced optimality conditions. These results expand
on the study of so-called amenable functions introduced by Poliquin and Rockafellar in 1992,
which are compositions of convex functions with smooth maps, and the prox-linear methods for
their minimization.

Keywords: epi-convergence; optimality conditions; nonsmooth analysis; difference-of-convex
functions

1 Introduction.

We consider a class of composite optimization problems of the form:

minimize
x∈Rn

m∑
p=1

[
Fp(x) ≜ φp

(
fp(x)

)]
, (CP0)

where for each p = 1, · · · ,m, the outer function φp : R → R ∪ {+∞} is proper, convex, lower
semicontinuous (lsc), and the inner function fp : Rn → R can be merely lsc. Throughout the paper,
we assume the existence of an optimal solution for (CP0).

If each inner function fp is continuously differentiable, then the objective in (CP0) belongs to the
family of amenable functions under a constraint qualification [20, 21]. For a thorough exploration
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of the variational theory of amenable functions, readers are referred to [25, Chapter 10(F)]. The
properties of amenable functions have also led to the development of prox-linear algorithms, where
convex subproblems are constructed through the linearization of the inner smooth mapping [14, 3,
4, 15, 12].

However, there are various applications of composite optimization problem in the form of (CP0)
where the inner function fp is nondifferentiable, or even discontinuous. In the following, we provide
two such examples.

Example 1.1 (Composite value functions) For p = 1, · · · ,m, consider the optimal value function

fp(x) ≜ inf
y∈Rn2

{
(c p + C px)⊤y +

1

2
y⊤Q p y

∣∣∣∣ A px+B py ≤ b p
}

x ∈ Rn1 (1)

with appropriate dimensional vectors b p and c p, and matrices A p, B p, C p and Q p, where Qp is
symmetric and positive semidefinite. The function fp is not smooth in general. The inverse (multi)
optimal value problem [1, 19] finds a vector x ∈ Rn1 that minimizes the discrepancy between
observed optimal values {vp}mp=1 and true values {fp}mp=1 based on a prescribed metric, such as the
ℓ1-error:

minimize
x∈Rn1

m∑
p=1

|vp − fp(x)| . (2)

One can express problem (2) in the form of (CP0) by defining the outer function φp(t) = |vp − t|.

Example 1.2 (Optimal portfolios under a value-at-risk constraint) The value-at-risk (VaR) of a
random variable Y at a confidence level α ∈ (0, 1) is VaRα(Y ) ≜ inf {γ ∈ R | P(Y ≤ γ) ≥ α}. Let
Z be a random vector and c(x, Z) represent the profit of investments parameterized by x ∈ Rn.
An agent’s goal is to maximize the expected utility of c(x, Z), denoted as E[u(c(x, Z))], while also
controlling the risk via a constraint on VaRα[c(x, Z)] under a prescribed level r. Adapted from [30,
Section 3.4], the model can be written as

maximize
x∈Rn

E
[
u
(
c(x, Z)

)]
subject to VaRα[ c(x, Z)] ≤ r, (3)

which can be put into the framework (CP0) by defining φ1(t) = t, f1(x) = −E[u(c(x, Z))], φ2(t) =
δ(−∞,r](t), and f2(x) = VaRα[ c(x, Z)]. We note that the inner function VaRα[ c(·, Z)] is nonsmooth
and can be discontinuous in general.

Due to the nondifferentiablity of the inner function fp in (CP0), the prox-linear algorithm is
not applicable to solve this composite optimization problem. The present paper aims to develop an
algorithmic framework for a subclass of (CP0), where each inner function fp, although nonsmooth,
can be expressed as the limit of difference-of-convex (DC) functions. We refer to this class of
functions as approachable difference-of-convex (ADC) functions (see section 2.1 for the formal
definition). It is important to note that ADC functions are ubiquitous. In particular, the inner
functions fp in (2) and VaRα[ c(·, Z)] in (3) are instances of ADC functions. In fact, based on the
result recently shown in [26], any lsc function is ADC.

With this new class of functions in hand, we have made a first step to understand the variational
properties of the composite ADC minimization problem (CP0), including an in-depth analysis of
its necessary optimality conditions. The novel optimality conditions are defined through a handy
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approximation of the subdifferential ∂fp that explores the ADC structure of fp. Using a notion of
epi-convergence, we further show that these optimality conditions are necessary conditions for any
local solution of (CP0). Additionally, we propose a double-loop algorithm for (CP0), where the
outer loop dynamically updates the DC functions approximating each fp, and the inner loop finds
an approximate stationary point of the resulting composite DC problem through successive convex
approximations. It can be shown that any accumulation point of the sequence generated by our
algorithm satisfies the newly introduced necessary optimality conditions.

Our strategy to handle the nonsmooth and possibly discontinuous inner function fp through
a sequence of DC functions shares certain similarities with the approximation frameworks in the
existing literature. For instance, Ermoliev et al. [13] have designed smoothing approximations
for lsc functions utilizing convolutions with bounded mollifier sequences, a technique akin to local
“averaging”. Research has sought to identify conditions that ensure gradient consistency for the
smoothing approximation of composite nonconvex functions [8, 7, 5, 6]. Notably, Burke and Hoheisel
[5] have emphasized the importance of epi-convergence for the approximating sequence, a less
stringent requirement than the continuous convergence assumed in earlier works [8, 2]. In recent
work, Royset [27] has studied the consistent approximation of the composite optimization in terms
of the global minimizers and stationary solutions, where the inner function is assumed to be locally
Lipschitz continuous. Our notion of subdifferentials and optimality conditions for (CP0) takes
inspiration from these works but adapts to accommodate nonsmooth approximating sequences
that exhibit the advantageous property of being DC.

The rest of the paper is organized as follows. Section 2 presents a class of ADC functions and
introduces a new associated notion of subdifferential. In section 3, we investigate the necessary
optimality conditions for problem (CP0). Section 4 is devoted to an algorithmic framework for
solving (CP0) and its convergence analysis to the newly introduced optimality conditions. The
paper ends with a concluding section.

Notation and Terminology. We write Rn as the n-dimensional Euclidean space equipped with
the inner product ⟨x, y⟩ = x⊤y and the induced norm ∥x∥ ≜

√
x⊤x. We use the symbol B(x̄, δ) to

denote the Euclidean ball {x ∈ Rn | ∥x− x̄∥ ≤ δ}. The set of nonpositive, nonnegative and positive
real numbers are denoted as R−, R+ and R++, respectively, and the set of nonnegative integers is
denoted as N. Notation {tk} is employed to abbreviate any sequence {tk}k≥0, wherein the elements
may take the form of points, sets, or functions. By tk → t and tk →N t, we mean that the sequence
{tk} and the subsequence {tk}k∈N indexed by N ⊂ N converge to t, respectively. We further write

N♯
∞ ≜ {N ⊂ N | N infinite} and N∞ ≜ {N | N \Nfinite}.

Given two sets A and B in Rn and a scalar λ ∈ R, the Minkowski sum and the scalar multiple
are defined as A+ B ≜ {a+ b | a ∈ A, b ∈ B} and λA ≜ {λ a | a ∈ A}. We also define 0 · ∅ = {0}
and λ · ∅ = ∅ whenever λ ̸= 0. When A and B are nonempty and closed, we define the one-sided
deviation of A from B as D(A,B) ≜ supx∈A dist(x,B), where dist(x,B) ≜ infy∈B ∥y − x∥. The
Hausdorff distance between A and B is given by H(A,B) ≜ max{D(A,B), D(B,A)}. The boundary
and interior of A are denoted by bdry(A) and int(A). The topological closure and the convex hull
of A are indicated by cl(A) and conA. We let δA(x) be the indicator function of A, i.e., δA(x) = 0
for x ∈ A and δA(x) = +∞ for x /∈ A.

For a sequence of sets {Ck}, we define its outer limit as

Lim sup
k→+∞

Ck ≜ {u | ∃N ∈ N♯
∞, u

k →N uwith uk ∈ Ck},
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and the horizon outer limit as

Lim sup
k→+∞

∞Ck ≜ {0} ∪
{
u | ∃N ∈ N♯

∞, λk ↓ 0, λkuk →N uwith uk ∈ Ck
}
.

The outer limit of a set-valued mapping S : Rn ⇒ Rm is defined as

Lim sup
x→x̄

S(x) ≜
⋃

xk→x̄

Lim sup
k→+∞

S(xk) = {u | ∃xk → x̄, uk → uwith uk ∈ S(xk)} x̄ ∈ Rn.

We say S is outer semicontinuous (osc) at x̄ ∈ Rn if Limsupx→x̄ S(x) ⊂ S(x̄).
The regular normal cone and the limiting normal cone of a set C ⊂ Rn at x̄ ∈ C are given by

N̂C(x̄) ≜
{
v
∣∣∣ v⊤(x− x̄) ≤ o(∥x− x̄∥)for all x ∈ C} and NC(x̄) ≜ Lim sup

x(∈C)→x̄
N̂C(x).

The proximal normal cone of a set C at x̄ ∈ C is defined as N p
C(x̄) ≜ {λ(x− x̄) | x̄ ∈ PC(x), λ ≥ 0},

where PC is the projection onto C that maps any x to the set of points in C that are closest to x.

For an extended-real-valued function f : Rn → R ≜ R ∪ {±∞}, we write its effective domain
as dom f ≜ {x ∈ Rn | f(x) < +∞}, and the epigraph as epi f ≜ {(x, α) ∈ Rn+1 | α ≥ f(x)}. We
say f is proper if dom f is nonempty and f(x) > −∞ for all x ∈ Rn. We adopt the common rules
for extended arithmetic operations, including the lower and upper limits of a sequence of scalars in
R (cf. [25, Chapter 1(E)]).

Let f : Rn → R be a proper function. We write x →f x̄, if x → x̄and f(x) → f(x̄). The
regular subdifferential and the limiting subdifferential of f at x̄ ∈ dom f are respectively defined as

∂̂f(x̄) ≜ {v | f(x) ≥ f(x̄) + v⊤(x− x̄) + o(∥x− x̄∥)for all x} and ∂f(x̄) ≜ Lim sup
x→f x̄

∂̂f(x).

For any x̄ /∈ dom f , we set ∂̂f(x̄) = ∂f(x̄) = ∅. When f is locally Lipschitz continuous at x̄,
con ∂f(x̄) equals to the Clarke subdifferential ∂Cf(x̄). We further say f is subdifferentially regular
at x̄ ∈ dom f if f is lsc at x̄ and ∂̂f(x̄) = ∂f(x̄). When f is proper and convex, ∂̂f , ∂f , and ∂Cf
coincide with the concept of the subdifferential in convex analysis.

Finally, we introduce the notion of function convergence. A sequence of functions {fk : Rn →
R} is said to converge pointwise to f : Rn → R, written fk p→ f , if limk→+∞ fk(x) = f(x) for any
x ∈ Rn. The sequence {fk} is said to epi-converge to f , written fk

e→ f , if for any x, it holds liminf
k→+∞

fk(xk) ≥ f(x) for every sequence xk → x,

limsup
k→+∞

fk(xk) ≤ f(x) for some sequence xk → x.

The sequence {fk} is said to converge continuously to f , written fk
c→ f , if limk→+∞ fk(xk) = f(x)

for any x and any sequence xk → x.

2 Approachable difference-of-convex functions.

In this section, we formally introduce a class of functions that can be asymptotically approximated
by DC functions. A new concept of the subdifferential that is defined through the approximating
functions is proposed. At the end of this section, we provide several examples that demonstrate
the introduced concepts.
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2.1 Definitions and properties.

An extended-real-valued function can be approximated by a sequence of functions in various con-
vergent notions, as comprehensively investigated in [25, Chapter 7(A-C)]. Among these approaches,
epi-convergence has a notable advantage in its ability to preserve the minimizers [25, Theorem 7.31].
Our focus lies on a particular class of approximating functions, wherein each function exhibits a
DC structure.

Definition 1. A function f is said to be DC on its domain if there exist proper, lsc and convex
functions g, h : Rn → R such that dom f = [ dom g ∩ domh ] and f(x) = g(x) − h(x) for any
x ∈ dom f .

With this definition, we introduce the concept of ADC functions.

Definition 2 (ADC functions). Let f : Rn → R be a proper function.
(a) f is said to be pointwise approachable DC (p-ADC) if there exist proper functions {fk : Rn →
R}, DC on their respective domains, such that fk

p→ f .
(b) f is said to be epigraphically approachable DC (e-ADC) if there exist proper functions {fk :
Rn → R}, DC on their respective domains, such that fk

e→ f .
(c) f is said to be continuously approachable DC (c-ADC) if there exist proper functions {fk :
Rn → R}, DC on their respective domains, such that fk

c→ f .
A function f confirming any of these properties are said to be an ADC function associated with
{fk}. By a slight abuse of notation, we denote the DC decompositions of each fk as fk = gk − hk,
although the equality may only hold for x ∈ dom fk.

A p-ADC function may not be lsc. An example is given by f(x) = 1{0}(x) + 2 · 1(0,+∞)(x),
where for a set C ⊂ Rn, we write 1C(x) = 1 if x ∈ C and 1C(x) = 0 if x /∈ C. In this case, f is not
lsc at x = 0. However, f is p-ADC associated with fk(x) = max ( 0, 2kx+ 1 )−max ( 0, 2kx− 1 ).
In contrast, any e-ADC function must be lsc [25, Proposition 7.4(a)], and any c-ADC function is
continuous [25, Theorem 7.14].

The relationships among different notions of function convergence, including the unaddressed
uniform convergence, have been thoroughly examined in [25]. Generally, pointwise convergence and
epi-convergence do not imply one another, but they coincide when the sequence {fk} is asymptot-
ically equi-lsc everywhere [25, Theorem 7.10]. In addition, fk continuously converges to f if and
only if both fk

e→ f and (−fk) e→ (−f) are satisfied [25, Theorem 7.11]. While epi-convergence is
often challenging to verify, it is simpler for a monotonic sequence {fk} that converges pointwise to
f [25, Proposition 7.4(c-d)].

2.2 Subdifferentials of ADC functions.

Characterizing the limiting and Clarke subdifferentials can be challenging when dealing with func-
tions that exhibit complex composite structures. Our focus in this subsection is on numerically
computable approximations of the limiting subdifferentials.

