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Abstract

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not incen-
tive compatible because an auction winner who offered its avoidable costs could lose
money at the LMP. ISOs used make-whole payments to ensure market participants
did not lose money. Make-whole payments were not public creating transparency
issues. Over time, the ISOs employed methods to raise the price. They reduced but
did not eliminate make-whole payments. In addition, the new ’LMPs’ were too high
to send a good marginal entry signal and too low to send an incremental entry signal.
Some ISOs introduced capacity markets to remedy this problem. Capacity markets
brought their own set of issues. The objective of the paper is to introduce a pricing
scheme that improves on the current schemes and is more aligned with the theory of
markets with scale economies. It eliminates make-whole payments, increases trans-
parency, allocates the costs to period that caused them, sends better price signals, and
lowers capacity market prices. We introduce the one-pass average incremental cost
(AIC) pricing methodology to the multi-period model with multi-step marginal cost
functions, ramp and transmission constraints, and a co-optimized reserves market.
AIC prices address these issues in a positive economic way. Market rules, locational
incremental energy price (LIPs) along with LMPs produce incentive compatibility.
No market participant dispatched who offered its avoidable costs losses money. LIPs
eliminate make-whole payments making the market more transparent. Generally,
LIPs and LMPs send a good entry signals and have better economic design proper-
ties. These properties are proved theoretically, demonstrated on small examples, and
demonstrated on actual ISO market problems.

1 Introduction

For the last century of US electric power markets, prices were calculated using the
cost-of-service model and its cost allocation rules designed for monopolies. Vertically
integrated utilities with monopoly franchises, forecasted demand, scheduled their own
generation, and sent invoices to consumers once a month with a single energy price.
Many still do. Over time, technology advances and government subsidies reduced
prices and markets grew. Utilities made money through a regulated return on owned
capital investments. Over-investment that occurs under the cost-of-service regime
was held in check by state commissions. Wholesale energy transactions took place in
power pools or were negotiated, but needed Federal Energy Regulatory Commission
(FERC) approval.
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In 1984, Bohn et al proposed optimal spot pricing of electricity – later called the lo-
cational marginal price (LMP), and spot wheeling charges – later called transmission
congestion rent (see Bohn et al. (1984)). In 1988, Schweppe et al popularized these
concepts (see Schweppe et al. (2013)).

In the U.S. wholesale power markets, prices and procedures are regulated by the
FERC under the ’just and reasonable’ and ‘not unduly discriminatory’ standard of
the Federal Power Act (FPA) of 1935. The double negative implies possible due dis-
crimination. In 1989, Varian finds price discrimination is an ubiquitous phenomenon
and examined some schemes to enhance economic welfare. For public utilities, he
found that pricing schedules had become so complex that households often make the
”wrong” choice electricity use (see Varian (1989)). For centuries, the ‘just’ price has
been debated by Aristotle, Aquinas and others in the Roman Church, John Locke, and
more recently, regulatory commissions (see Mueller & Gerber (2020)). The courts
have agreed with FERC that efficient competition can set just and reasonable prices.

In 1996, FERC issued Order 888 that required open access to transmission and
listed the requirements to become an Independent System Operators (ISO). ISOs
formed, first from power pools, with wholesale auction markets repeated daily with
hourly and later sub-hourly prices. In 2022, nine ISOs/RTOs (here after called ISOs)
serve over two-thirds of US electricity consumers and more than 50% of Canada’s
population (see ISO/RTO COUNCIL).

In the day-ahead market, market participants submit bids and offers to the ISO.
To satisfy the just and reasonable requirements, the ISO’s market monitor mitigates
the offers if they do not reflect the unit’s estimated avoidable (aka incremental) cost.
The ISO solves the market auction for efficient commitment and dispatch with 36
to 48 hourly periods. The ISO schedules the first 24 periods. Next, the ISO runs
a pricing algorithm to obtain the 24-hourly nodal prices and settles the market with
nodal prices and make-whole payments creating a hedge against the real-time market
prices. Energy and other prices are announced to the public after the schedule is
determined.

ISO real-time markets are a repeated series of next-period-only (for example, ev-
ery 5-minutes) markets. The operator either uses judgement and/or a look-ahead
model to commit units for future periods, if necessary. The system operator sends
dispatch signals and announces the energy prices for each period. If the generator’s
real-time dispatch signal deviates from day-ahead schedule, it can buy back or sell
from its schedule based on real time price. If the generator does not perform accord-
ing to its real-time dispatch signal, it may be subject to a monetary penalty. Since the
inception of ISO markets and the first England-Wales market, the question has been
what should the prices be when there are avoidable fixed costs and passive consumers
represented by a point forecast of demand?
Auction Market Mechanisms. An auction market mechanism can be viewed as an
institution with rules including tariffs governing the market outcome. (see Mas-Colell
et al. (1995) and Royal Swedish Academy of Sciences). In a two-sided ISO auction,
auction rules are designed to have the following properties: Truth telling/incentive
compatibility enforced by, if needed, mitigation, monetary penalties for rule viola-
tions, enforcement, and merger authority. Individual rationality is satisfied since the
choice to go off-grid or self-schedule can be very expensive. Economic efficiency is
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satisfied by the software designed for Pareto efficiency (aka maximum market surplus).
Revenue neutrality/balanced transfers is satisfied by market rules. Unfortunately, it
is difficult to achieve all these requirements (see Myerson & Satterthwaite (1983)).
Although possibly implied by the above properties, we would add additional desir-
able properties such as prices that are understandable and transparent, and sustain
the market into the future. FERC rules are designed to achieve the above desired
properties and achieving these properties satisfy the ’just and reasonable’ and the ‘not
unduly discriminatory’ pricing requirements. Actual ISO market design is a blend of
economic theory, properties of AC power flow, approximations, computability, and
compromise.

In game theory and economics, incentive compatibility occurs when the incentives
that motivate the actions of individual participants are consistent with following the
rules established by the group. Truthful bids and offers are needed for economic ef-
ficiency. In the day-ahead and real-time market, bids and offers are mitigated. Table
1 shows the recent mitigation (called capping) in PJM. Table 1 does not reflect the
market participants that offered truthfully because they would not have been miti-
gated. Other ISOs report similar statistics. In addition, from 2007 to 2021, FERC
has ordered over $1.3 billion in penalties under the manipulation mandate and rules
violations (see FERC (2021)). Virtual bidding in the day-ahead market also helps
prevent market power.

Table 1. Offer Mitigation in PJM from 2016 to 2020.

Source: Monitoring Analytics, Annual State of the Market, 2020

There are at least three legitimate reasons why generators should be allowed to
deviate from truthful bidding: if the minimum run time spans more than the mar-
ket horizon; if a unit needs more than the market horizon to recover its costs; or if
the participation model does not allow the unit to represent its full incremental costs,
for example, the configuration decision of combined-cycle gas turbines (CCGTs) or
the generation-pump cycle decision of a pumped-storage unit. These conditions are
easily checked. The remaining reasons involve strategic behavior that may result in
inefficient dispatch, for example, an attempt to exercise market power by withhold-
ing. With self-scheduling, the resulting dispatch may not be efficient. Self-schedules
receive only the LMPs and no make-whole payments.

In ISOs, self-scheduling is a misnomer. In ISO-NE, self-schedules are placed into
the market as flexible resources with a maximum operating level at the self-schedule
and a marginal cost offer at the minimum allowable (currently -$150/MWh). In
PJM, self-scheduling rules are pages long (see PJM (2021)). Acting alone, if the self-
schedule is greater than the unit’s optimal dispatch, the system LMPs will be lower
than the efficient price; if lower, the LMPs are higher.

An ISO may have several problems if too many market participants self-schedule.
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As the fraction of self-scheduled resources increases, it becomes increasingly chal-
lenging for the ISO to balance the system; the solution efficiency decreases, and the
market becomes an arbitrary non-economic physical balancing mechanism. In addi-
tion, it may cause renewable curtailments. Markets with significant self-scheduling
achieve efficient dispatch and efficient prices only by chance. The future markets are
projected to need more flexibility from market participants (see Orvis & Aggarwal
(2018)).

The overall goal of pricing is to produce efficient two-sided markets with as little
government intervention as possible. Energy is a private good and reserves (to prevent
blackouts) are a public good. Energy and reserves are joint products. Prices should
perform several basic functions. They should settle the market; signal entry and exit;
and create incentives for greater efficiency of existing assets. In addition, they should
be revenue neutral and prevent inefficient arbitrage.

Ideally, short-term market efficiency is achieved in day-ahead and real-time mar-
kets. Longer-term market efficiency is achieved by prices in the short-term markets
that incent efficient sustainable investment for both producers and consumers. To
achieve this, prices must be transparent and understandable and non-confiscatory.
In the day-ahead and real-time markets, investments costs are sunk (not avoidable).
With truthful bids and offers and the ability of software to solve the auction mar-
ket, the market yields an efficient dispatch. In the long run, investments costs are
avoidable and should be covered by discounted short-term market profits.

Initially, the ISOs adopted the LMP pricing concepts, but quickly realized that
some optimally dispatched generators were losing money under LMP pricing and in-
troduced make-whole payments to avoid these losses. The LMPs were made public,
but the make-whole payments are considered private information and only aggre-
gates were made public, diluting price transparency. ISOs and load serving entities
(LSEs) kept the practice of forecasting demand – a principal-agent problem – creating
a one-sided less-flexible auction for what should be a two-sided auction. Ideally, each
consumer should have been expressing its value of consumption, its willingness to
shift consumption to other periods, and constraints on its consumption. When con-
sumers bid into the market, the scarcity prices and consumption quantities are ‘crowd
sourced’ and not the result of estimates by less financially motivated entities. Since
the inception of ISOs, the pricing rules have changed constantly with the purpose
of increasing the price because the revenues from LMPs were too low to sustain the
markets.

Until 2005, Lagrangian relaxation (LR) ‘solved’ the unit commitment problem,
but the dispatch was usually infeasible. Heuristics were needed to find a feasible, not
necessarily optimal, dispatch. The dual variables from the LR process have weak,
possibility misleading, economic properties. In 2005, after significant improvements
in mixed integer programming (MIP), PJM introduced MIP as their unit commitment
and dispatch solver. MIP eliminated the infeasibility problem of LR and improved
the dispatch efficiency. By 2018, all ISOs were using MIP with estimated cost savings
more than five billion dollars per year (see O’Neill (2017b)).

In the MIP formulation, mathematically, the LMPs do not exist due to binary
variables. For MIP problems, many commercial software packages create a linear
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program by fixing each binary to its MIP solution value. This is equivalent to as-
suming avoidable fixed costs are sunk. The dual variables on the energy balance and
reserve constraints alone have no claim to being market clearing (see Vyve (2011)).
LMPs are short-term low-level marginal entry signals.

Basic microeconomics assumes convexity and differentiability and provides only
a naïve siren song for understanding non-convex markets. In convex markets, the
efficient dispatch problem can be represented as a convex optimization problem. In
strictly convex markets, dual variables (LMPs) are unique and have desirable economic
properties as prices, that is, LMPs alone clear and settle the markets, and signal ef-
ficient entry and exit. In convex markets, if primal degeneracy involves the energy
balance or reserve constraints, there may be multiple optimal dual variables that are
the source of the prices. Linear program (LP) solvers produce only one set of prices
that can result in arbitrary settlements, and weaker entry and exit signals. For more
information on convexity (see Mangasarian (1969), Rockafellar (1970)).

In the absence of convexity, LMPs may not support an optimal commitment and
dispatch schedule. Markets may have empty cores. ISO short-term markets may not
be sub-market (sub-game) efficient. In 2005, O’Neill et al showed that LMPs plus
make-whole payments are market clearing for generation (see O’Neill et al. (2005)).
That is, efficient discriminatory prices are necessary to achieve efficiency of a two-
sided non-convex markets with avoidable fixed costs.

In the presence of avoidable fixed costs, no single price performs the function that
LMPs perform in strictly convex markets. Most fossil generators and large industrial
consumers have scale economies. For a more discussion of pricing with declining
average costs (see Baumol et al. (1982)).

Over time, LMPs gradually disappeared from ISO markets as modified pricing al-
gorithms produced energy prices (dual variables) different from the LMPs, but these
prices are still called LMPs (now an umbrella term). In the pricing run, some ISOs
relaxed generator minimum operating levels, some relaxed the binaries, and some
modified the marginal energy costs by including some fixed costs. This led to higher
prices and lower make-whole payments. The modified LMPs are neither fish nor
fowl. They are usually too high to be a low-level marginal entry signal and too low
to eliminate make-whole payments.

In 2007, Gribik et al proposed Convex Hull Pricing (CHP) (see Gribik et al. (2007)).
In 2015, Schiro et al presented some counterintuitive properties of CHP. CHP does
not eliminate make-whole payments, pays generators to stay on the dispatch signals
and is not always revenue adequate (see Schiro et al. (2015)). In addition, CHP
spawned a series of papers on approximating the convex hull (see Wang et al. (2013)
and Wang et al. (2016)). In 2016, Hua and Baldick introduced conditions for solv-
ing CHP exactly (see Hua & Baldick (2016)). In 2016, MISO implemented a single
interval CHP approximation that allocates some avoidable fixed costs to the marginal
cost function, but penalizes departures from dispatch signals (see Wang et al. (2016)).
In 2018, Borokhov described a modification of CHP that relaxes the requirement
for a convex price-quantity curve (see Borokhov (2018). In 2019, Chen and Wang
proposed single period approximate CHP for piecewise linear incremental energy
function (see Chen & Wang (2019)). In 2019, Chao introduced an LP approach
to solve CHP with multi-step incremental energy functions (see Chao (2019)). In
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2020, Yu et al developed an extended convex hull formulation approximation that
can solve multi-interval CHP on MISO day-ahead cases (see Yu et al. (2020)). In
2021, Andrianes et al used Dantzig-Wolfe Decomposition to solve CHP problem
(see Andrianesis et al. (2021)). In 2018, Eldridge et. al. examine pricing properties
of near-optimal unit commitment solutions resulting in potentially large wealth trans-
fers from sub-optimal solutions. Results on a selected set of problems demonstrate
that approximate Convex Hull Pricing (aCHP) may eliminates most erratic price be-
havior (Eldridge et al. (2018)).

In 2016, for single-period markets with fixed costs and inelastic demand, Liberopou-
los and Andrianes reviewed several pricing schemes for the price, uplifts, and profits
and compared these schemes along these three dimensions. They present results for
supplier strategic bidding behavior in the context of the considered pricing schemes
(see Liberopoulos & Andrianesis (2016)).

