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Abstract: We propose a modified BFGS algorithm for multiobjective optimization problems
with global convergence, even in the absence of convexity assumptions on the objective functions.
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1 Introduction

Multiobjective optimization problems involve the simultaneous minimization of multiple objec-
tives that may be conflicting. The goal is to find a set of solutions that offer different trade-offs
between these objectives, helping decision makers in identifying the most satisfactory solution.
Pareto optimality is a fundamental concept used to characterize such solutions. A solution is said
to be Pareto optimal if none of the objectives can be improved without deterioration to at least
one of the other objectives.

Over the last two decades, significant research has focused on extending iterative methods
originally developed for single-criterion optimization to the domain of multiobjective optimiza-
tion, providing an alternative to scalarization methods [19, 41]. This line of research was initi-
ated by Fliege and Svaiter in 2000 with the extension of the steepest descent method [23] (see
also [32]). Since then, several methods have been studied, including Newton [12, 22, 28, 31, 51],
quasi-Newton [1,33,34,39,42,44,46–48], conjugate gradient [27,29,37], conditional gradient [2,10],
projected gradient [3, 20,24,25,30], and proximal methods [5, 8, 9, 11,13].

Proposed independently by Broyden [6], Fletcher [21], Goldfarb [26], and Shanno [49] in 1970,
the BFGS is the most widely used quasi-Newton method for solving unconstrained scalar-valued
optimization problems. As a quasi-Newton method, it computes the search direction using a
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quadratic model of the objective function, where the Hessian is approximated based on first-
order information. Powell [45] was the first to prove the global convergence of the BFGS method
for convex functions, employing a line search that satisfies the Wolfe conditions. Some time later,
Byrd and Nocedal [7] introduced additional tools that simplified the global convergence analysis,
enabling the inclusion of backtracking strategies. For over three decades, the convergence of the
BFGS method for nonconvex optimization remained an open question until Dai [15], in the early
2000s, provided a counterexample showing that the method can fail in such cases (see also [16,40]).
Another research direction focuses on proposing suitable modifications to the BFGS algorithm
that enable achieving global convergence for nonconvex general functions while preserving its
desirable properties, such as efficiency and simplicity. Notable works in this area include those
by Li and Fukushima [35,36].

The BFGS method for multiobjective optimization was studied in [33, 34, 39, 42, 44, 46–48].
However, it is important to note that, except for [46,47], the algorithms proposed in these papers
are specifically designed for convex problems. The assumption of convexity is crucial to ensure
that the Hessian approximations remain positive definite over the iterations, guaranteeing the
well-definedness of these methods. In [47], Qu et al. proposed a cautious BFGS update scheme
based on the work [36]. This approach updates the Hessian approximations only when a given
safeguard criterion is satisfied, resulting in a globally convergent algorithm for nonconvex prob-
lems. In [46], Prudente and Souza proposed a BFGS method with Wolfe line searches which
exactly mimics the classical BFGS method for single-criterion optimization. This variant is well
defined even for general nonconvex problems, although global convergence cannot be guaranteed
in this general case. Despite this, it has been shown to be globally convergent for strongly convex
problems.

In the present paper, inspired by the work [35], we go a step further than [46] and introduce
a modified BFGS algorithm for multiobjective optimization which possesses a global convergence
property even without convexity assumption on the objective functions. Furthermore, we es-
tablish the local superlinear convergence of the method under certain conditions. Our approach
employs Wolfe step sizes and ensures that the Hessian approximations are updated and corrected
at each iteration to overcome the lack of convexity assumption. Numerical results comparing the
proposed algorithm with the methods introduced in [46, 47] are discussed. Overall, the modifi-
cations made to the BFGS method to ensure global convergence for nonconvex problems do not
compromise its practical performance.

The paper is organized as follows: Section 2 presents the concepts and preliminary results,
Section 3 introduces the proposed modified BFGS algorithm and discusses its global conver-
gence, Section 4 focuses on the local convergence analysis with superlinear convergence rate,
Section 5 presents the numerical experiments, and Section 6 concludes the paper with some re-
marks. Throughout the main text, we have chosen to omit proofs that can be easily derived
from existing literature to enhance overall readability. However, these proofs are provided in the
Appendix for self-contained completeness.

Notation. R and R++ denote the set of real numbers and the set of positive real numbers,
respectively. As usual, Rn and Rn×p denote the set of n-dimensional real column vectors and the
set of n× p real matrices, respectively. The identity matrix of size n is denoted by In. ‖ · ‖ is
the Euclidean norm. If u, v ∈ Rn, then u � v (or ≺) is to be understood in a componentwise
sense, i.e., ui ≤ vi (or <) for all i = 1, . . . , n. For B ∈ Rn×n, B � 0 means that B is positive
definite. In this case, 〈·, ·〉B and ‖·‖B denote the B-energy inner product and the B-energy norm,
respectively, i.e., for u, v ∈ Rn, 〈u, v〉B := u>Bv and ‖u‖B :=

√
〈u, u〉B. If K = {k1, k2, . . .} ⊆ N,
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with kj < kj+1 for all j ∈ N, then we denote K ⊂
∞
N.

2 Preliminaries

In this paper, we focus on the problem of finding a Pareto optimal point of a continuously
differentiable function F : Rn → Rm. This problem can be denoted as follows:

min
x∈Rn

F (x). (1)

A point x∗ ∈ Rn is Pareto optimal (or weak Pareto optimal) of F if there is no other point x ∈ Rn
such that F (x) � F (x∗) and F (x) 6= F (x∗) (or F (x) ≺ F (x∗)). These concepts can also be
defined locally. We say that x∗ ∈ Rn is a local Pareto optimal (or local weak Pareto optimal)
point if there exists a neighborhood U ⊂ Rn of x∗ such that x∗ is Pareto optimal (or weak Pareto
optimal) for F restricted to U . A necessary condition (but not always sufficient) for the local
weak Pareto optimality of x∗ is given by:

− (Rm++) ∩ Image(JF (x∗)) = ∅, (2)

where JF (x∗) denotes the Jacobian of F at x∗. A point x∗ that satisfies (2) is referred to as a
Pareto critical point. It should be noted that if x ∈ Rn is not Pareto critical, then there exists a
direction d ∈ Rn such that ∇Fj(x)>d < 0 for all j = 1, . . . ,m. This implies that d is a descent
direction for F at x, meaning that there exists ε > 0 such that F (x+αd) ≺ F (x) for all α ∈ (0, ε].
Let D : Rn × Rn → R be defined as follows:

D(x, d) := max
j=1,...,m

∇Fj(x)>d.

The function D characterizes the descent directions for F at a given point x. Specifically, if
D(x, d) < 0, then d is a descent direction for F at x. Conversely, if D(x, d) ≥ 0 for all d ∈ Rn,
then x is a Pareto critical point.

We define F : Rn → Rm as convex (or strictly convex) if each component Fj : Rn → R is
convex (or strictly convex) for all j = 1, . . . ,m, i.e., for all x, y ∈ Rn and t ∈ [0, 1] (or t ∈ (0, 1)),

F ((1− t)x+ ty) � (1− t)F (x) + tF (y) (or ≺). (3)

The following result establishes a relationship between the concepts of criticality, optimality, and
convexity.

Lemma 2.1. [22, Theorem 3.1] The following statements hold:

(i) if x∗ is local weak Pareto optimal, then x∗ is a Pareto critical point for F ;

(ii) if F is convex and x∗ is Pareto critical for F , then x∗ is weak Pareto optimal;

(iii) if F is strictly convex and x∗ is Pareto critical for F , then x∗ is Pareto optimal.

The class of quasi-Newton methods used to solve (1) consists of algorithms that compute the
search direction d(x) at a given point x ∈ Rn by solving the optimization problem:

min
d∈Rn

max
j=1,...,m

∇Fj(x)>d+
1

2
d>Bjd, (4)
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where Bj ∈ Rn×n serves as an approximation of ∇2Fj(x) for all j = 1, . . . ,m. If Bj � 0 for all
j = 1, . . . ,m, then the objective function of (4) is strongly convex, ensuring a unique solution for
this problem. We denote the optimal value of (4) by θ(x), i.e.,

d(x) := argmin
d∈Rn

max
j=1,...,m

∇Fj(x)>d+
1

2
d>Bjd, (5)

and

θ(x) := max
j=1,...,m

∇Fj(x)>d(x) +
1

2
d(x)>Bjd(x). (6)

One natural approach is to use a BFGS–type formula, which updates the approximation Bj in
a way that preserves positive definiteness. In the case where Bj = In for all j = 1, . . . ,m, d(x)
represents the steepest descent direction (see [23]). Similarly, if Bj = ∇2Fj(x) for all j = 1, . . . ,m,
d(x) corresponds to the Newton direction (see [22]).

In the following discussion, we assume that Bj � 0 for all j = 1, . . . ,m. In this scenario, (4)
is equivalent to the convex quadratic optimization problem:

min
(t,d)∈R×Rn

t

s. t. ∇Fj(x)>d+
1

2
d>Bjd ≤ t, ∀j = 1, . . . ,m.

(7)

The unique solution to (7) is given by (t, d) := (θ(x), d(x)). Since (7) is convex and has a
Slater point (e.g., (1, 0) ∈ R × Rn), there exists a multiplier λ(x) ∈ Rm such that the triple
(t, d, λ) := (θ(x), d(x), λ(x)) ∈ R× Rn × Rm satisfies its Karush-Kuhn-Tucker system given by:

m∑
j=1

λj = 1,
m∑
j=1

λj
[
∇Fj(x) +Bjd

]
= 0, (8)

λj ≥ 0, ∇Fj(x)>d+
1

2
d>Bjd ≤ t, ∀j = 1, . . . ,m, (9)

λj

[
∇Fj(x)>d+

1

2
d>Bjd− t

]
= 0, ∀j = 1, . . . ,m. (10)

In particular, (8) and (9) imply that

d(x) = −

 m∑
j=1

λj(x)Bj

−1 m∑
j=1

λj(x)∇Fj(x) (11)

and
λ(x) ∈ ∆m, (12)

where ∆m represents the m-dimensional simplex defined as:

∆m := {λ ∈ Rm |
m∑
j=1

λj = 1, λ � 0}.
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Now, by summing (10) over j = 1, . . . ,m and using (11)–(12), we obtain

θ(x) =

 m∑
j=1

λj∇Fj(x)

> d(x) +
1

2
d(x)>

 m∑
j=1

λj(x)Bj

 d(x)

= −d(x)>

 m∑
j=1

λj(x)Bj

 d(x) +
1

2
d(x)>

 m∑
j=1

λj(x)Bj

 d(x)

= −1

2
d(x)>

 m∑
j=1

λj(x)Bj

 d(x). (13)

Lemma 2.2. Let d : Rn → Rn and θ : Rn → R given by (5) and (6), respectively. Assume that
Bj � 0 for all j = 1, . . . ,m. Then, we have:

(i) x is Pareto critical if and only if d(x) = 0 and θ(x) = 0;

(ii) if x is not Pareto critical, then d(x) 6= 0 and D(x, d(x)) < θ(x) < 0 (in particular, d(x) is
a descent direction for F at x).