Definition 3 (approximate subdifferentials). Consider an ADC function f : Rn → R associated
with {fk = gk − hk}. The approximate subdifferential of f (associated with {fk = gk − hk}) at
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x̄ ∈ Rn is defined as

∂Af(x̄) ≜
⋃

xk→x̄

Lim sup
k→+∞

[
∂gk(xk)− ∂hk(xk)

]
.

The approximate horizon subdifferential of f (associated with {fk = gk−hk}) at x̄ ∈ Rn is defined
as

∂∞A f(x̄) ≜
⋃

xk→x̄

Lim sup
k→+∞

∞ [
∂gk(xk)− ∂hk(xk)

]
.

Unlike the limiting subdifferential which requires xk →f x̄, ∂Af(x) is defined using sequences
xk → x̄ without necessitating the convergence of function values. The following proposition estab-
lishes useful properties of the approximate (horizon) subdifferential mappings.

Proposition 1. The following statements hold.
(a) The mappings x 7→ ∂Af(x) and x 7→ ∂∞A f(x) are osc.
(b) Let x̄ /∈ dom f . Then ∂Af(x̄) = ∅ if for any sequence xk → x̄, we have xk /∈ dom fk for
all k sufficiently large. The latter condition is particularly satisfied whenever dom f is closed and
dom fk ⊂ dom f for all k sufficiently large.

Proof. The results in (a) follow directly from the definition of the approximate (horizon) subdiffer-
ential mappings. To show (b), note that for any xk → x̄ /∈ dom f , we have [∂gk(xk)− ∂hk(xk)] = ∅
for all k sufficiently large due to xk /∈ dom fk = [dom gk ∩ domhk]. Thus, ∂Af(x̄) = ∅ for any
x̄ /∈ dom f . The proof is then completed.

Proposition 1(b) presents a sufficient condition for ∂Af(x̄) = ∂f(x̄) = ∅ at any x̄ /∈ dom f .
In the subsequent analysis, we restrict our attention to x̄ ∈ dom f . Admittedly, the set ∂Af(x̄)
depends on the approximating sequence {fk} and the DC decomposition of each fk that may
contain some irrelevant information concerning the local variational geometry of epi f . In fact, for
a given ADC function f , we can make the set ∂Af(x̄) arbitrarily large by adding the same extra
nonsmooth functions to both gk and hk. By Attouch’s theorem (see for example [25, Theorem
12.35]), for proper, lsc, convex functions f and {fk}, if fk e→ f , we immediately have ∂Af = ∂f
when taking gk = fk and hk = 0. In what follows, we further explore the relationships among ∂Af
and other commonly employed subdifferentials in the literature beyond the convex setting. As it
turns out, with respect to an arbitrary DC decomposition of fk that is lsc, ∂Af(x̄) contains the
limiting subdifferential of f at any x̄ ∈ dom f whenever fk

e→ f .

Theorem 1 (subdifferentials relationships). Consider an ADC function f : Rn → R. The following
statements hold for any x̄ ∈ dom f .
(a) If f is e-ADC associated with {fk} and fk is lsc, then ∂f(x̄) ⊂ ∂Af(x̄) and ∂∞f(x̄) ⊂ ∂∞A f(x̄).
(b) If f is locally Lipschitz continuous and bounded from below, then there exists a sequence of
DC functions {fk = gk − hk} such that fk

c→ f , ∂f(x̄) ⊂ ∂Af(x̄) ⊂ ∂Cf(x̄), and ∂
∞
A f(x̄) = {0}.

Consequently, con ∂Af(x̄) = ∂Cf(x̄), the set ∂Af(x̄) is nonempty and bounded, and ∂f(x̄) = ∂Af(x̄)
when f is subdifferentially regular at x̄.

Proof. (a) Since f is e-ADC, it must be lsc. By using epi-convergence of {fk} to f , we know from
[25, Corollary 8.47(b)] and [25, Proposition 8.46(e)] that any element of ∂f(x̄) can be generated
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as a limit of regular subgradients at xk with xk →N x̄ and fk(xk) →N f(x̄) for some N ∈ N∞.
Indeed, we can further restrict xk ∈ dom fk since fk(xk)→N f(x̄) and x̄ ∈ dom f . Then, we have

∂f(x̄) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∂̂fk(xk) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

[
∂gk(xk)− ∂hk(xk)

]
⊂ ∂Af(x̄),

where the second inclusion can be verified as follows: Firstly, due to the lower semicontinuity of
fk and hk, and xk ∈ dom fk ⊂ dom gk, it follows from the sum rule of regular subdifferentials [25,
Corollary 10.9] that ∂̂gk(xk) ⊃ ∂̂fk(xk) + ∂̂hk(xk). Consequently, ∂̂fk(xk) ⊂ ∂̂gk(xk)− ∂̂hk(xk) =
∂gk(xk)− ∂hk(xk) since gk and hk are proper and convex [25, Proposition 8.12]. Similarly, by [25,
Corollary 8.47(b)], we have

∂∞f(x̄) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∞ ∂̂fk(xk) ⊂
⋃

xk(∈dom fk)→x̄

Lim sup
k→+∞

∞[∂gk(xk)−∂hk(xk)] ⊂ ∂∞A f(x̄).
(b) For a locally Lipschitz continuous function f , consider its Moreau envelope eγf(x) ≜

infz{f(z) + ∥z − x∥2/(2γ)} and the set-valued mapping Pγf (x) ≜ argminz{f(z) + ∥z − x∥2/(2γ)}.
For any sequence γk ↓ 0, we demonstrate in the following that {fk ≜ eγkf} is the desired sequence
of approximating functions. Firstly, since f is bounded from below, it must be prox-bounded and,
thus, each fk is continuous and fk(x̄) ↑ f(x̄) for all x̄ (cf. [25, Theorem 1.25]). By the continuity
of f and fk, we have fk

c→ f from [25, Proposition 7.4(c-d)]. It then follows from part (a) that
∂f(x̄) ⊂ ∂Af(x̄). Consider the following DC decomposition for each fk:

fk(x) =
∥x∥2

2γk︸ ︷︷ ︸
≜gk(x)

− sup
z∈Rn

{
−f(z)− ∥z∥

2

2γk
+
z⊤x

γk

}
︸ ︷︷ ︸

≜hk(x)

x ∈ Rn.

It is clear that f(z) + ∥z∥2/(2γk) + z⊤x/γk is level-bounded in z locally uniformly in x, since for
any r ∈ R and any bounded set X ⊂ Rn, the set{
z ∈ Rn

∣∣∣∣x ∈ X, f(z) + ∥z∥22γk
− z⊤x

γk
≤ r
}
⊂
{
z ∈ Rn

∣∣∣x ∈ X, ∥z − x∥2 ≤ ∥x∥2 + 2γk

[
r − inf

z
f(z)

]}
is bounded. Due to the level-boundedness condition, we can apply the subdifferential formula of
the parametric minimization [25, Theorem 10.13] to get

∂(−hk)(x) ⊂
⋃

z∈Pγkf (x)

{
y

∣∣∣∣ (0, y) ∈ ∂(z,x)(f(z) + ∥z∥22γk
− z⊤x

γk

)}
⊂

⋃
z∈Pγkf (x)

{
∂f(z)− x

γk

}
,

where the last inclusion is due to the calculus rules [25, Proposition 10.5 and Exercise 8.8(c)].
Since hk is convex, we have −∂hk(x) = ∂C(−hk)(x) = con ∂(−hk)(x) by [25, Theorem 9.61], which
further yields that[

∂gk(x)− ∂hk(x)
]
⊂ con

⋃
{∂f(z) | z ∈ Pγkf (x)} ∀x ∈ Rn, k ≥ 0. (4)

For any xk → x̄ and any zk ∈ Pγkf (x
k), we have

1

2γk
∥zk − xk∥2 + inf

x
f(x) ≤ 1

2γk
∥zk − xk∥2 + f(zk) ≤ 1

2γk
∥x̄− xk∥2 + f(x̄).
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Then, ∥zk − xk∥ ≤
√
∥x̄− xk∥2 + 2γk[f(x̄)− infx f(x)] → 0 due to the assumption that f is

bounded from below and therefore zk → x̄. By the locally Lipschitz continuity of f , it follows
from [25, Theorem 9.13] that the mapping ∂f : x 7→ ∂f(x) is locally bounded at x̄. Thus, there
is a bounded set S such that

⋃
{∂f(zk) | zk ∈ Pγkf (x

k)} ⊂ S for all k sufficiently large. It follows
directly from [25, Example 4.22] and the definition of the approximate horizon subdifferential that
∂∞A f(x̄) = {0}.

Next, we will prove the inclusion ∂Af(x̄) ⊂ ∂Cf(x̄). For any u ∈ ∂Af(x̄), from (4), there exist
sequences of vectors xk → x̄ and uk → u with each uk taken from the convex hull of a bounded set⋃
{∂f(zk) | zk ∈ Pγkf (x

k)}. By Carathéodory’s Theorem (see, e.g. [22, Theorem 17.1]), any point
in the convex hull of a bounded set in Rn can be expressed as a convex combination of (n + 1)
points in this set. Therefore, for each k, we have uk =

∑n+1
i=1 λk,i v

k,i for some nonnegative scalars

{λk,i}n+1
i=1 with

∑n+1
i=1 λk,i = 1 and a sequence

{
vk,i ∈ ∂f(zk,i)

}n+1

i=1
with {zk,i ∈ Pγkf (x

k)}n+1
i=1 .

It is easy to see that the sequences {λk,i}k≥0 and {vk,i}k≥0 are bounded for each i. We can
then obtain convergent subsequences λk,i →N λ̄i ≥ 0 with

∑n+1
i=1 λ̄i = 1 and vk,i →N v̄ i for

each i. Since zk,i → x̄, we have v̄ i ∈ ∂f(x̄) by using the outer semicontinuity of ∂f . Thus,
uk →N u =

∑n+1
i=1 λ̄i v̄

i ∈ con ∂f(x̄) = ∂Cf(x̄). This implies ∂Af(x̄) ⊂ ∂Cf(x̄). The rest statements
in (b) follow from the fact that ∂Cf(x̄) is nonempty and bounded whenever f is locally Lipschitz
continuous [25, Theorem 9.61].

Under suitable assumptions, Theorem 1(b) guarantees the existence of an ADC decomposition
that has its approximate subdifferential contained in the Clarke subdifferential of the original
function. Notably, this decomposition may not always be practically useful due to the necessity of
computing the Moreau envelope for a generally nonconvex function. Another noteworthy remark
is that the assumptions and results of Theorem 1 can be localized to any specific point x̄. This can
be accomplished by defining a notion of “local epi-convergence” at x̄ and extending the result of
[25, Corollary 8.47] accordingly.

2.3 Examples of ADC functions.

In this subsection, we provide examples of ADC functions, including functions that are discontinu-
ous relative to their domains, with explicit and computationally tractable approximating sequences.
Moreover, we undertake an investigation into the approximate subdifferentials of these ADC func-
tions.

Example 2.1 (implicitly convex-concave functions) The concept of implicitly convex-concave (icc)
functions is introduced in the monograph [11], and is further generalized to extended-real-valued
functions in [16]. A proper function f : Rn → R is icc if there exists a lifted function f : Rn×Rn → R
such that the following three conditions hold:
(i) f(z, x) = +∞ if z /∈ dom f, x ∈ Rn, and f(z, x) = −∞ if z ∈ dom f, x /∈ dom f ;
(ii) f(·, x) is convex for any fixed x ∈ dom f , and f(z, ·) is concave for any fixed z ∈ dom f ;
(iii) f(x) = f(x, x) for any x ∈ dom f .

A notable example of icc functions is the optimal value function fp in (1), which is associated with
the lifted function defined by (the subscripts/superscripts p are omitted for brevity):

f(z, x) ≜ inf
y∈Rn2

{
(c+ Cx)⊤y +

1

2
y⊤Qy

∣∣∣∣ Az +By ≤ b
}

(x, z) ∈ dom f × dom f. (5)
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Let ∂1f(·, x) and ∂2(−f)(z, ·) denote the subdifferentials of the convex functions f(·, x) and (−f)(z, ·),
respectively, for any (x, z) ∈ dom f × dom f . For any γ > 0, the partial Moreau envelope of an icc
function f associated with f is given by

inf
z∈Rn2

{
f(z, x) +

1

2γ
∥z − x∥2

}
=
∥x∥2

2γ︸ ︷︷ ︸
≜gγ(x)

− sup
z∈Rn2

{
−f(z, x)− ∥z∥

2

2γ
+
z⊤x

γ

}
︸ ︷︷ ︸

≜hγ(x)

x ∈ dom f.

This decomposition, established in [16], offers computational advantages compared to the standard
Moreau envelope, as the maximization problem defining hγ is concave in z for any fixed x. In
what follows, we present new results on the conditions under which the icc function f is e-ADC
and c-ADC based on the partial Moreau envelope. Additionally, we explore a relationship between
∂Af(x̄) and ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄), where the latter is known to be an outer estimate of ∂Cf(x̄)
[11, Proposition 4.4.26]. We refer readers to Appendix A for the proof.

Proposition 2. Let f : Rn1 → R be a proper, lsc, icc function associated with f , where dom f is
closed and f is lsc on Rn1 × dom f , bounded below on dom f × dom f , and continuous relative to
int(dom f)× int(dom f). Given a sequence of scalars {γk} ↓ 0, we have:
(a) f is e-ADC associated with {fk}, where each fk(x) ≜ gγk(x)− hγk(x)+ δdom f (x). In addition,
if dom f = Rn1, then f is c-ADC associated with {fk}.
(b) ∂Af(x̄) ⊂ ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄) and ∂∞A f(x̄) = {0} for any x̄ ∈ int(dom f).

Example 2.2 (VaR for continuous random variables) Given a random variable Y : Ω → R, we
consider its VaR mentioned in Example 1.2 and introduce the upper conditional VaR. The upper
conditional VaR for Y at a confidence level α ∈ (0, 1) is defined as CVaR+

α (Y ) ≜ E[Y | Y >
VaRα(Y )]. Given a constant α ∈ (0, 1) and any k > 1/α, we define

gk(x) ≜ [k(1− α) + 1]CVaR+
α−1/k[ c(x, Z)], hk(x) ≜ k(1− α) CVaR+

α [ c(x, Z)] x ∈ Rn. (6)

The proof of the following proposition can be found in Appendix A.