In 2016, O’Neill et al present an approach to efficient prices and cost allocation
for a revenue neutral and non-confiscatory day-ahead market. They propose an ex-
post multi-part pricing scheme, called the Dual Pricing Algorithm, that can be in-
corporated into current day-ahead markets without altering the the efficient market
equilibrium (see O’Neill et al. (2016)).

In 2017, Eldridge et. al proposed a method for updating the loss approximation. If
the update procedure converges, it gives a solution to a nonlinear problem and shows
rapid convergence properties on all networks tested. (see Eldridge et al. (2017a) and
Eldridge et al. (2017b)).

In 2020, Hytowitz et al examine impacts of price formation efforts considering
high renewable penetration levels and system resource adequacy targets and highlight
the importance of scarcity price assumptions. (see Hytowitz et al. (2020)). In 2022,
FERC posted: ‘Use of uplift payments can undermine the market’s ability to send
actionable price signals … and should be priced in the market.’ (see Topping (2022)).
In a broad sense, uplift includes make-whole payments and capacity market payments.

2 Average Incremental Cost (AIC) Pricing

In 2017, O’Neill introduced AIC prices and an iterative process for their calcula-
tion (see O’Neill (2017a)). AIC prices eliminate the need for make-whole payments,
create better incentives for infra-incremental generators, and send better entry and
exit price signals (see O’Neill et al. (2020)). Most fossil and some non-fossil genera-
tors have declining AICs. This paper introduces the AIC One-Pass Pricing (AICOP)
methodology to solve for AIC prices through a linear program relaxation of the se-
curity constrained unit commitment (SCUC) optimal (or near optimal) solution. For
dispatched generators, the one-pass AIC methodology results in profitable energy and
reserve prices without make-whole payments. (Here we define profitable to include
breaking even.) Excursions from the dispatch signal pay at a minimum the cost of
redispatch (aka liquidated damages) or receive a lower energy price, thereby reducing
the incentive to self-schedule.

The intuition for the AIC methodology starts with the single-bus, unit-commitment
model (see examples in Appendix C). In the AIC methodology, dispatched incremen-
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tal generators and bid-in demand set the clearing prices, that is, the LIPs and rLIPs
are the optimal dual variables for energy balance constraints (2b) and reserve con-
straints (2c) below, respectively.

In markets with multiple buses, if a transmission capacity constraint binds, the
problem can be decomposed into separate problems by fixing the transmission line
flow at the line at its usage in the optimal dispatch or simply retain the existing trans-
mission system capacity (see O’Neill et al. (2020)). In the AIC methodology, ‘con-
gestion’ on the transmission system occurs on two levels: the LMP (lower) and the
LIP (upper) level. At the lower level, the dual variable on the transmission constraint
is the marginal value of another small amount of transmission capacity – the flow-
gate marginal price (FMP). At the upper level, the dual variable on the transmission
constraint signals the potential of an incremental expansion for the complete displace-
ment of a generator with avoidable fixed costs –the flowgate incremental price (FIP).
In problems with multiple periods, binding ramp rate constraints and binary generator
constraints, i. e., minimum run time, tie periods and prices together. Non-binding
ramp constraints are dropped in the pricing run.

In a non-convex market absent degeneracy, the LMPs reflect the marginal cost of
a decision to dispatch a small additional quantity. The LIPs reflect the incremental
binary decision to commit and dispatch a generator (or resource) with possibly more
capacity than necessary due to the binary nature of commitment decisions, but it will
only be committed and dispatched if it is part of the efficient dispatch (aka optimal
market surplus). As a result, the optimal dispatch contains a set of incremental gen-
erators that make zero profits and a set of infra-incremental generators that make
positive profits at the LIPs and rLIPs. No generators dispatched have negative prof-
its. They are roughly equivalent to marginal and infra-marginal generators in convex
markets.

Absent degeneracy, the LMP can be a valid entry price for small amounts of energy.
The LMP is an entry signal for a generator with an average incremental cost below
the LMP, but may not be an exit signal for a generation with an AIC above the LMP.
Also, it is an entry signal for a consumer with a value to consume above LMP, but
less than the LIP.

The LIP is generally higher than the LMP. The LIPs are an entry signal for a
generator with an average incremental cost below the LIPs with a feasible dispatch
at an incremental generator’s optimal dispatch. In the real-time market, the LMPs
are announced immediately after the dispatch and the LIPs at the end of the market
horizon. With bid-in demand if all available generation is scheduled, the prices are
set by bid-in demand without a reserve shortage – a market-sourced scarcity price. If
a convex bid or offer clears the market at a given time and place, the LIP = LMP. The
examples in Appendix C illustrate these one-pass AIC properties.
Contract (aka Bilateral)Market andAICPricingCompatibility. No rational seller

would agree to a price below its AIC. If the market had two or more sellers and a seller
had a superior technology with a lower AIC, it could make a positive profit because
the price would be set by the inferior technology at the higher AIC. In a world with
stochastic information and risk-neutral market participants, no rational risk-neutral
seller would agree to a price below its expected AIC — E(AIC). If a seller had a
superior technology, i. e., a lower E(AIC) and the market had two or more sellers, it
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could make a positive profit because the price would be set by the inferior technology
at the higher E(AIC). The conclusion is that AIC pricing is compatible with a rational
contract market.
Reserves Pricing. The amount and location of reserves needed in ISO markets

are mostly offline calculations. Reserves come in various flavors including energy
balancing, single-generator contingencies, and more recently ramping reserves (both
up and down) to address moderate weather events. The ability to ramp may limit
a generator’s output and reserves. The AIC prices preserve the arbitrage condition
between energy and reserves and between periods.

3 Multi-Period,Multi-stepMarginalCosts, Single-NodeAICPric-
ing Scheme

In this section we present the one-pass multi-period AIC pricing scheme. We assume
that a generator starts up at most once in the horizon. We do not include down
reserves and minimum down times to avoid over complicating the presentation and
leave them for future work.
Notation

System Sets
T is the set of time periods; T = {t| t = 1, …, tmax}
T’ is the set of time periods without t = 1; T’ = {t| t = 2, …, tmax}
Ti is generator i’s startup/shut-down cycle; Ti = {t′, t′ + 1, . . . , t′′} = {t|u∗

it = 1}.
System Parameters
rust is the minimum system ramping up reserves in t.
System Primal Variables (dispatch)
MS is the market surplus of the dispatch run.
MSAIC is the market surplus of the AIC pricing run
System Dual Variables (prices)
RCAIC is resource cost of the AIC dual program; at optimality, MSAIC = RCAIC

λt is dual variable on the energy balance constraint in t.
λus
t is dual variable on the energy reserve up constraint in t.
Consumption Sets (indexed by i)
D is the set of consumers
Consumption Parameters
bit is the value (bid price) per MWh for consumer i ∈ D in t
Consumption Primal Variables (dispatch)
dit is demand by unit i ∈ D in t
Consumption Dual Variables
αmax
it is the marginal value of maximum demand for i ∈ D in t

αmin
it is the marginal value of minimum demand reduction for i ∈ D in t
Generator Sets (indexed by i)
G is set of generators; G∗ is set of generators dispatched
Gmp is set of generators that qualify for a make-whole payment at the LMP
Ji are unit i’s marginal cost function steps where cjit < c(j+1)it. Ji = {j|j = 1, . . . , jmax

i }
Generator Parameters
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cjit is the offer cost/MWh of step j for unit i in t and cjit < cj+1it.
cruit is the offer cost per MWh ramping up for generating unit i in t
csuit is offer start-up cost for generating unit i in t
copit is the fixed operating cost of unit i in t
rupit is the maximum ramping capability for generating unit i in t
pmax
jit is the maximum output of step j for unit i ∈ G in t
pmax
it is the maximum capacity of unit i ∈ G in t.

∑
j∈Ji p

max
jit = pmax

it .
psuait is the one-period adjustment to pmax

it for the startup period.
rsuait is the one-period adjustment to rupit on startup
pmin
it is the minimum operating level in t of unit i ∈ G
mri is the minimum run time in a startup/shut-down cycle for unit i ∈ G
Generator Primal Variables (Unit Commitment and Dispatch)
pjit is the supply from step j of unit i and t
pruit is the supply of ramp rate reserves from unit i and t
zit is 1 if unit i starts up in t or 0 otherwise (relaxed in the pricing run)
zdit is 1 if unit i shuts down in t or 0 otherwise (relaxed in the pricing run)
uit is 1 if unit i is running in t or 0 otherwise (relaxed in the pricing run)
Generator Dual variables (Prices and Values) in AIC pricing
βmax
jit is the marginal value of capacity of step j for generator i in t

βmax
it is the marginal value of total capacity for generator i in t.

βmin
it is the marginal cost of the minimum operating level of generator i in t

ρupit is the marginal value of ramp from generator i in t
δit is the binary logic marginal value for generator i in t.
µit is the dual variable on the summation of energy steps for generator i in t.
ωit is the fixed startup variable’s marginal value for generator i in t.
ωd
it is the fixed shut down variable’s marginal value for generator i in t.
Multi-Period Security-Constrained Unit-Commitment Optimal Power Flow

MS = max
∑

t∈T [(
∑

i∈D bitdit)−
∑

i∈G ((
∑

j∈Ji cjitpjit)+cruit p
ru
it +copit uit+csuit zit)]

(1a)

Market surplus = Consumer Value - Producer Costs

System balancing constraints Description∑
i∈D dit −

∑
i∈G pit = 0, t ∈ T Energy balance

(1b)

−
∑

i∈G pruit ≤ −rust , t ∈ T System ramp up requirement

(1c)
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Demand constraints

dit ≤ dmax
it , i ∈ D, t ∈ T Maximum load

(1d)

−dit ≤ −dmin
it , i ∈ D, t ∈ T Minimum load

(1e)

Generator constraints

pjit − pmax
jit uit ≤ 0, i ∈ G, t ∈ T, j ∈ Ji Max step capacity

(1f)

pit −
∑

j∈Ji pjit = 0, i ∈ G, t ∈ T, Summation
(1g)

pit + pruit − pmax
it uit − psuait zit ≤ 0, i ∈ G, t ∈ T, Maximum capacity

(1h)

pruit − prumax
it uit ≤ 0, i ∈ G, t ∈ T, Maximum ramp capacity

(1i)

−pit + pmin
it uit ≤ 0, i ∈ G, t ∈ T, Minimum capacity

(1j)

pit − pit−1 − rupit uit − rsuait zit ≤ 0, i ∈ G, t ∈ T ′, Ramp up limits
(1k)

uit − uit−1 − zit + zdit = 0, i ∈ G, t ∈ T, Binary commitment logic
(1l)∑

t′∈[t−mr+1,t] zit′ − uit ≤ 0, i ∈ G, t ∈ T, Minimum run time
(1m)

pruit ≥ 0; zit, z
d
it, uit ∈ {0, 1}, i ∈ G, t ∈ T (1n)

We denote the optimal solution to the SCUC (1) with ∗. Each feasible MIP with an
optimal linear program is a local optimal solution. Parameters pi0 and ui0 define the
state of the generators at the beginning of period 1. If ui0 = 1, csui1 is set to zero and
pi0 and rupi1 are used to adjust pmax

i1 to reflect the ramp rate constraint for pi1. Define
p∗it =

∑
j∈Jip

∗
jit and let cit be the marginal cost of gen i where j′ denotes the highest

active marginal cost step , that is, if j > j ′, p∗jit = 0.
The startup sequence of a generator may not be able to achieve its steady-state

maximum operating level in a single period. The one-period adjustment is in (1h).
To represent a multi-period startup sequence, let Js be a multi-period sequence, Js =
{0, 1, . . . , jsu}; psuajit be the adjustment in period j after startup; and psuait zit is replaced
with

∑
j∈Js p

sua
jit zjit.

After fixing the binaries to their optimal values, the linear program usually has re-
dundant constraints that were not redundant in the MIP, for example, minimum run
time and minimum down time. Dropping redundant constraints retains the optimal
MIP solution in the resulting linear program. The dual variables on the energy bal-
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ance equations (1b), are called the LMPs. The dual variables on the reserve constraints
(1c) are marginal reserves prices and are called rLMPs. The LMPs and rLMPs provide
marginal information about low-cost entry, but do not signal the possible higher-cost
unit-replacement entry when units have avoidable fixed costs. The LIPs from the
AIC pricing run (below) and optimal quantities of the incremental generators from
the MIP provide entry information for units with avoidable fixed costs.
AICOne-Pass Pricing (AICOP). The AICOP (2) eliminates the binary constraints

and adds the constraints: 0 ≤ zit ≤ z∗it; 0 ≤ uit ≤ u∗
it; and 0 ≤ zdit ≤ zd∗it . This

relaxation eliminates the generators not in the optimal solution from influencing the
prices since the optimal binary variables are 0. When the binaries are relaxed, the
dual variables on the binary logic constraints play an important role in distributing the
avoidable fixed costs across the generator up/down cycle. Although it is not necessary,
we drop the minimum run time constraints to remove unnecessary notation.

