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ABSTRACT
The optimization of expensive black-box functions appears in many situations.
Bayesian optimization methods have been successfully applied to solve these prob-
lems using well-known single-point acquisition functions. Nowadays, the develop-
ments in technology allow us to perform evaluations of some of these expensive
function in parallel. Therefore, there is a need for batch infill criteria to consider
this parallelism.

In this paper, a novel batch infill criterion is presented. Our algorithm, at each
batch step, restricts the search space into a finite candidate pool and, from it, selects
the batch that maximizes the mutual information with respect to the objective
function. Depending on the total number of observations available, the candidate
pool will consist of a Latin Hypercube Sampling (exploration) or a Pareto Sampling
(trade-off between exploration and exploitation). We compare our strategy with
some of the state-of-the-art UCB-based batch approaches for different benchmark
objectives, outperforming or obtaining very similar results.

KEYWORDS
Bayesian optimization; black–box expensive optimization; multi–objective
optimization

1. Introduction

In this paper, we address the problem of minimizing an expensive black–box function
whose evaluations can be performed in parallel. The challenge of the problem is to find
a reasonable good solution within a limited evaluation budget, González et al. (2016).

This kind of problem appears, for instance, in the optimization of high-fidelity
emulators Sarkar et al. (2016), where the objective function simulates an input-output
relationship. One example, in the context of machine learning, is the hyperparameter
tuning setting Carrizosa, Mart́ın-Barragán, and Morales (2014); Snoek, Larochelle,
and Adams (2012), where the optimal parameters of a learning algorithm are sought.
There are many practical applications that fit into this optimization framework, such
as drug design González et al. (2015) or the design of renewable energy systems Sarkar
et al. (2016).

Given the characteristics of the problem, model-based optimization methods, and,
specifically, Bayesian optimization (BO), have been successfully applied Brochu, Cora,
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and de Freitas (2010); Knowles and Nakayama (2008). In BO, input points are sequen-
tially selected to be evaluated with the black-box expensive function. At each step,
the selection is made by maximizing an auxiliary function called the infill criterion.
The process continues sampling points until the evaluation budget is reached. The
final goal is to find the optimum of the expensive function in spite of having a limited
number of evaluations available.

The auxiliary optimization problem involved in the sampling process is assumed to
be solvable using standard optimization techniques and the evaluation of the infill cri-
terion is assumed to be inexpensive compared with the cost of the black-box function.
The infill function or algorithm is designed to measure the usefulness of observing a
new input point given the previous observations.

In single-point BO, one point (the maximum of the infill criterion) is sought at
each iteration with the aim of balancing exploration and exploitation. That is, explore
regions where the uncertainty values of the model are high, which is desirable in the
early stages of the search, and exploit regions with low uncertainty and low mean
values, which is desirable in later stages.

Nowadays, the availability of computing resources or specific machines, allows us
to perform parallel evaluations at the same cost as single evaluations. Therefore, the
need for multi–points or batch infill criteria has increased. When selecting a batch,
once again, the aim isto balance exploration and exploitation, along with enforcing
dissimilarity between the points in the batch.

In this paper, a novel batch infill criterion is presented called “maximize mutual
information from a candidate pool” (MMIP). Our algorithm, at each batch step, con-
siders a search over a finite pool of candidates (restriction rule) and, then, selects
from the candidates the batch that maximizes the mutual information with respect
to the objective function (selection rule). Depending on the total number of obser-
vations available at each step, the candidate pool will consist of a Latin Hypercupe
Sampling (exploration) or a Pareto Sampling (trade-off between exploration and ex-
ploitation). As the number of observations increases, the Gaussian process information
about the unknown objective function is more reliable and the algorithm attempts to
take advantage of this.

Both steps, restriction and selection, comprise complex problems and, as we ex-
plain in detail in Section 4, in both of them heuristic procedures are applied to find
an approximated solution. For instance, Pareto Sampling consists of a finite approxi-
mation of the Pareto-optimal set of the bi-objective problem addressed by the upper
confidence bound (UCB) single-point acquisition function (optimization of the mean
and variance functions given by the Gaussian process) by means of an evolutionary
multi-objective algorithm.

We compare our strategy with some of the state-of-the-art UCB-based batch ap-
proaches, outperforming the results for some of the benchmark objective functions
tested, and obtaining very similar results in the remaining cases.

The rest of the paper is organized as follows. In Section 2, the optimization problem
and the Bayesian optimization methodology are described. In Section 3 the state-of-
the-art UCB-based batch strategies are presented. Our proposed batch infill algorithm
is explained in Section 4 and Section 5 illustrates the algorithm with a 2-dimensional
example. In Section 6 we introduce the experimental settings used. We apply our
proposed strategy to benchmark optimization functions and compare the results in
Section 7. Note that, in the interest of space, the complete list of experiments are
included in the Annexes. The last section is devoted to summarizing the conclusions
and further work.
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2. Bayesian optimization and infill criteria

In this section, the optimization problem is detailed and we introduce the Bayesian
optimization (BO) method using a Gaussian process (GP) as the surrogate model.

2.1. Optimization problem

The objective function, f : Ω ⊂ Rd −→ R, is unknown but it can be pointwise
evaluated at an expensive cost. Each input value is a vector of dimension d, we use
the notation xxx = (x1, . . . , xd) ∈ Ω. We assume that Ω is a compact set and that each
xi is a box-constrained variable xi ∈ [li, ui] for i = 1, 2, . . . , d.

As we are using GPs as the surrogate model, the fact of dealing with normally
distributed noise in the output does not incorporate any technical issue. Therefore,
from now on, we assume that the output values are noisy, that is, once xxx ∈ Ω is

selected, the value y = f(xxx) + ε, with ε
i.i.d.∼ N

(
0, σ2

0

)
, is observed, where σ2

0 is the
variance of the noise.