Proof. See [22, Lemma 3.2] and [44, Lemma 2].

As previously mentioned, if Bj = In for all j = 1, . . . ,m, the solution of (4) corresponds to
the steepest descent direction, denoted by dSD(x):

dSD(x) := argmin
d∈Rn

max
j=1,...,m

∇Fj(x)>d+
1

2
‖d‖2. (14)

Taking the above discussion into account, we can observe that there exists

λSD(x) ∈ ∆m (15)

such that

dSD(x) = −
m∑
j=1

λSDj (x)∇Fj(x). (16)

Next, we will review some useful properties related to dSD(·).

Lemma 2.3. Let dSD : Rn → Rn be given by (14). Then:

(i) x is Pareto critical if and only if dSD(x) = 0;

(ii) if x is not Pareto critical, then we have dSD(x) 6= 0 and D(x, dSD(x)) < −(1/2)‖dSD(x)‖2 <
0 (in particular, dSD(x) is a descent direction for F at x);

(iii) the mapping dSD(·) is continuous;

(iv) for any x ∈ Rn, −dSD(x) is the minimal norm element of the set

{u ∈ Rn | u =

m∑
j=1

λj∇Fj(x), λ ∈ ∆m},

i.e., in the convex hull of {∇F1(x), . . . ,∇Fm(x)};
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(v) if ∇Fj, j = 1, . . . ,m, are L-Lipschitz continuous on a nonempty set U ⊂ Rn, i.e.,

‖∇Fj(x)−∇Fj(y)‖ ≤ L‖x− y‖, ∀x, y ∈ U, ∀j = 1, . . . ,m,

then the mapping x 7→ ‖dSD(x)‖ is also L-Lipschitz continuous on U .

Proof. For items (i), (ii), and (iii), see [32, Lemma 3.3]. For items (iv) and (v), see [50,
Corollary 2.3] and [50, Theorem 3.1], respectively.

We end this section by presenting an auxiliary result.

Lemma 2.4. The following statements are true.

(i) The function h(t) := 1− t+ ln(t) is nonpositive for all t > 0.

(ii) For any t̄ < 1, we have ln(1− t̄) ≥ −t̄/(1− t̄).

Proof. For item (i), see [43, Exercise 6.8]. For item (ii), consider t̄ < 1. By applying item (i)
with t = 1/(1− t̄), we obtain

0 ≥ h
( 1

1− t̄

)
= 1− 1

1− t̄
+ ln

( 1

1− t̄

)
= − t̄

1− t̄
− ln(1− t̄).

3 The algorithm and its global convergence

In this section, we define the main algorithm employed in this paper and study its global con-
vergence, with a particular focus on nonconvex multiobjective optimization problems. Let us
suppose that the following usual assumptions are satisfied.

Assumption 3.1. (i) F is continuously differentiable.
(ii) The level set L := {x ∈ Rn | F (x) � F (x0)} is bounded, where x0 ∈ Rn is the given starting
point.
(iii) There exists an open set N containing L such that ∇Fj is L-Lipschitz continuous on N for
all j = 1, . . . ,m, i.e.,

‖∇Fj(x)−∇Fj(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N , ∀j = 1, . . . ,m.

The algorithm is formally described as follows.

Algorithm 1. A BFGS-type algorithm for nonconvex problems

Let ρ ∈ (0, 1/2), σ ∈ (ρ, 1), 0 < ϑ ≤ ϑ̄, x0 ∈ Rn, and B0
j � 0 for all j = 1, . . . ,m be given.

Initialize k ← 0.

Step 1. Compute the search direction
Compute dk := d(xk) as in (5).

Step 2. Stopping criterion
If xk is Pareto critical, then STOP.
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Step 3. Line search procedure
Compute a step size αk > 0 (trying first αk = 1) such that

Fj(x
k + αkd

k) ≤ Fj(xk) + ραkD(xk, dk), ∀j = 1, . . . ,m, (17)

D(xk + αkd
k, dk) ≥ σD(xk, dk), (18)

and set xk+1 := xk + αkd
k.

Step 4. Prepare the next iteration
Compute

ηkj =
(ykj )>sk

‖sk‖2
, ∀j = 1, . . . ,m, (19)

where sk := xk+1 − xk and ykj := ∇Fj(xk+1)−∇Fj(xk). Choose µk ∈ ∆m and ϑk ∈ (ϑ, ϑ̄),
and define

rkj := max{−ηkj , 0}+ ϑk‖
m∑
i=1

µki∇Fi(xk)‖, ∀j = 1, . . . ,m, (20)

and
γkj := ykj + rkj s

k, ∀j = 1, . . . ,m. (21)

Step 5. Update the BFGS-type matrices
Define

Bk+1
j := Bk

j −
Bk
j s
k(sk)>Bk

j

(sk)>Bk
j s
k

+
γkj (γkj )>

(γkj )>sk
, ∀j = 1, . . . ,m. (22)

Set k ← k + 1 and go to Step 1.

Some comments are in order. First, by expressing the search direction subproblem (4) as
the convex quadratic optimization problem (7), we can apply well-established techniques and
solvers to find its solution at Step 1. Second, some practical stopping criteria can be considered
at Step 2. It is usual to use the gap function θ(xk) in (6) or the norm of dSD(xk) in (14) to
measure criticality, see Lemmas 2.2 and 2.3, respectively. Third, at Step 3, we require that αk
satisfies (17)–(18), which corresponds to the multiobjective standard Wolfe conditions originally
introduced in [37]. Under Assumption 3.1(i)–(ii), given dk ∈ Rn a descent direction for F
at xk, it is possible to show that there are intervals of positive step sizes satisfying (17)–(18),
see [37, Proposition 3.2]. As we will see, under suitable assumptions, the unit step size αk = 1
is eventually accepted, which is essential to obtain fast convergence. Furthermore, an algorithm
to calculate Wolfe step sizes for vector-valued problems was proposed in [38]. Fourth, the usual
BFGS scheme for Fj consists of the update formula given in (22) with ykj in place of γkj . In

this case, the product (ykj )>sk in the denominator of the third term on the right-hand side of
(22) can be nonpositive for some j ∈ {1, . . . ,m}, even when the step size satisfies the Wolfe
conditions (17)–(18), see [46, Example 3.3]. This implies that update scheme (with ykj in place

of γkj ) may fail to preserve positive definiteness of Bk
j . Fifth, note that Bk+1

j sk = ykj + rkj s
k for

each j = 1, . . . ,m. Thus, if rkj is small, this relation can be seen as an approximation of the

well-known secant equation Bk+1
j sk = ykj for Fj , see [35].

Theorem 3.1. Algorithm 1 is well-defined.
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Proof. The proof is by induction. We start by assuming that Bk
j � 0 for all j = 1, . . . ,m, which

is trivially true for k = 0. This makes subproblem (5) in Step 1 solvable. If xk is Pareto critical,
Algorithm 1 stops at Step 2, thereby concluding the proof. Otherwise, Lemma 2.2(ii) implies that
dk is a descent direction of F at xk. Thus, taking into account Assumption 3.1(i)–(ii), there exist
intervals of positive step sizes satisfying conditions (17)–(18), as shown in [37, Proposition 3.2].
As a result, xk+1 can be properly defined in Step 3. To complete the proof, let us show that Bk+1

j

remains positive definite for all j = 1, . . . ,m. By the definitions of γkj and ηkj in (21) and (19),
respectively, we have

(γkj )>sk = (ykj )>sk + rkj ‖sk‖2 =

(
(ykj )>sk

‖sk‖2
+ rkj

)
‖sk‖2 = (ηkj + rkj )‖sk‖2, ∀j = 1, . . . ,m.

Therefore, by the definition of rkj in (20), Lemma 2.3(iv), and Lemma 2.3(ii), it follows that

(γkj )>sk ≥ ϑk‖
m∑
i=1

µki∇Fi(xk)‖‖sk‖2 ≥ ϑ‖dSD(xk)‖‖sk‖2 > 0, ∀j = 1, . . . ,m. (23)

Thus, the updating formulas (22) are well-defined. Now, for each j ∈ {1, . . . ,m} and any nonzero
vector z, we have

z>Bk+1
j z = ‖z‖2

Bk
j
−
〈z, sk〉2

Bk
j

‖sk‖2
Bk

j

+
(z>γkj )2

(γkj )>sk
≥

(z>γkj )2

(γkj )>sk
≥ 0, (24)

where the first inequality is a direct consequence of the Cauchy-Schwarz inequality, which gives
〈z, sk〉2

Bk
j
≤ ‖z‖2

Bk
j
‖sk‖2

Bk
j
. Finally, assume by contradiction that z>Bk+1

j z = 0. In this case, it

follows from (24) that

z>γkj = 0 and ‖z‖2
Bk

j
−
〈z, sk〉2

Bk
j

‖sk‖2
Bk

j

= 0. (25)

The second equation in (25) implies that |〈z, sk〉Bk
j
| = ‖z‖Bk

j
‖sk‖Bk

j
, so there exists τ ∈ R such

that z = τsk. Combining this with the first equation in (25), we obtain τ(γkj )>sk = 0. Taking
into account (23), we can deduce that τ = 0, which contradicts the fact that z is a nonzero
vector.

Hereafter, we assume that xk is not Pareto critical for all k ≥ 0. Thus, Algorithm 1 generates
an infinite sequence of iterates. The following result establishes that the sequence {xk, dk} satisfies
a Zoutendijk-type condition, which will be crucial in our analysis. Its proof is based on [37,
Proposition 3.3] and will be provided in the Appendix.