The optimal solution to (1) is used to tighten the constraints of the pricing problem
in neighborhood of the optimal solution. For dispatched generators, we add valid op-
timality cuts that retain the optimal solution by setting pmax

it = p∗it + pru∗it − psuait z∗it + ϵ;
dropping psuait z∗it since the new pmax

it in the startup period contains the psuait zit adjust-
ment; pmax

jit = p∗jit + ϵ; prumax
it = pru∗it + ϵ, rupit uit = (rupit + rsuait z∗it)uit and pmin

it = p∗it − ϵ
where ϵ > 0, but small. In addition, we add dmax

it = d∗it + ϵ and dmin
it = d∗it − ϵ. A

similar approach for the LMP calculation was used in PJM (Ott (2003)).
Two sets of constraints couple the time periods: the startup/shutdown cycle binary

logic constraints (2l) and ramp rate constraints (2k). Both are important to multi-
period pricing. The ramp rates that did not bind in the dispatch model (1) are relaxed
in the pricing run. The AICOP becomes a linear program:

MSAIC = max
∑

t∈T [
∑

i∈D bitdit−
∑

i∈G [(
∑

j∈Ji cjitpjit)+cruit p
ru
it +copit uit+csuit zit]]

(2a)

Equation Dual Var Constraints

system balancing constraints

∑
i∈D

dit −
∑

i∈G pit = 0 t ∈ T, λt Energy Balance

(2b)

−
∑

i∈G pruit ≤ −rust t ∈ T, λus
t System Ramp

(2c)
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demand constraints

dit ≤ dmax
it i ∈ D, t ∈ T αmax

it Max load
(2d)

−dit ≤ − dmin
it i ∈ D, t ∈ T αmin

it Min load
(2e)

generator constraints

pjit − pmax
jit uit ≤ 0 i ∈ G, t ∈ T, j ∈ Ji βmax

jit Max step capacity
(2f)

pit −
∑
j∈Ji

pjit = 0 i ∈ G, t ∈ T µit Summation

(2g)

pit + pruit − pmax
it uit ≤ 0 i ∈ G, t ∈ T βmax

it Max capacity
(2h)

pruit − prumax
it uit ≤ 0 i ∈ G, t ∈ T βrumax

it Max ramp reserve
(2i)

−pit + pmin
it uit ≤ 0 i ∈ G, t ∈ T βmin

it Minimum supply
(2j)

pit − pit−1 − rupit uit ≤ 0 i ∈ G, t ∈ T ρupit Ramp up limit
(2k)

uit − uit−1 − zit + zdit = 0 i ∈ G, t ∈ T δit Binary commitment
(2l)

zit ≤ z∗it i ∈ G, t ∈ T ωit Relaxed binaries
(2m)

uit ≤ u∗
it i ∈ G, t ∈ T γit Relaxed binaries

(2n)

zdit ≤ zd∗it i ∈ G, t ∈ T ωd
it Relaxed binaries

(2o)

pruit , zit, z
d
it, uit ≥ 0 i ∈ G, t ∈ T Lower bounds

(2p)

Dual of the AICOP is:

RCAIC =

min
∑

t∈T [r
us
t λus

t +
∑

i∈D (dmax
it αmax

it −dmin
it αmin

it )+
∑

i∈G (z
∗
itωit+u∗

itγit+zd∗it ω
d
it)]

(3a)
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Equation Dual Var

Demand constraints

λt + αmax
it − αmin

it ≥ bit, i ∈ D, t ∈ T dit

(3b)

Generator constraints

ρupit − ρupit+1 − λt + µit − βmin
it + βmax

it ≥ 0, i ∈ G, t ∈ T pit

(3c)

ωit − δit ≥ −csuit , i ∈ G, t ∈ T zit

(3d)

−µit + βmax
jit ≥ − cjit, i ∈ G, t ∈ T, j ∈ Ji pjit

(3e)

βrumax
it + βmax

it − λus
t ≥ −cruit , i ∈ G, t ∈ T pruit

(3f)

γit + δit − δit+1 − rupit ρ
up
it + pmin

it βmin
it −∑

j∈Ji

(pmax
ji βmax

jit )−pmax
i βmax

it −prumax
i βrumax

it ≥ −copit , i ∈ G, t ∈ T uit

(3g)

ωd
it + δit ≥ 0, i ∈ G, t ∈ T zdit

(3h)

αmax
it , αmin

it ≥ 0, i ∈ D, t ∈ T (3i)

βmax
jit ≥ 0, i ∈ G, t ∈ T, j ∈ Ji

(3j)

ρupit , β
max
it , βrumax

it , βmin
it , ωit, γit, ω

d
it ≥ 0, i ∈ G, t ∈ T (3k)

λup
t ≥ 0, t ∈ T (3l)

In (3c), since (2k) does not exist for t=1, neither does ρupi1 and it is set it to 0. In
(4) through (8) below, we assume the variables are at their optimal value; * indicates
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an optimal solution to (1); ** indicates an optimal solution to (2). The dual variables
do not exist in (1). Therefore, they do not need to be distinguished as are the primal
variables. Longer proofs are in Appendix B.
Lemma 1. MS ≤ MSAIC .
Proof: The optimal solution to (1) is a feasible solution to (2), therefore, MS ≤
MSAIC . □
Lemma 2. In the one-pass AIC pricing run, if ϵ = 0, then p∗∗it = p∗itu

∗∗
it , p

∗∗
jit = p∗jitu

∗∗
it ,

pru∗∗it = pru∗it u∗∗
it , for t ∈ T . Moreover, if p∗it > 0 or pru∗it > 0, then u∗∗

it = u∗
it = 1, for

t ∈ T .
Proof: see Appendix B. Lemma 2 is central in establishing the crucial link between
the primal and dual solution of AICOP and SCUC.
Lemma 3. In the one-pass AIC pricing run, reserves are profitable.
Proof: By complementary slackness of (3f), (βrumax

it + βmax
it + cruit − λus

t )pru∗∗it = 0.
Rearranging, λus

t pru∗∗it − cruit p
ru∗∗
it = βrumax

it pru∗∗it + βmax
it pru∗∗it . From Lemma 2, , substi-

tuting pru∗∗it = pru∗it u∗∗
it and dividing by u∗∗

it > 0 for pru∗it > 0,

λus
t pru∗it − cruit p

ru∗
it = βrumax

it pru∗it + βmax
it pru∗it . (4a)

Since βrumax
it ≥ 0 and βmax

it ≥ 0, the revenue from reserves may exceed the costs of
reserves,

λus
t pru∗it ≥ cruit p

ru∗
it □ (4b)

If βrumax
it = 0 and βmax

it = 0, λus
t pru∗it = cruit p

ru∗
it . If pru∗it > 0, dividing by pru∗it , λus

t = cruit .
The price of reserves is set by the marginal reserve cost of generator i. If βmax

it > 0,
price of reserve may incorporate opportunity cost for energy.
Proposition 1. From AICOP, using the λt (LIPs) and λus

t (rLIPs) for t ∈ T , all
dispatched units are profitable, that is, no make-whole payments are needed.
Proof: See Appendix B.
From Proposition 1, we define two concepts. Generator i is an incremental generator
if it breaks even, that is,∑

t∈T (λtp
∗
it + λus

t pru∗it ) −
∑

t∈T [(
∑

j∈Jicjitp
∗
jit) + copit u

∗
it + cruit p

ru∗
it ] + csuit z

∗
it = 0

(4c)

Energy revenues Incremental energy and reserves cost profits

Generator i is an infra-incremental generator if it has positive profit, that is,∑
t∈T (λtp

∗
it + λus

t pru∗it ) −
∑

t∈T [(
∑

j∈Jicjitp
∗
ji) + copit u

∗
it + cruit p

ru∗
it ] + csuit z

∗
it > 0

(4d)

Energy revenues Incremental energy and reserves costs profits

We demonstrate these properties in Appendix C examples and actual MISO problems
in the next section.
Proposition 2. Absent degeneracy, in any period t, there is a marginal generator,
an incremental generator operating or the market clears off the demand function bid
(bit) and all generators are infra-incremental.



O’Neill, Chen and Whitman 15

Proof. By contradiction. Assume the solution is not degenerate and the dual solution
is unique. Suppose there is no incremental generator, and the market does not clear
on the demand function and also there is no marginal generator, then (4d) holds for
all generators i ∈ G∗. We solve the linear program (2). For any t ∈ T , if the λt >
cit, for all i ∈ G∗ then either λt = bit and the market clears on the demand function
or if cit < λt < bit, p∗it + ϵ and d∗it + ϵ where ϵ > 0 is a feasible solution with a higher
market surplus which a contradiction. □
Proposition 3. For an incremental generator, λt and λus

t for t ∈ T is a set of prices
that are minimal in the sense that higher prices are not necessary to eliminate make-
whole payments for the generator and maximal in the sense that lower prices do not
eliminate make-whole payments for the incremental generator.
Proof: From (4c), if any λt or λus

t for t ∈ T is increased and its associated with a
p∗it > 0 or pru∗it > 0, (4c) becomes (4d). From (4c), if any λt or λus

t for t ∈ T is
decreased and its associated p∗it > 0 or pru∗it > 0, (4c) is negative and requires a make-
whole payment. □
This proposition is also true for bid-in demand.
Cost Allocation and Settlement. From (A6t) in Appendix B, for each period,

λtp
∗∗
it + λus

t pru∗∗it =
∑

j∈Ji cjitp
∗∗
jit + cruit p

ru∗∗
it +

γitu
∗∗
it + [copit + δit − δit+1]u

∗∗
it − rupit u

∗∗
it ρ

up
it + (ρupit − ρupit−1)p

∗∗
it ] (4e)

From Lemma 2, substituting p∗∗it = p∗itu
∗∗
it , p

∗∗
jit = p∗jitu

∗∗
it , p

ru∗∗
it = pru∗it u∗∗

it ,

λtp
∗
itu

∗∗
it + λus

t pru∗it u∗∗
it = (

∑
j∈Ji cjitp

∗
jitu

∗∗
it ) + cruit p

ru∗
it u∗∗

it +

γitu
∗∗
it + [copit + δit − δit+1]u

∗∗
it − rupit u

∗∗
it ρ

up
it + (ρupit − ρupit−1)p

∗
itu

∗∗
it ] (4f)

If u∗∗
it = 0, (4f) vanishes, 0 = 0. Dividing by u∗∗

it > 0,

λtp
∗
it + λus

t pru∗it = (
∑

j∈Ji cjitp
∗
jit) + cruit p

ru∗
it +

γit + [copit + δit − δit+1]− rupit ρ
up
it + (ρupit − ρupit−1)p

∗
it (4g)

Revenue in t for i in G* from LIPs and rLIPs is: λtp
∗
it + λus

t pru∗∗it . Marginal costs
incurred in t are:
(
∑

j∈Jicjitp
∗
jit) + cruit p

ru∗
it . Profits in t are: γit. Temporal cost reallocation due to relaxed

binaries is: copit + δit − δit+1. Temporal change in prices due to binding ramp rates is:
−rupit ρ

up
it + (ρupit − ρupit−1)p

∗
it.

From (A7f), the term, copit + δit − δit+1, allocates the startup cost and fixed operating
costs to periods where the generator is needed most, creating cost-causal prices (see
Appendix C Example 7). The term, rupit ρ

up
it −(ρupit −ρupit−1)p

∗
it, allocates costs due to ramp

rate constraints. The unit profit term, γit, is non-negative since both components are
non-negative. If γit = 0 for t ∈ Ti, generator i is an incremental generator. If any
γit > 0 for t ∈ Ti, generator i is an infra-incremental generator. If ϵ = 0, (2) becomes
degenerate or more degenerate and may produce larger set of dual variables that
include the prices. These properties are demonstrated in Appendix C examples.
Proposition 4. In AIC pricing, the arbitrage conditions holds for positive energy,
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pmin
it < p∗it < pmax

it , and reserves, pru∗∗it > 0. If the ramp rate constraints do not bind,
the static arbitrage condition holds, that is,

λt − λus
t = cit − cruit (4h)

If one or more ramp rate constraints bind, the multi-period arbitrage condition holds,
that is,

λt − λus
t = cit − cruit + ρupit − ρupit+1 (4i)

Proof: See Appendix B.
Proposition 5. Without bid-in demand and if there is positive fixed cost investment
for new generation, there may not be enough short-term profit to stimulate efficient
investment.
Proof: Without bid-in demand, demands are all fixed points. If demand is a fixed
point, it can never set the clearing price because its implied value is infinite. The
marginal or incremental unit may not make enough profit in the short-term to cover
its long term investment costs. If the demand has a finite value, the efficient market
may clear off the demand function producing positive profits for all dispatched gen-
erators. □
Proposition 6. The LIPs have the property that if, absent primal degeneracy, genera-
tors are paid at prices lower than LIPs, for example, LMPs, one or more incremental
generators will have negative profits and need a make-whole payment.
Proof: There is at least one incremental generator active in each period. Since in-
cremental generators makes zero profit at the LIPs, lowering one LIP causes negative
profits. □
Real-Time Market Pricing with Look Ahead. The real-time market is a one-

period market with a look-ahead. The dispatch signals and LMPs are available almost
simultaneously. If the LMP is announced, it is a correct low-cost entry signal for the
previous market period. Announcing a real time price that is not the LMP gives
little and possibly misleading short-term economic information. Generally, a non-
LMP price, for example, from relaxed minimum operating level, is too low for a full
incremental entry signal because it contains some, but not all fixed costs and is too
high for marginal entry because it is higher than the LMP. LMP is the marginal entry
signal, but there is no public information on the magnitude of entry at the LMP.

The AIC methodology announces the LMP at the end of each time interval. For
single periods, the LMP is a short-term entry and exit price signal. Because the LIPs
are not calculated until the end the market horizon, they cannot be announced at the
end of each period due in part to binding ramp rates and minimum run times. The
LIPs are calculated after the generator up-down cycle or ideally the market horizon is
completed, possibly 24 hours of 5-minute prices for the real-time market. The LIP
prices can be calculated at the end of the horizon using the actual dispatch quantities
as if it were a day-ahead market. The LIPs and clearing quantities for incremental
generators are announced. The LIPs and LMPs are used to settle the market.
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4 MISO Case Studies

In this section, we study two variations of AIC pricing on MISO cases. Variation 1
(LIP1) sets pmax=p*+ϵ only for generators with negative profits under LMP prices.
Variation 2 (LIP2) sets pmax=p*+ϵ for all dispatched generators. Since large produc-
tion MIP problems usually solve with a non-zero gap, pmin=p∗-ϵ is not applied so that
non-optimal commitments may be relaxed to 0 in the LIP1 run. For LIP2 , when
pmax=p*+ϵ is set for all dispatchable generators, we have p∗∗ ≥ p∗ − (n − 1)ϵ where
n is the total number of dispatchable generators. It’s equivalent to set pmin = p∗ − ϵ′

where ϵ′ is proportional to ϵ.
Polishing Sub-Optimal Solutions using the AIC Methodology. In practice, the
MIP solver may return an integer-feasible sub-optimal solution in the MIP gap or
the solver simply times out. The solution is not known to be sub-optimal, only that it
has not been proven optimal. We propose a polishing methodology that may improve
the solution. Suppose the solver terminates in a positive MIP gap. If p∗it > 0 for any
t and the AIC LIP1 solution relaxes u∗∗

it to 0 and p∗∗it = 0, for all t, generator i is not
in the relaxation solution and may not be needed in the MIP. A branch-and-bound
child node is created and solved with pit = 0 to see if Gen i is needed.
To illustrate, consider the following problem in Table 4.1. Suppose the solver termi-
nates in a sub-optimal solution, p1 = 70, p2 = 20 and the LMP = 0. AIC LIP1 sets u2

= 0 and p2 = 0 and creates a new node in the branch-and-bound tree, the MIP solver
returns a better solution with p1 = 90, p2 = 0 and the LMP = 0.
Table 4.1. Feasible but Sub-Optimal Dispatch to Better (Optimal) solution.