The optimization problem consists of finding the input point that minimizes the
objective function, that is, finding

xxx∗ = arg min
xxx∈Ω

f(xxx) , (1)

given that the evaluation budget is limited to an integer value T ∈ [1,+∞).
As optimization method we use a model-based optimization methodology known as

Bayesian optimization. The optimization is carried out in a sequential way. At each
step a new point (batch of points) is selected to be evaluated and to update the model
with it (them), see Section 2.2 and Figure 1.

In order to choose the new point (batch of points) to be observed, instead of perform-
ing a local search directly on the mean surface of the surrogate model, a specific infill
criterion (function and/or algorithm) is designed to be maximized. See Section 2.3.

In general, at step t, when t points have been observed, we denote the next point to
be observed from the search space by xxxt+1, and its corresponding (noisy) observation
by yt+1. In the batch case, we denote the next batch of points to be observed by
Bb = {xxxt+1, . . . ,xxxt+q} ⊂ Ω, where b denotes the batch step and q the batch size.

2.2. Bayesian optimization

In Bayesian optimization (BO) a stochastic process is used as a surrogate model. The
stochastic process defines a probability distribution over functions which expresses
our prior beliefs about the space of functions where the objective function lies. As we
already mentioned, in this paper we use a GP as the surrogate model.

A stochastic process is said to be a GP if any finite number of random variables
have a joint Gaussian distribution. A GP is completely defined by its mean m(xxx) and
its covariance function k(xxx,xxx′) (kernel) ∀xxx,xxx′ ∈ Ω, and it is denoted as GP (m, k) .
Selecting appropriate mean and kernel functions is a complex task. We do not enter into
the details here, see Rasmussen and Williams (2006); Morar, Knowles, and Sampaio
(2017) for further information about this topic.

The use of GPs implies smoothness assumptions over the modelled function because
the kernel function assumes, in general, that closed locations are highly correlated.
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f ∼ GP (m, k) B Prior

{xxx1, . . . ,xxxt} B Initial samples

D1:t = {(xxxk, yk)}tk=1 B New evaluation(s)

f |D1:t ∼ GP (µt, kt) B Model update

Bb = {xxxt+i}qi=1 ← Infill algorithm B New point(s)

t← t+ q / b← b+ 1

Stopping rule
t < T

xxx∗∗ = argmin
k∈[1,T]

yk B Best value

No

Yes

Figure 1. Bayesian optimization

Despite this, GPs have been widely used in BO due to their nice theoretical properties
and the good results obtained in many practical applications. See Brochu, Cora, and
de Freitas (2010) and Rasmussen and Williams (2006) for an exhaustive description.

We assume that the black-box function is a sample path of the GP, that is, f ∼
GP (m, k). For each input point, the model gives us two quantities: the mean value and
the uncertainty value of the prediction, f(xxx) ∼ N (m(xxx), σ(xxx)) with variance function

σ(xxx) =
√
k(xxx,xxx).

Once some points have been observed, D1:t = {(xxxi, yi)}ti=1, the posterior distribution
can be calculated. In our setting the posterior process is, once again, a GP and its cor-
responding posterior mean and covariance functions can be obtained using the closed
formulas given below, which are adapted to handle noisy observations, see Rasmussen
and Williams (2006) for more details.

For simplicity we use the notation: f | D1:t ∼ GP (µt, kt) with µt(xxx) = m (xxx | D1:t)
and kt(xxx,xxx

′) = k (xxx,xxx′ | D1:t). The posterior mean and variance function are calculated
as follows

µt(xxx) = k(xxx,XXX1:t)
ᵀ
(
k(XXX1:t,XXX1:t) + σ2

0In
)−1

Y1:t ∀xxx ∈ Ω , (2)

kt(xxx,xxx
′) = k(xxx,xxx′)− k(xxx,XXX1:t)

ᵀ
(
k(XXX1:t,XXX1:t) + σ2

0It
)−1

k(xxx′,XXX1:t) ∀xxx ,xxx′ ∈ Ω , (3)

where XXX1:t = [xxx1, . . . ,xxxt]
ᵀ ∈ Rt×d denotes a transposed vector of input values

and Y1:t = [y1, . . . , yt]
ᵀ ∈ Rt denotes a vector of output values. The covariance

values are denoted in three different ways: scalar k(xxx,xxx′) ∈ R, vector k(xxx,XXX1:t) =
[k(xxx,xxx1), . . . , k(xxx,xxxt)]

ᵀ ∈ Rt and matrix k(XXX1:t,XXX1:t) ∈ Rt×t where each matrix entry
(i, j) corresponds with the scalar value k(xxxi,xxxj), ∀ i, j ∈ {1, . . . , t}. Note that σ0 de-
notes the variance of the normally distributed noise and It denotes the identity matrix
of size t.
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2.3. Infill criterion

In the single-point case, the infill criterion has to handle the trade-off between the
desire of exploration and exploitation. It is usually expressed through a function called
acquisition function a : Ω→ R+. Once t points have been observed, the next point to
be evaluated is the one that maximizes the acquisition function,

xxxt+1 = arg max
xxx∈Ω

a (xxx | D1:t) (4)

In the batch case, in order to emphasize the batch diversity, a modified infill criterion
which rewards dissimilarity between the points in the batch needs to be defined.

Usually, batch infill criteria are based on well-known single-point acquisition func-
tions. The goal of a batch infill criterion based on a specific single-point acquisition
function is to imitate it for the batch case. Given any single-point acquisition function,
if one attempts to directly obtain the batch by solving problem (4) q times, all the
points will be the same. Similarly, if we calculate directly the best q different points,
all the points will be very close due to the smoothness of the GP model.