Proposition 3.2. Consider the sequence {xk, dk} generated by Algorithm 1. Then,∑
k≥0

D(xk, dk)2

‖dk‖2
<∞. (26)

Our analysis also exploits insights developed by Byrd and Nocedal [7] in their analysis of
the classical BFGS method for single-valued optimization (i.e., for m = 1). They provided
sufficient conditions that ensure that the angle between sk and Bk

1s
k (which coincides with the
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angle between dk and −∇F1(x
k) in the scalar case) remains far from 0 for an arbitrary fraction

of the iterates. Recently, this result was studied in the multiobjective setting in [46]. Under
some mild conditions, similar to the approach taken in [46], we establish that the angles between
sk and Bk

j s
k remain far from 0, simultaneously for all objectives, for an arbitrary fraction p of

the iterates. The proof of this result can be constructed as a combination of [7, Theorem 2.1]
and [46, Lemma 4.2] and will therefore be postponed to the Appendix.

Proposition 3.3. Consider the sequence {xk} generated by Algorithm 1. Let βkj be the angle

between the vectors sk and Bk
j s
k, for all k ≥ 0 and j = 1, . . . ,m. Assume that

(γkj )>sk

‖sk‖2
≥ C1 and

‖γkj ‖2

(γkj )>sk
≤ C2, ∀j = 1, . . . ,m, ∀k ≥ 0, (27)

for some positive constants C1, C2 > 0. Then, given p ∈ (0, 1), there exists a constant δ > 0 such
that, for all k ≥ 1, the relation

cosβ`j ≥ δ, ∀j = 1, . . . ,m,

holds for at least dp(k + 1)e values of ` ∈ {0, 1, . . . , k}, where d·e denotes the ceiling function.

The following technical result forms the basis for applying Proposition 3.3.

Lemma 3.4. Let {xk} be a sequence generated by Algorithm 1. Then, for each j = 1,. . . ,m and
all k ≥ 0, there exist positive constants c1, c2 > 0 such that:

(i)
(γkj )>sk

‖sk‖2
≥ c1‖dSD(xk)‖;

(ii)
‖γkj ‖2

(γkj )>sk
≤ c2
‖dSD(xk)‖

.

Proof. Let k ≥ 0 and j ∈ {1, . . . ,m} be given. As in (23), we have

(γkj )>sk

‖sk‖2
≥ ϑ‖dSD(xk)‖, ∀j = 1, . . . ,m.

Thus, taking c1 := ϑ, we conclude item (i). Now consider item (ii). By the Cauchy–Schwarz
inequality and Assumption 3.1(iii), it follows that

|ηkj | =
|(ykj )>sk|
‖sk‖2

≤
‖ykj ‖
‖sk‖

=
‖∇Fj(xk+1)−∇Fj(xk)‖

‖xk+1 − xk‖
≤ L.

On the other hand, since {xk} ⊂ L and µk ∈ ∆m, by Assumption 3.1(i)–(ii), there exists a
constant c̄ > 0, independent of k, such that ‖

∑m
i=1 µ

k
i∇Fi(xk)‖ ≤ c̄. The definition of rkj together

with the last two inequalities yields

rkj ≤ |ηkj |+ ϑk‖
m∑
i=1

µki∇Fi(xk)‖ ≤ L+ ϑ̄c̄,

and hence

‖γkj ‖ ≤ ‖ykj ‖+ rkj ‖sk‖ =

(
‖ykj ‖
‖sk‖

+ rkj

)
‖sk‖ ≤ (2L+ ϑ̄c̄)‖sk‖.
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By squaring the latter inequality and using item(i), we obtain

‖γkj ‖2

(γkj )>sk
≤ (2L+ ϑ̄c̄)2

‖sk‖2

(γkj )>sk
≤ (2L+ ϑ̄c̄)2

c1‖dSD(xk)‖
.

Thus, taking c2 := (2L+ ϑ̄c̄)2/c1, we conclude the proof.

From now on, let λk := λ(xk) ∈ Rm be the Lagrange multiplier associated with xk satisfying
(11)–(12). We are now able to prove the main result of this section. We show that Algorithm 1
finds a Pareto critical point of F , without imposing any convexity assumptions.

Theorem 3.5. Let {xk} be a sequence generated by Algorithm 1. Then

lim inf
k→∞

‖dSD(xk)‖ = 0. (28)

As a consequence, {xk} has a limit point that is Pareto critical.

Proof. Assume by contradiction that there is a constant ε > 0 such that

‖dSD(xk)‖ ≥ ε, ∀k ≥ 0. (29)

From Lemma 3.4, taking C1 := c1ε and C2 := c2/ε, we have

(γkj )>sk

‖sk‖2
≥ C1 and

‖γkj ‖2

(γkj )>sk
≤ C2, ∀j = 1, . . . ,m, ∀k ≥ 0,

showing that the assumptions of Proposition 3.3 are satisfied. Thus, there exist a constant δ > 0
and K⊂

∞
N such that

cosβkj ≥ δ, ∀j = 1, . . . ,m, ∀k ∈ K.

Hence, by the definitions of cosβkj and sk, we have, for all j = 1, . . . ,m,

δ ≤ cosβkj =
(sk)>Bk

j s
k

‖sk‖‖Bk
j s
k‖

=
(dk)>Bk

j d
k

‖dk‖‖Bk
j d

k‖
, ∀k ∈ K,

which implies
(dk)>Bk

j d
k ≥ δ‖dk‖‖Bk

j d
k‖, ∀k ∈ K.

Therefore, from Lemma 2.2(ii) and (13), it follows that

−D(xk, dk) > −θ(xk) =
1

2

m∑
j=1

λkj (d
k)>Bk

j d
k ≥ δ

2
‖dk‖

m∑
j=1

λkj ‖Bk
j d

k‖, ∀k ∈ K.

Thus, from the triangle inequality, (11), (12), Lemma 2.3(iv), and (29), we obtain

−D(xk, dk)

‖dk‖
≥ δ

2
‖

m∑
j=1

λkjB
k
j d

k‖ =
δ

2
‖

m∑
j=1

λkj∇Fj(xk)‖ ≥
δ

2
‖dSD(xk)‖ ≥ δε

2
, ∀k ∈ K.

Hence, ∑
k≥0

D(xk, dk)2

‖dk‖2
≥
∑
k∈K

D(xk, dk)2

‖dk‖2
≥
∑
k∈K

δ2ε2

4
=∞,
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which contradicts the Zoutendijk condition (26). Therefore, we conclude that (28) holds.
Now, (28) implies that there exists K1⊂∞N such that limk∈K1 ‖dSD(xk)‖ = 0. On the other

hand, given that {xk} ⊂ L and L is compact, we can establish the existence of K2 ⊆ K1 and
x∗ ∈ L such that limk∈K2 x

k = x∗. Thus, from Lemma 2.3(iii), we deduce that dSD(x∗) = 0.
Consequently, based on Lemma 2.3(i), we conclude that x∗ is Pareto critical.

Even though the primary focus of this article is on nonconvex problems, we conclude this
section by establishing full convergence of the sequence generated by Algorithm 1 in the case
of strict convexity of F . Note that, under Assumption 3.1(i)–(ii), the existence of at least one
Pareto optimal point is assured in this particular case.

Theorem 3.6. Let {xk} be a sequence generated by Algorithm 1. If F is strictly convex, then
{xk} converges to a Pareto optimal point of F .

Proof. According to Theorem 3.5 and Theorem 2.1(iii), there exists a limit point x∗ ∈ L of {xk}
that is Pareto optimal. Let K1⊂∞N be such that limk∈K1 x

k = x∗. To show the convergence of

{xk} to x∗, let us suppose by contradiction that there exist x̄ ∈ L, where x̄ 6= x∗, and K2⊂∞N

such that limk∈K2 x
k = x̄. We first claim that F (x̄) 6= F (x∗). In fact, if F (x̄) = F (x∗), based on

(3), for all t ∈ (0, 1), we would have

F ((1− t)x∗ + tx̄) ≺ (1− t)F (x∗) + tF (x̄) = F (x∗),

which contradicts the fact that x∗ is a Pareto optimal point. Hence, F (x̄) 6= F (x∗), as we
claimed. Now, since x∗ is Pareto optimal, there exists j∗ ∈ {1, . . . ,m} such that Fj∗(x∗) < Fj∗(x̄).
Therefore, considering that limk∈K1 x

k = x∗ and limk∈K2 x
k = x̄, we can choose k1 ∈ K1 and

k2 ∈ K2 such that k1 < k2 and Fj∗(xk1) < Fj∗(xk2). This contradicts (17) which implies, in
particular, that {Fj∗(xk)} is decreasing. Thus, we can conclude that limk→∞ x

k = x∗, completing
the proof.

4 Local convergence analysis

In this section, we analyze the local convergence properties of Algorithm 1. The findings presented
here are applicable to both convex and nonconvex problems. We will assume that the sequence
{xk} converges to a local Pareto optimal point x∗ and show, under appropriate assumptions, that
the convergence rate is superlinear.

4.1 Superlinear rate of convergence

Throughout this section, we make the following assumptions.

Assumption 4.1. (i) F is twice continuously differentiable.
(ii) The sequence {xk} generated by Algorithm 1 converges to a local Pareto optimal point x∗

where ∇2Fj(x
∗) is positive definite for all j = 1, . . . ,m.

(iii) For each j = 1, . . . ,m, ∇2Fj(x) is Hölder continuous at x∗, i.e., there exist constants
ν ∈ (0, 1] and M > 0 such that

‖∇2Fj(x)−∇2Fj(x
∗)‖ ≤M‖x− x∗‖ν , ∀j = 1, . . . ,m, (30)

for all x in a neighborhood of x∗.

11



Under Assumption 4.1(ii), there exist a neighborhood U of x∗ and constants L > 0 and L > 0
such that

L‖z‖2 ≤ z>∇2Fj(x)z ≤ L‖z‖2, ∀j = 1, . . . ,m, (31)

for all z ∈ Rn and x ∈ U . In particular, (31) implies that Fj is strongly convex and has Lip-
schitz continuous gradients on U . Note that constant L in (31) aligns with the L defined in
Assumption 3.1(iii) as part of the L-Lipschitz continuity condition for ∇Fj , maintaining consis-
tent notation for the Lipschitz constant across our analysis. Throughout this section, we assume,
without loss of generality, that {xk} ⊂ U and that Assumption 4.1(iii) holds in U , i.e., (30) and
(31) hold at xk for all k ≥ 0.

We also introduce the following additional assumption about {rkj }, which will be considered

only when explicitly mentioned. In Section 4.2, we will explore practical choices for {rkj } that
satisfy such an assumption.

Assumption 4.2. For each j = 1, . . . ,m, {rkj } satisfies
∑

k≥0 r
k
j <∞.

The following result, which is related to the linear convergence of the sequence {xk} and is
based on [46, Theorem 4.6], has its proof in the Appendix.