Unit
Pmin
(MW)

Pmax
(MW)

Marginal
value/cost
($/MWh)

Startup
costs

($)

Suboptimal
solution
(MWh)

Optimal
solution
(MWh)

G1 0 100 0 10−8 70 90
G2 20 20 50 100 20 0
Load 90 90 500 90
LMP 0 0
LIP1 0
LIP2 55

We test this method on seven MISO day-ahead market cases mostly from January
2014 during the polar vortex with very tight system conditions. After solving the
SCUC with a 1200 second time limit or 0.1% MIP gap tolerance, the results are in
Table 4.2. The incumbent solution is used to solve for AIC LIPs takes 40 seconds
or less. We then check the AIC solution to identify any generators that are backed
down to 0, set the commitment solution of those generators to 0, and solve. For
the MIP solver to find the same incumbent solution takes from less than a second
up to almost as much time to solve the original problem. The savings range from 0
to $17,121. Although small in comparison to the total market size, it should not be
ignored. If the seven cases were a representative sample of days, the savings would
be $1.9 million/year.
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Table 4.2. MISO Cases Results.

Case
MIP

GAP (%)
MIP

Time (s)
AIC time

(s)
Objective

increase ($)
Solver Time

(s)
New GAP

(%)
1 0.092 154 20 1301 55 0.089
2 0.068 1110 40 1 0 0.068
3 0.128 1201 31 17121 1116 0.096
4 0.074 883 22 0 0 0.074
5 0.151 1200 29 10591 1090 0.133
6 0.065 356 29 1097 274 0.064
7 0.150 1200 27 7500 910 0.135

average 0.104 872 28 5373 492 0.094

MISO Case Studies with One-Pass AIC Pricing. For a day-ahead market case

from February 2020 where there were regional emergency alerts, we change the case

by changing all must-run and self-schedule units to economic units, excluding virtual

transactions and the small amount of dispatchable demand, removing reserve require-

ments, maximum daily energy, and maximum daily start constraints. All MISO gen-

erators are required to submit economic offers that include the parameters required

for solving SCUC. Some of the parameters are ignored or revised for must-run and/or

self-scheduled generators. By changing must-run and self-schedule to economic, the

full set of economic offers are used for solving SCUC. Most steam units are run for

multiple days and have no expressed startup costs. Some hydro units have small costs.

There are over 100 generators (mainly renewables) with negative or zero costs. In Fig-

ures 1a and 1b, under One-Pass AIC pricing, all generators have non-negative profits

at the LIPs. That is not the case under LMPs. For most generators, the difference

in profits/MWh between LMP and LIP pricing is not large. The greatest difference

occurs when the LMPs yields negative profits. Table 4.3 shows the summary of all

on-line generators (both incremental and infra-incremental). The average increase

in profits from LMPs to LIPs is 1.34% for all classes. Combustion Turbines (CTs) as

a class have the highest increase in profits under AIC pricing followed by combined

cycle aggregates (CCAs). As a result, in the capacity markets, the prices will decrease
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since CTs and CCGTs are often the price-setting units in capacity markets.

Table 4.3. All Dispatched Generators

class

Average
Profit at
LMPs

$/MWh

Average
Profit at

LIPs
$/MWh

Profit
in-

crease
(%)

Average
AFC

$/MWh

Dispatch
Energy
TWh

Units
Dispatched

Average
En-

ergy
MWh

No.
of

units

CT 5.93 6.40 7.80 9.32 .289 65 4,448 378
CCA 6.72 6.88 2.48 5.00 .459 34 13,510 59

Steam 8.98 9.09 1.21 3.36 1.490 142 10,517 270
Renew 22.67 22.74 0.28 0.07 .474 224 2,115 233
Hydro 22.31 22.39 0.34 1.71 .065 65 996 67
Diesel 0 0 0 0 0 0 0 52

Other 6.05 6.12 1.14 4.32 .014 15 907 26
Totals 545 5,126 1,085

Renew is wind+solar. AFC is avoidable fixed costs. Average Energy is the average

MWh energy from units dispatched.

Table 4.4 presents the thirteen generators with the lowest LMP profits per MWh.

One steam generator operates for only one hour. Three generators operate beyond

the entire 24-hour pricing horizon and are priced for the entire 36. Eight are

numerically incremental. The largest energy producer of the group, Gen 8 with

over 500MW capacity, goes from a negative profit under LMP pricing to a positive

profit under AIC pricing becoming an infra-incremental generator. The remaining

four generators see increases to positive profits and no make-whole payment.

Make-whole payments lower incentives for resources to improve efficiency because

reducing fixed cost may not result in higher profits. Under AIC pricing,

infra-incremental generators that reduce their cost can make additional profits.
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Figure 1

Not shown is a generator with profits of $513/MWh and three generators with (AIC
Profit - LMP Profit)/LMP Profit between 286% and 422%.

Table 4.4. Incremental and Near-Incremental Generators.

Gen type time
periods

Avoidable
cost (AC)

MWh
LMP
profit

AIC
profit

LMP
profit/MWh

AIC
profit/MWh

1 CCA [1,11] 54485.00 3798.51 -7736.9 -2E-04 -2.04 -5E-08
2 Steam [8,8] 485.00 8.50 -4.99 6E-14 -0.59 7E-15
3 Wind [7,22] 7074.00 785.97 0.00 4E-13 0.00 5E-16
4 CCA [7,22] 81084.00 4399.93 -1291.5 -3E-5 -0.29 -7E-09
5 Steam [1,36] 22947.00 2545.27 -1198.0 -8E-6 -0.47 -3E-09
6 CT [1,36] 197825.00 8107.54 -36449 -2E-3 -4.50 -2E-07
7 CT [1,30] 21457.00 950.64 -6847.4 -4E-4 -7.20 -4E-07
8 Steam [1,36] 434525.00 14633.17 -3854.1 454.24 -0.26 0.031
9 Wind [7,23] 0 1549.66 0.00 -3E-12 0.00 -2E-16

10 CCA [1,36] 149516.80 9910.99 606.21 2339.58 0.06 0.24
11 CT [6,36] 133430.10 5063.60 1408.48 1857.04 0.28 0.37
12 CT [1,36] 87466.08 4183.77 1590.67 1587.75 0.38 0.38
13 CT [7,15] 36984.99 1342.00 608.89 754.36 0.45 0.56
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Table 4.5 shows the coverage of each incremental generator. Each time period has

at least one incremental generator. Period eight has nine incremental generators.

Table 4.5. Thirty-six Hourly Period Coverage of Each Incremental Generator

(G1-G7 and G9).

When transmission constraints bind, nodal prices include the network effects that

can be counterintuitive at first. In the above MISO case, about 61 generators had

higher profits under the LMP prices than profit under the LIPs. Example 8 in

Appendix C shows how this can happen in a network with binding transmission

constraints. Twenty generators had no costs with profit reduced less than 1%. Seven

generators had negative total cost with profit reduced from 0.33% to 5.63%. Twenty

generators had positive total cost and less than 1% profit reduction. Twelve

generators with positive total cost and more than 1% profit reduction. Eight had

profit reduction less than 8%. Three had profit reduction between 12% and 16%.

One CT had profit reduction of 54% at $190. When we removed the transmission

constraints on several MISO cases, the AIC profits of all generators were higher

than LMP profit. Figure 2 shows AIC profits/MWh less LMP profit/MWh with no

transmission constraints for the same February 2020 regional emergency alerts case

described above. For about 54% of the 1085 generators shown in Table 4.3, there is

no difference. For about 45%, the difference is less than $.05/MWh. For about 1%,

the difference is between $.05 and $.25/MWh. The total number of ’watchlist’

transmission constraints for 36 hourly intervals is 6636. These constraints are
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selected based on their history of binding in the distribution factor model. The

number of binding transmission constraints is 339 in LMP run and 300 in LIP1

run. Binding transmission constraints can create larger differences between AIC and

LMP profits.

Figure 2. AIC profits less LMP profits per MWh with no transmission constraints.

AIC Performance on 14 MISO Cases. For the same 7 cases in Table 4.2 and for

another 7 cases from randomly selected normal days in 2018 (numbered 8 to 14),

SCUC was set with 0.1% MIP gap. All 2018 cases reached the gap in less than

1200s. Table 4.6 contains average generator profit ranging from 1.2 to 14% higher

under LIP1 and 4.6 to 30.9% higher under LIP2 than the LMP profit.

Table 4.6. Gen Profit (as a percent higher than the LMP Gen profit) for the 14
MISO Cases

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg
LIP1 4.6 4.5 6.5 11.0 8.4 7.2 9.8 9.5 10.6 14.0 1.2 13.4 4.2 12.9 8.4
LIP2 4.6 5.0 9.4 9.4 12.0 8.9 9.5 9.1 30.9 28.8 9.9 13.2 6.8 12.7 12.2

Table 4.7 contains solve time under SCUC, LIP1 and LIP2. LIP1 and LIP2

solution takes mostly two minutes or less. The fixed binary (LMP) times are

negligible. The increase in AIC prices will be offset lower capacity market prices.

Table 4.7. Solve Time (in 1000s) for the 14 MISO Cases.
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Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg
SCUC .31 2.3 3.8 1.5 2.6 .37 6.8 .11 .21 .46 .18 .18 .51 .18 1.4
LIP1 .03 .03 .03 .03 .04 .03 .03 .02 .03 .02 .03 .03 .03 .02 .03
LIP2 .30 .08 .09 .04 .11 .09 .09 .08 .08 .09 .08 .09 .11 .22 .11

The results on MISO cases are solved with ϵ=0.0001. Such a small ϵ may cause

numerical issues and longer solving time for LIP2.

In LIP1, only the maximum limits of the generators with negative profits under

LMP are adjusted to be within ϵ around the SCUC solution. Other generators can

move up to allow the ones with negative profit under LMP to back down to zero

MW in the LIP1 run. If the generator with negative profit under LMP is committed

to relieve a transmission constraint, the transmission constraint may not bind in

SCUC but it can bind in LIP1 run. The FIP of the binding constraint reflects

potential value of an incremental expansion of the transmission constraint.

In LIP2, all generators can only move up within ϵ around the SCUC solution.

Therefore, the generators with negative profit under LMP can collectively reduce

their generation by no more than the product of ϵ and the total number of

generators. To properly reflect the cost of commitment for transmission, we need to

set the transmission constraint limit at SCUC flow plus a small number ϵ1. Here we

set ϵ1 = ϵ/10 for those not binding in SCUC but binding in LIP1. LIP2 price and

solving time can be sensitive to ϵ and ϵ1. For example, for cases 9 and 10, by

changing ϵ=0.01 and ϵ1=0.025 , the LIP2 profit increases (as a percentage higher

than the LMP Gen profit) change to 23.5 and 16.6 respectively (versus 30.9 and

28.8 shown in Table 4.6). Total MWPs for case 9 and 10 change from less than

$0.01 to $5.3 and $6.2 respectively.

For case 1, LIP2 solving time can be reduced to 0.08*1000s with larger ϵ=0.01 and

ϵ1 = ϵ/10 compared to 0.30*1000s in Table 4.7. The trade-off is that the total

MWP for case 1 increases from $0.005 to $4.536. In general, LIP1 with ϵ=0.0001

works better and it can also polish sub-optimal solutions. LIP1 doesn’t need to

change transmission constraint limit and is more numerically stable.
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5 Summary and Conclusions

AIC pricing addresses issues of pricing in non-convex markets with

declining-average-costs generators with positive economic results. LIPs along with

LMPs are incentive compatible since no dispatched unit that offered its avoidable

costs loses money at the LIP. LIPs eliminate make-whole payments, making the

market more transparent. LIPs and LMPs send valid entry signals and capacity

market prices are reduced. These properties are proved theoretically, and

demonstrated on small examples and actual MISO market problems.

For a multi-period market with a multi-step marginal costs and ramp rate

constraints, the AIC one-pass pricing algorithm eliminates make-whole payments by

relaxing each binary to be continuous between 0 and the optimal binary value and

replaces pmax with p∗+ϵ and pmin with p∗-ϵ where ϵ is a small positive number to

obtain prices that result in profits for all dispatched generators. Setting at ϵ > 0

avoids possible degeneracy problems for prices. Some small examples illustrate

issues that may be hard to find in large actual problems. As shown in the examples

the set of entry prices (both LMPs and LIPs) in the presence of AFCs are not unique,

but LIPs are in this set. As shown in the small examples and MISO test problems,

LIP1 at ϵ = 10−4 seems to work best. Small examples and ISO scale problems

validate the theory. The AIC algorithm solves quickly on actual MISO problems.

Further testing is needed to better understand the results. The AIC methodology

comes closer to satisfying many desired economic properties of pricing.
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Appendix A. Definitions, Acronyms and Abbreviations

AIC is average incremental cost.

AICOPR is AIC One-pass Pricing Run linear program.

AFC is average fixed costs in $/MWh.

Arbitrage condition is when prices result in no desire to change dispatch, for

example, absent ramp rate constraints, the price for reserves and energy differ by

their marginal costs.

Average incremental cost (AIC) is avoidable costs divided by dispatched energy +

reserves.

Avoidable costs are costs that can avoided by not operating.

Avoidable fixed costs are fixed costs that can avoided by not operating.

Degeneracy occurs when a linear program is degenerate. Its dual may have multiple

optima.

Dispatched occurs a unit is generating or off-line but on reserve.

Economic efficiency (EE) is maximum social welfare, i.e., market surplus.

FBLP is fixed-binary linear program.

Flowgate incremental price (FIP) is the transmission-limit dual variable from the

AICOPR.

Flowgate marginal price (FMP) is the transmission-limit dual variable from the

FBLP.

Incentive compatibility occurs when the incentives that motivate the actions of

individual market participants are consistent with following the rules established by

the group.

Incremental generator breaks even at the LIP prices, that is, πi = 0.

Individual rationality (IR) occurs when no person loses from joining the auction.

Infra-incremental generator has positive profit at the LIP prices, that is, πi > 0.

Infra-marginal generator is a generator that makes positive profit under LMP

prices.



30 One-Pass Average Incremental Cost Pricing

In-market unit is a unit dispatched or scheduled by the system operator.

Locational incremental price (LIP) is the the energy-balance dual variable of the

AICOPR.

Locational incremental reserves price (rLIP) from the reserves-requirement dual

variable of the AICOPR.

Locational marginal price (LMP) from the energy-balance dual variable of the

FBLP.

Locational marginal reserves price (rLMP) from the reserves-requirement dual

variable of the FBLP.

Marginal consumer is a consumer that sets the LMP and makes zero profit at the

LMP price.

Market-clearing is the process by which the auction quantities are computed.

Market-clearing price is the price at which the quantity supplied equals quantity

demanded. In some convex and non-convex markets, a single market clearing price

may not exist.

MIP is mixed integer linear program.