Many original batch infill criteria and/or algorithms have been proposed in the
literature to address this problem. The goal of this paper is to design an efficient batch
infill criterion which uses as few evaluations of the costly function as possible in the
task of finding the optimum. Before presenting our strategy in Section 4, we describe
in Section 3 some single-point and batch infill criteria appearing in the literature.

3. State-of-the-art UCB-based strategies

We focus on a well-known single-point acquisition function, the Upper Confidence
Bound (UCB) function. In this section the UCB function and some batch infill criteria
appearing in the literature and related with the UCB criterion are briefly described.

In practice, the solutions considered are calculated as approximated solutions of the
infill criterion using any standard heuristic optimization procedure. Moreover, in some
strategies, infill heuristic algorithms are specifically created to find better solutions or
to speed up the search. Note that, in some proposals, the infill criterion is inherent in
the infill algorithm.

3.1. UCB single-point acquisition function

The Upper Confidence Bound (UCB) was originally presented in Cox and John (1997),
using the notation from Srinivas et al. (2012):

aUCB(xxx | D1:t) = −µt(xxx) + κt+1σt(xxx) . (5)

From now on, we will use the following notation for the UCB one-step lookahead
solution,

xxxUCBt+1 = arg max
xxx∈Ω

−µt(xxx) + κt+1σt(xxx) . (6)

The weight parameter κt is used to balance the mean and uncertainty. Traditionally,
the value of the weight parameter has been empirically fixed. More recently, in Srinivas
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et al. (2012), the GP-UCB function has been proposed in the framework of multi-armed
bandits. In this strategy the weight parameter is adapted at each step in order to
maintain conservative confidence intervals (i.e., guarantee, with high probability, that
the value of the function lies inside the confidence interval). The authors also develop
in Srinivas et al. (2012) theoretical results for this strategy. Note that in Žilinskas
and Calvin (2018), the authors developed some general theoretical properties under
some specific assumptions for the same problem and propose to apply a bi-objective
optimization approach different from the classical UCB strategy.

3.2. Batch UCB-based strategies

In the following we list 6 UCB-based batch strategies selected from the literature. The
first five are sequential strategies and the last one selects the q points in parallel.

From now on, we use the notation Bb = {xxxt+1, . . . ,xxxt+q} ⊂ Ω for a batch of points
calculated at step b where b = 0, 1, 2, . . . denotes the batch step (b = bt/qc), q denotes
the batch size, and t = 1, 2, . . . ,T denotes the pointwise step. Note that the size of the
last batch depends on the amount of evaluations available.

(1) B-UCB Desautels, Krause, and Burdick (2014). The authors propose the follow-
ing sequential batch infill criteria:

xxxt+1 = arg max
xxx∈Ω

−µt(xxx) + κt+1σt(xxx) , (7)

xxxt+i = arg max
xxx∈Ω

−µt(xxx) + κt+1σt(xxx |xxxt+1, . . . ,xxxt+i−1) (8)

for i = 2, . . . , q .

This strategy repeats the GP-UCB single-point strategy by exploiting the fact
that the GP variance can be updated once a new point is added to the batch
without being observed, see Eq. (3).

(2) PE-UCB Contal et al. (2013); Contal (2016). The Pure Exploration-UCB se-
quentially selects the points of the batch using the following infill criteria:

xxxt+1 = arg max
xxx∈Ω

−µt(xxx) + κt+1σt(xxx) , (9)

xxxt+i = arg max
xxx∈Ω

σt(xxx |xxxt+1, . . . ,xxxt+i−1) for i = 2, . . . , q . (10)

In order to calculate an approximate solution, the authors propose to reduce
the search space by focusing on a region called “relevant region” which is defined
as follows:

Rt = {xxx ∈ Ω : µt(xxx) + 2κt+1σt(xxx) ≥ ŷt} (11)

where ŷt = max
xxx∈Ω
−µt(xxx)− κtσt(xxx).

We will use the following notation for the UCB two-step lookahead solutions,

xxxUCBt+2 = arg max
xxx∈Ω

−µt
(
xxx |xxxUCBt+1 , yUCBt+1

)
+ κt+2σt

(
xxx |xxxUCBt+1 , yUCBt+1

)
. (12)
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In the relevant region defined by the authors, the two following points, the two-
step lookahead solution xxxUCBt+2 and the unknown optimum xxx∗ (1) (see Eq. (1)),

lie inside with high probability. Note that xxxUCBt+2 cannot be calculated explicitly

at step t because the value yUCBt+1 = f(xxxUCBt+1 ) + εUCBt+1 is unknown.
(3) LP-UCB González et al. (2016). The Local Penalization-UCB consists of an infill

algorithm where the batch points are sequentially selected as follows:

xxxt+i = arg max
xxx∈Ω

g(a(xxx | D1:t))

i−1∏
j=1

Ψ(xxx |xxxt+j) for i = 1, . . . , q , (13)

Function g modifies the selected acquisition function a(xxx) to be always positive
and each penalization term Ψ(· |xxxt+j) transmits the expected local reduction of
the variance due to the previous batch element xxxt+j ∈ Ω.

This approach assumes that the function is Lipschitz continuous or that the
kernel is twice differentiable.

(4) PRED-UCB González et al. (2016). The Batch Predictive UCB strategy has
been used for comparison purposes. The elements of the batch are sequentially
selected as follows:

xxxt+i = arg max
xxx∈Ω

− µt(xxx | {(xxxt+j , µt(xxxt+j)}i−1
j=1)+

+ κtσt(xxx | {(xxxt+j , µt(xxxt+j)}i−1
j=1) for i = 1, . . . , q (14)

That is, once a new point is selected, a fake update of the GP is performed
considering the value of the predicted mean as the true value of the function.