Proposition 3. Let c : Rn × Rm → R be a lsc function. Suppose that c(·, z) is convex for any
z ∈ Rm, and c(x, Z) is continuously distributed, induced by a random vector Z : Ω → Rm, with
E[ |c(x, Z)| ] < +∞ for any x ∈ Rn. For any given constant α ∈ (0, 1), the following properties
hold.
(a) VaRα[ c(x, Z)] is lsc and e-ADC associated with {gk−hk}. Additionally, if c(·, ·) is continuous,
then VaRα[ c(x, Z)] is continuous and c-ADC associated with {gk − hk}.
(b) If there exists a measurable function κ : Rm → R+ such that E[κ(Z)] < +∞ and |c(x, z) −
c(x′, z)| ≤ κ(z)∥x− x′∥ for all x, x′ ∈ Rn and z ∈ Rm, then for any x̄ ∈ Rn,

∂AVaRα[ c(·, Z)](x̄) =
⋃

xk→x̄

Lim sup
k→+∞

E
[
∂x c(x

k, Z)
∣∣∣VaRα−1/k[ c(x

k, Z)] < c(xk, Z) < VaRα[ c(x
k, Z)]

]
,

where E[A(x, Z)] represents the expectation of a random set-valued mapping A, defined as the set
of E[ a(x, Z)] for all measurable selections a(x, Z) ∈ A(x, Z).
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3 The convex composite ADC functions and minimization.

This section aims to derive necessary optimality conditions for (CP0), particularly focusing on the
inner function fp that lacks local Lipschitz continuity. To prepare for it, we make the following
assumption:

Assumption 1 For each p, we have

(a) fp is an ADC function associated with {fkp = gkp − hkp}k≥0, and dom gkp = domhkp = Rn;

(b) −∞ < lim inf
x′→x, k→+∞

fkp (x
′) ≤ lim sup

x′→x, k→+∞
fkp (x

′) < +∞ for all x ∈ Rn;

(c)
[
F k
p ≜ φp ◦ fkp

] e→ Fp.

From Assumption 1(a), each fkp is locally Lipschitz continuous since any real-valued convex

function is locally Lipschitz continuous. Obviously, fkp
c→ fp is sufficient for Assumption 1(b) to

hold. Under epi-convergence fkp
e→ fp, we have lim infx′→x,k→+∞ fkp (x

′) ≥ fp(x) > −∞ for each

p at any x ∈ Rn. However, lim supx′→x,k→+∞ fkp (x
′) < +∞ does not hold trivially. For example,

consider a continuous function f and

fk(x) =


f(x) + k2x+ k if x ∈ [−1/k, 0]
f(x)− k2x+ k if x ∈ (0, 1/k]

f(x) otherwise
,

which results in fk
e→ f but lim supk→+∞ fk(0) = +∞. Additionally, Assumption 1(b) ensures

that at each point x and for any sequence xk → x, the sequence {fkp (xk)}k≥0 must be bounded.

Sufficient conditions for Assumption 1(c) can be found in [25, Exercise 7.8(c)] and [27, Theorem
2.4]. Furthermore, Assumption 1(c) guarantees that each Fp = φp◦fp is lsc, yet it doesn’t necessarily
lead to

∑m
p=1 F

k
p

e→
∑m

p=1 Fp. Let ε-argmin f ≜ {x | f(x) ≤ inf f + ε} be the set of points that
minimize a function f to within ε. Hence, Assumption 1(c) alone may not be sufficient to ensure
that every accumulation point of {xk} with xk ∈ εk-argmin

∑m
p=1 F

k
p for εk ↓ 0 qualifies as a

minimizer of
∑m

p=1 Fp. To maintain epi-convergence under addition of functions, one may refer to
the sufficient conditions in [25, Theorem 7.46].

3.1 Asymptotic stationarity under epi-convergence.

In this subsection, we introduce a novel stationarity concept for problem (CP0), grounded in a mono-
tonic decomposition of univariate convex functions. We demonstrate that under certain constraint
qualifications, epi-convergence of approximating functions ensures this stationarity concept as a
necessary optimality condition. Alongside the fact that epi-convergence results in the convergence
of global optimal solutions [25, Theorem 7.31(b)], this highlights the usefulness of epi-convergence
as a tool for studying the approximation of the composite problem (CP0).

The following lemma is an extension of [11, Lemma 6.1.1] from real-valued univariate convex
functions to extended-real-valued univariate convex functions.
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Lemma 1 (a monotonic decomposition of univariate convex functions). Let φ : R→ R be a proper,
lsc and convex function. Then there exist a proper, lsc, convex and nondecreasing function φ↑, as
well as a proper, lsc, convex and nonincreasing function φ↓, such that φ = φ↑ +φ↓. In addition, if
int(domφ) ̸= ∅, the following properties hold:
(a) For any z0 ∈ R, there exists δ > 0 such that Ndomφ↑(z) = {0} for any z ∈ B(z0, δ), or
Ndomφ↓(z) = {0} for any z ∈ B(z0, δ).
(b) ∂φ(z) = ∂φ↑(z) + ∂φ↓(z) and Ndomφ↑(z)

⋂[
−Ndomφ↓(z)

]
= {0} for any z ∈ domφ. Conse-

quently, Ndomφ(z) = Ndomφ↑(z) +Ndomφ↓(z) for any z ∈ domφ.

Proof. From the convexity of φ, domφ is an interval on R, possibly unbounded. In fact, we can
explicitly construct φ↑ and φ↓ in following two cases.

Case 1. If φ has no direction of recession, i.e., there does not exist d ̸= 0 such that for any z,
φ(z + λd) is a nonincreasing function of λ > 0, it follows from [22, Theorem 27.2] that φ attains
its minimum at some z∗ ∈ domφ. Define

φ↑(z) =

{
φ(z∗) if z ≤ z∗
φ(z) if z > z∗

and φ↓(z) =

{
φ(z)− φ(z∗) if z ≤ z∗

0 if z > z∗
.

For any z ̸= z∗, note that

Ndomφ↑(z) =

{
{0} if z < z∗

Ndomφ(z) if z > z∗
and Ndomφ↓(z) =

{
Ndomφ(z) if z < z∗

{0} if z > z∗
.

Thus, part (a) holds except at z0 = z∗. When z∗ ∈ int(domφ), there exists δ > 0 such that
Ndomφ↑(z) = Ndomφ↓(z) = {0} for any z ∈ B(z∗, δ). Next, consider the case of z∗ ∈ bdry(domφ).
If φ(z) = +∞ for any z < z∗, then domφ = [z∗, r) or [z∗, r] for some r ∈ (z∗,+∞] due to the
convexity of domφ and int(domφ) ̸= ∅. Thus, φ↑ is finite-valued in a neighborhood B(z∗, δ) of z∗
with δ > 0 and Ndomφ↑(z) = {0} for any z ∈ B(z∗, δ). Likewise, if φ(z) = +∞ for any z > z∗, we
have Ndomφ↓(z) = {0} for any z ∈ B(z∗, δ) with some δ > 0. Combining the arguments for z ̸= z∗,
we conclude that (a) is true.

To show part (b), observe that ∅ ̸= int(domφ) ⊂
[
int(domφ↑) ∩ int(domφ↓)

]
. Consequently,

from [22, Theorem 23.8], we have ∂φ(z) = ∂φ↑(z) + ∂φ↓(z) for any z ∈ R. The remaining results
hold trivially if domφ↑ = R or domφ↓ = R. Now we only need to consider the case where
domφ↑ = (−∞, p ] and domφ↓ = [ q,+∞) for some p > q (p ̸= q due to int(domφ) ̸= ∅),
since the cases involving open domains can be derived similarly. It is evident that N(−∞,p ](z) ∩[
−N[ q,+∞)(z)

]
= {0} for any z ∈ R. By [25, Theorem 6.42] and domφ = domφ↑∩domφ↓, it holds

that Ndomφ(z) = Ndomφ↑(z) +Ndomφ↓(z) for any z ∈ domφ.

Case 2. Otherwise, there exists d ̸= 0 such that for any z ∈ R, φ(z+λd) is a nonincreasing function
of λ > 0. Consequently, domφ must be an unbounded interval on R. Let d = 1 (or −1) be such
a recession direction, then φ is nonincreasing (or nondecreasing) on R. We can set φ↑ = 0 and
φ↓ = φ (or φ↑ = φ and φ↓ = 0). Since we have shown that φ is nondecreasing or nonincreasing in
Case 2, the conclusions of (a) and (b) follow directly. The proof is thus completed.

In the subsequent analysis, we use φ↑ and φ↓ to denote the monotonic decomposition of any
univariate, proper, lsc, and convex function φ constructed in the proof of Lemma 1 and, in partic-
ular, we take φ↓ = 0 whenever φ is nondecreasing. We are now ready to present the definition of
asymptotically stationary points.
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Definition 4 (asymptotically stationary points). Let each fp be an ADC function associated with
{fkp = gkp − hkp}k≥0. For each p, define

Tp(x) ≜
{
tp

∣∣∣∃N ∈ N♯
∞, x

k → xwith fkp (x
k)→N tp

}
x ∈ Rn. (7)

We say that x̄ is an asymptotically stationary (A-stationary) point of problem (CP0) if for each
p, there exists yp ∈

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} such that

0 ∈
m∑
p=1

( {
yp ∂Afp(x̄)

}
∪
[
± ∂∞A fp(x̄)\{0}

] )
. (8)

We say that x̄ is a weakly asymptotically stationary (weakly A-stationary) point of problem (CP0)

if for each p, there exist yp,1 ∈
⋃
{∂φ↑

p(tp) | tp ∈ Tp(x̄)} and yp,2 ∈
⋃
{∂φ↓

p(tp) | tp ∈ Tp(x̄)} such
that

0 ∈
m∑
p=1

(
{yp,1 ∂Afp(x̄) + yp,2 ∂Afp(x̄)} ∪

[
± ∂∞A fp(x̄)\{0}

] )
.

Remark 1. (i) Given that the approximate subdifferential ∂Afp is determined by the approximating
sequence {fkp }k≥0 and their corresponding DC decompositions, the notion of (weak) A-stationarity
also depends on these sequences and decompositions. (ii) It follows directly from Lemma 1(b) that an
A-stationary point must be a weakly A-stationary point if int(domφp) ̸= ∅ for each p = 1, · · · ,m.
(iii) When each φp is nondecreasing or nonincreasing, the concepts of weak A-stationarity and
A-stationarity coincide. (iv) Given a point x̄, we can rewrite (8) as

0 ∈
∑
p∈I

[
± ∂∞A fp(x̄)\{0}

]
+

∑
p∈{1,··· ,m}\I

{yp ∂Afp(x̄)}

for some index set I ⊂ {1, · · · ,m} that is potentially empty. For each p ∈ I, although the scalar yp
does not explicitly appear in this inclusion, its existence implies that

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} ̸= ∅,

which plays a role in ensuring x̄ ∈ dom(φp ◦ fp). For instance, if fkp
c→ fp for some p ∈ I,

then Tp(x̄) = {fp(x̄)}, and the existence of yp ∈
⋃
{∂φp(tp) | tp ∈ Tp(x̄)} = ∂φp(fp(x̄)) yields

x̄ ∈ dom(φp ◦ fp).

In the following, we take a detour to compare the A-stationarity with the stationarity defined
in [27], where the author has focused on a more general composite problem

minimize
x∈Rn

φ (f(x)) ,

where φ : Rm → R is proper, lsc, convex and f ≜ (f1, · · · , fm) : Rn → Rm is a locally Lipschitz
continuous mapping. Consider the special case where φ(z) =

∑m
p=1 φp(zp) with z = (z1, · · · , zm).

Under this setting, a vector x̄ is called a stationary point in [27] if there exists ȳ and z̄ such that

0 ∈ S(x̄, ȳ, z̄) ≜
{
(f1(x̄), · · · , fm(x̄))−z̄

}
×
{
∂φ1(z̄1)×· · ·×∂φm(z̄m)−ȳ

}
×

 m∑
p=1

ȳp ∂Cfp(x̄)

 , (9)
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which can be equivalently written as

0 ∈
m∑
p=1

ȳp ∂Cfp(x̄) for some ȳp ∈ ∂φp(fp(x̄)) p = 1, · · · ,m.

For any fixed k ≥ 0, the surrogate set-valued mapping Sk can be defined similarly as S in (9)
by substituting fp and φp with fkp and φk

p for each p. The cited paper provides sufficient conditions

to ensure Limsupk→+∞(gphSk) ⊂ gphS, which asserts that any accumulation point (x̄, ȳ, z̄) of
a sequence {(xk, yk, zk)} with 0 ∈ Sk(xk, yk, zk) yields a stationary point x̄. Our study on the
asymptotic stationarity differs from [27] in the following aspects:

1. Our outer convex function φ is assumed to have the separable form
∑m

p=1 φp, while [27] allows
a general proper, lsc, convex function. In addition, each φp is fixed in our approximating
problem while [27] considers a sequence of convex functions {φk

p}k≥0 that epi-converges to
φp.

2. We do not require the inner function fp to be locally Lipschitz continuous.

If each fp is locally Lipschitz continuous and bounded from below, it then follows from Propo-
sition 1 that fp is c-ADC associated with {fkp = gkp −hkp}k≥0 such that ∂fp(x) ⊂ ∂Afp(x) ⊂ ∂Cfp(x)
and ∂∞A fp(x) = {0} for any x. Moreover, by fkp

c→ fp, one has Tp(x) = {fp(x)}. Thus, for any
A-stationary point x̄ induced by these ADC decompositions, there exists ȳp ∈ ∂φp(fp(x̄)) for each
p such that

0 ∈
m∑
p=1

{ȳp ∂Afp(x̄)} ⊂
m∑
p=1

{ȳp ∂Cfp(x̄)} . (10)

Hence, x̄ is also a stationary point defined in [27] satisfying 0 ∈ S(x̄, ȳ, z̄). Indeed, A-stationarity
here can be sharper than the latter one as the last inclusion in (10) may not hold with equality.