MIP gap is the distance between the best MIP feasible solution and the best bound.

One-event-in-ten-years is an arbitrary standard for reliability where an event is

undefined.

ORDC is Operating Reserve Demand Curve.

Out-of-market unit is a unit not dispatched or scheduled by the system operator.

Profitability occurs when a market participant’s gross value less costs is non-negative

in each up-down cycle.

Revenue neutrality (RN)/balanced transfers (BT) occurs when money transfers net

to zero.

rLMP is locational marginal reserve price from the reserves-requirement FBLP

dual variable.

SCED is security constrained economic dispatch with fixed the binaries.
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SCUC is security constrained, unit commitment and economic dispatch – the

primal problem.

Self-schedule is any bid or offer that is other than avoidable costs or value.

Sunk or unavoidable costs are costs that cannot be avoided even if the unit is not

operating.

Sustainable occurs when there is enough short-term market profit to invest in

efficient new devices.

Truth telling (TT)/Incentive compatible (IC) is occurs when a market participant

reveals its true values and costs in its bids and offers.

Valid optimality cut is any constraint that does not eliminate all optimal solutions.

πi is the profit for generator i under AIC pricing.
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Appendix B. Proofs

Proof of Lemma 2.: From (2f), (2h), (2i), and (2j),

p∗∗it + pru∗∗it ≤ pmax
it u∗∗

it = (p∗it + pru∗it + ϵ)u∗∗
it (A5a)

p∗∗jit ≤ pmax
jit u∗∗

it = (p∗jit + ϵ)u∗∗
it (A5b)

summing over j, p∗∗it ≤ pmax
it u∗∗

it = (p∗it + ϵ)u∗∗
it (A5c)

pru∗∗it ≤ prumax
it u∗∗

it = (pru∗it + ϵ)u∗∗
it (A5d)

−p∗∗it ≤ − pmin
it u∗∗

it = −(p∗it − ϵ)u∗∗
it (A5e)

For ϵ = 0,

p∗∗it + pru∗∗it ≤ (p∗it + pru∗it )u∗∗
it (A5f)

p∗∗jit ≤ p∗jitu
∗∗
it (A5g)

p∗∗it ≤ p∗itu
∗∗
it (A5h)

pru∗∗it ≤ pru∗it u∗∗
it (A5i)

−p∗∗it ≤ − p∗itu
∗∗
it (A5j)

From (A5h) and (A5j), p∗∗it = p∗itu
∗∗
it .

For (A5g), if there exists any p∗∗jit < p∗jitu
∗∗
it , then summing over j, we have the

contradiction p∗∗it < p∗itu
∗∗
it . Hence, p∗∗jit = p∗jitu

∗∗
it .

Without degeneracy, both (1c) and (2c) bind with
∑

i∈Gp
ru∗
it =

∑
i∈Gp

ru∗∗
it = rust .

For (A5i), if there exists any pru∗∗it < pru∗it u∗∗
it ≤ pru∗it , then∑

i∈Gp
ru∗∗
it <

∑
i∈Gp

ru∗
it = rust , also a contradiction. Hence, pru∗∗it = pru∗it u∗∗

it .

Moreover, with (1b), (2b) and d∗∗it = d∗it with the construction of AICOP, we have∑
i∈Gp

∗∗
it =

∑
i∈Gp

∗
it. We can prove using a similar argument that if p∗it > 0 or

pru∗it > 0, then u∗∗
it = u∗

it = 1. Therefore, p∗∗it = p∗it.
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At the optimum the inequalities hold as equalities □

Proof of Proposition 1

With the construction of AICOP and Lemma 2, all units with p∗it > 0 in SCUC

solution have p∗∗it = p∗it > 0 in AICOP. We can prove that the price from AICOP

will result in no make-whole payment for the solution from SCUC.

The static constraints. From complementary slackness of (3e),

(−µit + βmax
jit )p∗∗jit = −cjitp

∗∗
jit (A6a)

Summing over j,

∑
j∈Ji(−µit + βmax

jit )p∗∗jit = −
∑

j∈Ji cjitp
∗∗
jit (A6b)

Rearranging and substituting p∗∗it =
∑

j∈Ji p
∗∗
jit

µitp
∗∗
it =

∑
j∈Ji (cjit + βmax

jit )p∗∗jit (A6c)

By complementary slackness of (3c),

(ρupit − ρupit+1 − λt + µit − βmin
it + βmax

it )p∗∗it = 0 (A6d)

Rearranging,

µitp
∗∗
it = −(ρupit − ρupit+1 − λt − βmin

it + βmax
it )p∗∗it (A6e)

Combining (A6c) and (A6e), and rearranging,

λtp
∗∗
it = (

∑
j∈Ji cjitp

∗∗
jit) + (

∑
j∈Ji β

max
jit p∗∗jit) + βmax

it p∗∗it − βmin
it p∗∗it + (ρupit − ρupit+1)p

∗∗
it

(A6f)
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Rearranging,

(
∑

j∈Ji β
max
jit p∗∗jit) + βmax

it p∗∗it − βmin
it p∗∗it = λtp

∗∗
it − (

∑
j∈Ji cjitp

∗∗
jit)− (ρupit − ρupit+1)p

∗∗
it

(A6g)

From (2f) by complementary slackness,

(p∗∗jit − pmax
jit u∗∗

it )β
max
jit = 0 (A6h)

From (2h) by complementary slackness,

(p∗∗it + pru∗∗it − pmax
it u∗∗

it )β
max
it = 0 (A6i)

From (2j) by complementary slackness,

(−p∗∗it + pmin
it u∗∗

it )β
min
it = 0 (A6j)

Substituting (A6h), (A6i), and (A6j) into (A6g) and rearranging

[(
∑

j∈Ji p
max
jit βmax

jit ) + pmax
it βmax

it − pmin
it βmin

it ]u∗∗it =

λtp
∗∗
it − (

∑
j∈Ji cjitp

∗∗
jit) + pru∗∗it βmax

it − (ρupit − ρupit+1)p
∗∗
it (A6k)

By complementary slackness of (2k),

(p∗∗it − p∗∗it−1 − rupit u
∗∗
it )ρ

up∗∗
it = 0 (A6l)

Rearranging,

(p∗∗it − p∗∗it−1)ρ
up
it = rupit u

∗∗
it ρ

up
it (A6m)
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By complementary slackness of (3g),

[γit+δit−δit+1−rupit ρ
up
it +pmin

it βmin
it −(

∑
j∈Ji p

max
jij βmax

jit )−pmax
it βmax

it −prumax
it βrumax

it +copit ]u
∗∗
it = 0

(A6n)

Rearranging,

[γit + δit − δit+1 − rupit ρ
up
it − prumax

it βrumax
it + copit ]u

∗∗
it =

− [pmin
it βmin

it − (
∑

j∈Ji p
max
jit βmax

jit )− pmax
it βmax

it ]u∗∗
it (A6o)

Substituting (A6k) into (A6o) and rearranging,

λtp
∗∗
it = (

∑
j∈Ji cjitp

∗∗
jit)− pru∗∗it βmax

it

+ [γit + δit − δit+1 − prumax
it βrumax

it + copit ]u
∗∗
it − rupit u

∗∗
it ρ

up
it + (ρupit − ρupit+1)p

∗∗
it (A6p)

By complementary slackness of (2i),

(pruit − prumax
it u∗∗

it )β
rumax
it = 0 (A6q)

By complementary slackness of (3f),

(βrumax
it + βmax

it − λus
t + cruit )p

ru∗∗
it = 0 (A6r)

Subtracting (A6r) and (A6q) and rearranging,

−prumax
it u∗∗

it β
rumax
it = (βmax

it − λus
t + cruit )p

ru∗∗
it (A6s)
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Substituting (A6s) and (A6m) into (A6p) and rearranging,

λtp
∗∗
it + λus

t pru∗∗it

= (
∑

j∈Ji cjitp
∗∗
jit) + cruit p

ru∗∗
it + [γit + δit − δit+1 + copit ]u

∗∗
it + (ρupit − ρupit+1)p

∗∗
it − (p∗∗it − p∗∗it−1)ρ

up
it

= (
∑

j∈Ji cjitp
∗∗
jit)+cruit p

ru∗∗
it +[γit+δit−δit+1+copit ]u

∗∗
it −rupit u

∗∗
it ρ

up
it +(ρupit −ρupit+1)p

∗∗
it

(A6t)

Ramp rate dynamics. Summing (ρupit−1 − ρupit )p
∗∗
it over T.

∑
T (ρ

up
it −ρupit+1)p

∗∗
it = ρupi1 p

∗∗
i1−ρupi2 p

∗∗
i1+ρupi2 p

∗∗
i2−ρupi3 pi2+. . .+ρupitmaxp

∗∗
itmax−ρupitmax+1p

∗∗
itmax

(A6u)

Summing (p∗∗it -p
∗∗
it−1)ρ

up
it over T

∑
T (p

∗∗
it −p∗∗it−1)ρ

up
it = p∗∗i1 ρ

up
i1 −p∗∗i0 ρ

up
i1 +p∗∗i2 ρ

up
i2 −p∗∗i1 ρ

up
i2 +. . .+p∗∗itmaxρ

up
itmax−p∗∗itmax−1ρ

up
itmax

(A6v)

Subtracting (A6u) from (A6v) and since p∗∗itmax+1 is not in the model we set it to 0.

∑
T (p

∗∗
it − p∗∗it−1)ρ

up
it −

∑
T ′(ρupit − ρupit+1)p

∗∗
it = −p∗∗i0 ρ

up
i1 + ρupitmax+1p

∗∗
itmax (A6w)

In the first term, ρupi0 is undefined in the model and set to 0; p∗∗i0 is a parameter from

the previous operating period. Given t=0 is the interval before a commitment block

T, we have u∗∗
i0 = 0 and p∗∗i0 = 0. We make an adjustment to pmax

i1 to account for the

ramp constraint in period one. In the last term, ρup(itmax+1), is outside the model

horizon and set to 0. For finite horizon models, initial conditions are specified and

in practice, the horizon extends several periods beyond the auction horizon to

minimize the end of the horizon effect.



O’Neill, Chen and Whitman 37

Summing (A6t) over τ , canceling terms and rearranging,

∑
t∈T [λtp

∗∗
it +λus

t pru∗∗it ] =
∑

t∈T [
∑

j∈Jicjitp
∗∗
jit+cruit p

ru∗∗
it +(γit+δit−δit+1+copit )u

∗∗
it ]

(A6x)

The binary relaxation dynamics. Binary variables must satisfy the equality, (1l). If

copit > 0 and csuit > 0, the following must hold: If z∗it = 1, then u∗it−1 = 0, u∗
it = 1, and

zd∗it = 0. If zd∗it = 1, then u∗it−1 = 1, u∗it =0, and z∗it =0. Since the relaxed binary

variables must satisfy the equality, (2l), the following must hold: From (2m), if z∗it =

0, z∗∗it = 0. From (2n), if u∗it = 0, u∗∗it = 0. From (2o), if zdit
∗ = 0, zd∗∗it = 0. This

eliminates non-operating generators from the pricing algorithm.

Since the relaxed binary variable must satisfy the equality, (2l), from (2m), if z∗it=1, 0

≤ z∗∗it ≤ 1.

Since csuit > 0 and generator i is part of the optimal solution, z∗∗it > 0 because if z∗∗it >

0, a less costly solution would be z∗it = 0 which is a contradiction.

If z∗it=1, u∗it= 1, from (2l) u∗∗it = z
∗∗
it . If u∗it = 1 and u∗it+1 = 1, that is, unit i was not shut

down or started up in t+1, u∗∗it+1 = u∗∗it . If zd∗it = 1, 0 ≤ zd∗∗it ≤ 1. If zd∗it = 1, u∗it−1= 1

and u∗it = 0. If u∗it = 0, u∗∗it−1= z
d∗∗
it .

For the up-down cycle in (1), z∗∗it = u∗∗
it for t ∈ Ti. For t′′ + 1, u∗∗

it′′ = zd∗∗it′′+1, and if

t′′ > t′, z∗∗it = u∗∗
it = u∗∗

it+1 = . . . = u∗∗
it′′ = zd∗∗it′′+1. For t ∈ Ti, let ui = u∗∗

it = u∗∗
i . For

t ̸∈ Ti, u∗∗
it = 0. Since u∗∗

it = u∗∗
i for t ∈ Ti = {t′, . . . , t′′} and u∗∗

it = 0 for t ̸∈ Ti.

∑
t∈T [(δit − δit+1)u

∗∗
it ] =

∑
t∈Ti

[(δit − δit+1)u
∗∗
i ] = (δit′ − δit′′+1)u

∗∗
i (A7a)

From complementary slackness of (2o), if zd∗∗it′′+1 < zd∗it′′+1, ω
d
it′′+1 = 0.

From complementary slackness of (3h), if zd∗∗it′′+1 < zd∗it′′+1,
,then (ωd

it′′+1 + δit′′+1) =0

and

δit′′+1 = 0 (A7b)
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From complementary slackness of (3d),

(ωit − δit + csuit )z
∗∗
it = 0 (A7c)

For t ̸∈ Ti, u∗∗
it = 0 and z∗∗it = 0. For t ∈ Ti, if z∗∗it′ < z∗it′ , from complementary

slackness of (2m), ωit′ = 0,

(−δit′ + csuit′)z
∗∗
it′ = (−δit′ + csuit′)u

∗∗
it′ = 0 (A7d)

and

δit′u
∗∗
it′ = csuit′u

∗∗
it′ (A7e)

Substituting (A7b) into (A7e),

(δit′ − δit′′+1)u
∗∗
i = csuit′u

∗∗
i (A7f)

And (A6x) becomes,

∑
t∈T [λtp

∗∗
it +λus

t pru∗∗it ] =
∑

t∈T [(
∑

j∈Ji cjitp
∗∗
jit)+cruit p

ru∗∗
it +copit u

∗∗
i +γitu

∗∗
i ]+csuit′u

∗∗
i

(A7g)

Case 1. u∗∗i = 1, t ∈ Ti and u∗∗i = 0, t ̸∈ Ti,

Since γit ≥ 0, if u∗∗i = 1, as ϵ= 0, (A7g) becomes

∑
t∈Ti

(λtp
∗
it + λus

t pru∗it )−
∑

t∈Ti
[(
∑

j∈Ji cjitp
∗
jit) + copit ]− csuit′ −

∑
t∈T cruit p

ru∗
it ≥ 0.