(5) RAND-UCB González et al. (2016). In this strategy, at each batch step, the 1st
point is selected by maximizing the UCB function and the remaining points are
selected uniformly at random from the search space.

(6) λ−LCB Hutter, Hoos, and Leyton-Brown (2012). The approach consists of se-
lecting solutions of the bi-objective problem defined by minimizing the mean and
maximizing the variance (see Section (4.1.1) by applying the single-point UCB
function with different weight parameters.

xxxt+i = arg max
xxx∈Ω

−µt(xxx) + κiσt(xxx) for i = 1, . . . , q and κi ∼ Exp(1) . (15)

Note that κi are sampled uniformly at random from an exponential distribu-
tion of mean 1 for i = 1, . . . , q.

Note that, due to the lack of available code or details to reproduce it, we have
excluded from the comparison the following three batch strategies that are also re-
lated with the multi-objective framework MOI-MBO (Multi-Objective Infill for par-
allel Model Based Optimization see Bischl et al. (2014)), EGO-MO (Efficient Global
Optimization Multi-Objective infill algorithm see Feng et al. (2015)) and SOP (par-
allel Surrogate global Optimization with Pareto center selection batch infill algorithm
see Krityakierne, Akhtar, and Shoemaker (2016)).
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4. MMIP–Maximize Mutual Information from a candidate Pool

In this section, our proposed strategy called “maximize mutual information from a
candidate pool” (MMIP) is presented. This algorithm uses as the batch dissimilarity
function the mutual information with respect to the black-box function.

At each batch iteration of the Bayesian process, our infill algorithm has two main
steps, the restriction of the search space into a finite pool of candidates (restriction
rule) and the selection of the batch that maximizes the mutual information with respect
to the objective function (selection rule).

Moreover, the restriction rule has two different possibilities depending on the step
of the Bayesian optimization process, that is, number of observations available. When
there are a low number of observations, the restriction rule used is a simple discretiza-
tion method called Latin Hypercube Sampling (LHS). As more evaluations are used
to fit the model, a more complex approach to select the candidate pool is used called
Pareto set approximation sampling (PS).

The two rules (restriction and selection) are explained in detail in Section 4.1 and 4.2
respectively. In order to illustrate our approach, in Section 5 we use a demonstrative
example by applying our method to minimize the well-known Branin 2-dimensional
test function.

The MMIP infill algorithm can be written as follows:

Bb = arg max
B⊂Pb , |B|=q

MI(f ;B | D1:t) . (16)

where Pb denotes the candidate pool selected from the search space (depending on
the phase, it will be a LHS or a PS) and MI(f ;B) denotes the mutual information
with respect to the black-box function when observing the set B. The pseudo-code is
presented in Alg. 1.

4.1. Restriction rule

The restriction rule consists of reducing the search space into a finite set of points
called the candidate pool denoted as Pb, with |Pb| ≤ n. As previously mentioned, we
consider a different approach depending on the number of observations available.

At steps 1 ≤ t ≤ T∗ (initial steps), we assume that exploration is more significant
as the Gaussian process is not mature enough. Therefore, we use as the candidate
pool a discretization of Ω which does not use any information given by the model.
We propose applying a Latin Hypercube Sampling (LHS) with n points. Space-filling
designs such as LHS were suggested for this kind of problems in Jones, Schonlau, and
Welch (1998).

As the number of observations increases, at steps T∗ < t ≤ T, the Gaussian process
is assumed to better represent the shape of the objective function. In this case, the
restriction rule method uses the information given by the GP through the mean and
variance functions. We propose applying a sampling method that we call Pareto set
approximation sampling (PS). The aim is to approximate the Pareto-optimal set of
the bi-objective problem defined as the optimization of the conflicting objectives: min-
imizing the mean and maximizing the variance given by the Gaussian Process. The
bi-objective approach and all the concepts related with multi-objective optimization
are briefly described in Section 4.1.1.
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Algorithm 1 MMIP

Require: Batch size q, budget T, budget break T∗, candidate pool size n, PS param-
eters θPS , GP parameters θGP = (q0, µ0, k, l).

1: {xxx1, . . . ,xxxq0} ⊂ Ω . Initial samples
2: yi = f(xxxi) + εi for i = 1, . . . , q0

3: D1:q0 ← {(xxxi, yi)}q0i=1 . Initial observations
4: t← q0

5: while t < T do
6: GP (µt, kt) = GP (µ0, k0) |D1:t . GP update
7: b← b(t− q0)/qc
8: if t < T∗ then . Two-Phases
9: {p1, . . . , pn} LHS . Restriction rule(s)

10: else
11: {p1, . . . , pn} PS with NSGA–II(θPS)
12: end if
13: Pb ← {p1, . . . , pn}
14: Bb ← arg max

B⊂Pb ,|B|=q
MI(f ;B | D1:t) with Greedy MI Alg. 2 . Selection rule

15: yi = f(xxxi) + εi with xxxi ∈ Bb for i = t+ 1, . . . , t+ q
16: D1:t+q ← D1:t ∪ {(xxxi, yi)}t+qi=t+1 . New observations
17: t← t+ q
18: end while
19: xxx+ ← xxxk corresponding with yk = arg min

i∈[1,T]
yi . Best value observed

20: return xxx+

4.1.1. Multi-objective optimization

In the following, we introduce several concepts related with multi-objective optimiza-
tion that, subsequently, will be used in the explanation of the batch infill criteria.