Proposition 4.1. Suppose that Assumption 4.1(i)–(ii) holds. Let {xk} be a sequence generated
by Algorithm 1. Then, for all ν > 0, we have∑

k≥0
‖xk − x∗‖ν <∞. (32)

As usual in quasi-Newton methods, our analysis relies on the Dennis–Moré [17] characteriza-
tion of superlinear convergence. To accomplish this, we use a set of tools developed in [7] (see
also [45]). For every k ≥ 0, we define the average Hessian as:

Ḡkj :=

∫ 1

0
∇2Fj(x

k + τsk)dτ, ∀j = 1, . . . ,m.

This leads to the relationship:

Ḡkj s
k = ykj , ∀j = 1, . . . ,m. (33)

We also introduce, for each j = 1, . . . ,m and k ≥ 0, the following quantities:

s̃kj := ∇2Fj(x
∗)1/2sk, ỹkj := ∇2Fj(x

∗)−1/2ykj , γ̃kj := ∇2Fj(x
∗)−1/2γkj ,

and
B̃k
j := ∇2Fj(x

∗)−1/2Bk
j∇2Fj(x

∗)−1/2.

Note that

B̃k+1
j = B̃k

j −
B̃k
j s̃
k
j (s̃

k
j )
>B̃k

j

(s̃kj )
>B̃k

j s̃
k
j

+
γ̃kj (γ̃kj )>

(γ̃kj )>s̃kj
, ∀j = 1, . . . ,m,

and

(γ̃kj )>s̃kj
‖sk‖2

=
(γkj )>sk

‖sk‖2
=

(ykj )>sk

‖sk‖2
+ rkj =

(sk)>Ḡkj s
k

‖sk‖2
+ rkj ≥ L+ rkj ≥ L, ∀j = 1, . . . ,m, (34)
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where the first inequality follows from the left hand side of (31). Considering that B̃k
j � 0 and,

based on (34), it follows that (γ̃kj )>s̃kj > 0, we can follow the same arguments as in the proof

of Theorem 3.1 to show that B̃k+1
j � 0 for all j = 1, . . . ,m and all k ≥ 0. In connection with

Proposition 3.3 and Lemma 3.4, we additionally define the following quantities:

ãkj :=
(γ̃kj )>s̃kj

‖s̃kj ‖2
, b̃kj :=

‖γ̃kj ‖2

(γ̃kj )>s̃kj
, cos β̃kj :=

(s̃kj )
>B̃k

j s̃
k
j

‖s̃kj ‖‖B̃k
j s̃
k
j ‖
, and q̃kj :=

(s̃kj )
>B̃k

j s̃
k
j

‖s̃kj ‖2
.

Another useful tool combines the trace and the determinant of a given positive definite matrix
B, through the following function:

ψ(B) := trace(B)− ln(det(B)). (35)

Given that, for all j = 1, . . . ,m,

trace(B̃k+1
j ) = trace(B̃k

j )−
‖B̃k

j s̃
k
j ‖2

(s̃kj )
>B̃k

j s̃
k
j

+
‖γ̃kj ‖2

(γ̃kj )>s̃kj
= trace(B̃k

j )−
q̃kj

cos2 β̃kj
+ b̃kj

and

det(B̃k+1
j ) = det(B̃k

j )
(γ̃kj )>s̃kj

(s̃kj )
>B̃k

j s̃
k
j

= det(B̃k
j )
ãkj

q̃kj
,

we can perform some algebraic manipulations to obtain:

ψ(B̃k+1
j ) = ψ(B̃k

j ) +
(
b̃kj − ln(ãkj )− 1

)
+

1−
q̃kj

cos2 β̃kj
+ ln

(
q̃kj

cos2 β̃kj

)+ ln(cos2 β̃kj ). (36)

We are now ready to prove the central result of the superlinear convergence analysis: We
establish that the Dennis–Moré condition holds individually for each objective function Fj . A
similar result in the scalar case was given in [35, Theorem 3.8].

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Let {xk} be a sequence generated by
Algorithm 1. Then, for each j = 1, . . . ,m, we have

lim
k→∞

(sk)>Bk
j s
k

(sk)>∇2Fj(x∗)sk
= 1, (37)

and

lim
k→∞

‖(Bk
j −∇2Fj(x

∗))dk‖
‖dk‖

= 0. (38)

Proof. Let j ∈ {1, . . . ,m} be an arbitrary index. From (33), we obtain

ykj −∇2Fj(x
∗)sk = [Ḡkj −∇2Fj(x

∗)]sk,

and hence
ỹkj − s̃kj = ∇2Fj(x

∗)−1/2[Ḡkj −∇2Fj(x
∗)]∇2Fj(x

∗)−1/2s̃kj ,
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for all k ≥ 0. Therefore, by the definition of Ḡkj and (30), we obtain

‖ỹkj − s̃kj ‖ ≤ ‖∇2Fj(x
∗)−1/2‖2‖s̃kj ‖‖Ḡkj −∇2Fj(x

∗)‖

≤M‖∇2Fj(x
∗)−1/2‖2‖s̃kj ‖

∫ 1

0
‖xk + τsk − x∗‖νdτ ≤ c̄jεk‖s̃kj ‖, ∀k ≥ 0, (39)

where c̄j := M‖∇2Fj(x
∗)−1/2‖2 and εk := max{‖xk+1 − x∗‖ν , ‖xk − x∗‖ν}. Now, since |‖ỹkj ‖ −

‖s̃kj ‖| ≤ ‖ỹkj − s̃kj ‖, it follows from (39) that

(1− c̄jεk)‖s̃kj ‖ ≤ ‖ỹkj ‖ ≤ (1 + c̄jεk)‖s̃kj ‖. (40)

Without loss of generality, let us assume that 1− c̄jεk > 0, for all k ≥ 0. Therefore, the left hand
side of (40) together with (39) yields

(1− c̄jεk)2‖s̃kj ‖2 − 2(ỹkj )>s̃kj + ‖s̃kj ‖2 ≤ ‖ỹkj ‖2 − 2(ỹkj )>s̃kj + ‖s̃kj ‖2 ≤ c̄2jε2k‖s̃kj ‖2,

so that
2(ỹkj )>s̃kj ≥ (1− c̄jεk)2‖s̃kj ‖2 + ‖s̃kj ‖2 − c̄2jε2k‖s̃kj ‖2 = 2(1− c̄jεk)‖s̃kj ‖2. (41)

By the definition of ãkj , we have

ãkj =
(ỹkj + rkj∇2Fj(x

∗)−1s̃kj )
>s̃kj

‖s̃kj ‖2
=

(ỹkj )>s̃kj

‖s̃kj ‖2
+ rkj

(s̃kj )
>∇2Fj(x

∗)−1s̃kj

‖s̃kj ‖2
.

Thus, by (31) and (41), we obtain

ãkj ≥ 1− c̄jεk +
rkj
L
≥ 1− c̄jεk. (42)

From the definition of b̃kj , (34), the right hand side of (40), and (42), by performing some manip-
ulations, we also obtain

b̃kj =
‖ỹkj ‖2

ãkj ‖s̃kj ‖2
+ 2rkj

(ỹkj )>∇2Fj(x
∗)−1s̃kj

(γ̃kj )>s̃kj
+ (rkj )2

(s̃kj )
>∇2Fj(x

∗)−2s̃kj

(γ̃kj )>s̃kj

≤ (1 + c̄jεk)
2

1− c̄jεk
+ 2rkj

‖∇2Fj(x
∗)−1/2‖‖ykj ‖‖∇2Fj(x

∗)−1‖‖∇2Fj(x
∗)1/2‖‖sk‖

L‖sk‖2

+ (rkj )2
‖∇2Fj(x

∗)−2‖‖s̃kj ‖2

L‖sk‖2

≤ 1 +
3c̄j + c̄2jεk

1− c̄jεk
εk +

2LC1

L
rkj +

C2

L
(rkj )2, (43)

where C1 := ‖∇2Fj(x
∗)−1/2‖‖∇2Fj(x

∗)−1‖‖∇2Fj(x
∗)1/2‖ and C2 := ‖∇2Fj(x

∗)−2‖‖∇2Fj(x
∗)‖.

Assumptions 4.1(ii) and 4.2 imply that εk → 0 and rkj → 0, respectively. Thus, by using (42)

and (43), for all sufficiently large k, we have c̄jεk < 1/2, (rkj )2 ≤ rkj , and there exists a constant
C > max{3c̄j , (2LC1 + C2)/L} such that

ln(ãkj ) ≥ ln(1− c̄jεk) ≥ −
c̄jεk

1− c̄jεk
≥ −2c̄jεk > −2Cεk,
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where the second inequality follows from Lemma 2.4 (ii) (with t̄ = c̄jεk), and

b̃kj ≤ 1 + Cεk + Crkj .

Let k0 ∈ N be such that the latter two inequalities hold for all k ≥ k0. Therefore, by (36), we
obtain

ln
( 1

cos2 β̃kj

)
−

1−
q̃kj

cos2 β̃kj
+ ln

(
q̃kj

cos2 β̃kj

) < ψ(B̃k
j )− ψ(B̃k+1

j ) + 3Cεk + Crkj ,

for all k ≥ k0. By summing this expression and making use of (32) and Assumption 4.2, we have

∑
`≥k0

ln
( 1

cos2 β̃`j

)
−

1−
q̃`j

cos2 β̃`j
+ ln

(
q̃`j

cos2 β̃`j

)
 ≤ ψ(B̃k0

j ) + 3C
∑
`≥k0

εk + C
∑
`≥k0

r`j <∞.

Since ln(1/ cos2 β̃`j) > 0 for all ` ≥ k0 and, by Lemma 2.4 (i), the term in the square brackets is
nonpositive, we have

lim
`→∞

ln
( 1

cos2 β̃`j

)
= 0 and lim

`→∞

1−
q̃`j

cos2 β̃`j
+ ln

(
q̃`j

cos2 β̃`j

) = 0,

and hence
lim
`→∞

cos2 β̃`j = 1 and lim
`→∞

q̃`j = 1. (44)

Note that the second limit in (44) is equivalent to (37). Now, it follows that

lim
k→∞

‖∇2Fj(x
∗)−1/2(Bk

j −∇2Fj(x
∗))sk‖2

‖∇2Fj(x∗)1/2sk‖2
= lim

k→∞

‖(B̃k
j − In)s̃kj ‖2

‖s̃kj ‖2

= lim
k→∞

‖B̃k
j s̃
k
j ‖2 − 2(s̃kj )

>B̃k
j s̃
k
j + ‖s̃kj ‖2

‖s̃kj ‖2

= lim
k→∞

 (q̃kj )2

cos2 β̃kj
− 2q̃kj + 1

 = 0,

where the last equality follows from (44). The above limit trivially implies (38), concluding the
proof.