When fp fails to be locally Lipschitz continuous for some p, it is not known if (9) is still a
necessary condition for a local solution of (CP0). This situation further complicates the fulfillment
of conditions outlined in [27, Theorem 2.4], especially the requirement of fkp

c→ fp, due to the
potential discontinuity of fp. As will be shown in Theorem 2 below, despite these challenges, weak
A-stationarity continues to be a necessary optimality condition under Assumption 1.

To proceed, for each p and any x ∈ dom(φp◦fp), we define Sp(x) to be a collection of sequences:

Sp(x) ≜
{
{xkp}k≥0

∣∣∣xkp → xwith φp(f
k
p (x

k
p))→ φp(fp(x))

}
. (11)

Theorem 2 (necessary conditions for optimality). Let x̄ ∈
⋂m

p=1 domFp be a local minimizer of
problem (CP0). Suppose that Assumption 1 and the following two conditions hold:
(i) For each p and any sequence {xkp}k≥0 ∈ Sp(x̄), there is a positive integer K such that

0 /∈ ∂Cfkp (xkp) or Ndomφp(f
k
p (x

k
p)) = {0} ∀ k ≥ K, (12)

and [
0 ∈ yp ∂Afp(x̄), yp ∈

⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}]
=⇒ yp = 0, p = 1, · · · ,m. (13)
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(ii) One has  m∑
p=1

wp = 0, wp ∈ ∂∞(φp ◦ fp)(x̄)

 =⇒ w1 = · · · = wm = 0. (14)

Then x̄ is an A-stationary point of (CP0). Additionally, x̄ is a weakly A-stationary point of (CP0)
if int(domφp) ̸= ∅ for each p = 1, · · · ,m.

Proof. By using Fermat’s rule [25, Theorem 10.1] and the sum rule of the limiting subdifferentials
[25, Corrollary 10.9] due to the condition (14), we have

0 ∈ ∂

 m∑
p=1

(φp ◦ fp)(x̄)

 ⊂ m∑
p=1

∂(φp ◦ fp)(x̄)
(i)
⊂

m∑
p=1

⋃
{xk

p}k≥0∈Sp(x̄)

Lim sup
k→+∞

∂(φp ◦ fkp )(xkp)

(ii)
⊂

m∑
p=1

⋃
{xk

p}k≥0∈Sp(x̄)

Lim sup
k→+∞

⋃{
∂(ykp f

k
p )(x

k
p)
∣∣∣ ykp ∈ ∂φp(f

k
p (x

k
p))
}

(iii)
⊂

m∑
p=1

⋃
{xk

p}k≥0∈Sp(x̄)

Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈ ∂Cfkp (xkp)

}
(iv)
⊂

m∑
p=1

⋃
{xk

p}k≥0∈Sp(x̄)

Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]}
.

(15)

The inclusion (i) is due to approximation of subgradients under epi-convergence [25, Corollary 8.47]
and [25, Proposition 8.46(e)]; (ii) follows from the nonsmooth Lagrange multiplier rule [25, Exercise
10.52] due to the locally Lipschitz continuity of fkp [25, Example 9.14] and the condition (12); (iii)
and (iv) use the calculus rules of the Clarke subdifferential [10, Chapter 2.3]. For each p, any
sequence {xkp}k≥0 ∈ Sp(x̄) and any element

w̄p ∈ Lim sup
k→+∞

{
ykp v

k
p

∣∣∣ ykp ∈ ∂φp(f
k
p (x

k
p)), v

k
p ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]}
,

there is a subsequence wk
p →N w̄p with wk

p = ykp v
k
p for some N ∈ N♯

∞. Next, we show the existence
of ȳp ∈

⋃
{∂φp(tp) | tp ∈ Tp(x̄)} for each p such that

w̄p ∈ { ȳp ∂Afp(x̄) } ∪
[
± ∂∞A fp(x̄)\{0}

]
. (16)

By Assumption 1(b), the subsequence {fkp (xkp)}k∈N is bounded. Taking a subsequence if necessary,

we can suppose that fkp (x
k
p) →N z̄p ∈ Tp(x̄). If {ykp}k∈N is unbounded, then {vkp}k∈N has a

subsequence converging to 0 and, thus, 0 ∈ ∂Afp(x̄). Additionally, there exists ỹp ̸= 0 such that

ykp
|ykp |
→N ỹp ∈ Lim sup

k(∈N)→+∞

∞ ∂φp(f
k
p (x

k
p))

(v)
= Lim sup

k(∈N)→+∞

∞ ∂̂φp(f
k
p (x

k
p))

(vi)
⊂ ∂∞φp(z̄p)

(vii)
= Ndomφp(z̄p).

(17)
The equation (v) follows from [25, Proposition 8.12] by the convexity of φp. From {xkp}k≥0 ∈ Sp(x̄)
and x̄ ∈ domFp, we must have fkp (x

k
p) ∈ domφp for sufficiently large k ∈ N . Since φp is lsc,
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it holds that φp(z̄p) ≤ lim infk(∈N)→+∞ φp(f
k
p (x

k
p)) = φp(fp(x̄)) and, thus, z̄p ∈ domφp. Also,

notice that φp is continuous relative to its domain as it is univariate convex and lsc [22, Theorem
10.2]. This continuity implies φp(f

k
p (x

k
p)) →N φp(z̄p). The inclusion (vi) follows directly from the

definition of the horizon subdifferential. Lastly, (vii) is due to the lower semicontinuity of φ and [25,
Proposition 8.12]. Therefore, we have (0 ̸=)ỹp ∈

⋃
{Ndomφp(tp) | tp ∈ Tp(x̄)

}
with 0 ∈ ỹp∂A fp(x̄)

due to 0 ∈ ∂Afp(x̄), contradicting (13). So far, we conclude that {ykp}k∈N is a bounded sequence.

Suppose that ykp →N ȳp and, thus, ȳp ∈ ∂φp(z̄p) by the outer semicontinuity of ∂φp [25, Proposition
8.7].

Case 1. If ȳp = 0, inclusion (16) holds trivially for w̄p = 0, and for w̄p ̸= 0 we can find a subsequence
{|ykp |}k∈N ′ ↓ 0 such that |ykp | vkp →N ′ w̄p or −w̄p(̸= 0) with vkp ∈

[
∂gkp(x

k
p)− ∂hkp(xkp)

]
for all k ∈ N ′.

Therefore, (16) follows from

w̄p ∈
[(
± Lim sup

k→+∞

∞ [
∂gkp(x

k
p)− ∂hkp(xkp)

])
\{0}

]
⊂
[
± ∂∞A fp(x̄)\{0}

]
.

Case 2. Otherwise, ∥vkp∥ →N ∥w̄p∥/|ȳp|. This means that {vkp}k∈N is bounded. Suppose vkp →N v̄p.

Then, v̄p ∈ Limsupk→+∞
[
∂gkp(x

k
p)− ∂hkp(xkp)

]
⊂ ∂Afp(x̄), and (16) is evident from w̄p = ȳp v̄p.

In either case, we have proved (16). Combining (15) with (16), for some ȳp ∈
⋃
{∂φp(tp) | tp ∈

Tp(x̄)}, we know that x̄ is an A-stationary point of (CP0).

3.2 Examples of A-stationarity.

We present an example to illustrate the concept of A-stationarity and to study its relationship with
other known optimality conditions.

Example 3.1 (bi-parametrized two-stage stochastic programs) Consider the following bi-parametrized
two-stage stochastic program with fixed scenarios described in [17]:

minimize
x∈Rn1

θ(x) +
1

m1

m1∑
p=1

fp(x) subject to ϕp(x) ≤ 0, p = 1, · · · ,m2, (18)

where θ, ϕp : Rn1 → R are convex, continuously differentiable for p = 1, · · · ,m2, and fp, as defined
in (1), is finite for all x ∈ Rn1 and p = 1, · · · ,m1. At x = x̄, let Yp(x̄) and Λp(x̄) represent the
optimal solutions and multipliers for each second-stage problem (1). Suppose that Yp(x̄) and Λp(x̄)
are bounded. Note that θ and ϕp are ADC functions since they are convex. Example 2.1 shows
that fp is an ADC function, and therefore, problem (18) is a specific case of the composite model
(CP0). Given an A-stationary point x̄ of (18), under the assumptions of Example 2.1, we have

0 ∈ ∇θ(x̄) + 1

m1

m1∑
p=1

(
{∂Afp(x̄)} ∪ [±∂∞A fp(x̄)\{0}]

)
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄)

⊂ ∇θ(x̄) + 1

m1

m1∑
p=1

{
∂1fp(x̄, x̄)− ∂2(−fp)(x̄, x̄)

}
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄),
(19)

where µ̄m1+p ∈ N(−∞,0](ϕp(x̄)) for p = 1, · · · ,m2 and fp is defined in (5) for p = 1, · · · ,m1. By
assumptions, both Λp(x̄) and Yp(x̄) are nonempty, bounded, and

Λp(x̄)× Yp(x̄) =
{
(ȳp, µ̄p)

∣∣∣ cp + Cpx̄+Qp ȳp + (Bp)⊤µ̄p = 0, 0 ≤ bp −Apx̄−Bpȳp ⊥ µ̄p ≥ 0
}
.
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It then follows from Danskin’s Theorem [9, Theorem 2.1] that

∂1fp(x̄, x̄) = con
{
(Ap)⊤µ̄p

∣∣∣ µ̄p ∈ Λp(x̄)
}
=
{
(Ap)⊤µ̄p

∣∣∣ µ̄p ∈ Λp(x̄)
}
,

∂2(−fp)(x̄, x̄) = con
{
−(Cp)⊤ȳp

∣∣∣ ȳp ∈ Yp(x̄)} =
{
−(Cp)⊤ȳp

∣∣∣ ȳp ∈ Yp(x̄)} .
Combining these expressions with (19), we obtain

0 = ∇θ(x̄) + 1

m1

m1∑
p=1

[
(Cp)⊤ȳp + (Ap)⊤µ̄p

]
+

m2∑
p=1

µ̄m1+p∇ϕp(x̄),

c p + Cpx̄+Qp ȳp + (Bp)⊤µ̄p = 0, 0 ≤ bp −Apx̄−Bpȳp ⊥ µ̄p ≥ 0, p = 1, · · · ,m1,

0 ≤ ϕp(x̄) ⊥ µ̄m1+p ≥ 0, p = 1, · · · ,m2,

which are the the Karush-Kuhn-Tucker (KKT) conditions for the deterministic equivalent of (18).

4 A computational algorithm.

In this section, we consider a double-loop algorithm for solving problem (CP0). The inner loop
finds an approximate stationary point of the perturbed composite optimization problem

minimize
x∈Rn

m∑
p=1

[
F k
p (x) ≜ φp(f

k
p (x))

]
(20)

by solving a sequence of convex subproblems, while the outer loop drives k → +∞. It is important
to note the potential infeasibility in (20) because [F k

p = φp ◦fkp ]
e→ Fp in Assumption 1(c), together

with dom(φp ◦ fp) ̸= ∅, does not guarantee dom(φp ◦ fkp ) ̸= ∅ for all k ≥ 0. This can be seen from

the example of φ(t) = δ(−∞,0](t), f(x) = max{x, 0} − 1/10 and fk(x) = max{x, 0} + 1/k − 1/10.

Obviously dom(φ ◦ f) = (−∞, 1/10] and φ ◦ fk e→ φ ◦ f by [27, Theorem 2.4(d)], but we have
dom(φ ◦ fk) = ∅ for k = 1, · · · , 9. Even though dom(φp ◦ fkp ) ̸= ∅ for all k ≥ 0 and each p, this
does not imply the feasibility of convex subproblems used in the inner loop to approximate (20).

For simplicity of the analysis, we assume that in problem (CP0), φp is real-valued for p =
1, · · · ,m1, and φp = δ(−∞,0] for p = m1 +1, · · · ,m. Namely, the problem takes the following form:

minimize
x∈Rn

m1∑
p=1

[
Fp(x) = φp

(
fp(x)

)]
subject to fp(x) ≤ 0, p = m1 + 1, · · · ,m. (CP1)

4.1 Assumptions.

Firstly, we make an assumption to address the feasibility issue outlined at the start of this section.
Let {αk

p}k≥0 be auxiliary sequences for p = 1, · · · ,m, where we set αk
p ≡ 0 for p = 1, · · · ,m1, and

for p = m1 + 1, · · · ,m, we define

αk
p ≜ sup

x∈Xk

[
fk+1
p (x)− fkp (x)

]
+
with Xk ≜

{
x ∈ Rn

∣∣∣ fkp (x) ≤ 0, p = m1 + 1, · · · ,m
}
.

Based on these auxiliary sequences, we need an initial point x0 that is strictly feasible to the
constraints f0p (x) ≤ 0 for each p = m1 + 1, · · · ,m.
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Assumption 2 (strict feasibility) There exist x0 and nonnegative sequences
{
α̂k
p

}
k≥0

for p =

m1 + 1, · · · ,m, such that αk
p ≤ α̂k

p for all k ≥ 0 and

+∞∑
k=0

α̂k
p < +∞, f0p (x

0) ≤ −
+∞∑
k=0

α̂k
p ∀ p = m1 + 1, · · · ,m.

Since the quantity αk
p depends on the sequence {fkp }k≥0, the above assumption posits a con-

dition for this approximating sequence. As an example, consider fp being icc associated with fp,

where fp(·, x) is Lipschitz continuous with modulus L for any x. Using the sequence {fkp }k≥0 in
Example 2.1, we have

αk
p ≤ sup

x∈Rn

[
fk+1
p (x)− fkp (x)

]
+
≤ sup

x∈Rn

[
fp(x)− fkp (x)

]
+
≤ γk L

2

2
≜ α̂k

p ∀ k ≥ 0, (21)

where the second inequality is due to fk+1
p (x) ≤ fp(x) for any x, and the last one uses the bound

between the partial Moreau envelope and the original function [16, Lemma 3]. Thus, when {γk} is
summable, the sequence

{
α̂k
p

}
k≥0

satisfies
∑+∞

k=0 α̂
k
p < +∞.

Two more assumptions on the approximating sequences {fkp }k≥0 are needed.