Multi-objective (MO) optimization involves a set of conflicting evaluation criteria
{s1(·), s2(·), . . . , sk(·)} where compromise solutions are sought. This paper only ad-
dresses bi-objective problems, so we simplify the notation to the case k = 2. Let
s1, s2 : Ω → R be two conflicting criteria to be maximized. We define the vector ob-
jective function s : Ω→ Z ⊂ R2 as s(xxx) = (s1(xxx), s2(xxx))∀xxx ∈ Ω where Z denotes the
objective space.

In order to provide a (finite) set of possible alternatives for the MO problem, the
concept of Pareto dominance is used. Let z, z′ ∈ Z, we say that z dominates (“is better
than”) z′, denoted by z � z′, if z is better in at least one objective and worse in no
other. We denote by Z∗ the set of non-dominated points in the objective space known
as the Pareto-optimal front: Z∗ = {z ∈ Z : @ z′ ∈ Z s.t. z′ � z}.

We denote by Ω∗ the set of non-dominated points in the decision space, which is
the pre-image of Z∗, known as the Pareto-optimal set: Ω∗ = {xxx ∈ Ω : s(xxx) ∈ Z∗}.

Our interest lies in the bi-objective problem associated with the UCB acquisition
function. From now on, we denote the Pareto-optimal set by Ω∗t and the vector objec-
tive function associated with this problem by st. That is:

Ω∗t = {xxx ∈ Ω : st(xxx) ∈ Z∗} with st(xxx) = (−µt(xxx), σt(xxx)) . (17)

Note that, at each BO step the bi-objective problem will vary, as both objective

9



functions will be updated when new observations are made, and, also note that the
UCB single-point optimal solution corresponds with a point of this Pareto set.

In practice, the Pareto-optimal front cannot be calculated exactly because it is very
time consuming or even impossible, and, an approximated Pareto front is used instead.
Multi-objective evolutionary algorithms (MOEAs) have been developed with the pur-
pose of achieving a uniformly spread approximation of the Pareto-optimal front Greco,
Figueira, and Ehrgott (2005). The aim of this kind of algorithm is to evolve the popu-
lation towards the Pareto-optimal set while maintaining the diversity of the solutions
in the population. We will use the MOEA algorithm known as NSGA-II Deb et al.
(2002). The NSGA-II, elitist Non-dominated Sorting Genetic Algorithm, considers a
population which will always be ranked into Pareto fronts. In order to apply the ge-
netic operators, a partial order to sort the individuals is used by combining two values,
the fitness value given by the ranking and the crowding distance value. The crowding
distance is an estimate of the density of the solutions surrounding each individual.
NSGA-II generates offspring using a specific type of crossover and mutation, and then
selects the next generation according to non-dominated sorting and crowding distance
comparison.

In this paper, we use the default implementation from Izzo and Biscani (2017) of the
MOEA NSGA-II Deb et al. (2002) algorithm to obtain a finite set of non-dominated
points among themselves. Note that, any multi-objective algorithm can be applied at
this step.

4.2. Selection rule

The selection rule consists of selecting from the candidate pool the batch to be ob-
served. In order to obtain q different points, we use as the dissimilarity measure the
mutual information with respect to the objective function.

As pointed out in Krause, Singh, and Guestrin (2008), maximizing the entropy
(which is the same as maximizing the variance in our case) can be seen as an indirect
criterion because it only considers the prediction quality of the selected points. Instead
of that, by maximizing the mutual information, the quality of the prediction over a
region of interest is also taken into account.

In general, the problem of finding the set of points that maximizes the mutual in-
formation with respect to a black-box function is known to be NP-complete Krause,
Singh, and Guestrin (2008). However, in our setting, as shown also in Krause, Singh,
and Guestrin (2008), the mutual information function is submodular and approxi-
mately monotonic. Therefore, the batch can be efficiently approximated by applying
the Greedy MI rule proposed in Krause, Singh, and Guestrin (2008) and described
in Section 4.2.1 and Alg.2. This approximation achieves the following constant factor
approximation: MI(f ;B∗)−MI(f ;B) ≤ qe−(1−1/e) being B∗ the unknown optimal set
and B the set obtained with the algorithm. The algorithm is slightly modified because
in our case the UCB one-step-lookahead solution, xxxUCBt+1 (see Eq. 6), is always included
as the first point of the batch.

4.2.1. Greedy MI algorithm

The general greedy selection rule consists of, starting from an empty set, adding se-
quentially the points that maximize the increase of mutual information about the
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black-box function on the decision space. That is:

xxxt+i = arg max
xxx∈Ω

(
MI
(
f ; {xxxt+j}i−1

j=1 ∪ {xxx} |D1:t, {xxxt+j}i−1
j=1

)
−MI

(
f ; {xxxt+j}i−1

j=1 | D1:t, {xxxt+j}i−1
j=1

))
for i = 1, . . . , q . (18)

As developed in Krause, Singh, and Guestrin (2008), the function used in (18) can
be expressed in terms of the entropy function and in our setting, as we assume that
f(xxx)|D1:t ∼ N (µt(xxx), σt(xxx)), maximizing the entropy is equivalent to maximizing the
predicted variance.

In Krause, Singh, and Guestrin (2008), they propose an algorithm for maximizing
mutual information using the following greedy selection. At each iteration, the algo-
rithm selects the point that maximizes the uncertainty of f(xxx) with respect to the
already selected points and minimizes the uncertainty with respect to those not yet
selected. They address this bi-objective maximization problem as a single-objective
problem using the quotient as follows:

xxxt+i = arg max
xxx∈Ω

σt(xxx | {xxxt+j}i−1
j=1)

σt

(
xxx |Ω\

(
{xxxt+j}i−1

j=1 ∪ {xxx}
)) for i = 1, . . . , q . (19)

Note that these calculations are based on the fact that the variance can be updated
given an input point and without knowing its observed value. The Greedy MI algorithm
used in our approach is described in Alg. 2.