Based on the Dennis–Moré characterization established in Theorem 4.2, we can easily replicate
the proofs presented in [46, Theorem 5.5] and [46, Theorem 5.7] to show that unit step size
eventually satisfies the Wolfe conditions (17)–(18) and the rate of convergence is superlinear, as
detailed in the Appendix. We formally state the results as follows.

Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold. Let {xk} be a sequence generated
by Algorithm 1. Then, the step size αk = 1 is admissible for all sufficiently large k and {xk}
converges to x∗ at a superlinear rate.
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4.2 Suitable choices for rkj

As we have seen, Algorithm 1 is globally convergent regardless of the particular choice of rkj . On

the other hand, the superlinear convergence rate depends on whether rkj satisfies Assumption 4.2.

Next, we explore suitable choices for the multiplier µk ∈ ∆m in (20) to ensure that rkj satisfies the
aforementioned assumption. In what follows, we will assume that Assumption 4.1 holds. First
note that, as in (34), we have ηkj = (ykj )>sk/‖sk‖2 ≥ L > 0 and hence

rkj = max{−ηkj , 0}+ ϑk‖
m∑
i=1

µki∇Fi(xk)‖ = ϑk‖
m∑
i=1

µki∇Fi(xk)‖, ∀j = 1, . . . ,m, ∀k ≥ 0.

Choice 1: One natural choice is to set µk := λSD(xk) ∈ ∆m for all k ≥ 0, where λSD(xk) is the
steepest descent Lagrange multiplier associated with xk as in (16). In this case, by Lemma 2.3(i)
and Lemma 2.3(v), we have

rkj = ϑk‖dSD(xk)‖ = ϑk(‖dSD(xk)‖ − ‖dSD(x∗)‖) ≤ ϑ̄L‖xk − x∗‖, ∀j = 1, . . . ,m, ∀k ≥ 0.

By summing this expression and making use of (32), we conclude that rkj satisfies Assumption 4.2
for all j = 1, . . . ,m. One potential drawback of this approach is the need to compute the
multipliers λSD(xk), which involves solving the subproblem in (14).

Choice 2: Another natural choice is to set µk := λk ∈ ∆m for all k ≥ 0, where λk is the Lagrange
multiplier corresponding to the search direction dk, see (11). Since the subproblem in Step 2 is
typically solved in the form of (7) using a primal-dual algorithm, this approach does not require
any additional computational cost. Let us assume that the sequences {Bk

j } and {(Bk
j )−1} are

bounded for all j = 1, . . . ,m. In this case, using [28, Lemma 6], there exists a constant δ > 0
such that ‖

∑m
i=1 λ

k
i∇Fi(xk)‖ ≤ δ‖dSD(xk)‖ for all k ≥ 0. Therefore, for all j = 1, . . . ,m and

k ≥ 0, similarly to the previous choice, we have

rkj = ϑk‖
m∑
i=1

λki∇Fi(xk)‖ ≤ δϑ̄‖dSD(xk)‖ = δϑ̄(‖dSD(xk)‖ − ‖dSD(x∗)‖) ≤ δϑ̄L‖xk − x∗‖,

and hence rkj satisfies Assumption 4.2 for all j = 1, . . . ,m.

5 Numerical experiments

In this section, we present some numerical experiments to evaluate the effectiveness of the pro-
posed scheme. We are particularly interested in verifying how the introduced modifications affect
the numerical performance of the method. Toward this goal, we considered the following methods
in our tests.

• Algorithm 1 (Global BFGS): our globally convergent algorithm with rkj chosen according
to Choice 2 (see Section 4.2) and ϑk = 0.1 for all k ≥ 0. It is worth noting that preliminary
numerical tests demonstrated the superior efficiency of Choice 2 over Choice 1.

• BFGS-Wolfe [46]: a BFGS algorithm in which the Hessian approximations are updated, for
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each j = 1, . . . ,m, by

Bk+1
j :=Bk

j −
(ρkj )

−1Bk
j s
k(sk)>Bk

j + [(sk)>Bk
j s
k]ykj (ykj )>[

(ρkj )
−1 − (ykj )>sk

]2
+ (ρkj )

−1(sk)>Bk
j s
k

+
[
(ρkj )

−1 − (ykj )>sk
] ykj (sk)>Bk

j +Bk
j s
k(ykj )>[

(ρkj )
−1 − (ykj )>sk

]2
+ (ρkj )

−1(sk)>Bk
j s
k

,

where

ρkj :=

 1/
(

(ykj )>sk
)
, if (ykj )>sk > 0

1/
(
D(xk+1, sk)−∇Fj(xk)>sk

)
, otherwise.

and the step sizes are calculated satisfying the Wolfe conditions (17)–(18). We point out that
this algorithm is well-defined for nonconvex problems, although it is not possible to establish
global convergence in this general case. Additionally, in the case of scalar optimization
(m = 1), it retrieves the classical scalar BFGS algorithm.

• Cautious BFGS-Armijo [47]: a BFGS algorithm in which the Hessian approximations are
updated, for each j = 1, . . . ,m, by

Bk+1
j :=

B
k
j −

Bk
j s
k(sk)>Bk

j

(sk)>Bk
j s
k

+
ykj (ykj )>

(ykj )>sk
, if (ykj )>sk ≥ εmin{1, |θ(xk)|},

Bk
j , otherwise,

where ε > 0 is an algorithmic parameter and the step sizes are calculated satisfying the
Armijo-type condition given in (17). In our experiments, we set ε = 10−6. This combination
also leads to a globally convergent scheme, see [47].

We implemented the algorithms using Fortran 90. The search directions d(xk) (see (5))
and optimal values θ(xk) (see (6)) were obtained by solving subproblem (7) using the software
Algencan [4]. To compute step sizes satisfying the Wolfe conditions (17)–(18), we employed the
algorithm proposed in [38]. This algorithm utilizes quadratic/cubic polynomial interpolations
of the objective functions, combining backtracking and extrapolation strategies, and is capable
of finding step sizes in a finite number of iterations. Interpolation techniques were also used
to calculate step sizes satisfying only the Armijo-type condition. We set ρ = 10−4, σ = 0.1,
and initialized B0

j as the identity matrix for all j = 1, . . . ,m. Convergence was reported when

|θ(xk)| ≤ 5 × eps1/2, where eps = 2−52 ≈ 2.22 × 10−16 represents the machine precision. When
this criterion is met, we consider the problem successfully solved. The maximum number of
allowed iterations was set to 2000. If this limit is reached, it means an unsuccessful termination.
Our codes are freely available at https://github.com/lfprudente/GlobalBFGS.

The chosen set of test problems consists of both convex and nonconvex multiobjective prob-
lems commonly found in the literature and coincides with the one used in [46]. Table 1 presents
their main characteristics: The first column contains the problem name, while the “n” and “m”
columns provide the number of variables and objectives, respectively. The column “Conv.” in-
dicates whether the problem is convex or not. For each problem, the starting points were chosen
within a box defined as {x ∈ Rn | ` ≤ x ≤ u}, where the lower and upper bounds, denoted by `
and u ∈ Rn, are presented in the last two columns of Table 1. It is important to note that the
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boxes specified in the table were used solely for defining starting points and were not employed
as constraints during the algorithmic processes. For detailed information regarding the references
and corresponding formulations of each problem, we refer the reader to [46].

Problem n m Conv. ` u
AP1 2 3 Y (−10,−10) (10, 10)
AP2 1 2 Y −100 100
AP3 2 2 N (−100,−100) (100, 100)
AP4 3 3 Y (−10,−10,−10) (10, 10, 10)
BK1 2 2 Y (−5,−5) (10, 10)
DD1 5 2 N (−20, . . . ,−20) (20, . . . , 20)
DGO1 1 2 N −10 13
DGO2 1 2 Y −9 9
DTLZ1 7 3 N (0, . . . , 0) (1, . . . , 1)
DTLZ2 7 3 N (0, . . . , 0) (1, . . . , 1)
DTLZ3 7 3 N (0, . . . , 0) (1, . . . , 1)
DTLZ4 7 3 N (0, . . . , 0) (1, . . . , 1)
FA1 3 3 N (0.01, 0.01, 0.01) (1, 1, 1)
Far1 2 2 N (−1,−1) (1, 1)
FDS 5 3 Y (−2, . . . ,−2) (2, . . . , 2)
FF1 2 2 N (−1,−1) (1, 1)
Hil1 2 2 N (0, 0) (1, 1)
IKK1 2 3 Y (−50,−50) (50, 50)
IM1 2 2 N (1, 1) (4, 2)
JOS1 2 2 Y (−100, . . . ,−100) (100, . . . , 100)
JOS4 20 2 N (−100, . . . ,−100) (100, . . . , 100)
KW2 2 2 N (−3,−3) (3, 3)
LE1 2 2 N (1, 1) (10, 10)
Lov1 2 2 Y (−10,−10) (10, 10)
Lov2 2 2 N (−0.75,−0.75) (0.75, 0.75)
Lov3 2 2 N (−20,−20) (20, 20)
Lov4 2 2 N (−20,−20) (20, 20)
Lov5 3 2 N (−2,−2,−2) (2, 2, 2)
Lov6 6 2 N (0.1,−0.16, . . . ,−0.16) (0.425, 0.16, . . . , 0.16)
LTDZ 3 3 N (0, 0, 0) (1, 1, 1)
MGH9 3 15 N (−2,−2,−2) (2, 2, 2)
MGH16 4 5 N (−25,−5,−5,−1) (25, 5, 5, 1)
MGH26 4 4 N (−1,−1,−1− 1) (1, 1, 1, 1)
MGH33 10 10 Y (−1, . . . ,−1) (1, . . . , 1)
MHHM2 2 3 Y (0, 0) (1, 1)
MLF1 1 2 N 0 20
MLF2 2 2 N (−100,−100) (100, 100)
MMR1 2 2 N (0.1, 0) (1, 1)
MMR2 2 2 N (0, 0) (1, 1)
MMR3 2 2 N (−π,−π) (π, π)
MMR4 3 2 N (0, 0, 0) (4, 4, 4)
MOP2 2 2 N (−4,−4) (4, 4)
MOP3 2 2 N (−π,−π) (π, π)
MOP5 2 3 N (−30,−30) (30, 30)
MOP6 2 2 N (0, 0) (1, 1)
MOP7 2 3 Y (−400,−400) (400, 400)
PNR 2 2 Y (−2,−2) (2, 2)
QV1 10 2 N (0.01, . . . , 0.01) (5, . . . , 5)
SD 4 2 Y (1,