(A7h)

Energy and reserves revenues are greater or equal to incremental energy and

reserves costs, that is, all dispatched units are profitable with only the LIP energy

and reserve prices, that is, no generator needs a make-whole payment.
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If γit = 0 and u∗∗i = 1, (A7g) becomes

∑
t∈T i (λtp

∗
it+λus

t pru∗it ) −
∑

t∈T i [(
∑

j∈Ji cjitp
∗
jit)+copit ]−csuit′−

∑
t∈T c

ru
it p

ru∗
it = 0

(A7i)

Energy and reserves revenues - Incremental energy and reserves costs

= 0.

Case 2. For t ∈ Ti, u
∗∗
i < u∗

it. For t ̸∈ Ti, if uit∗∗ = 0, p∗∗it = 0. Let cit be the marginal

cost at p∗it. If (2j) binds, absent degeneracy, βmin
it > 0, p∗it = pmin

it , and cit > λt.

Relaxing ui increases the objective function until another constraint binds. As ϵ= 0,

we have p∗∗it = p∗itu
∗∗
i and pru∗∗it = pru∗it u

∗∗
i , and

∑
t∈Ti

[λtp
∗
itu

∗∗
i + λus

t pru∗it u∗∗
i ] =

∑
t∈Ti

[λtp
∗∗
it + λus

t pru∗∗it ] (A7j)

Substituting pru∗∗it =pru∗it u
∗∗
i , p∗∗jit=p

∗
jitu

∗∗
i , p∗∗jit=p

∗
jitu

∗∗
i , and (A7j) into (A6x),

∑
t∈Ti

[λtp
∗
itu

∗∗
i + λus

t pru∗it u∗∗
i ] =∑

t∈Ti
[
∑

j∈Ji cjitp
∗
jitu

∗∗
i + cruit p

ru∗
it u∗∗

i + (γit + δit − δit+1 + copit )u
∗∗
i ] (A7k)

Dividing (A7k) by u∗∗i and since
∑

t∈Ti
(δit′ − δit′′+1) = csuit′ ,

∑
t∈Ti

[λtp
∗
it + λus

t pru∗it ] =
∑

t∈Ti
[(
∑

j∈Jicjitp
∗
jit) + cruit p

ru∗
it + copit + γit] + csuit′ (A7l)

Since γit ≥ 0, all dispatched units are profitable using only the LIP energy and

reserve prices, that is, no generator needs a make-whole payment. □

Proof of Proposition 4: If pmin
it < p∗it < pmax

it , βmin
it = 0. From complementary

slackness of (3c),

ρupit − ρupit+1 − λt + µit + βmax
it = 0 (A8a)
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From complementary slackness of (3f), if 0 < pru∗∗it < prumax∗∗
it , βrumax

it = 0,

βmax
it + cruit − λus

t = 0. (A8b)

Subtracting (A8a) from (A8b) , λt − λus
t = µit − cruit + ρupit − ρupit+1

From complementary slackness of (3e), if pjit > 0, µit = cjit + βmax
jit .

If there is a j′ ∈ Ji where p∗j′it = p∗it < pmax
j′it , then βmax

j′it = 0 and µit = cj′it = cit.

Substituting µit = cit, (A8a) becomes, λt − λus
t = cit − cruit + ρupit − ρupit+1.

If there is no binding ramp constraint, ρupit - ρupit+1 = 0 and λt − λus
t = cit − cruit .

□
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Appendix C. Illustrative Small Examples of AIC Pricing

Small examples serve several purposes. They help with intuition. ISO’s use them as

educational material. They allow the reader to track and replicate the example

results, for example, the allocation of incremental costs to the period that caused

them. They may show pathologies that are hidden or less pronounced in larger

problems, for example, cost allocation, complementarities, degeneracy, and horizon

effects. Fortunately, degeneracy is not known to be a serious problem in practice. In

practice, the conditions in the initial period are specified, and the horizon is extended

multiple periods beyond the settlement periods to dampen any end-of-horizon

influence.They can demonstrate entry and exit conditions. Nevertheless, large

examples on actual problems are the acid test for implementation.

To show the choice of ϵ, we show the dual variables on the energy balance and

reserves constraints from a series of decreasing ϵ and at ϵ = 0 along with two

different linear program codes and two possible variations of the AIC pricing. In

variation 1, LIP1 sets pmax = p∗ + ϵ only for generators with negative profits under

LMP prices. In variation 2, LIP2 sets pmax = p∗ + ϵ for all dispatched generators.

At some point as ϵ→ 0, ϵ becomes numerically zero and the problem becomes

numerically degenerate. At ϵ=0, degeneracy in addition to the degeneracy that may

already be present occurs, enlarging the set of optimal dual variables, in particular,

the prices for energy and reserves. This can produce unusual and unusable pricing

results. For most solvers, for example, GUROBI, the choice of dual variables under

primal degeneracy is not known to be predictable, but they are repeatable.

From the examples below, it appears the LIP1 with ϵ = 10−4 is the more stable

pricing scheme. In these AIC pricing schemes with two or more generators, there is

always an incremental generator that breaks even (zero profit) and usually

infra-incremental generators that make a positive profit. No generator needs a

make-whole payment. These are similar to the properties of a convex market.

Monetary units are dollars. A period is one hour, but could be any time interval.
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The results were produced by the GAMS program:

MinRunRampPricDyn20200530.gms and MinRunRampPricDyn20200521.gms

on a laptop. The ‘alt’ solutions are from the Excel solver on a different laptop.

Example 1. Three Period Market with One-Step Marginal Costs Functions.

The load parameters are in Table 1.1. The generators’ parameters are in Table 1.2.

Table 1.3 has the LMP and AIC market results.

Table 1.1. Load

Period 1 2 3
Value 900 900 900
Max Load 95 100 130

Table 1.2. Generation

Marg Min Max
Max

at
Start

Min
Run

Fix
Oper

Ramp
Up

Ramp
Down

Cost Gen Gen Start Cost Time Cost Rate Rate
Gen $/MWh MW MW MW $ hrs $/per MW/per MW/per
1 10 0 100 0 0 1 0 200 900
2 50 20 35 26 1000 1 30 5 900
3 320 0 31 31 0 1 0 200 200

Table 1.3. Optimal Dispatch and Prices without Reserves.

period 1 2 3
Energy MValue Energy MValue Energy MValue

Load 95 890 100 890 130 810
Gen1 95 0 75 0 100 80
Gen2 0 0 25 0 30 0
LMP 10.00 10.00 90.00

LIP1(ϵ = 10−4) 10.00 10.00 118.67

LIP1(ϵ=0) 10.00 10.00 900.00
LIP1(ϵ=0)alt 10.00 10.00 118.67

LIP2(ϵ = 10−4) 10.00 10.00 118.67
LIP2(ϵ=0) 10.00 10.00 900.00

LIP2(ϵ=0)alt 10.00 92.40 50.00
MValue is marginal value.

For Gen2, the startup pmax = 26 and the ramp rate constraints combine to force it to
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startup in period 2 to be at 30 MW in period 3. Gen1 sets the LMP in periods 1

and 2. Gen2 sets the LMP in period 3. The binding ramp rate constraint for Gen2

from period 2 to 3 adds $40/MWh to the LMP in period 3. With an additional

unit of Gen2 ramp, the Gen2 dispatch would be 24 in period 2, and 30 in period 3

saving $40. At ϵ=10−4, in period 3, the LIP is $118.67/MWh (= (3810-250)/30),

each AIC variation with ϵ ≥ 0 allocates all residual costs (cost above those recovered

by the LMP) of Gen2 to the period 3 LIP – the period that demand caused the

dispatch of Gen2 in period 2.

At ϵ=0, two variations, LIP1(ϵ=0) and LIP2(ϵ=0), the program choose $900/MWh

(the value of demand) as the clearing price in period 3, because Gen1 is at its

maximum and Gen2 is constrained by its ramp rate. LIP2(ϵ=0)alt results in LIPs of

$10, $92.4, $50, Gen2 also breaks even with the same market surplus. The

redistribution of market surplus occurs between load and Gen1.

Table 1.4 contains the avoidable costs, the settlements at the LMPs and LIPs for

ϵ = 10−4 and ϵ=0. the LMP settlement needs a make-whole payment. The LIP

settlements need no make-whole payments. The sequence of AIC objective function

values converge to optimal dispatch because the pmax constraints bind. For the

dispatch problem and AIC problem with ϵ=10−4 and ϵ=0, the market surplus is the

same rounded to 6 digits. At ϵ=0, the LIP price in period 3 is $900/MWh, the

settlement changes, but all generation remains profitable and load breaks even.

Table 1.4. Settlement at LMP and LIP (ϵ=10−4 and ϵ =0) without Reserves

Avoidable Profit/Value at
cost LMP LIP1(ϵ = 10−4) LIP1(ϵ = 0) LIP2(ϵ = 10−4)LIP2(ϵ = 0)

Gen1 2700 8000 10866.67 89000 10866.67 89000
Gen2 3810 -860 0 23440 0 23440
Total 6510 7140 10866.67 112440 10866.67 112440
load 278850 275123 173550 275123 173550
MS 285990 285990 285990 285990 285990

Gen3 Entry.
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The LMP is a valid signal for generators with costs lower than the LMP to enter the

market. But, in non-convex markets, entry at costs greater than the LMP can occur.

To illustrate, we introduce Gen3, a convex generator with a maximum output of 31

MW and a constant marginal cost. If we set the marginal costs of Gen3 to

$118.66/MWh (just below the LIP1 price) , Gen3 enters the market and displaces

4 MW of Gen2 in period 3. Table 1.5 contains the optimal results. Gen2 now starts

up in period 3 at its startup maximum (26 MW). Gen3 sets the price in period 3

and breaks even. The saving for dispatching Gen2 in only period 3 is $1230 (=

$40/MWh×25 MWh plus $30 fix cost in period 2 and $50/MWh×4 MWh in

period 3). At a marginal cost of $118.66/MWh, Gen3 enters, and therefore,

$118.67/MWh is a valid entry signal, and the market surplus increases to

$286,745.36.

If Gen3 marginal costs are $307.5/MWh, for 4 MWh cost is $1230 and the solver

is indifferent about dispatching Gen3. At $307.4/MWh, Gen3 enters the market

and sets the price in period 3 at $307.4/MWh and breaks even. Gen1 and Gen2

are more profitable. At $307.6/MWh, Gen3 does not enter the market. These

results are due to the lumpiness of fixed costs, the high demand value, and the

non-convex complementarities.

Table 1.5. Optimal Dispatch, Prices and Settlement for Gen3 marginal cost of

$118.66/MWh

period 1 2 3
Energy MValue Energy MValue Energy MValue Cost Profit/Value

Load 95 890 100 890 130 781.34 275124.20
Gen1 95 0 100 0 100 108.66 2950.00 10866.00
Gen2 0 0 0 0 26 68.66 2330.00 755.16
Gen3 0 0 0 0 4 0 474.64 0
LMP 10.00 10.00 118.66
Total 5754.64 286745.36

Example 2. Changing the Startup Value of pmax
2

If the startup pmax
2 is 23 MW (instead of 26), Gen2 would need to startup in period
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1 to ramp to 30 MW in period 3. Table 2.1 has the market results and prices. The

market surplus declines from the example 1 by $830 ($800 for extra marginal cost

and $30 for fixed operating costs in period 1). An additional unit of ramp rate is

worth $80/MWh ($40/MWh from period 1 to 2 and $40/MWh from period 1 to

2. The LMP in period 3 is $130/MWh (=50+40+40) set by Gen2 due to ramp rate

constraints from periods 1 to 2 and 2 to 3 and and the marginal energy cost of

$50/MWh. In period 3, the LIP is $146.33. With an additional unit of ramp, the

dispatch of Gen2 would be 18, 24, and 30 in periods 1, 2 and 3 saving $120. The

fixed-binary linear problem is degenerate. In Period 1, the pmin and the ramp rate

constraints of Gen2 simultaneously bind blocking the dispatch of 18 MWh in

period 1. If the pmin
2 is increased to 21 in period 1, the LMP in period 3 decreases

to $90/MWh.

Table 2.1. Optimal Dispatch and Prices without Reserves for startup Gen2 pmax
2 at

23 MW

period 1 2 3
Energy Value Energy MValue Energy MValue

Load 95 890 100 890 130 810
Gen1 75 0 75 0 100 80
Gen2 20 0 25 0 30 0
LMP 10.00 10.00 130.00

LIP1 (ϵ=10−4) 10.00 10.00 146.33

LIP1 (ϵ=0) 10.00 10.00 900.00
LIP1 (ϵ=0)alt 10.00 10.00 146.33

LIP2 (ϵ=10−4) 10.00 10.00 146.33
LIP2 (ϵ=0) 900.00 50.00 50.00

LIP2 (ϵ=0)alt 10.00 125.6 50.00

Table 2.2 contains the avoidable costs, the settlement at the LMPs, and LIPs with

ϵ=10−4 and ϵ=0. At ϵ=10−4, the settlement for LIP1 and LIP2 are the same and

Gen2 is incremental. At ϵ=0, the settlements are different since with LIP1, load sets

the price in period 3 and in LIP2 sets the price in period 1 as a result of additional

degeneracy. For the optimal dispatch and AIC problem with ϵ=10−4 and ϵ=0, the
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objective function (maximize market surplus) is the same and converges to the

efficient market surplus.

Table 2.2. Settlement at LMP and LIP (ϵ = 10−4 and ϵ = 0) without Reserves

Avoidable Profit/Value at
Cost LMP LIP1(ϵ = 10−4)LIP1(ϵ = 0) LIP2(ϵ = 10−4) LIP2(ϵ = 0)

Gen1 2500 12000 13633.33 89000 13633.33 73750
Gen2 4840 -490 0 22610 0 15910
Total 7340 11510 13633.33 111610 13633.33 89660
load 273650 271527.00 173550 271527.00 195500
MS 285160 285160.00 285160 285160.00 285160

Example 3. Example 1 with Reserves.

We add a reserves requirement of 1 MW per period to Example 1. Reserve offer is

$1/MWh for Gen1 and $1.5/MWh for Gen2. Table 3.1 has the market results.

Reserves are provided by Gen1 in periods 1 and 2 and Gen2 in period 3 when all

Gen1 capacity is used for energy. The degeneracy produced by the binding ramp

rates for Gen2 and a binding pmax for Gen1 results in different prices. Each AIC

methodology allocates all avoidable fixed costs of Gen 2 to period 3 – the period

that caused the dispatch of Gen2. For both ϵ=10−4 and ϵ=0, AIC LIP1 maintains

the arbitrage condition between energy and reserve prices of $88.50 (= 90-1.5 =

117.74-29.24). In AIC LIP2, the relaxation of Gen1 allows it to supply ϵ of reserves

and causes different prices at ϵ = 10−4. At ϵ = 0, primal degeneracy produces many

prices. Any convex combination of valid prices is a valid set of prices.