Algorithm 2 Greedy MI

Require: Variance function σ, UCB solution xxxUCB, candidate pool P.
1: B← {xxxUCB}
2: i← 1
3: while i < q do

4: xxxi ← arg max
xxx∈P

σ(xxx |B)

σ (xxx |P\ (B ∪ {xxx}))
5: B← B ∪ {xxxi}
6: i← i+ 1
7: end while
8: return B

5. Illustrative example

In order to give a visual idea of the procedure we introduce an illustrative example in
this section. All the parameters and experimental details are given in Section 6.

In Figure 2, the results obtained by applying our algorithm to minimize the 2-
dimensional Branin function are shown. The function has two global optima at xxx∗1 =
(−π, 12.275) and xxx∗2 = (π, 2.275), where the function value is zero. In this example the
batch size is fixed to five.

The contour plot of the Branin function is used as the background, blue colours
represent lower values. The different geometrical figures have the following meaning:
black star (observed point), white square (candidate pool point), black square (batch

11



point) and black triangle (UCB one-step look-ahead solution). Note that the UCB
one-step look-ahead solution is always included in the batch, but we use a different
symbol to differentiate the point.

In the first plot on the left, which corresponds with the first batch step, q0 = 10
initial random points have been observed and the candidate pool corresponds with a
LHS of n = 100 points. As the Bayesian process continues, the number of observed
points increases and the restriction rule switches to the PS approach. The second plot
on the right, corresponds with a step where the Pareto sampling rule is used. In this
plot the approximated Pareto set points are shown (decision space) and in the last
plot the corresponding points in the bi-objective space are shown. Note that the two
objective values are the mean (minimize) and variance (maximize) values.
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Figure 2. Results with the Branin function for batch size q = 5.
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6. Experimental setting

We detail below the setting and parameters used in the experiments. We test the
performance of our proposed algorithm in the task of optimizing 12 test functions. We
compare the MMIP strategy and 6 variants described below, with the state-of-the-art
strategies presented in Section 3 and the UCB single-point strategy as reference.

The 6 variants of the MMIP strategy are listed in detail below and summarized in
table 1:

(1) Rand-MMI-P. This strategy is the same as MMIP except that, for the first
BO steps, no selection rule is applied, the batch is extracted at random from the
candidate pool.

(2) Rand. The batch is always selected randomly from the corresponding candidate
pool.

(3) MMI-PS. The restriction rule used is the PS and the selection rule is the Greedy
MI rule throughout the whole algorithm.

(4) Rand-PS. The batch is selected randomly from the approximated Pareto set.
(5) MMI-LHS uses as candidate pool a LHS and the selection rule is the Greedy

MI rule.
(6) Rand-LHS selects the points randomly from the LHS candidate pool.

Note that, the first two approaches differentiate the restriction and selection rules used
based on the number of observations available. The last 4 approaches do not make this
differentiation, the same restriction and selection rules are used through the whole BO
process.

Table 1. MMIP algorithm and variants

1 < t ≤ T∗ T∗ < t ≤ T
Restriction Selection Restriction Selection

MMIP LHS MI PS MI
Rand–MMI–P LHS Rand PS MI
Rand LHS Rand PS Rand

1 < t < T
Restriction Selection

MMI–PS PS MI
Rand–PS PS Rand
MMI–LHS LHS MI
Rand–LHS LHS Rand

Our computational development is based on the Python library Bolib (Python li-
brary for Bayesian Optimization), Roman et al. (2016b); Roman (2017). The NSGA-II
algorithm implementation used is from the Python library PyGMO (Parallel Global
Multiobjective Optimizer), Izzo and Biscani (2017). The PE-UCB implementation is
based on the available Matlab code from Contal (2016), and a discretization of size n
of the search space is used in order to calculate the relevant region.

Each experiment is repeated 10 independent times with different starting seeds.
Therefore, the performance measure used for comparison of a strategy for a given
experiment is the average across the 10 different best values found. In our setting the
result is the immediate regret at evaluation t, that is, rt = |f(x̃xxt) − f(xxx∗)| where x̃xxt

13



is the recommendation of the algorithm after t evaluations (the best objective value
found so far) and f(xxx∗) is the minimum value for the objective function (set to zero).
A limited number of evaluations, denoted as T, has been used as stopping criteria.

6.1. Parameters

In order to clarify the parameters involved in the problem, we have grouped them in
the following categories: GP, UCB, objective function, infill algorithm optimizer, and
batch infill algorithm.

(1) GP parameters, θGP = (q0, µ0, k, l).
A prior constant mean µ0 and kernel function k(·, ·) have been considered.

Two kernel functions have been tested, the Squared Exponential and the
Matern-32 described below.
• kSE(xxx,xxx′) = exp

(
− r

2l2

)
,

• kM32(xxx,xxx′) =
(

1 +
√

3r
l

)
exp

(
−
√

3r
l

)
,

where r = ||xxx − xxx′|| and l denotes the length-scale kernel parameter set to 1 at
each dimension, see Rasmussen and Williams (2006).

The value µ0 has been set as the mean of q0 = 10 uniformly at random selected
points D1:q0 = {(xxxi, yi)}q0i=1, that is, µ0 = 1

q0

∑i=q0
i=1 yi. Note that, this initial set of

observations may or may not be included in the BO process. In our experiments
this initial set is included.