√
2,
√
2, 1) (3, 3, 3, 3)

SK1 1 2 N −100 100
SK2 4 2 N (−10,−10,−10,−10) (10, 10, 10, 10)

SLCDT1 2 2 N (−1.5,−1.5) (1.5, 1.5)
SLCDT2 10 3 Y (−1, . . . ,−1) (1, . . . , 1)

SP1 2 2 Y (−100,−100) (100, 100)
SSFYY2 1 2 N −100 100
TKLY1 4 2 N (0.1, 0, 0, 0) (1, 1, 1, 1)
Toi4 4 2 Y (−2,−2,−2,−2) (5, 5, 5, 5)
Toi8 3 3 Y (−1,−1,−1,−1) (1, 1, 1, 1)
Toi9 4 4 N (−1,−1,−1,−1) (1, 1, 1, 1)
Toi10 4 3 N (−2,−2,−2,−2) (2, 2, 2, 2)
VU1 2 2 N (−3,−3) (3, 3)
VU2 2 2 Y (−3,−3) (3, 3)
ZDT1 30 2 Y (0, . . . , 0) (1, . . . , 1)
ZDT2 30 2 N (0.01, . . . , 0.01) (1, . . . , 1)
ZDT3 30 2 N (0.01, . . . , 0.01) (1, . . . , 1)
ZDT4 30 2 N (0.01,−5, . . . ,−5) (1, 5, . . . , 5)
ZDT6 10 2 N (0.01, . . . , 0.01) (1, . . . , 1)
ZLT1 10 5 Y (−1000, . . . ,−1000) (1000, . . . , 1000)

Table 1: List of test problems.

In multiobjective optimization, the primary objective is to estimate the Pareto frontier of a
given problem. A commonly used strategy is to execute the algorithm from multiple distinct
starting points and collect the Pareto optimal points found. Thus, each problem listed in Table 1
was addressed by running all algorithms from 300 randomly generated starting points within their
respective boxes. In this first stage, each problem/starting point was considered an independent
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instance and a run was considered successful if an approximate critical point was found, regardless
of the objective functions values. Figure 1 presents the comparison of the algorithms in terms of
CPU time using a performance profile [18]. As can be seen, Algorithm 1 and the BFGS-Wolfe
algorithm exhibited virtually identical performance, outperforming the Cautious BFGS-Armijo
algorithm. All methods proved to be robust, successfully solving more than 98% of the problem
instances. It is worth noting that although the BFGS-Wolfe algorithm enjoys (theoretical) global
convergence only under convexity assumptions, it also performs exceptionally well for nonconvex
problems, which is consistent with observations in the scalar case.
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Algorithm 1 (Global BFGS)
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Cautious BFGS-Armijo

Figure 1: Performance profiles considering 300 starting points for each test problem using the
CPU time as performance measurement.

In the following, we evaluate the algorithms based on their ability to properly generate Pareto
frontiers. To assess this, we employ the widely recognized Purity and (Γ and ∆) Spread metrics. In
summary, the Purity metric measures the solver’s ability to identify points on the Pareto frontier,
while the Spread metric evaluates the distribution quality of the obtained Pareto frontier. For a
detailed explanation of these metrics and their application together with performance profiles, we
refer the reader to [14]. It is important to note that, at this stage, data referring to all starting
points are combined for each problem, taking into account the objective function values found.
The results in Figure 2 indicate that Algorithm 1 performed slightly better in terms of the Purity
and ∆-Spread metrics, with no significant difference observed for the Γ-Spread metric among the
three algorithms.

(a) Purity (b) Γ-Spread (c) ∆-Spread
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Figure 2: Metric performance profiles: (a) Purity; (b) Γ-Spread; (c) ∆-Spread.

The numerical results allow us to conclude that the modifications made to the BFGS method
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to ensure global convergence for nonconvex problems do not compromise its practical performance.

6 Final remarks

Based on the work of Li and Fukushima [35], we presented a modified BFGS scheme that achieves
global convergence without relying on convexity assumptions for the objective function F . The
global convergence analysis depends only on the requirement of F having continuous Lipschitz
gradients. Furthermore, we showed that by appropriately selecting rkj to satisfy Assumption 4.2
and under suitable conditions, the rate of convergence becomes superlinear. We also discussed
some practical choices for rkj . The introduced modifications preserve the simplicity and practical
efficiency of the BFGS method. It is worth emphasizing that the assumptions considered in
our approach are natural extensions of those commonly employed in the context of scalar-valued
optimization.
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The codes supporting the numerical experiments are freely available in the Github repository,
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A Appendix

In the main body of the article, we have chosen to exclude proofs that can be readily derived
from existing sources in order to enhance the overall readability of the text. However, in this
appendix, we provide these proofs to ensure self-contained completeness.

Notation. The cardinality of a set C is denoted by |C|. The ceiling and floor functions are
denoted by d·e and b·c, respectively; i.e., if x ∈ R, then dxe is the least integer greater than or
equal to x and bxc is the greatest integer less than or equal to x. The notation ϕ(t) := o(t) for
t > 0 means that limt→0 ϕ(t)/t = 0.

A.1 Proofs of Section 3

Throughout this section, we assume that Assumption 3.1 holds.

Proof of Proposition 3.2. It follows from (18), the definition of D(·, ·), the Cauchy-Schwarz
inequality, and Assumption 3.1(iii) that

−(1− σ)D(xk, dk) ≤ D(xk+1, dk)−D(xk, dk)

≤ max
j=1,...,m

(
∇Fj(xk+1)−∇Fj(xk)

)>
dk

≤ max
j=1,...,m

‖∇Fj(xk+1)−∇Fj(xk)‖‖dk‖ ≤ Lαk‖dk‖2,

where the second inequality follows from the fact that, for any u, v ∈ Rm, we have maxj(uj−vj) ≥
maxj uj −maxj vj . Hence,

D(xk, dk)2

‖dk‖2
≤ − L

(1− σ)
αkD(xk, dk). (45)
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Now, since {xk} ⊂ L, Assumption 3.1(i)–(ii) implies the existence of F ∈ R such that Fj(x
k) ≥ F

for all k ≥ 0 and j = 1, . . . ,m. Therefore, by (17), we have

F ≤ Fj(xk+1) ≤ Fj(x0) + ρ
k∑
`=0

α`D(x`, d`), ∀j = 1, . . . ,m.

Some algebraic manipulations yields

− L

ρ(1− σ)
min

j=1,...,m

{
F − Fj(x0)

}
≥ − L

(1− σ)

k∑
`=0

α`D(x`, d`) > 0.

Therefore,

− L

(1− σ)

∑
k≥0

αkD(xk, dk) <∞,

which together with (45) gives (26).

To prove Proposition 3.3, we will make use of function (35). Let us define

qkj :=
(sk)>Bk

j s
k

(sk)>sk
, ∀j = 1, . . . ,m.

Thus, from the same arguments that led to (36), we obtain

ψ(Bk+1
j ) = ψ(Bk

j ) +

 ‖γkj ‖2
(γkj )>sk

− ln

(
(γkj )>sk

(sk)>sk

)
− 1

− ξkj , (46)

where

ξkj := − ln(cos2 βkj )−

[
1−

qkj

cos2 βkj
+ ln

(
qkj

cos2 βkj

)]
.

Note from Lemma 2.4(i) that ξkj ≥ 0.

Proof of Proposition 3.3. Let k ≥ 1 and p ∈ (0, 1) be given and set ε := 1−p and p̄ := 1−ε/m.
Let j ∈ {1, . . . ,m} be an arbitrary index. From (46) and (27), we have

ψ(Bk+1
j ) ≤ ψ(B0

j ) +
[
C2 − ln(C1)− 1

]
(k + 1)−

k∑
`=0

ξ`j .

Therefore, since ψ(Bk+1
j ) > 0, we obtain

1

k + 1

k∑
`=0

ξ`j ≤
ψ(B0

j )

k + 1
+
[
C2 − ln(C1)− 1

]
.

Let J kj be the set consisting of the dp̄(k + 1)e indices corresponding to the dp̄(k + 1)e smallest

values of ξ`j , for ` ≤ k, and define ξ̄kj := max`∈J k
j
ξ`j . Then,

1

k + 1

k∑
`=0

ξ`j ≥
1

k + 1

ξ̄kj +
k∑

`=0,`/∈J k
j

ξ`j

 ≥ 1

k + 1

[
ξ̄kj + ξ̄kj (k + 1− dp̄(k + 1)e)

]
≥ ξ̄kj (1− p̄),
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where the last inequality is due to dp̄(k + 1)e ≤ p̄(k + 1) + 1. By combining the above two
inequalities, we get, for all ` ∈ J kj ,

ξ`j ≤ ξ̄kj ≤
1

1− p̄

[
ψ(B0

j ) + C2 − ln(C1)− 1
]

=: ζj .

Therefore, by the definition of ξ`j , we obtain, for all ` ∈ J kj ,

− ln(cos2 β`j) ≤ ξ`j ≤ ζj ,

and hence
cosβ`j ≥ e−ζj/2 =: δj .

This means that cosβ`j ≥ δj for at least dp̄(k + 1)e values of ` ∈ {0, 1, . . . , k}.
Now, let us define δ := minj=1,...,m δj and, for all j = 1, . . . ,m,

Gkj := {` ∈ {0, 1, . . . , k} | cosβ`j ≥ δ} and Bkj := {` ∈ {0, 1, . . . , k} | cosβ`j < δ}.

It is easy to see that J kj ⊂ Gkj , Gkj ∩ Bkj = ∅ and |Gkj |+ |Bkj | = k + 1. Therefore, by the definition
of p̄ and using some properties of the ceiling and floor functions, we have, for all j = 1, . . . ,m,

|Gkj | ≥ |J kj | = dp̄(k + 1)e = (k + 1) + d− ε

m
(k + 1)e = (k + 1)− b ε

m
(k + 1)c,

and hence |Bkj | ≤ b εm(k + 1)c. Thus,

|
m
∪
j=1
Bkj | ≤ mb

ε

m
(k + 1)c ≤ ε(k + 1).

As consequence, since we also have | ∩mj=1 Gkj | + | ∪mj=1 Bkj | = k + 1, by using the definition of ε,
it follows that

|
m
∩
j=1
Gkj | ≥ (k + 1)− ε(k + 1) = (1− ε)(k + 1) = p(k + 1),

which concludes the proof.