Assumption 3 (smoothness of gkp or hkp) For each k ≥ 0, there exists ℓk > 0 such that

min
{
H
(
∂gkp(x), ∂g

k
p(x

′)
)
, H
(
∂hkp(x), ∂h

k
p(x

′)
)}
≤ ℓk∥x′ − x∥ ∀x, x′ ∈ Rn, p = 1, · · · ,m.

Assumption 4 (level-boundedness) For each k ≥ 0, the function Hk ≜
∑m

p=1 F
k
p is level-

bounded, i.e., for any r ∈ R, the setx ∈ Rn

∣∣∣∣∣∣
m1∑
p=1

φp

(
fkp (x)

)
≤ r

 ∩Xk

is bounded.

Assumption 3 imposes conditions on the Lipschitz continuity of the subdifferential of either gkp
or hkp, which will be used to determine the termination rule of the inner loop. A straightforward

sufficient condition for this assumption is that, for each p and k, gkp or hkp is ℓk-smooth, i.e.,

∥∇gkp(x)−∇gkp(x′)∥ ≤ ℓk∥x−x′∥ or ∥∇hkp(x)−∇hkp(x′)∥ ≤ ℓk∥x−x′∥ for any x, x′ ∈ Rn. Assumption
4 is a standard condition to ensure the boundedness of the generated sequences for each k ≥ 0.

In addition, we need a technical assumption to ensure the boundedness of the multiplier se-
quences in our algorithm.
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Assumption 5 (an asymptotic constraint qualification) For any x̄ ∈ ∩mp=1 domFp, if there
exists {yp}mp=1 satisfying 0 =

∑m
p=1 yp vp where for each p (with the definition of Tp(x̄) in (7)),

(yp, vp) ∈
(⋃{

Ndomφp(tp) | tp ∈ Tp(x̄)
}
× con ∂Afp(x̄)

)
∪
(
R× [ ∂∞A fp(x̄)\{0} ]

)
, (22)

then we must have y1 = · · · = ym = 0.

According to the definitions of ∂Afp(x̄) and ∂∞A fp(x̄), Assumption 5 depends on the approx-
imating sequences {fkp }k≥0 for p = 1, · · · ,m. It holds trivially if each φp is real-valued and
∂∞A fp(x̄) = {0}. For Example 3.1, the assumption translates intom2∑

p=1

λp∇ϕp(x̄) = 0, λp ∈ N(−∞,0](ϕp(x̄)), p = 1, · · · ,m2

 =⇒ λ1 = · · · = λm2 = 0.

This is equivalent to the Mangasarian-Fromovitz constraint qualification (MFCQ) for problem (18)
by [25, Example 6.40]; see also [23].

Furthermore, if each fp is c-ADC associated with {fkp = gkp − hkp}k≥0 such that con ∂Afp(x̄) =
∂Cfp(x̄), and ∂

∞
A fp(x̄) = {0}, Assumption 5 states that 0 ∈

m∑
p=1

yp ∂Cfp(x̄), yp ∈ Ndomφp(fp(x̄)), p = 1, · · · ,m

 =⇒ y1 = · · · = ym = 0.

This condition aligns with the constraint qualification for the composite optimization problem in
[27, Proposition 2.1], and is stronger than the condition in the nonsmooth Lagrange multiplier
rule [25, Exercise 10.52]. Finally, Assumption 5 implies the constraint qualifications in Theorem
2. We formally present this conclusion in the following proposition. Depending on whether φp is
nondecreasing or not, we partition {1, · · · ,m} into two categories:

I1 ≜ { p ∈ {1, · · · ,m} |φpnondecreasing} and I2 ≜ {1, · · · ,m}\I1. (23)

Observe that I2 ⊂ {1, · · · ,m1} for problem (CP1). We do not specifically address the case where
φp is nonincreasing, as one can always redefine φ̃p(t) = φp(−t) and f̃p(x) = −fp(x), enabling the
treatment of these indices in the same manner as those in I1. The proof of Proposition 4 is in
Appendix A.

Proposition 4 (consequences of Assumption 5). Suppose that Assumptions 1 and 5 hold and
fkp

e→ fp for each p. If supφp = +∞ for p ∈ I1, and fp is locally Lipschitz continuous for p ∈ I2,
then conditions (12), (13), and (14) hold at any feasible point x̄ of (CP1). Consequently, any local
solution of (CP1) is a (weakly) A-stationary point of (CP1).

4.2 The algorithmic framework and convergence analysis.

We now formalize the algorithm for solving (CP1). For p = m1 + 1, · · · ,m, recall the nonnegative

sequences
{
α̂k
p

}
k≥0

introduced in Assumption 2, and observe that
∑+∞

k′=k α̂
k′
p → 0 as k → +∞. For

consistency of our notation, we also set α̂k
p ≡ 0 for all k ≥ 0 and p = 1, · · · ,m1. At the k-th outer
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iteration and for p = 1, · · · ,m, consider the upper and lower approximation of fkp at a point y by

taking some akp ∈ ∂hkp(y), bkp ∈ ∂gkp(y) and incorporating sequences
{
α̂k
p

}
k≥0

:

fk,upperp (x; y) ≜ gkp(x)− hkp(y)− (akp)
⊤(x− y) +

+∞∑
k′=k

α̂k′
p ,

fk,lowerp (x; y) ≜ gkp(y) + (bkp)
⊤(x− y)− hkp(x).

(24)

Then, for p = 1, · · · ,m1, a convex majorization of F k
p at a point y can be constructed as

F̂ k
p (x; y) ≜ φ↑

p

(
fk,upperp (x; y)

)
+ φ↓

p

(
fk,lowerp (x; y)

)
. (25)

For p = m1 + 1, · · · ,m, we replace fkp (x) ≤ 0 with a convex constraint fk,upperp (x; y) ≤ 0. The
proposed algorithm for solving (CP1) is given below. In contrast to the prox-linear algorithm that
is designed to minimize amenable functions and adopts complete linearization of the inner maps,
the prox-ADC method retains more curvature information inherent in these maps; as illustrated in
Figure 1.

Algorithm The prox-ADC method for solving (CP1)

Input: Let x = x0 be an initial point satisfying Assumption 2, and {ℓk} be the sequence satisfying
Assumption 3. Set λ > 0, and a positive sequence {(ϵk, δk)} ↓ 0 such that δk/ℓk → 0.
Outer loop: Set k = 0.

1: Execute the inner loop with the initial point xk, and parameters (εk, δk).
2: Set k ← k + 1 until a prescribed stopping criterion is satisfied.

Inner loop: Set i = 0 and xk,0 = xk.

1: Take {ak,ip ∈ ∂ gkp(xk,i)}mp=1, {b
k,i
p ∈ ∂hkp(xk,i)}

m1
p=1 and solve the strongly convex subproblem

xk,i+1 = argmin
x∈Rn


m1∑
p=1

F̂ k
p (x;x

k,i) +
λ

2
∥x− xk,i∥2

∣∣∣∣∣∣ fk,upperp (x;xk,i) ≤ 0, p = m1 + 1, · · · ,m

 .

(26)
2: If the following conditions hold

fk,upperp (xk,i+1;xk,i) ≤ fkp (xk,i+1) +
+∞∑
k′=k

α̂k′
p + ϵk, p = 1, · · · ,m,

fk,lowerp (xk,i+1;xk,i) ≥ fkp (xk,i+1)− ϵk, p ∈ I2,
∥xk,i+1 − xk,i∥ ≤ δk/ℓk,

(27)

break the inner loop and set xk+1 = xk,i+1. Otherwise, set i← i+ 1 and return to step 1.

We emphasize that the prox-ADC method differs from [11, Algorithm 7.1.2] that is designed
for solving a problem with a convex composite DC objective and DC constraints. Central to
the prox-ADC method is the double-loop structure, where, in contrast to [11, Algorithm 7.1.2],
the DC sequence fkp is dynamically updated in the outer loop rather than remaining the same.

This adaptation necessitates specialized termination criteria (27) and the incorporation of α̂k
p to

maintain feasibility with each update of fkp . In the following, we demonstrate the well-definedness
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(a) F1 = φ1 ◦ f1 for a convex φ1 and a smooth f1. (b) F1 = φ1 ◦ f1 for a convex nondecreasing φ1 and a lsc f1.

Figure 1: Illustrations of the prox-ADC method. (a): a comparison of the prox-ADC and the prox-linear method for
minimizing an amenable function. (b): asymptotic approximations of a discontinuous composite function F1 = φ1◦f1
that are constructed by an epi-convergent sequence {F k

1 = φ1 ◦ fk
1 }, and a convex majorization F̂ k

1 for F k
1 .

of the prox-ADC method. Specifically, we establish that for each iteration k, the criteria detailed
in (27) are attainable within a finite number of steps.

Theorem 3 (convergence of the inner loop). Suppose that Assumptions 1-4 hold.Then the following
statements hold.
(a) Problem (26) is feasible for any k, i ≥ 0.
(b) The stopping rule of the inner loop is achievable in finite steps, i.e., the smallest integer i
satisfying conditions (27), denoted by ik, is finite for any k ≥ 0.

Proof. We prove (a) and (b) by induction. For k = 0, notice from Assumption 2 that f0,upperp (x0;x0) =

f0p (x
0)+

∑+∞
k=0 α̂

k
p ≤ 0 for p = m1+1, · · · ,m. Thus, problem (26) is feasible for k = i = 0. Assume

that (26) is feasible for k = 0 and some i = ī (≥ 0). Consequently, x0,̄i+1 is well-defined and for
p = m1 + 1, · · · ,m,

f0,upperp (x0,̄i+1;xk,̄i+1) = f0p (x
0,̄i+1) +

+∞∑
k=0

α̂k
p ≤ f0,upperp (x0,̄i+1;x0,̄i) ≤ 0,

which yields the feasibility of (26) for k = 0, i = ī+1. Hence, by induction, problem (26) is feasible
for k = 0 and any i ≥ 0. To proceed, recall the function Hk defined in Assumption 4. From the
update of x0,i+1, we have

H0(x0,i+1) =

m1∑
p=1

F 0
p (x

0,i+1) ≤
m1∑
p=1

F̂ 0
p (x

0,i+1;x0,i) ≤ H0(x0,i)− λ

2
∥x0,i+1 − x0,i∥2 ∀ i ≥ 0. (28)

Observe that H0 is bounded from below by the continuity of F 0
p = φp◦f0p for p = 1, · · · ,m1 and the

level-boundedness of H0. Suppose for contradiction that the stopping rule of the inner loop is not
achievable in finite steps. Then from (28),

{
H0(x0,i)

}
converges and

∑∞
i=0 ∥x0,i+1 − x0,i∥2 < +∞.

The latter further yields ∥x0,i+1 − x0,i∥ → 0 and thus the last condition in (27) is achievable in
finite iterations. Next, to derive a contradiction, it suffices to prove that the first two conditions
in (27) can also be achieved in finite number of steps. We only show the first one since the other
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can be done with similar arguments. By the level-boundedness of H0, there exists a compact set
S0 containing the sequence {x0,i}. For p = 1, · · · ,m, we have

0 ≤ f0,upperp (x0,i+1;x0,i)−f0p (x0,i+1)−
+∞∑
k=0

α̂k
p = h0p(x

0,i+1)−h0p(x0,i)−(a0,ip )⊤(x0,i+1−x0,i) −→ 0,

because h0p is uniformly continuous on S0 and {a0,ip }i≥0 ⊂
⋃{

∂h0p(x) | x ∈ S0
}
is bounded by [22,

Theorem 24.7]. Therefore, for a fixed ϵ0 > 0, there exists some i0 such that f0,upperp (x0,i0+1;x0,i0) ≤
f0p (x

0,i0+1) +
∑+∞

k=0 α̂
k
p + ϵ0 holds for p = 1, · · · ,m. Thus, (a)-(b) hold for k = 0.

Now assume that (a)-(b) hold for some k = k̄ (≥ 0) and, hence ik̄ is finite. It then follows from

xk̄+1,0 = xk̄,ik̄+1 ∈ X k̄ and f k̄,upperp (xk̄,ik̄+1;xk̄,ik̄) ≤ 0 that for each p,

f k̄+1,upper
p (xk̄+1,0;xk̄+1,0) = f k̄+1

p (xk̄+1,0) +

+∞∑
k=k̄+1

α̂k
p

≤ f k̄p (x
k̄+1,0) + sup

x∈X k̄

[
f k̄+1
p (x)− f k̄p (x)

]
+
+

+∞∑
k=k̄+1

α̂k
p

≤ f k̄p (x
k̄+1,0) +

+∞∑
k=k̄

α̂k
p ≤ f k̄,upperp (xk̄+1;xk̄,ik̄) ≤ 0.

Thus, problem (26) is feasible for k = k̄+ 1 and any i ≥ 0. Building upon this, we can now clearly
see the validity of (b) for k = k̄ + 1, as we have shown similar results earlier in the case of k = 0.
By induction, we complete the proof of (a)-(b).

As we will see in the following lemma, the asymptotic constraint qualification (Assumption 5)
implies the existence of the multipliers for problem (26).

Lemma 2. Suppose that Assumptions 1-5 hold. Let {xk} be the sequence generated by the prox-
ADC method and {xk}(k−1)∈N be a subsequence converging to some x̄. Then, for all k ∈ N ,

there exist ykp,1 ∈ ∂φ
↑
p(f

k,upper
p (xk,ik+1;xk,ik)), ykp,2 ∈ ∂φ

↓
p(f

k,lower
p (xk,ik+1;xk,ik)) for p = 1, · · · ,m

satisfying

0 ∈
m∑
p=1

[
ykp,1 ∂f

k,upper
p (xk,ik+1;xk,ik) + ykp,2 ∂f

k,lower
p (xk,ik+1;xk,ik)

]
+ λ(xk,ik+1 − xk,ik). (29)

Proof. Observe that {xk,ik}k∈N and {xk,ik+1}k∈N converge to x̄ by the stopping conditions (27). By
Theorem 3(a), we have fkp (x

k,ik+1) ≤ 0 for p = m1+1, · · · ,m and all k ∈ N . Due to epi-convergence
in Assumption 1(c), we have

δ(−∞,0](fp(x̄)) ≤ lim inf
k(∈N)→+∞

δ(−∞,0](f
k
p (x

k,ik+1)) = 0 ∀ p = m1 + 1, · · · ,m.