(2) UCB parameter, θUCB = (κt).

We consider the following adaptative value κt =
√

2 log(td/2+2π2/6)
from Brochu, Cora, and de Freitas (2010).

(3) Objective function parameters: θf = (f, d,Ω, k, µε, σε).
Different well-known synthetic test functions with different complexities and
dimensions have been used, see Table 2 for a brief description of their parameters.
The evaluations are assumed to be noisy with zero-mean Gaussian independent

noise, that is, y = f(xxx) + ε with ε
i.i.d.∼ N

(
µε, σ

2
ε

)
with µε = 0 and σ2

ε = 0.01.
The closed formula of all the functions and the plots of all the 2-dimensional

functions are shown in Annex 9.
(4) Infill algorithm optimizer: θopt = (nopt).

In our approach, we use a discrete grid optimizer which consists of evaluating
the objective function over a random grid and returning the point of the grid
where the best objective value is reached. The number of points for the grid is
fixed to nopt = 20.000 and the grid is kept constant through the BO process.

(5) Batch infill algorithm parameters: θBI = (q,T,T∗, n, θPS).
Three different batch sizes have been tested, q = 5, 10, 20, and the number
of evaluations is set as T = 100 d where d is the dimension of the objective
function+. Depending on the batch infill algorithm, additional parameters could
be needed. In our approach, the phase break is set as half of the budget T∗ =
bT/2c and the candidate pool size is set to n = 100.

The Pareto Sampling parameters, denoted as θPS , are those corresponding
with the default implementation of the NSGA-II algorithm from the library Izzo
and Biscani (2017), that is, θPS = (nP = n, nG = 100, pc = 0.6, pm = 0.1, ηc =
10, ηm = 50) where nP denotes the population size, nG denotes the number of
generations to evolve, pc and pm denote the crossover and mutation probabilities,
and ηc and ηm denote the crossover and mutation distribution indexes used to

14



Table 2. Objective functions (f notation, d dimension and Ω search space).

Name f d Ω k

Branin fB 2 [−5, 10]× [0, 15] kM32
cosines fc 2 [0, 5]2 kM32
Rastrigin fR 2 [−5.12, 5.12]2 kSE

gSobol–2 fgS2 2 [−4, 6]2 kSE
gSobol–5 fgS5 5 [−5, 5]5 kM32
gSobol–10 fgS10 10 [−5, 5]10 kM32

Levy–2 fL2 2 [−10, 10]2 kSE
Levy–5 fL5 5 [−10, 10]5 kM32
Levy–10 fL10 10 [−10, 10]10 kSE

Michalewicz–2 fM2 2 [0, π]2 kM32
Michalewicz–5 fM5 5 [0, π]5 kSE
Michalewicz–10 fM10 10 [0, π]10 kSE

adapt both binary operators to the real case.

6.2. Parameters selection

• Objective function kernel selection:
In order to reduce the number of experiments, we have associated each objective
function with the kernel function for which the UCB single-point acquisition
function attains better results. The final kernel selection for each objective func-
tion is specified in Table 2. The complete list of results can be seen in Annex 10.
• NSGA-II parameters influence:

A sensitivity study about the population size and number of generation param-
eters have been performed. No specific pattern is appreciated as the results vary
with the objective function. The results are shown in Annex 12.

7. Experimental results

In this section, the main results obtained are presented. In the interest of space, the
complete list of results (in graphical and tabular formats) can be consulted in An-
nex 10.

The tabular results presented in this section are separated into three double tables
according to the three batch sizes considered, see Tables 3, 6 and 9. In each table, each
row corresponds with an infill strategy. Each objective function has three columns:
mean, standard deviation and p-value after performing the Wilcoxon signed-rank test
against the best strategy. In the p-value column, the batch strategies obtaining the
best value is marked with an asterisk. In order to check whether there are significant
differences, we consider a significant level of α = 0.05 and the values below this level,
those with significant differences, are marked in bold. Note that the UCB single-point
solution is not included in the test.

In order to see the evolution of the different infill algorithms, some figures are
also presented. In the figures, the x-axis corresponds with the number of observations
and the y-axis with the objective value obtained (in the interval [0, 1]). Each curve
corresponds to an infill algorithm. Black points on the line represent when the batches
are observed, and the line is the interpolated curve. For each objective function, three
plots (upper, center and lower) separating the different algorithms are used for reasons
of clarity. In the upper plot the state-of-the-art algorithms (lines in blue tones), the
MMIP (purple line) and the UCB single-point (black line) are shown. In the center,
our variants of the MMIP are plotted (lines in red tones), and, finally, in the lower plot
all the curves are plotted together. As we are minimizing, lower values are preferred.

We include in this section Figure 3, where each column corresponds with a gSobol
function with dimension d = 2, 5, 10 and batch size q = 5. All the remaining figures,
for all the objective functions and batch sizes, are presented in Annex 10.

We analyze below the results obtained with the MMIP as a whole, and in the
following sections we analyze in detail some characteristics such as the influence of the
UCB single-point function, the batch size, the objective function dimension and the
Gaussian process initialization.

For the two dimensional problems, the value of the results obtained are very similar
for all the strategies. More specifically, for cosines, gSobol-2 and Levy-2, the best results
are attained with some of the state-of-the-art strategies and MMIP has significant
differences for all the batch sizes. For the Branin function, the best results are obtained
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Figure 3. Results with q = 5 for gSobol-2,5,10.

with our proposed variants and MMIP has no significant differences for batch sizes
q = 10, 20. For the Rastrigin function, MMIP has no significant differences for all the
batch sizes. And, finally, for the Michalewicz–2 function, MMIP is the best or has no
significant differences for batch sizes 5 and 10 respectively, and for batch size 10 the
best strategy is Pred-UCB.