A.2 Proofs of Section 4

In this section, we make use of Assumption 4.1. In particular, and without loss of generality, we
assume that {xk} ⊂ U , where U is a neighborhood of x∗ such that (30) and (31) hold.

A.2.1 Proof of Proposition 4.1

We start with some auxiliary technical results.

Lemma A.1. Suppose that Assumption 4.1 holds. Let βkj be the angle between the vectors sk

and Bk
j s
k, for all k ≥ 0 and j = 1, . . . ,m. Then, for all k ≥ 0,

D(xk, dk) ≤ −δk
2
‖dk‖‖dSD(xk)‖,

where δk := minj=1,...,m cosβkj .
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Proof. For a given k ≥ 0, by using the definitions of δk, cosβkj , and sk, we obtain

δk ≤ cosβkj =
(sk)>Bk

j s
k

‖sk‖‖Bk
j s
k‖

=
(dk)>Bk

j d
k

‖dk‖‖Bk
j d

k‖
, ∀j = 1, . . . ,m.

Therefore, from Lemma 2.2(ii) and (13), we have

−D(xk, dk) > −θ(xk) =
1

2

m∑
j=1

λkj (d
k)>Bk

j d
k ≥ δk

2
‖dk‖

m∑
j=1

λkj ‖Bk
j d

k‖.

Applying the triangle inequality, together with (11), (12), and Lemma 2.3(iv), we obtain:

−D(xk, dk) ≥ δk
2
‖dk‖‖

m∑
j=1

λkjB
k
j d

k‖ =
δk
2
‖dk‖‖

m∑
j=1

λkj∇Fj(xk)‖ ≥
δk
2
‖dk‖‖dSD(xk)‖.

Lemma A.2. Suppose that Assumption 4.1 holds. Then, for all k ≥ 0, we have:

(i) ‖xk − x∗‖ ≤ 2

L
‖dSD(xk)‖;

(ii) ‖sk‖ ≥ (1− σ)

2L
δk‖dSD(xk)‖, where δk is given as in Lemma A.1;

(iii)
(γkj )>sk

‖sk‖2
≥ L, for all j = 1, . . . ,m;

(iv)
‖γkj ‖2

(γkj )>sk
≤ (2L+ ϑ̄c̄)2

L
, for all j = 1, . . . ,m and some constant c̄ > 0.

Proof. Consider part (i). For a given value of k ≥ 0, consider λSD(xk) ∈ Rm as in (15)–(16),
and define the scalar-valued function FSD : Rn → R as follows:

FSD(x) :=

m∑
j=1

λSDj (xk)Fj(x).

Therefore, by taking z := x∗ − xk, it follows from (15) and (31) that∫ 1

0
(1− τ)z>∇2FSD(xk + τz)zdτ ≥ L

2
‖z‖2.

Evaluating this integral (which can be done by integration by parts), and considering that
dSD(xk) = −∇FSD(xk), we obtain

FSD(x∗)− FSD(xk) + dSD(xk)>(x∗ − xk) ≥ L

2
‖x∗ − xk‖2.

Given that Fj(x
∗) ≤ Fj(xk) for all j = 1, . . . ,m, we have FSD(x∗)− FSD(xk) ≤ 0 and thus

L

2
‖x∗ − xk‖2 ≤ dSD(xk)>(x∗ − xk) ≤ ‖dSD(xk)‖‖x∗ − xk‖,
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which proves part (i).
Consider part (ii). By using (18) and the definitions of D(·, ·) and ykj , we obtain

−(1− σ)D(xk, dk) ≤ D(xk+1, dk)−D(xk, dk) ≤ max
j=1,...,m

(ykj )>dk,

which, together with (33), yields

−(1− σ)D(xk, dk) ≤ max
j=1,...,m

(sk)>Ḡkjd
k = αk max

j=1,...,m
(dk)>Ḡkjd

k ≤ Lαk‖dk‖2 = L‖sk‖‖dk‖,

where the latter inequality comes from (31). Therefore, taking into account that σ < 1, by
Lemma A.1, we obtain

(1− σ)
δk
2
‖dk‖‖dSD(xk)‖ ≤ L‖sk‖‖dk‖,

which gives the desired inequality.
Part (iii) is a direct consequence of (34). Finally, consider part (iv). From (19) and (31), we

have

|ηkj | ≤
‖ykj ‖
‖sk‖

=
‖∇Fj(xk+1)−∇Fj(xk)‖

‖xk+1 − xk‖
≤ L.

Furthermore, since {xk} ⊂ U , by (20) and using continuity arguments, there exists a constant
c̄ > 0 such that

0 ≤ rkj ≤ |ηkj |+ ϑk‖
m∑
i=1

µki∇Fi(xk)‖ ≤ L+ ϑ̄c̄,

and hence, by (21),

‖γkj ‖ ≤ ‖ykj ‖+ rkj ‖sk‖ =

(
‖ykj ‖
‖sk‖

+ rkj

)
‖sk‖ ≤ (2L+ ϑ̄c̄)‖sk‖.

Therefore, using the inequality in part (iii), we obtain

‖γkj ‖2

(γkj )>sk
=
‖γkj ‖2

‖sk‖2
‖sk‖2

(γkj )>sk
≤ (2L+ ϑ̄c̄)2

L
, ∀j = 1, . . . ,m,

concluding the proof.

We are now able to prove Proposition 4.1

Proof of Proposition 4.1. Let λSD(x∗) ∈ Rm be a steepest descent multiplier associated with
x∗ as in (15)–(16), and define the scalar-valued function F∗ : Rn → R as follows:

F∗(x) :=
m∑
j=1

λSDj (x∗)Fj(x).

Note that

∇F∗(x∗) =
m∑
j=1

λSDj (x∗)∇Fj(x∗) = −dSD(x∗) = 0, (47)

where the last equality comes from Lemma 2.3(i). Now, by using (31), we obtain

∇Fj(x∗)>(xk − x∗) +
L

2
‖xk − x∗‖2 ≤ Fj(xk)− Fj(x∗) ≤ ∇Fj(x∗)>(xk − x∗) +

L

2
‖xk − x∗‖2,
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for all j = 1, . . . ,m and for all k ≥ 0. By multiplying this expression by λSDj (x∗), summing over
all indices j = 1, . . . ,m, and taking into account (15) and (47), we obtain

L

2
‖xk − x∗‖2 ≤ F∗(xk)− F∗(x∗) ≤

L

2
‖xk − x∗‖2, ∀k ≥ 0. (48)

From the right hand side of (48) and Lemma A.2(i), we obtain

F∗(x
k)− F∗(x∗) ≤

2L

L2 ‖dSD(xk)‖2, ∀k ≥ 0. (49)

On the other hand, (17) gives

F∗(x
k+1) ≤ F∗(xk) + ραkD(xk, dk), ∀k ≥ 0.

Therefore, from Lemma A.1 and Lemma A.2(ii), we have

F∗(x
k+1) ≤ F∗(xk)−

ρ

2
δk‖sk‖‖dSD(xk)‖ ≤ F∗(xk)−

ρ(1− σ)

4L
δ2k‖dSD(xk)‖2, ∀k ≥ 0.

Hence, by subtracting the term F∗(x
∗) in both sides of the latter inequality, and using (49), we

obtain

F∗(x
k+1)− F∗(x∗) ≤

(
1− ρ(1− σ)L2

8L2
δ2k

)(
F∗(x

k)− F∗(x∗)
)
, ∀k ≥ 0. (50)

For each k ≥ 0, define r̄k := 1−ρ(1−σ)L2δ2k/(8L
2). It is easy to see that r̄k ∈ (0, 1], for all k ≥ 0.

Now, given p ∈ (0, 1), we can invoke Lemma A.2(iii)–(iv) to apply Proposition 3.3. This
implies that there exists a constant δ > 0 such that, for any k ≥ 1, the number of elements ` ∈
{0, 1, . . . , k} for which δ` ≥ δ is at least dp(k + 1)e. By defining Gk := {` ∈ {0, 1, . . . , k} | δ` ≥ δ},
we have |Gk| ≥ dp(k + 1)e and

r̄` ≤ 1− ρ(1− σ)L2δ2

8L2
:= r̄ < 1, ∀` ∈ Gk.

Thus, from (50) and considering that F∗(x
0)− F∗(x∗) > 0, we obtain, for all k ≥ 1,

F∗(x
k+1)− F∗(x∗) ≤

 k∏
`=0

r̄`

(F∗(x0)− F∗(x∗)) ≤
∏
`∈Gk

r̄`

(F∗(x0)− F∗(x∗))

≤

∏
`∈Gk

r̄

(F∗(x0)− F∗(x∗)) ≤ r̄dp(k+1)e
(
F∗(x

0)− F∗(x∗)
)
,

where the second inequality follows from the fact that r̄` ≤ 1 for all ` /∈ Gk. Therefore, by taking
r := r̄p, we obtain

F∗(x
k+1)− F∗(x∗) ≤ rk+1

(
F∗(x

0)− F∗(x∗)
)
, ∀k ≥ 1.

Combining this with the left hand side of (48), we find

‖xk+1 − x∗‖ν ≤
[

2

L

(
F∗(x

0)− F∗(x∗)
)]ν/2

(rν/2)k+1.

Finally, by summing this expression and taking into account that r < 1, we conclude that (32)
holds.
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A.2.2 Proof of Theorem 4.3

We start by introducing an auxiliary result.

Lemma A.3. Suppose that Assumptions 4.1 and 4.2 hold. Then, there exists ā > 0 such that

|θ(xk)| ≥ ā‖dk‖2, (51)

for all k sufficiently large. Moreover,

lim
k→∞

‖dk‖ = 0. (52)

Proof. By choosing γ ∈ (0, 1) and recalling that sk = αkd
k, it follows from (37) that

(dk)>Bk
j d

k

(dk)>∇2Fj(x∗)dk
≥ 1− γ, ∀j = 1, . . . ,m,

for all k sufficiently large. Thus, by (31), we obtain

(dk)>Bk
j d

k ≥ L(1− γ)‖dk‖2, ∀j = 1, . . . ,m,

for all k sufficiently large. Therefore, using (12) and (13), we have

|θ(xk)| = 1

2

m∑
j=1

λkj (d
k)>Bk

j d
k ≥ L(1− γ)

2
‖dk‖2,

for all k sufficiently large. Defining ā := L(1 − γ)/2, we establish (51). Finally, by combining
(51), Lemma 2.2(ii), and Proposition 3.2, we obtain

0 ≤ lim
k→∞

ā‖dk‖ ≤ lim
k→∞

|θ(xk)|
‖dk‖

≤ lim
k→∞

|D(xk, dk)|
‖dk‖

= 0,

which concludes the proof.