This means fp(x̄) ≤ 0 for p = m1 + 1, · · · ,m and x̄ ∈ ∩mp=1 domFp. The conclusion is a direct
consequence of the nonsmooth Lagrange multiplier rule [25, Exercise 10.52] for problem (26) if we

21



can show that, for any k ∈ N , ykm1+1 = · · · = ykm = 0 is the unique solution of the following system

0 ∈
m∑

p=m1+1

ykp ∂f
k,upper
p (xk,ik+1;xk,ik), ykp ∈ N(−∞,0](f

k,upper
p (xk,ik+1;xk,ik)), p = m1 + 1, · · · ,m.

(30)
Suppose that the above claim does not hold. Without loss of generality, take {ykp}k∈N for

p = m1 + 1, · · · ,m satisfying (30) and
∑m

p=m1+1 |ykp | = 1. For each p and k ∈ N , define

Ak
p ≜

{
ykp v

k
p

∣∣∣ vkp ∈ {∂gkp(xk,ik)− ∂hkp(xk,ik)} ∪ {∂gkp(xk,ik+1)− ∂hkp(xk,ik+1
}}

.

Then, for all k ∈ N , we have

dist

(
0,

m∑
p=m1+1

Ak
p

)
(i)

≤ dist

(
0,

m∑
p=m1+1

ykp
[
∂gkp(x

k,ik+1)− ∂hkp(xi,ik)
])

+
m∑

p=m1+1
D
(
ykp
[
∂gkp(x

k,ik+1)− ∂hkp(xi,ik)
]
, Ak

p

)
(ii)

≤ 0 +
m∑

p=m1+1
|ykp | ·min

{
H(∂gkp(x

k,ik+1), ∂gkp(x
k,ik)), H(∂hkp(x

k,ik+1), ∂hkp(x
k,ik))

}
(iii)

≤
m∑

p=m1+1
|ykp | · ℓk ∥xk,ik+1 − xk,ik∥ (iv)

= δk,

where (i) uses the inequalities D(A,C) ≤ D(A,B) + D(B,C) and D(A+B,A′ +B′) ≤ D(A,A′) +
D(B,B′); (ii) is due to (30) and the definition of Ak

p; (iii) is by Assumption 3; and (iv) is implied

by conditions (27) and
∑m

p=m1+1 |ykp | = 1. Equivalently, for all k ∈ N and p = m1+1, · · · ,m, there

exist ykp ∈ N(−∞,0]

(
fk,upperp (xk,ik+1;xk,ik)

)
with

∑m
p=m1+1 |ykp | = 1 and

vkp ∈
{
∂gkp(x

k,ik)− ∂hkp(xk,ik)
}
∪
{
∂gkp(x

k,ik+1)− ∂hkp(xk,ik+1)
}

such that ∥
∑m

p=m1+1 y
k
p v

k
p∥ ≤ δk. Taking a subsequence if necessary and using conditions (27), we

can assume that fk,upperp (xk,ik+1;xk,ik) and fkp (x
k,ik+1) converge to the same limit point z̄p ∈ Tp(x̄)

as k (∈ N) → +∞ for each p = m1 + 1, · · · ,m. Notice that, for each p, z̄p must satisfy z̄p ≤ 0,

and fk,upperp (xk,ik+1;xi,ik) ≤ 0 for all k ∈ N from Theorem 3(a). Suppose that ykp →N ȳp for each
p. Then, by the outer semicontinuity of the normal cone [25, Proposition 6.6],

ȳp ∈ N(−∞,0](z̄p) ⊂
⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
, p = m1 + 1, · · · ,m.

Obviously,
∑m

p=m1+1 |ȳp| = 1, and {ȳp}mp=m1+1 has at least one nonzero element. Consider two
cases.

Case 1. If {vkp}k∈N is bounded for p = m1 + 1, · · · ,m, then there exist vectors {v̄p}mp=m1+1 with

v̄p ∈ ∂Afp(x̄) such that vkp →N v̄p and 0 =
∑m

p=m1+1 ȳp v̄p ∈
∑m

p=m1+1 ȳp ∂Afp(x̄), contradicting
Assumption 5 since ȳm1+1, · · · , ȳm are not all zeros.

Case 2. Otherwise, there exists some p such that {vkp}k∈N is unbounded, define the index sets

Iub ≜
{
p ∈ {m1 + 1, · · · ,m}

∣∣∣ {vkp}k∈Nunbounded
}
(̸= ∅) and Ib ≜ {m1 + 1, · · · ,m}\Iub.
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Notice that
{∑

p∈Ib y
k
p v

k
p

}
k∈N is bounded. Without loss of generality, assume that this sequence

converges to some w̄ and, thus,
∑

p∈Iub y
k
p v

k
p →N (−w̄).

Step 1: Next we prove by contradiction that, for each p ∈ Iub, the sequence {ykp vkp}k∈N is

bounded. Suppose that the boundedness fails and
∑

p∈Iub ∥y
k
p v

k
p∥ →N +∞ by passing to a sub-

sequence. Consider w̃k
p ≜ ykp v

k
p/
∑

p∈Iub ∥y
k
p v

k
p∥ for p ∈ Iub. Then

∑
p∈Iub w̃

k
p →N 0. Since∑

p∈Iub ∥w̃
k
p∥ = 1 for all k ∈ N , we can assume that there exist p1 ∈ Iub and w̃p1 ̸= 0 such that

w̃k
p1 →N w̃p1 . It then follows from the construction of w̃k

p that {w̃k
p}k∈N has a subsequence con-

verging to some element of ±∂∞A fp(x̄) for each p ∈ Iub and, in particular, w̃p1 ∈
[
±∂∞A fp1(x̄)\{0}

]
.

From
∑

p∈Iub w̃
k
p →N 0, we obtain

0 ∈ [±∂∞A fp1(x̄)\{0} ] +
∑

p∈Iub\{p1}

[±∂∞A fp(x̄) ] ,

contradicting Assumption 5 since the coefficient of the term [±∂∞A fp1(x̄)\{0} ] is nonzero. So far,
we have shown the boundedness of {ykp vkp}k∈N for each p ∈ Iub.

Step 2: Now suppose that ykp v
k
p →N w̄p for each p ∈ Iub with

∑
p∈Iub w̄p = −w̄. Thus ykp →N 0

and w̄p ∈ [±∂∞A fp(x̄) ] for each p ∈ Iub. Since
∑m

p=m1+1 |ȳp| = 1, there exists p2 ∈ Ib such that

ȳp2 ̸= 0. Then
∑m

p=m1+1 y
k
p v

k
p →N 0 implies

0 ∈ ȳp2 ∂Afp2(x̄) +
∑

p∈Ib\{p2}

ȳp ∂Afp(x̄) +
∑
p∈Iub

[±∂∞A fp(x̄) ] ,

which leads to a contradiction to Assumption 5 and therefore completes the proof.

The main convergence result of the prox-ADC method follows. Recall the definitions of I1 and
I2 in (23). An additional assumption is the boundedness of the set ∂Afp(x̄) for p ∈ I2, ensured by
assuming ∂∞A fp(x̄) = {0}. There are some sufficient conditions for ∂∞A fp(x̄) = {0} to hold: (i) If fp
is locally Lipschitz continuous and bounded below, from Proposition 1(b), we have ∂∞A fp(x) = {0}
at any x ∈ dom fp for the approximating sequence generated by the Moreau envelope. (ii) If fp is
icc associated with fp satisfying all assumptions in Example 2.1, then ∂∞A fp(x) = {0} still holds at
any x ∈ int(dom fp) for the approximating sequence based on the partial Moreau envelope. It is
worth mentioning that the icc function fp under condition (ii) is not necessarily locally Lipschitz
continuous.

Theorem 4. Suppose that Assumptions 1-5 hold, and the sequence {xk} generated by the prox-
ADC method has an accumulation point x̄. Suppose in addition that ∂∞A fp(x̄) = {0} for p ∈ I2.
Then x̄ is a weakly A-stationary point of (CP1). Moreover, if for each p ∈ I2, the functions gkp and

hkp are ℓk-smooth for all k ≥ 0, i.e., there exists a sequence {ℓk} such that for all k ≥ 0,

max
{∥∥∇gkp(x)−∇gkp(x′)∥∥, ∥∥∇hkp(x)−∇hkp(x′)∥∥} ≤ ℓk∥x′ − x∥ ∀x, x′ ∈ Rn, p ∈ I2, (31)

then x̄ is also an A-stationary point of (CP1).
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Proof. Let {xk}(k−1)∈N be a subsequence converging to x̄. Similar to Lemma 2, we also have

xk,ik →N x̄, xk,ik+1 →N x̄, and x̄ ∈ ∩mp=1 domFp. By Lemma 2, for all k ∈ N , we have

0 ∈
m∑
p=1

[
ykp,1

(
∂gkp(x

k,ik+1)− ∂ hkp(xk,ik)
)
+ ykp,2

(
∂gkp(x

k,ik)− ∂ hkp(xk,ik+1)
) ]

+ λ(xk,ik+1 − xk,ik),

(32)

where ykp,1 ∈ ∂φ
↑
p(f

k,upper
p (xk,ik+1;xk,ik)), ykp,2 ∈ ∂φ

↓
p(f

k,lower
p (xk,ik+1;xk,ik)) for p = 1, · · · ,m. Due

to Assumption 3 and similar arguments in Lemma 2, the optimality condition (32) implies

∥∥∥∥∥∥
m∑
p=1

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)∥∥∥∥∥∥ ≤ λ δk/ℓk +
m∑
p=1

(
|ykp,1|+ |ykp,2|

)
δk,[

vkp,1 ∈ ∂gkp(xk,ik)− ∂hkp(xk,ik)

vkp,2 ∈ ∂gkp(xk,ik+1)− ∂hkp(xk,ik+1)

]
or

[
vkp,1 ∈ ∂gkp(xk,ik+1)− ∂hkp(xk,ik+1)

vkp,2 ∈ ∂gkp(xk,ik)− ∂hkp(xk,ik)

]
, p = 1, · · · ,m.

(33)

Recall that, for p ∈ I1, φp is nondecreasing, i.e., φ↓
p = 0. Then ykp = 0 for all k ∈ N and p ∈ I2,

and the first inequality of (33) is equivalent to∥∥∥∥∥∥
∑
p∈I1

ykp,1 v
k
p,1 +

∑
p∈I2

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)∥∥∥∥∥∥ ≤ λ δk
ℓk

+

∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) δk. (34)

Step 1: To start with, we prove the boundedness of the multiplier subsequences along k ∈ N .

Similarly as in the proof of Lemma 2, assume that fk,upperp (xk,ik+1;xk,ik), fk,lowerp (xk,ik+1;xk,ik) and
fkp (x

k,ik+1) converge to the same limit point z̄p ∈ Tp(x̄) as k (∈ N)→ +∞ for each p.

For p ∈ I2 ⊂ {1, · · · ,m1}, given φ↑
p is convex, real-valued, and f

k,upper
p (xk,ik+1;xk,ik)→N z̄p, we

can invoke [22, Theorem 24.7] to deduce the boundedness of {ykp,1}k∈N . A parallel reasoning applies

to demonstrate the boundedness of {ykp,2}k∈N for p ∈ I2. Note that {vkp,1}k∈N , {vkp,2}k∈N must also

be bounded for p ∈ I2, otherwise we could assume ∥vkp,1∥ →N +∞ and then every accumulation

point of unit vectors {vkp,1/∥vkp,1∥}k∈N would be in the set ∂∞A fp(x̄), contradicting our assumption
that ∂∞A fp(x̄) = {0} for each p ∈ I2.

For p ∈ I1, suppose for contradiction that
{∑

p∈I1 |y
k
p,1|
}
k∈N is unbounded and

∑
p∈I1 |y

k
p,1| →N

+∞ by passing to a subsequence. Consider the normalized subsequence {ỹkp,1 ≜ ykp,1/
∑

p∈I1 |y
k
p,1|}k∈N

for each p. Consequently, ỹkp,1 →N 0 for p ∈ I2. By the triangle inequality and (34), we have∥∥∥∥∥∥
∑
p∈I1

ỹkp,1 v
k
p,1

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
p∈I2

(
ỹkp,1 v

k
p,1 + ỹkp,2 v

k
p,2

)∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
p∈I1

ỹkp,1 v
k
p,1 +

∑
p∈I2

(
ỹkp,1 v

k
p,1 + ỹkp,2 v

k
p,2

)∥∥∥∥∥∥
≤ λ δk

ℓk
· 1∑

p∈I1 |y
k
p,1|

+

(
1 +

∑
p∈I2

(
|ykp,1|+ |ykp,2|

)∑
p∈I1 |y

k
p,1|

)
δk −→N 0,

which further implies ∥
∑

p∈I1 ỹ
k
p,1 v

k
p,1∥ →N 0 by the boundedness of {vkp,1}k∈N and {vkp,2}k∈N for

p ∈ I2. Now suppose that ỹkp,1 →N ỹp,1 for p ∈ I1. Then from a similar reasoning in (17), for p ∈ I1,

ỹp,1 ∈ Lim sup
k(∈N)→+∞

∞ ∂φ↑
p

(
fk,upperp (xk,ik+1;xk,ik)

)
⊂ ∂∞φ↑

p(z̄p) = Ndomφ↑
p
(z̄p),

24



and obviously
∑

p∈I1 |ỹp,1| = 1. The remaining argument to derive a contradiction to Assumption
5 is actually the same as the proof in Lemma 2 for two cases, except changing the index set
{m1 + 1, · · · ,m} to I1. Therefore, we establish the boundedness of {ykp,1}k∈N for p ∈ I1 and

{ykp,2}k∈N for p ∈ I1∪I2. Suppose that ykp,1 →N ȳp,1 for p ∈ I1 and ykp,2 →N ȳp,2 for p ∈ I1∪I2. Then,
by the outer semicontinuity of ∂φ↑

p, we have ȳp,1 ∈ ∂φ↑
p(z̄p) for p ∈ I1. Similarly, ȳp,2 ∈ ∂φ↓

p(z̄p) for
p ∈ I1 ∪ I2.