Table 3.1. Optimal Dispatch and Prices with Reserves of 1 MW per period.
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period 1 2 3
en marg resrv en marg resrv en marg resrv

Load 95 0 0 100 0 0 130 0 0
Gen1 95 0 1 75 0 1 100 1 0
Gen2 0 0 0 25 0 0 30 0 1

LMP/rLMP 10.0 1.00 10.0 1.00 90.00 1.50
LIP1/rLIP1(ϵ = 10−4) 10.0 1.00 10.0 1.00 117.7 29.24

LIP1/rLIP1(ϵ=0) 10.0 1.00 10.0 1.00 117.7 29.24
LIP1/rLIP1(ϵ=0)alt 10.0 1.00 10.0 1.00 900.0 1.50
LIP2/rLIP2(ϵ=10−4) 10.0 1.00 10.0 1.00 117.7 29.24

LIP2/rLIP2(ϵ=10−4)alt 10.0 1.00 10.0 1.00 118.7 1.50
LIP2/rLIP2(ϵ=0) 10.0 1.00 10.0 1.00 117.7 29.24

LIP2/rLIP2(ϵ=0)alt 10.0 1.00 10.5 1.50 900.0 1.50

En is energy; marg is the marginal value of energy; resrv is the reserves.

Table 3.2 contains the generator avoidable costs, the settlement at the LMPs, and

the settlement the LIPs at ϵ = 10−4 and ϵ = 0. The LMP payments result in a

make-whole payment of $860 to Gen2. The LIP settlements need no make-whole

payments, Gen1 is infra-incremental and Gen2 is incremental.

Table 3.2. Settlement at LMP and LIP (ϵ=10−4 and ϵ=0) with Reserves

Avoidable Profit/Value
cost LMP LIP1(ϵ=10−4) LIP1(ϵ=0) LIP2(ϵ=10−4) LIP(ϵ=0)

Gen1 2702.00 8000 10774.18 10774.19 10866.67 10774.19
Gen2 3811.50 -860 0 0 0 0
Total 6313.50 7140 10774.18 10774.19 10866.67 10774.19

For dispatch problem and AIC pricing problem with ϵ=10−4 and ϵ=0, the objective

function is the same to 7 digits (see Table 3.3).

Table 3.3. Market Surplus (Objective Function Value) with pmax
2 at startup is 26

MW.
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Variation 1
w/o reserves

Variation 1
w/reserves

Variation 2
w/o reserves

Variation 2
w/ reserves

optimal dispatch 285990.00 285986.50 285990.00 285986.50
ϵ=1 286017.74 286013.38 286017.74 286014.74
ϵ=.01 285990.29 285986.79 285990.29 285986.79
ϵ=10−4 285990.00 285986.50 285990.00 285986.79
ϵ=0 285990.00 285986.50 285990.00 285986.50

Example 4. Example 3 with Startup pmax
2 is 23 MW.

If the startup pmax
2 is 23 MW, Gen2 would need to startup in period 1 to ramp to 30

MW in period 3. Table 4.1 has one set of market results and prices. The LMP in

period 3 to $130/MWh due to ramp rate constraints and pmax at startup. In period

1, Gen2 is both at its minimum operating level and constrained by its ramp rate

creating a degeneracy. At ϵ=0, LIP1 and LIP2 produce a $900/MWh clearing price

in period 3 and $10/MWh in periods 1 and 2. In LIP2, the relaxation of Gen1

allows it to supply an ϵ of reserves and causes different prices. At ϵ=10−4, two sets of

prices recover exactly the avoidable cost for Gen2, the incremental generator, but

the profit for Gen1 changes.

Table 4.1. Optimal Dispatch and Prices with 1 MW/period Reserves for startup

pmax
2 = 23 MW

period 1 2 3
energ marg reserv energ marg reserv energ marg reserv

Load 95 100 130
Gen1 75 0 1 75 0 1 100 1 0
Gen2 20 0 0 25 0 0 30 0 1

LMP/rLMP 10.00 1.00 10.00 1.00 130 1.50
LIP1/rLMP1(ϵ=10−4) 10.00 1.00 10.00 1.00 145.80 17.30

LIP1/rLMP1(ϵ=0) 10.00 1.00 10.00 1.00 900 1.50
LIP2/rLMP(ϵ=10−4) 10.00 1.00 10.00 1.00 146.33 1.50
LIP2/rLMP2(ϵ=0) 10.00 1.00 10.00 1.00 900 1.50

energ is energy; marg is the marginal value of energy; reserv is the reserves.

Table 4.2 contains the avoidable costs, the settlement at the LMPs, and LIPs with

ϵ=10−4 and ϵ=0. The LIPs produce no make-whole payments. For ϵ=10−4, the
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incremental generator, Gen2, breaks even, and the infra-incremental generator

makes a positive profit that is slightly different. For ϵ=0, the settlements are different

and both generators make positive profits. The market surplus declines from

Example 3 by $830 ($800 for extra marginal cost and $30 for fixed operating costs

in period 1. For the optimal dispatch and AIC problem with ϵ=10−4 and ϵ=0, the

objective function is the same to 7 digits and the sequence converges to the efficient

solution (see Table 4.3).

Table 4.2. Settlement at LMP and LIP with Reserves for startup pmax
2 at 23 MW

Avoidable Profit/Value
Cost LMP LIP1(ϵ = 10−4) LIP1(ϵ = 0) LIP2(ϵ = 10−4) LIP2(ϵ=0)

Gen1 2502 12000 13580.64 89000 13633.33 89000
Gen2 4841.5 -490 0 22610 0 22610
Total 7543.5 11510 13580.64 111610 13633.33 111610

Table 4.3. Market Surplus (Objective Function Value)

Variation 1
w/o reserves

Variation 1
w/ reserves

Variation 2
w/o reserve

Variation 2
w/ reserves

optimal 285160.00 285156.50 285160.00 285156.50
ϵ=1 285175.81 285175.81 285175.81 285172.81
ϵ=.01 285160.16 285156.66 285160.16 285156.67
ϵ=10−4 285160.00 285156.50 285160.00 285156.50
ϵ=0 285160.00 285156.50 285160.00 285156.50

Example 5. Five-Period Market with Two-Step Marginal Cost Functions.

The load parameters are in Table 5.1. The generator parameters are in Table 5.2.

Table 5.3 has the market results.

Table 5.1. Load

Period 1 2 3 4 5
Value 900 900 900 900 900
Max load 140 165 90 80 70

Table 5.2. Generation
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Marginal Start Min Min Fixed Ramp
Cost1 Max1 Cost2 Max2 Cost Gen run cost Up

Gen $/MWh MW $/MWh MW $ MW hr $/hr MW/hr

1 4.5 80 9.5 20 800 0 1 50 10
2 2.0 30 9.0 40 0 20 1 0 200

Table 5.3. Optimal Dispatch and Prices without Reserves

period 1 2 3 4 5
energy energy energy energy energy

load 140 165 90 80 70
Gen1 85 95 60 50 40
Gen2 55 70 30 30 30
LMP 9.00 10.00 4.50 4.50 4.50

LIP1(ϵ=10−4) 9.00 12.58 4.50 4.50 4.50

LIP1(ϵ=0) 9.00 12.58 4.50 4.50 4.50
LIP1(ϵ=0)alt 9.50 9.50 5.33 5.50 25.75

LIP2(ϵ=10−4) 9.00 12.58 4.50 4.50 4.50
LIP2(ϵ=0) 9.50 12.13 4.50 4.50 4.50

LIP2(ϵ=0)alt 9.50 9.50 5.33 5.50 25.75

In period 1, Gen2 step 2 sets the LMP at $9/MWh because Gen1’s ramp-up rate

constraint from period 1 to 2 binds and it cannot supply any more energy in period

1. Gen1’s ramp-up rate constraint shows up in period 2’s LMP = $10/MWh [= 9.5

(the marginal cost of Gen1 step2) +.5 (marginal value of the ramp-up constraint)].

In periods 3 through 5, the LMP is set by Gen1 step l. Both AIC variations ϵ=10−4

and LIP1 at ϵ=0 allocate all avoidable fixed costs of Gen1 to period 2, the period of

peak need, and produce the same prices. The exception is LIP2 with ϵ=0 that raises

the LIP2 by $.50/MWh in period 1 and lowers the LIP1 by $.45/MWh in period

2.

Table 5.4 contains the settlement at the LMPs and the LIPs. The LIP settlements

need no make-whole payments. Gen1 breaks even and is an incremental generator.

Gen2 makes a positive profit and is an infra-incremental generator. The energy

prices change for LIP2 (ϵ = 0) and lowers Gen2’s profits by about .5% compared to

Gen2’s profits under LIP1. The sequence of AIC objective function values converge
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to optimal dispatch (1) objective function. For the optimal solution, ϵ=10−4 and ϵ=0

solutions, the objective function is the same to 8 digits.

Table 5.4. Settlement at LMP and LIP (ϵ=10−4 and ϵ=0) without Reserves

Avoidable Profit/Value
cost LMP LIP1(ϵ = 10−4) LIP1(ϵ=0) LIP2(ϵ = 10−4) LIP2(ϵ = 0)

Gen1 2635 -245 0 0 0 0
Gen2 885 715 895.53 895.53 895.53 891.71
Total 3520 470 895.53 895.53 895.53 891.71

Example 6. Example 5 with Reserves.

We add a reserves requirement of 1 MW per period to the above problem. Gen1’s

reserve cost is $1/MWh and Gen2’s reserve cost is $1.5/MWh. Table 6.1 has the

optimal dispatch and prices. Reserves are provided by Gen1 in all periods. The

LIPs and rLIPs move around due to primal degeneracy. At LIP1/rLIP1(ϵ = 10−4),

all avoidable fixed costs of Gen1 are allocated to period 2, the period of peak need,

and the prices maintain the reserves arbitrage condition.

Table 6.1. Optimal Dispatch and Prices with Reserves

Period 1 2 3 4 5
ener resr ener resr ener resr ener resr ener resr

load 140 165 90 80 70
Gen1 85 1 95 1 60 1 50 1 40 1
Gen2 55 0 70 0 30 0 30 0 30 0
LMP/rLMP 9.00 1.00 10.00 1.00 4.50 1.00 4.50 1.00 4.50 1.00
LIP1/rLIP1(ϵ = 10−4) 9.00 1.00 12.55 3.55 4.50 1.00 4.50 1.00 4.50 1.00

LIP1/rLIP1(ϵ = 0) 9.00 1.50 12.55 3.05 4.50 1.00 4.50 1.00 4.50 1.00
LIP1/rLIP1(ϵ = 0)alt 9.00 1.50 16.31 1.00 4.50 1.50 4.50 1.50 4.50 1.00
LIP2/rLIP2(ϵ=10−4) 9.00 1.50 11.97 2.47 5.00 1.50 5.00 1.50 4.50 1.00
LIP2/rLIP2(ϵ = 0) 12.41 3.91 9.50 1.00 4.50 1.00 4.50 1.00 4.50 1.00
LIP2/rLIP2(ϵ = 0)alt 9.50 1.00 9.50 1.00 4.50 4.00 4.50 4.00 26.901.00

Table 6.2 contains the avoidable costs, the settlement at the LMPs, and the

settlement the LIPs at ϵ=10−4 and ϵ=0. Even though the LIPs and rLIPs move

around, the LIPs settlements have no make-whole payments, Gen1 always breaks
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even, and the settlement for Gen2 has a maximum variation of 3%.

Table 6.2. Settlement at LMP and LIP (ϵ=10−4) with Reserves

Avoidable Profit at
Cost LMP LIP1(ϵ = 10−4) LIP1(ϵ = 0) LIP2(ϵ = 10−4) LIP2(ϵ = 0)

Gen1 2640 -245 0 0 0 0
Gen2 885 715 893.65 893.65 882.81 867.38
Total 3525 470 893.65 893.65 882.81 867.38

The sequence of AIC objective function values converge to optimal dispatch

objective function. With ϵ=10−4 and ϵ=0, the objective function is the same to 8

digits (see Table 6.3).

Table 6.3. Market Surplus (Objective Function Values).

without reserves with reserves
optimal 486980.00 486975.00
ϵ=1.00 486982.55 486977.53
ϵ=.01 486980.03 486975.03
ϵ=.0001 486980.00 486975.00
ϵ=0 486980.00 486975.00

Example 7. The AICMethodology Allocates Avoidable Fixed Costs to the Peak.

The load parameters are in Table 7.1. The generators’ parameters are in Table 7.2.

Table 7.3 has the market results. To meet load in periods 3 and 4 and a minimum

run time of 4 periods, Gen2 starts up in period 1. In period 4 where Gen2 is

needed because Gen1 alone cannot satisfy demand. All costs of the minimum run

time are allocated to the peak period of greatest demand.

The AIC methodology allocates all avoidable fixed costs that is, startup costs and

operating costs at its minimum operating level in periods 1, 2, and 3 to the peak

period 4. The LIP in period 4 creates a strong incentive to shift demand to an

off-peak period or conserve. The LMP does not present this incentive because the

fixed cost go to make-whole payments.

Table 7.1. Load
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Period 1 2 3 4 5
Value 900 900 900 900 900
Max Load 260 270 400 430 200

Table 7.2. Generation

Marg Min Max Start Min Fixed Ramp Ramp
Cost Gen Gen Cost Run Cost Up Down

Gen $/MWh MW MW $ hr $/per MW/per MW/per
1 10.00 0 300 0 1 0 500 0
2 53.10 250 250 2020 4 0 200 0
3 206.18 0 131 1 200

Table 7.3. Optimal Dispatch and Prices

period 1 2 3 4 5
Ener Marg Ener Marg Ener Marg Ener Marg Ener Marg

Load 260 890 270 890 400 890 430 890 200 890
Gen1 10 0 20 0 150 0 180 0 200 0
Gen2 250 -43.10 250 -43.10 250 -43.10 250 -43.10 0 -43.10

LMP 10 10 10 10 10
LIP1(ϵ=10−4) 10 10 10 190.48 10
LIP1(ϵ=0) 10 10 10 190.48 10

Table 7.4 contains the avoidable costs, the settlement at the LMPs and the

settlement LIPs at ϵ = 10−4 and ϵ = 0. The LMP settlements needs $45,120 in

make whole payments that are charged to consumers, but do not show up in the

LMPs that are all set at $10/MWh. The LIP settlement produces no make-whole

payments, is revenue neutral, and allocates all fixed costs to the period with the

highest demand that caused the costs (period 4).