Recalling that λk ∈ Rm is the Lagrange multiplier associated to xk of problem (7) fulfilling
(11)–(12), let us define

F kλ (x) :=

m∑
j=1

λkjFj(x) and Bk
λ :=

m∑
j=1

λkjB
k
j , ∀k ≥ 0. (53)

Next, we show that the sequence of functions {F kλ (x)}k≥0 fulfills a Dennis–Moré-type condition.

Theorem A.4. Suppose that Assumptions 4.1 and 4.2 hold. For each k ≥ 0, consider F kλ : Rn →
R and Bk

λ as in (53).Then,

lim
k→∞

‖(Bk
λ −∇2F kλ (x∗))dk‖

‖dk‖
= 0 (54)

or, equivalently,

lim
k→∞

‖∇F kλ (xk) +∇2F kλ (xk)dk‖
‖dk‖

= 0. (55)
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Proof. By (53) and taking into account (12), we have

lim
k→∞

‖(Bk
λ −∇2F kλ (x∗))dk‖

‖dk‖
≤ lim

k→∞

m∑
j=1

λkj
‖(Bk

j −∇2Fj(x
∗))dk‖

‖dk‖

≤ lim
k→∞

max
j=1,...,m

‖(Bk
j −∇2Fj(x

∗))dk‖
‖dk‖

,

which, combined with (38), yields (54). We proceed to show that (54) implies (55). Firstly,
considering (11), since Bk

λd
k = −∇F kλ (xk), it follows that (55) is equivalent to

lim
k→∞

‖(Bk
λ −∇2F kλ (xk))dk‖

‖dk‖
= 0. (56)

Note that

lim
k→∞

‖(Bk
λ −∇2F kλ (xk))dk‖

‖dk‖
≤ lim
k→∞

‖(Bk
λ −∇2F kλ (x∗))dk‖

‖dk‖
+ lim
k→∞

‖∇2F kλ (x∗)−∇2F kλ (xk)‖

and, by using continuity arguments,

lim
k→∞

‖∇2F kλ (x∗)−∇2F kλ (xk)‖ ≤ lim
k→∞

m∑
j=1

λkj ‖∇2Fj(x
∗)−∇2Fj(x

k)‖

≤ lim
k→∞

max
j=1,...,m

‖∇2Fj(x
∗)−∇2Fj(x

k)‖ = 0.

Therefore, combining the two latter inequalities, we obtain (56). The proof that (55) implies (54)
can be obtained similarly.

The following result shows that the unit step size eventually satisfies the Wolfe conditions
(17)–(18).

Theorem A.5. Suppose that Assumptions 4.1 and 4.2 hold. Then, the step size αk = 1 is
admissible for all k sufficiently large.

Proof. Let j ∈ {1, . . . ,m} be an arbitrary index. It is easy to see that (38) is equivalent to

lim
k→∞

‖(Bk
j −∇2Fj(x

k))dk‖
‖dk‖

= 0.

Thus, by Taylor’s theorem, it follows that

Fj(x
k + dk) =Fj(x

k) +∇Fj(xk)>dk +
1

2
(dk)>Bk

j d
k +

1

2
(dk)>

(
∇2Fj(x

k)−Bk
j

)
dk + o(‖dk‖2)

=Fj(x
k) +∇Fj(xk)>dk +

1

2
(dk)>Bk

j d
k + o(‖dk‖2),

Therefore, by using (6) and setting t := 2ρ < 1, we have

Fj(x
k + dk) ≤ Fj(xk) + tθ(xk) + (1− t)θ(xk) + o(‖dk‖2).
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Consequently, according to (51), for sufficiently large k,

Fj(x
k + dk) ≤ Fj(xk) + tθ(xk) +

[
−ā(1− t) +

o(‖dk‖2)
‖dk‖2

]
‖dk‖2.

As the term in square brackets is negative for k large enough, we conclude that

Fj(x
k + dk) ≤ Fj(xk) + tθ(xk).

On the other hand, combining (11)–(13), we find

θ(xk) =
1

2

m∑
j=1

λkj∇Fj(xk)>dk ≤
1

2
D(xk, dk). (57)

Hence, from the last two inequalities and the definition of t, we obtain

Fj(x
k + dk) ≤ Fj(xk) + ρD(xk, dk),

for all k sufficiently large. Given the arbitrary choice of j ∈ {1, . . . ,m}, we conclude that the
step size αk = 1 satisfies (17) for all sufficiently large k.

Consider the curvature condition (18). From the definition of F kλ in (53), we have

−
m∑
j=1

λkj∇Fj(xk)>dk =
m∑
j=1

λkj (d
k)>∇2Fj(x

k)dk −
m∑
j=1

λkj

[
∇2Fj(x

k)dk +∇Fj(xk)
]>
dk

=
m∑
j=1

λkj (d
k)>∇2Fj(x

k)dk −
[
∇F kλ (xk) +∇2F kλ (xk)dk

]>
dk.

Thus, by (12), (31), and (55), we obtain

−
m∑
j=1

λkj∇Fj(xk)>dk ≥ L‖dk‖2 + o(‖dk‖2) = ‖dk‖2
[
L+

o(‖dk‖2)
‖dk‖2

]
.

Hence, taking into account (52) and (57), for k sufficiently large, it follows that

− 2θ(xk) = −
m∑
j=1

λkj∇Fj(xk)>dk ≥
L

2
‖dk‖2. (58)

On the other hand, applying the Mean Value Theorem to the scalar function ∇F kλ (·)>dk, there
exists vk := xk + tkd

k for some tk ∈ (0, 1) such that

∇F kλ (xk + dk)>dk = ∇F kλ (xk)>dk + (dk)>∇2F kλ (vk)dk.

Therefore,

|∇F kλ (xk + dk)>dk|
‖dk‖2

≤
‖∇F kλ (xk) +∇2F kλ (xk)dk‖

‖dk‖
+ ‖∇2F kλ (vk)−∇2F kλ (xk)‖.
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Now, by the definitions of F kλ and vk, and considering (12) and (52), we obtain

lim
k→∞

‖∇2F kλ (vk)−∇2F kλ (xk)‖ ≤ lim
k→∞

m∑
j=1

λkj ‖∇2Fj(x
k + tkd

k)−∇2Fj(x
k)‖

≤ lim
k→∞

max
j=1,...,m

‖∇2Fj(x
k + tkd

k)−∇2Fj(x
k)‖ = 0.

Thus, combining the latter two inequalities with (55), we have

lim
k→∞

|∇F kλ (xk + dk)>dk|
‖dk‖2

= 0.

Hence, for k large enough, we have

|∇F kλ (xk + dk)>dk| ≤ σL
4
‖dk‖2,

which, together with (58), yields

m∑
j=1

λkj∇Fj(xk + dk)>dk = ∇F kλ (xk + dk)>dk ≥ −σL
4
‖dk‖2 ≥ σθ(xk).

Therefore, by the definition of D(·, ·), (12), and Lemma 2.2(ii), we obtain

D(xk + dk, dk) ≥
m∑
j=1

λkj∇Fj(xk + dk)>dk ≥ σθ(xk) ≥ σD(xk, dk),

for all k sufficiently large, concluding the proof.

We require an additional auxiliary result.

Lemma A.6. Suppose that Assumption 4.1 holds. Then,

‖∇F kλ (xk+1)−∇F kλ (xk)−∇2F kλ (x∗)(xk+1 − xk)‖ ≤M‖xk+1 − xk‖εk,

where εk := max{‖xk+1 − x∗‖ν , ‖xk − x∗‖ν}.

Proof. By the definition of F kλ in (53) and taking into account (12), we obtain

‖∇F kλ (xk+1)−∇F kλ (xk)−∇2F kλ (x∗)(xk+1 − xk)‖
≤ max

j=1,...,m
‖∇Fj(xk+1)−∇Fj(xk)−∇2Fj(x

∗)(xk+1 − xk)‖.

On the other hand, for each j ∈ {1, . . . ,m}, using (33) and (30), we have

‖∇Fj(xk+1)−∇Fj(xk)−∇2Fj(x
∗)(xk+1 − xk)‖ ≤

∫ 1

0
‖
(
∇2Fj(x

k + τsk)−∇2Fj(x
∗)
)
sk‖dτ

≤M‖sk‖
∫ 1

0
‖xk + τsk − x∗‖νdτ ≤M‖sk‖max{‖xk+1 − x∗‖ν , ‖xk − x∗‖ν}.

By combining the last two inequalities, we obtain the desired result.

29



Now, we can establish the superlinear convergence of Algorithm 1.

Theorem A.7. Suppose that Assumptions 4.1 and 4.2 hold. Then, {xk} converges to x∗ super-
linearly.

Proof. According to Theorem A.5, dk = xk+1 − xk for all k sufficiently large. Consequently,
Bk
λ(xk+1 − xk) = −∇F kλ (xk) (see (11)), and hence

(Bk
λ −∇2F kλ (x∗))(xk+1 − xk) = ∇F kλ (xk+1)−∇F kλ (xk)−∇2F kλ (x∗)(xk+1 − xk)−∇F kλ (xk+1),

for all k sufficiently large. Therefore,

‖∇F kλ (xk+1)‖
‖xk+1 − xk‖

≤
‖(Bk

λ −∇2F kλ (x∗))(xk+1 − xk)‖
‖xk+1 − xk‖

+
‖∇F kλ (xk+1)−∇F kλ (xk)−∇2F kλ (x∗)(xk+1 − xk)‖

‖xk+1 − xk‖
,

for all k sufficiently large. Taking limits on both sides of the latter inequality, using (54) and
Lemma A.6, we get

lim
k→∞

‖∇F kλ (xk+1)‖
‖xk+1 − xk‖

= 0. (59)

On the other hand, considering the definition of F kλ in (53), Lemma 2.3(iv), and Lemma A.2(i),
we find that

‖∇F kλ (xk+1)‖
‖xk+1 − xk‖

≥
‖
∑m

j=1 λ
k
j∇Fj(xk+1)‖

‖xk+1 − x∗‖+ ‖xk − x∗‖
≥ ‖dSD(xk+1)‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

≥ L

2

‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖

=
L

2

1

1 + ‖xk−x∗‖
‖xk+1−x∗‖

.

Therefore, by using (59), we conclude that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0,

which completes the proof.

Proof of Theorem 4.3. The proof follows straightforwardly from Theorems A.5 and A.7.
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