Step 2: To proceed, we prove by contradiction that the sequence {ykp,1 vkp,1}k∈N is bounded for

p ∈ I1. Suppose that
∑

p∈I1 ∥y
k
p,1 v

k
p,1∥ →N +∞. Based on step 1, assume that

∑
p∈I2

(
ykp,1 v

k
p,1 + ykp,2 v

k
p,2

)
→N w̄

∈∑
p∈I2

(ȳp,1 ∂Afp(x̄) + ȳp,2 ∂Afp(x̄))

 ,

and thus
∑

p∈I1 y
k
p,1 v

k
p,1 →N (−w̄). Consider w̃k

p ≜ ykp,1 v
k
p,1/

∑
p∈I1 ∥y

k
p,1 v

k
p,1∥ for p ∈ I1, and

then
∑

p∈I1 w̃
k
p →N 0. Given

∑
p∈I1 ∥w̃

k
p∥ = 1 for all k ∈ N , there must exist p1 ∈ I1 such that

w̃k
p1 →N w̃p1 ̸= 0. For each p ∈ I1, it then follows from ykp,1/

∑
p∈I1 ∥y

k
p,1v

k
p,1∥ →N 0 that {w̃k

p}k∈N
has a subsequence converging to some element in ∂∞A fp(x̄). In particular, w̃p1 ∈ ∂∞A fp1(x̄)\{0}.
Since

∑
p∈I1 w̃

k
p →N 0, this implies that

0 ∈ [ ∂∞A fp1(x̄)\{0} ] +
∑

p∈I1\{p1}

∂∞A fp(x̄),

which contradicts Assumption 5. Hence, {ykp,1 vkp,1}k∈N is bounded for p ∈ I1.
Step 3: We are now ready to prove that x̄ is a weakly A-stationary point. Suppose that

ykp,1 v
k
p,1 →N w̄p for p ∈ I1 with

∑
p∈I1 w̄p = −w̄. It remains to show that for each p ∈ I1, there

exists ȳp,1 ∈
⋃
{∂φ↑

p(tp) | tp ∈ Tp(x̄)} such that

w̄p ∈ { ȳp,1 ∂Afp(x̄) } ∪ [ ∂∞A fp(x̄)\{0} ] ,

which can be derived similarly as the proof of (16) in Theorem 2. Summarizing these arguments,
we conclude that x̄ is a weakly A-stationary point of (CP1).

Under the additional assumption of the theorem, there exist ykp,1 ∈ ∂φ
↑
p(f

k,upper
p (xk,ik+1;xk,ik)),

ykp,2 ∈ ∂φ
↓
p(f

k,lower
p (xk,ik+1;xk,ik)), and

vkp,1 ∈
{
∂gkp(x

k,ik)− ∂hkp(xk,ik)
}
∪
{
∂gkp(x

k,ik+1)− ∂hkp(xk,ik+1)
}
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such that∥∥∥∥∥∥
∑
p∈I1

ykp,1 v
k
p,1 +

∑
p∈I2

(ykp,1 + ykp,2)
[
∇gkp(xk,ik)−∇hkp(xk,ik)

]∥∥∥∥∥∥
(i′)
≤ λ∥xk,ik+1 − xk,ik∥+

∑
p∈I1

|ykp,1| ·min
{∥∥∥∇gkp(xk,ik+1)−∇gkp(xk,ik)

∥∥∥ , ∥∥∥∇hkp(xk,ik+1)−∇hkp(xk,ik)
∥∥∥}

+
∑
p∈I2

(
|ykp,1| · ∥∇gkp(xk,ik)−∇gkp(xk,ik+1)∥+ |ykp,2| · ∥∇hkp(xk,ik+1)−∇hkp(xk,ik)∥

)
(ii′)
≤ λ∥xk,ik+1 − xk,ik∥+

∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) ℓk ∥xk,ik+1 − xk,ik∥

(iii′)
≤ λ δk/ℓk +

∑
p∈I1

|ykp,1|+
∑
p∈I2

(
|ykp,1|+ |ykp,2|

) δk ∀ k ≥ 0,

where (i′) is implied by the optimality condition (32), (ii′) employs (31), and (iii′) follows from
conditions (27). This inequality is a tighter version of (34) in the sense that, for each p ∈ I2 and
k ≥ 0, vkp,1 and vkp,2 are elements taken from the single-valued mapping ∇gkp(·)−∇hkp(·) evaluated
at the same point xk,ik . A straightforward adaptation of the preceding argument confirms that x̄
is an A-stationary point of (CP1).

The algorithm in [16] for solving the bi-parameterized two-stage stochastic program with fixed
scenarios can be viewed as a special application of the prox-ADC algorithm. Since each outer
function φp in [16] is real-valued, the algorithm in the cited paper simplifies the stopping criteria
of the inner loop by dropping the first two conditions in (27).

5 Conclusions.

In this paper, we have introduced a new class of composite functions that broadens the scope of
the well-established class of amenable functions. Our principal objective has been to demonstrate
that when the outer convex function is separable across each coordinate, and the inner function is
ADC, the resulting composite function retains computational amenability. Despite the theoretical
advances we have achieved, the practical implementation of this framework to address real-world
applications is yet to be explored. Future work should aim to bridge this gap, translating the
theoretical aspects of our findings into tangible computational solutions.
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Programming: Modeling and Theory (Third Edition). SIAM Publications, Philadelphia, 2021.

[29] Wim van Ackooij. A discussion of probability functions and constraints from a variational
perspective. Set-Valued and Variational Analysis, 28(4):585–609, 2020.

[30] Pengyu Wei. Risk management with weighted VaR. Mathematical Finance, 28(4):1020–1060,
2018.

Appendix A. Proofs of Proposition 2 and Proposition 3

Proof of Proposition 2. (a) We first generalize the convergence result of the classical Moreau en-
velopes when γk ↓ 0 (see, e.g., [25, Theorem 1.25]) to the partial Moreau envelopes. Fixing any
γ0 > 0, we consider the function ψ(z, x, γ) ≜ f(z, x) + δdom f (x) + ψ0(z, x, γ) with

ψ0(z, x, γ) ≜


∥z − x∥2/(2γ) if γ ∈ (0, γ0],

0 if γ = 0, z = x,
∞ otherwise.
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Notice that fk(x) = gγk(x) − hγk(x) + δdom f (x) = infz ψ(z, x, γk). It is easy to verify that ψ is
proper and lsc based on our assumptions. Under the assumption that f is bounded from below
on dom f × dom f , we can also show by contradiction that ψ(z, x, γ) is level-bounded in z locally
uniformly in (x, γ). Consequently, it follows from [25, Theorem 1.17] that fk(x) = infz ψ(z, x, γk) ↑
f(x) for any fixed x and each fk is lsc.

Hence, fk
e→ f is a direct consequence of [25, Proposition 7.4(d)] by fk(x) ↑ f(x) for all x and

the lower semicontinuity of fk. If dom f = Rn1 , then f is continuous, and thus fk
c→ f by [25,

Proposition 7.4(c-d)]. We then complete the proof of (a).

(b) For any x̄ ∈ int(dom f),

∂Af(x̄) =
⋃

xk→x̄

Lim sup
k→+∞

{
∂gk(xk)− ∂hk(xk)

}
(i)
=

⋃
xk→x̄

Lim sup
k→+∞

{
xk

γk
− ∂2(−f)(zk, xk)−

zk

γk

∣∣∣∣ zk = argmin
z∈Rn1

[
f(z, xk) +

1

2γk
∥z − xk∥2

]}
(ii)
⊂

⋃
(xk,zk)→(x̄,x̄)

Lim sup
k→+∞

[
∂1f(z

k, xk)− ∂2(−f)(zk, xk)
]

(iii)
= ∂1f(x̄, x̄)− ∂2(−f)(x̄, x̄),

where (i) follows from the convexity of (−f)(z, ·) for any z ∈ dom f and Danskin’s Theorem [9,
Theorem 2.1]; (ii) is due to the optimality condition for zk, and zk → x̄ is obtained by similar
arguments in the proof of Theorem 1(b) due to our assumption that f is bounded from below on
dom f × dom f ; and (iii) uses the outer semicontinuity of ∂1f and ∂2(−f) at (x̄, x̄) [16, Lemma 5].
Therefore, for any x̄ ∈ int(dom f), ∂f(x̄) ⊂ ∂Af(x̄) ⊂ ∂1f(x̄, x̄) − ∂2(−f)(x̄, x̄). Moreover, due to
the local boundedness of the mappings ∂1f and ∂2(−f) at (x̄, x̄) [16, Lemma 5], it follows from [25,
Example 4.22] that ∂∞A f(x̄) = {0}.

Proof of Proposition 3. (a) Note that for any x ∈ Rn, CVaR+
α [ c(x, Z) ] is well-defined and takes

finite value due to E[ |c(x, Z)| ] < +∞. Since c(x, Z) follows a continuous distribution for any
x ∈ Rn, we know that

CVaR+
α [ c(x, Z) ] = inf

t∈R

{
t+

1

1− α
E [ max{c(x, Z)− t, 0}]

}
=

1

1− α

∫ 1

α
VaRt[ c(x, Z) ] dt,

and CVaR+
α [ c(·, Z) ] is convex by the convexity of c(·, z) for any fixed z ∈ Rm (cf. [24, Theorem

2]). Therefore, both gk and hk defined in (6) are convex. For any x ∈ Rn, we have

gk(x)− hk(x) = k

∫ 1

α−1/k
VaRt[ c(x, Z) ] dt− k

∫ 1

α
VaRt[ c(x, Z) ] dt = k

∫ α

α−1/k
VaRt[ c(x, Z) ] dt.

(35)
Thus, VaRα−1/k[ c(x, Z) ] ≤ gk(x) − hk(x) ≤ VaRα[ c(x, Z) ] for any x ∈ Rn and k > 1/α. Since

VaRt(Z) as a function of t on (0, 1) is left-continuous, it follows that [gk(x)−hk(x)] ↑ VaRα[ c(x, Z) ]
for all x. Observe that

{x | VaRα[ c(x, Z) ] ≤ r} = {x | P(c(x, Z) ≤ r) ≥ α}.
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Based on our assumptions and [29, Proposition 2.2], for any r ∈ R, the probability function
x 7→ −P(c(x, Z) ≤ r) is lsc, which implies the closedness of the level set {x | P(c(x, Z) ≤ r) ≥ α}
for any (r, α) ∈ R× (0, 1). Hence, VaRα[ c(x, Z) ] is lsc for any given α ∈ (0, 1) and is continuous if
c(·, ·) is further assumed to be continuous. Then (a) follows from [25, Proposition 7.4(c-d)].

(b) We use L1(Ω,F ,P) to denote the space of all random variables ϕ : Ω→ R with E[ |ϕ(ω)|] <
+∞. According to [28, Example 6.19], the function CVaR+

α : L1(Ω,F ,P)→ R is subdifferentiable
(see [28, (9.281)] for the definition). Consider any fixed x ∈ Rn. Given that c(x, Z) is a continuous
random variable, it follows from [28, (6.81)] that the subdifferential of CVaR+

α [·] at c(x, Z) is:

∂
(
CVaR+

α [ · ]
)
[ c(x, Z)] =

{
ϕ : Ω→ R+

∣∣∣∣ ϕ(ω) = (1− α)−1 if c(x, Z(ω)) > VaRα[ c(x, Z)]
ϕ(ω) = 0 if c(x, Z(ω)) < VaRα[ c(x, Z)]

}
.

Let PZ denote the probability measure associated with Z. By using [28, Theorem 6.14]), we obtain
the subdifferential of the convex function CVaR+

α [ c(·, Z) ] at x:

∂
(
CVaR+

α [ c(·, Z) ]
)
(x) = cl

 ⋃
ϕ∈∂(CVaR+

α [ · ]) [ c(x,Z)]

∫
∂x c(x, Z(ω))ϕ(ω) dPZ(ω)

 .

By the convexity of c(·, z) for any fixed z ∈ Rm and the existence of a measurable function κ, it fol-
lows from [9, Theorem 2.7.2] that the set

∫
∂xc(x, Z(ω))ϕ(ω) dPZ(ω) = ∂

∫
c(x, Z(ω))ϕ(ω) dPZ(ω)

is closed. Then, for any k > 1/α, {∂gk(x)− ∂hk(x)} can be written as{∫
∂x c(x, Z(ω))ϕ(ω) dPZ(ω)

∣∣∣∣ϕ(ω) = kif VaRα−1/k[ c(x, Z)] < c(x, Z(ω)) < VaRα[ c(x, Z)]

}
.

We then complete the proof by the definition of the approximate subdifferential.

Appendix B. The proof of Proposition 4

We start with the chain rules for ∂(φ ◦ f) and ∂∞(φ ◦ f) where the inner function f is merely lsc.
These results are extensions of the nonlinear rescaling [25, Proposition 10.19(b)] to the case where
φ may lack the strictly increasing property at a given point. One can also derive the same results
through a general chain rule of the coderivative for composite set-valued mappings [18, Theorem
5.1]. However, to avoid the complicated computations accompanied by the introduction of the
coderivative, we give an alternative proof below that is more straightforward. We will present the
proof of Proposition 4 after this lemma.