Table 7.4. Settlement at LMP and LIP (ϵ=10−4 and ϵ=0)

Avoidable Value/Profit (in $) at
Cost LMP LIP1(ϵ = 10−4) LIP1(ϵ = 0)

Gen1 5600 0 32486.40 32486.40
Gen2 55120 -45120 0 0
Total
Gen

60720 -45120 32486.40 32486.40

load 1388400 1310793.60 1310793.60
Total value 1343280 1343280.00 1343280.00

For Example 7, pru∗it = 0; since there is only a one step supply curve, cjit = cit,
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copit = 0; ρit = 0; and ρupit = 0; dividing (4g) by p∗it reduces to

λt = cit + γit/p
∗
it + (δit − δit+1)/p

∗
it

revenues = marginal costs + profits/MWh + fixed cost allocation.

Substituting u∗∗
it /p

∗∗
it for 1/p∗it,

λt = cit + (γit + δit − δit+1)u
∗∗
it /p

∗∗
it .

We demonstrate in two different explanations for the allocation of Gen2 costs to the

period 4. For Gen2, γ2t = 0. The solver lowers u2 until the pmin
2 constraints bind. In

this example, δit-δit+1 can be interpreted as the savings of not starting in period 1,

that is,

$10775 = 250 ×(53.1-10)

min run time operating cost Min Gen in MW Gen2- Gen1 marginal costs

to satisfy demand in period 4. In Table 7.5, we see how the LIPs are calculated.

Table 7.5. The relocation of cost for Gen2 using
λt = c2t + (γ2t + δ2t − δ2t+1)u

∗∗
2 /p∗∗2t .

δ2t-δ2t+1 -10,775 -10,775 -10,775 34,345 0
p2t∗∗ 129.9999 129.9999 129.9999 130.0000 0
u∗∗
2 .52 .52 .52 .52 0

λt = c2t + (γ2t + δ2t − δ2t+1)u
∗∗
2 /p∗∗2t 9.999876 9.999876 9.999876 190.48 10

From the complementary slackness of (3c) and the above simplifications,

λt = cit + (pmax
it βmax

it − pmin
it βmin

it )/p∗it,

we see a different economic interpretation. In Table 7.6, in periods 1 and 2 where

Gen2 is not needed, the AIC solver minimizes the generation from the most

expensive marginal cost generator, Gen2, and the pmin
2t constraint binds and

βmin
2t = −43.1, the marginal savings for reducing pmin

it . In period 4, pmax
24 binds;

βmax
24 = 137.38; and the dual variable on the pmax

24 constraint contains the

opportunity cost of running at the minimum in the three previous periods is 3×250

MWh×$43.1/MWh, the startup cost is $2020; Optimal dispatch is 250 MWh;

dual variable βmax
24 is $137.38 = (3×250×43.1+2020)/250, λt = 53.1+137.38.



O’Neill, Chen and Whitman 55

Table 7.6. The relocation of cost for Gen2 using

λt = c2t + (pmax
2t βmax

2t − pmin
2t βmin

2t )/p∗2t

period 1 2 3 4
βmax
2t 0 0 0 137.38

βmin
2t 43.10 43.10 43.10 0

p∗2t 250.00 250.00 250.00 250.00
(pmax

2t βmax
2t − pmin

2t βmin
2t )/p∗2t -43.10 -43.10 -43.10 137.38

c2t 53.10 53.10 53.10 53.10
λt 10.0 10.00 10.00 190.48

Note Gen2 is shut down in period 5.

For ϵ = 10−4, the results for Gen1 are in Tables 7.7 and 7.8.
Table 7.7. The relocation of cost for Gen1 using λt = c1t + [γ1t + δ1t − δ1t+1]u

∗∗
1 /p∗∗1t

period 1 2 3 4 5
δ1t-δ1t+1 0

-
54144.00 0 54,144.00 0

γ1t 0 54144.00 0 0 0
p∗∗1t 130.0001 140.0001 270.0001 300 200
u∗∗
1 1 1 1 1 1

λt = c1t + [γ1t + δ1t − δ1t+1]u
∗∗
1 /p∗∗1t 10 10 10 190.48 10

In period 4, the system dispatches Gen2 to its maximum and Gen2 is an
incremental generator.

Table 7.8. The relocation of cost for Gen1 using λt=c1t + (pmax
1t βmax

1t -pmin
1t βmin

1t )/p1t
∗

period 1 2 3 4 5
βmax
1t 0 0 0 180.48
βmin
1t 0 0 0 0 0

p∗1t 10 10 10 180.00 10
(pmax

1t βmax
1t − pmin

1t βmin
1t )/p∗1t 10 20 150 180.48

c1t 10 10 10 10.00 10
λt 10 10 10 190.48 10

Load Shifting and Flexibility. If load can reduce its total consumption to 1495

MWh or less and shift consumption from period 4 to 1, 2, 3 and 5, the new

dispatch is shown in Table 7.9, the LIP = LMP = 10 will clear to the market in each

period and load pays $14,950 with a net value of $1,330,550 compared to

$1,310,794 in table 7.4.

Table 7.9. Optimal Dispatch and Prices with More Flexible Demand
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period 1 2 3 4 5
Ener Marg Ener Marg Ener Marg Ener Marg Ener Marg

Load 299 890 299 890 299 890 299 890 299 890
Gen1 299 0 299 0 299 0 299 0 299 0
Gen2 0 0 0 0 0 0 0 0 0 0

LMP 10 10 10 10 10
LIP1(ϵ=10−4) 10 10 10 10 10

Entry of Gen3 at the LIP. We add Gen3, a convex generator with a one-step

marginal cost of at $190.48/MWh to the market. Gen3 replaces Gen2 (see Table

7.10). Gen3’s dispatch allows greater use of the more flexible Gen1. Gen3 is the

marginal generator in periods 3 and 4. Gen1 is the marginal generator in periods 1,

2 and 5. Gen1’s profits increase from $32,486.40 to $108,288.00 due to the

greater use of Gen1. The LIPs are the same as the LMPs because Gen2 is not in the

dispatch and the market is convex.

Table 7.10. Optimal Dispatch and Prices at Gen3’s marginal costs of

$190.48/MWh.

period 1 2 3 4 5 Avoidable Cost Value/Profit at LMP
Load 260 270 400 430 200 1,238,601.60
Gen1 260 270 300 300 200 13,300.00 108,288.00
Gen2 0 0 0 0 0 0 0
Gen3 0 0 100 130 0 43,810.40 0
Total 57,110.40 1,346,889.60
LMP 10 10 190.48 190.48 10
LIP 10 10 190.48 190.48 10

Entry of Gen3 at a Higher Cost than the LIP. If we add Gen3, a convex generator,

with a one-step marginal cost of $206.18/MWh to the market, Gen3 will not enter

the market, but at a marginal cost of $206.16/MWh, Gen3 replaces Gen2. Due to

the complementary nature of Gen1 and Gen3, Gen3 allows higher Gen1 dispatch in

periods 1 through 4 with higher profits (see Table 7.11). The higher cost entry level

is due to the savings from not dispatching Gen2 and the less expensive generator,

Gen1, to be dispatch at a higher level.

Table 7.11. Optimal Dispatch and Prices at Gen3’s marginal costs of
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$206.17/MWh.

period 1 2 3 4 5 Avoidable Cost Value/Profit at LMP
Load 260 270 400 430 200 1,225,587.20
Gen1 260 270 300 300 200 13,300.00 117,696.00
Gen2 0 0 0 0 0 0 0
Gen3 0 0 100 130 10 47,416.80 0
Total 60,716.80 1,343,283.20
LMP 10 10 206.16 206.16 10
LIP 10 10 206.16 206.16 10

Example 8. Three-bus Example of Generator Profit Reduction under AIC.

In this example we show that the AIC profits can be lower than LMP profits due to a

transmission constraint.

Figure 4. Three Bus Network.

The problem parameters are in Tables 8.1 and 8.2. Table 8.3 presents the optimal

one-period dispatch, the LMPs and the generation profits at the LMPs. Line 1-to-2

is at its 60 MW capacity with a flowgate marginal price (FMP) of $90/MWh. Gen1

has positive profits of $500. Gen2 and Gen3 have negative profits of -$1200 and

-$500. Both would receive a make-whole payment to break-even using LMP

pricing.

Table 8.1. Generator and Load Parameters



58 One-Pass Average Incremental Cost Pricing

Bus 1 Bus 2 Bus 3
Load (MWh) 30 300 0
Generator G1 G2 G3
Fixed Costs ($) 0 1200 500
pmin (MW) 0 0 0
pmax (MW) 50 150 300
Marginal Costs ($/MWh) 10 80 50
Sensitivities of flow 1-to-2 to bus 0.666667 0 0.333333

Table 8.2 Transmission Line Limits.

Line 1-to-2 2-to-31-to-3
line limit (MW) 60 500 500

Table 8.3 Optimal Dispatch, LMPs, profits and make-whole payment under LMP

Bus 1 2 3 Total
LMP ($/MWh) 20 80 50
Dispatch (MWh) 50 140 140
Gen Revenue ($) 1000 11200 7000 19200
Gen Avoidable Cost ($) 500 12400 7500 20400
Gen Profit ($) 500 -1200 -500 -1200
Make-whole Payments
($) 0 1200 500 1700

Table 8.4 presents the AIC solution, the LIPs with ϵ = 10−4, and the generation

profits at the LIPs. Line 1 to 2 is at its 60 MW capacity with a flowgate incremental

price (FIP) of $105.00/MWh. Gen1 profit is $428.57 – less than the profit under

LMP. Gen2 and 3 profits are -$0.09 and -$0.04 at ϵ=0.01. At ϵ = 10−4, Gen2 and

3 profits are -$0.000857 and -$0.000357 and round to zero. Gen2 and Gen3

essentially breakeven without a make-whole payment. Compared to the LMP, the

LIP on bus 1 decreases to $18.57/MWh; on bus 2 the LIP increases to

$88.57/MWh; and on bus 3, the LIP increases to $58.57/MWh. The profits

change accordingly.

Table 8.4 AIC pricing solution and profit at LIP(ϵ = 10−4)
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LIP 18.57 88.57 53.57
Bus 1 2 3 Total

Dispatch 50.00 140.00 140.00
Gen Revenue 928.57 12400.00 7500.00 20828.57

Gen Marginal Cost 500.00 12400.00 7500.00 20400.00
Gen Profit 428.57

-
.000857

-
.000357 428.57

We change Gen1 marginal energy costs to $19/MWh. The results are in Table 8.5.

The LIP at bus 1 is $19/MWh is slightly higher than the LIP of $18.57/MWh.

Gen1 and Gen2 break even. Gen3 makes a profit of $30. Line 1 to 2 is at capacity

and the FIP is $104.36/MWh.

Table 8.5. Optimal Dispatch, LIPs and AIC profit if Gen1 marginal energy cost is

$19/MWh

LIP 19.00 88.57 53.79
Bus 1 2 3 Total

Dispatch 50.00 140.00 140.00
Gen Revenue 950.00 12400.00 7530.00 20880.00

Gen cost 950.00 12400.00 7500.00 20850.00
Gen Profit 0.00 0.00 30.00 30.00

Example 9. Single-period Market with Complementary Dispatchable Demand.

The load parameters are in Table 9.1. The generator parameters are in Table 9.2.

Table 9.1. Load

Marg Min Max
Value Load Load

Load $/MWh MW MW
L1 200 0 130
L2 21 0 140

Table 9.2. Generation

Marg Min Max Start
Cost Gen Gen Cost

Gen $/MWh MW MW $
G1 10 80 95 200
G2 20 40 50 90

There are three local optimal solutions. They are neighbors in the sense that they
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are only one binary change apart, but differ significantly in optimal market surplus.

If G1 is off and G2 is on, the optimal market surplus of $8910. If G1 is on and G2

is off, the optimal market surplus of $17850. If G1 is on and G2 is on, the optimal

market surplus of $24075. The latter is the global optimal market solution. Alone

L2 cannot cover the AIC costs of G2. At the local optima with G1 on and G2 off,

L1 has 35 MWs of additional demand, but cannot cover the 40 MW min gen of G2.

Together L1 and L2 can achieve the min gen of G2, L1 is satiated and L2 consumes

the remainder of G2’s capacity at the marginal cost of G2. L1 and L2 are

complementary consumers, i.e., they are both needed to achieve the optimal

dispatch. Table 9.3 has the global optimal market and pricing results.
Table 9.3. Global Optimal Dispatch and Prices

G1 G2 G3 L1 L2
SCUC MW 95 50 0 130 15
Cost/Value 1150 1090 0 26000 315

LMP 21 21 21 21 21
LMP Revenue/Payment 1995 1050 0 2730 315

LMP Profit/Value 845 -40 0 23270 0

LIP2 21.8 21.8 21.8 21.8 21.8
LIP2 Revenue/payment 2071 1090 0 2834 327

LIP2 Profit/Payment 921 0 0 23166 -12

Under LMP pricing, L2 sets LMP at $21/MWh, G2 revenue is less than its cost and

requires a $40 make whole payment. Under AIC pricing, LIP2 is $21.8/MWh is

set by G2 whose revenue equals to its cost. However, LIP2 is higher than the

marginal value of L2 and L2 requires a $12 make-whole payment.

To eliminate the make-whole payment to L2, we invoke the Ramsey–Boiteux

pricing rule. Roughly it states that the most inelastic market participants are

assigned the make-whole payments (see Ramsey (1927), Boiteux (1956), Dierker

(1991)). In the broader sense since step functions are not differentiable, this rule

assigns the make-whole payment to the market participants with highest surplus or

in proportion to its surplus and roughly in the time and space the make-whole
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payments were incurred in such a way that market participants remain

infra-marginal, infra-incremental, marginal and incremental, respectively. This is

not a unique pricing rule (see O’Neill et al. (2016)).

Here, we allocate the make-whole payment to the market participant with the

highest market surplus, L1. The LIP is $21.8/MWh. G1 and G2 get paid the LIP.

G2 breaks even and is an incremental unit. L2 pays the LMP = $21/MWh, breaks

even and is marginal. If we pay G1 the LIP, we charge L1 the difference in L2’s

payment $(21.8-21)/MWh*15MWh = $12 increasing its price by $12/130 MWh

= $.09231/MWh or $21.8923/MWh. The L1 payment is $2845.999

(21.8923*130). The L2 payment is $315 (21*15). Payments sum to $3160.999.

G1 is paid $2071 (21.8*95). G2 is paid $1090 (21.8*50). The generators are paid

$3161. The transfers are balanced to six digits.
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