Lemma 3 (chain rules for the limiting subdifferential). Let φ : R→ R be proper, lsc, convex, and
nondecreasing with supφ = +∞, and f : Rn → R be lsc. Consider x̄ ∈ dom(φ ◦ f). If the only
scalar y ∈ Limsupx→(φ◦f)x̄

Ndomφ(f(x)) with 0 ∈ y · Limsupx→x̄ ∂f(x) is y = 0, then

∂(φ ◦ f)(x̄) ⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

∂φ(f(x))

}
∪
[
Lim sup

x→x̄

∞∂f(x)\{0}
]
,

∂∞(φ ◦ f)(x̄) ⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

Ndomφ(f(x))

}
∪
[
Lim sup

x→x̄

∞∂f(x)\{0}
]
.
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Proof of Lemma 3. The basic idea is to rewrite φ ◦ f as a parametric minimization problem and
apply [25, Theorem 10.13]. Note that φ

(
f(x)

)
= infα [g(x, α) ≜ δepi f (x, α) + φ(α)] for x ∈

dom(φ ◦ f). Define the corresponding set of optimal solutions as Λ(x) for any x ∈ dom(φ ◦ f).
Then, we have f(x̄) ∈ Λ(x̄) and φ(α) = φ(f(x̄)) for any α ∈ Λ(x̄). By our assumptions, it is
obvious that domφ ∈ {(−∞, b), (−∞, b]} for some b ∈ R ∪ {+∞}. Based on our assumption that
supφ = +∞ and f is lsc, it is easy to verify that g is proper, lsc, and level-bounded in α locally
uniformly in x. Then we apply [25, Theorem 10.13] to obtain

∂(φ◦f)(x̄) ⊂ { v | (v, 0) ∈ ∂g(x̄, ᾱ), ᾱ ∈ Λ(x̄) } , ∂∞(φ◦f)(x̄) ⊂ { v | (v, 0) ∈ ∂∞g(x̄, ᾱ), ᾱ ∈ Λ(x̄) } .
(36)

Step 1: We will show that for any ᾱ ∈ Λ(x̄),

Nepi f (x̄, ᾱ) ∩
(
{0} × [−Ndomφ(ᾱ)]

)
= {0}. (37)

We divide the proof of (37) into two cases.
Case 1. If Λ(x̄) is a singleton {f(x̄)}, we can characterize Nepi f (x̄, f(x̄)) by using the result in [25,
Theorem 8.9]. Since ∂f(x̄) ⊂ Limsupx→x̄ ∂f(x) and Ndomφ(f(x̄)) ⊂ Limsupx→(φ◦f) x̄

Ndomφ(f(x)),

it follows from our assumption that either 0 /∈ ∂f(x̄) or Ndomφ(f(x̄)) = {0}. Hence, (37) is satisfied.
Case 2. Otherwise, there exists ᾱmax ∈ (f(x̄),+∞) such that Λ(x̄) = [f(x̄), ᾱmax] since φ is lsc,
nondecreasing and supφ = +∞. Thus,

∂(φ ◦ f)(x̄) ⊂
[
{v | (v, 0) ∈ ∂g(x̄, f(x̄))} ∪ {v | (v, 0) ∈ ∂g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

]
,

∂∞(φ ◦ f)(x̄) ⊂
[
{v | (v, 0) ∈ ∂∞g(x̄, f(x̄))} ∪ {v | (v, 0) ∈ ∂∞g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

]
.

(38)

Let Λ1(x̄) ≜
{
ᾱ ∈ (f(x̄), ᾱmax]

∣∣ ∃xk → x̄with f(xk)→ ᾱ
}
and Λ2(x̄) ≜ Λ(x̄)\Λ1(x̄). In the follow-

ing, we characterize Nepi f (x̄, ᾱ) and verify (37) separately for ᾱ ∈ Λ1(x̄) and ᾱ ∈ Λ2(x̄).

Case 2.1. For any ᾱ ∈ Λ1(x̄), we first prove the inclusion:

Nepi f (x̄, ᾱ) ⊂
[{

λ(v,−1)
∣∣∣∣ v ∈ Lim sup

x→x̄
∂f(x), λ > 0

}
∪
{
(v, 0)

∣∣∣∣ v ∈ Lim sup
x→x̄

∞∂f(x)

}]
. (39)

Observe that for any ᾱ ∈ Λ1(x̄), it holds that

Nepi f (x̄, ᾱ) ⊂ Lim sup
(x,α)(∈epi f)→(x̄,ᾱ)

N p
epi f (x, α) ⊂ Lim sup

x→x̄
N p

epi f (x, f(x)) ⊂ Lim sup
x→x̄

Nepi f (x, f(x)),

(40)
where the first inclusion is because any normal vector is a limit of proximal normals at nearby
points [25, Exercise 6.18]; the second one uses the fact that, for any fixed α > f(x), any proximal
normal to epi f at (x, α) is also a proximal normal to epi f at (x, f(x)); the last inclusion follows
directly from the definition of proximal normals. Based on the the result of [25, Theorem 8.9] that

Nepi f (x, f(x)) = {λ(v,−1) | v ∈ ∂f(x), λ > 0} ∪ {(v, 0) | v ∈ ∂∞f(x)} ,

we conclude that Nepi f (x̄, ᾱ) ⊂ Rn × R− for any ᾱ ∈ Λ1(x̄). For any (v,−1) ∈ Nepi f (x̄, ᾱ) with
ᾱ ∈ Λ1(x̄), there exist xk → x̄, vk → v with vk ∈ ∂f(xk). Then v ∈ Limsupx→x̄ ∂f(x).

To prove (39), it remains to show that v ∈ Limsup∞x→x̄ ∂f(x) whenever (v, 0) ∈ Nepi f (x̄, ᾱ). It
follows from (40) that (v, 0) is a limit of proximal normals of epi f at (xk, f(xk)) for some sequence
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xk → x̄. (i) First consider the case (vk, 0) → (v, 0) with (vk, 0) ∈ N p
epi f (x

k, f(xk)). Following the

argument in the proof of [25, Theorem 8.9], we can derive vk ∈ ∂∞f(xk). Therefore,

v ∈ Lim sup
k→+∞

∂∞f(xk) ⊂ Lim sup
k→+∞

 ⋃
xk,i→f xk

Lim sup
i→+∞

∞∂f(xk,i)

 ⊂ ⋃
xj→x̄

Lim sup
j→+∞

∞ ∂f(xj),

where the first inclusion is due to the definition of the horizon subdifferential, and the last inclusion
follows from a standard diagonal extraction procedure. (ii) In the other case, we have λk(v

k,−1)→
(v, 0) with λk ↓ 0 and vk ∈ ∂f(xk) for all k ≥ 0. It is easy to see v ∈ Limsup∞x→x̄ ∂f(x). So far, we
obtain inclusion (39). Since ᾱ ∈ Λ1(x̄), we have Ndomφ(ᾱ) ⊂ Limsupx→(φ◦f)x̄

Ndomφ(f(x)), and

our assumption implies that λ = 0 is the unique solution satisfying 0 ∈ λ · Limsupx→x̄ ∂f(x) with
λ ∈ Ndomφ(ᾱ). Thus, (37) is satisfied.

Case 2.2. For any ᾱ ∈ Λ2(x̄), consider any sequence
{
(xk, αk)

}
⊂ epi f converging to (x̄, ᾱ). Then

αk > f(xk) for all k sufficiently large since ᾱ /∈ Λ1(x̄). It is easy to see thatN p
epi f (x

k, αk) ⊂ Rn×{0},
which gives us Nepi f (x

k, αk) ⊂ Rn × {0}. By following a similar pattern as the final part of Case
2.1, it is not difficult to obtain, for any ᾱ ∈ Λ2(x̄),

Nepi f (x̄, ᾱ) ⊂
{
(v, 0)

∣∣∣∣ v ∈ Limsup
x→x̄

∞∂f(x)

}
. (41)

In this case, (37) holds trivially. Hence, we have verified (37) for cases 1 and 2.

Step 2: Based on (37) in step 1, we can now apply the sum rule [25, Corollary 10.9] for ∂g(x̄, ᾱ)
to obtain

∂g(x̄, ᾱ) ⊂ Nepi f (x̄, ᾱ) + {0} × ∂φ(ᾱ), ∂∞g(x̄, ᾱ) ⊂ Nepi f (x̄, ᾱ) + {0} × Ndomφ(ᾱ). (42)

Case 1. For Λ(x̄) = {f(x̄)}, by combining (42) with (36), we can derive the stated results for
∂(φ ◦ f)(x̄) and ∂∞(φ ◦ f)(x̄) based on the observations that ∂φ(f(x̄)) ⊂ Limsupx→(φ◦f)x̄

φ(f(x))

and ∂∞f(x̄) ⊂ Limsup∞x→x̄ ∂f(x).

Case 2. Otherwise, by (42), we have

{v | (v, 0) ∈ ∂g(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}
(39)(41)
⊂

⋃{
y · Lim sup

x→x̄
∂f(x)

∣∣∣∣ y ∈ ∂φ(ᾱ), ᾱ ∈ Λ1(x̄)

}
∪
{
Lim sup

x→x̄

∞∂f(x)

∣∣∣∣ 0 ∈ ∂φ(ᾱ), f(x̄) < ᾱ ≤ ᾱmax

}
⊂

⋃{
y · Lim sup

x→x̄
∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

∂φ(f(x))

}
∪
[
Lim sup

x→x̄

∞∂f(x)\{0}
]
,

where the last inclusion is because 0 will be included in the first set if 0 ∈ ∂φ(ᾱ) for some ᾱ ∈
(f(x̄), ᾱmax] and the second set will be empty otherwise. Similarly,

{v | (v, 0) ∈ ∂g∞(x̄, ᾱ), f(x̄) < ᾱ ≤ ᾱmax}

⊂
⋃{

y · Lim sup
x→x̄

∂f(x)

∣∣∣∣∣ y ∈ Lim sup
x→(φ◦f) x̄

Ndomφ(f(x))

}
∪
[
Lim sup

x→x̄

∞∂f(x)\{0}
]
.

We then complete the proof by using the inclusions in (38).
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Equipped with the chain rules, we are now ready to prove Proposition 4.

Proof of Proposition 4. Let x̄ be any feasible point, i.e., x̄ ∈ ∩mp=1 domFp. Suppose for contradiction

that (12) does not hold at x̄. Thus, there exist p1 ∈ {1, · · · ,m}, {xk} ∈ Sp1(x̄) and an index set

N ∈ N♯
∞ such that 0 ∈ ∂Cfkp1(x

k) and Ndomφp1

(
fkp1(x

k)
)
̸= {0} for all k ∈ N . Take an arbitrary

nonzero scalar yk ∈ Ndomφp1

(
fkp1(x

k)
)
for all k ∈ N . Let ỹ be any accumulation point of the unit

scalars {yk/|yk|}k∈N . Then, we have (0 ̸=)ỹ ∈
⋃
{Ndomφp1

(tp1) | tp1 ∈ Tp1(x̄)} and 0 ∈ con ∂Afp1(x̄)
by Proposition 1(a), contradicting Assumption 5. This proves condition (12).

For any fixed p = 1, · · · ,m, let yp′ = 0 for any p′ ∈ {1, · · · ,m}\{p} in Assumption 5. Then the
only scalar yp ∈

⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
with 0 ∈ yp con ∂Afp(x̄) is yp = 0, which completes

the proof of (13).
To derive the constraint qualification (14), we consider two cases.

Case 1. For p ∈ I2, we have Ndomφp(fp(x̄)) ⊂
⋃{
Ndomφp(tp) | tp ∈ Tp(x̄)

}
due to fkp

e→ fp and
∂(yfp)(x̄) ⊂ y ∂Cfp(x̄) ⊂ y · con ∂Afp(x̄) for any y by Theorem 1. Together with Assumption 5, we
deduce that the only scalar y ∈ Ndomφp(fp(x̄)) with 0 ∈ ∂(yfp)(x̄) is y = 0. From this condition
and the local Lipschitz continuity of fp for p ∈ I2, we can apply the chain rule [25, Theorem 10.49]
to get

∂∞(φp ◦ fp)(x̄) ⊂
⋃{

y · con ∂Afp(x̄) | y ∈ Ndomφp(tp), tp ∈ Tp(x̄)
}
. (43)

Case 2. For p ∈ I1, to utilize the chain rules (Proposition 3) for ∂∞(φp ◦ fp), we must first confirm
the validity of the condition:[

0 ∈ y · Lim sup
x→x̄

∂fp(x), y ∈ Lim sup
x→Fp x̄

Ndomφp(fp(x))

]
=⇒ y = 0. (44)

Indeed, it suffices to consider the case of domφ↑
p = (−∞, rp) or (−∞, rp] for some rp ∈ R, because

the statement holds trivially when φ↑
p is real-valued. For any element ȳ ∈ Limsupx→Fp x̄ Ndomφp(fp(x)),

there exist (xk, yk)→ (x̄, ȳ) with yk ∈ Ndomφp(fp(x
k)) and Fp(x

k)→ Fp(x̄). Since x̄ ∈ domFp, we

must have xk ∈ domFp for k sufficiently large, i.e., fp(x
k) ∈ domφ↑

p, and {fp(xk)}k≥0 is bounded

from above due to domφ↑
p = (−∞, rp) or (−∞, rp]. It follows immediately from the lower semicon-

tinuity of fp that {fp(xk)}k≥0 is bounded. Assume that this sequence converges to some z̄p. Note
that z̄p ∈ domφp due to Fp(x̄) = lim infk→+∞ φp(fp(x

k)) ≥ φp(z̄p). Thus, by the outer semiconti-

nuity, yk → ȳ ∈ Ndomφp(z̄p). By f
k
p

e→ fp, each fp(x
k) can be expressed as the limit of a sequence

{f ip(xk,i)}i≥0 with xk,i → xk for any fixed k ≥ 0. Using a standard diagonal extraction procedure,

one can extract a subsequence f ikp (xk,ik)→ z̄p with xk,ik → x̄. Hence, z̄p ∈ Tp(x̄) and

Limsup
x→Fp x̄

Ndomφp(fp(x)) ⊂
⋃
{Ndomφp(tp) | tp ∈ Tp(x̄)}. (45)

Using the subdifferentials relationships in Proposition 1 and the outer semicontinuity of ∂Afp in
Proposition 1(a), we have

Lim sup
x→x̄

∂fp(x) ⊂ Lim sup
x→x̄

∂Afp(x) = ∂Afp(x̄). (46)
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By (45), (46) and Assumption 5, we immediately get (44). Thus, we can apply the chain rule in
Proposition 3, and use (45), (46) again to obtain

∂∞(φp ◦ fp)(x̄) ⊂
⋃{

y ∂Afp(x)
∣∣ y ∈ Ndomφp(tp), tp ∈ Tp(x̄)

}
∪
[
Lim sup

x→x̄

∞fp(x)\{0}
]

⊂
⋃{

y ∂Afp(x)
∣∣ y ∈ Ndomφp(tp), tp ∈ Tp(x̄)

}
∪ [ ∂∞A fp(x̄)\{0} ] .

(47)

For the last inclusion, we use Lim sup
x→x̄

∞ ∂fp(x) ⊂ Lim sup
x→x̄

∞ ∂Afp(x) ⊂ ∂∞A fp(x̄) by Theorem 1(a)

and using the diagonal extraction procedure again. Combining inclusions (43), (47) for two cases
with Assumption 5, we derive (14) and complete the proof.
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