For higher dimensions, the results obtained with some batch strategies improve
the results obtained with the UCB reference function. For gSobol–5 and Levy–5, the
MMIP obtains the best result or has no significant differences for all the batch sizes
considered. For Michalewicz–5 and Levy–10, only for q = 5 does the MMIP strategy
have significant differences. For gSobol-10, MMIP attains the best result for all the
batch sizes and no other batch strategy attains similar improvements. Finally, for
Michalewicz–10, MMIP results have no significant differences for any batch size.

7.1. UCB single-point function influence

The UCB single-point strategy is used as reference, as the model is updated each
time an observation is made, and better results are expected. In some cases, the value
obtained with the UCB strategy is in the same range as the value obtained with some
of the batch strategies. However, for some cases (gSobol-5, Levy-5, gSobol-10 and
Levy-10) the UCB algorithm is outperformed as also pointed out in González et al.
(2016). For gSobol-5 and Levy-5, the strategies PE-UCB, LP-UCB, Rand-UCB and
our proposals, improve the result obtained with the UCB. For gSobol-10 and Levy-10,
the strategies Rand-UCB, LP-UCB and our proposals outperform the results, but the
highest improvement is obtained considering our MMIP strategy. This behaviour is
maintained for the three batch sizes considered.

In the cases where the single-point UCB strategy seems to get stuck, the strategies
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capable of escaping from the UCB behaviour are those that apply a more exploratory
approach, focused on the uncertainty reduction, and strategies that consider different
points from the bi-objective problem, such as our Pareto approach. Note that the
UCB solution corresponds with a specific solution of the bi-objective solution. For
the strategies that we propose, all of them escape from the UCB behaviour and some
of them improve the results significantly when the dimensionality, and therefore the
complexity, of the problem increases. The batch algorithms that blindly rely on the
UCB behaviour obtain similar or even worse results (B-UCB, Pred-UCB and Lambda-
UCB).

7.2. Batch size influence

In order to appreciate the evolution of the strategies as the batch size increases, the
error plots are shown in Figures 4-5. For each batch size (q = 5, 10, 20) the correspond-
ing mean and standard deviation values are plotted for the batch infill algorithms. The
UCB single-point solution is also included in black for purposes of comparison.

In general, as expected, as the batch size increases, similar or worse results are
obtained. However, for the LP-UCB strategy, the results obtained are almost con-
stant and, for our MMIP strategy, in some scenarios better results are obtained as
the size increases from 10 to 20 (Rastrigin, cosines, Michalewicz-5, and Levy-10). For
Michalewicz-5, the improvement obtained from size 10 to 20 is the same as that ob-
tained with λ-UCB. Both strategies consider points from the Pareto set.

7.3. Problem dimension influence

The two dimensional problems, except for Rastrigin function, seem to be very easy
to solve. All the batch algorithms, together with the UCB reference strategy, attain
near optimal results. We can appreciate from Figure 3 that, as the dimension of the
problem increases, the UCB single-point function behaves worse and, therefore, those
algorithms that rely strongly only on the information given by the UCB do not behave
very well.

The MMIP strategy obtains the best solution for the objective functions gSobol-5
(batch size q = 5, 10), Levy-5 (batch size q = 5), gSobol-10 (batch size q = 5, 10, 20)
and Levy-10 (batch size q = 20). In the gSobol-10 case, our results are signifi-
cantly better when compared with the other batch strategies. In the remaining cases,
Michalewicz-5 and Levy-10, for batch size 5 our MMIP strategy has significant differ-
ences but as the batch size increases the differences become not significant.

7.4. Gaussian process initialization

In Morar, Knowles, and Sampaio (2017), the authors address the problem of designing
the initial sampling plan for the Bayesian optimization method, that is to select the
initial samples to initialize the surrogate model, in our case the Gaussian process.
They highlight the importance of having sensible default parameters that could adapt
to the problem. In our approach, we have initialized the GP constant mean value using
q0 = 10 initial samples, that is, µ0 = 1

q0

∑i=q0
i=1 yi with D1:q0 = {(xxxi, yi)}q0i=1 randomly

selected observations. In our experiments these initial observations are also included
in the BO procedure. We have performed additional experiments using q0 = d initial
samples, being d the dimension of the problem. Note that for those objective functions
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with dimension d = 10, both experiments are the same.
In the figures, the plots in the left column are the experiments performed with

q0 = 10 initial samples and, in the right column, with q0 = d. Note that the y-axis
are not in the same scale as the max and minimal values are different for each case.
Figure 6 shows the differences obtained for the 2-dimensional Branin function and
batch size q = 5 when using the two different initializations. The remaining tabular
and graphical results are shown in Annex 11.

With q0 = 10 the UCB single-point algorithm (black line) is the best method.
However, when q0 = 2, its behaviour is not good enough and other batch algorithms
outperform it. On the contrary, the results for the Levy-5 function improve slightly
when using q0 = 2.

Modifying the number of initial samples seems to greatly affect the UCB single-point
behaviour. This makes sense because it directly uses the mean and variance functions
given by the surrogate model. Those batch acquisition functions that strongly rely on
the UCB single-point function will also imitate its bad behaviour when having a low
number of initial samples. Those strategies that are capable of extracting information
from other sources or are more exploratory approaches can avoid this behaviour and
obtain better results, such as, LP-UCB, PE-UCB, Rand-UCB and our proposals.
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Figure 6. Objective function Branin and q = 4 (Left q0 = 10, Right q0 = d).
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8. Conclusions and further work

In this paper a novel batch strategy is proposed called “maximize mutual information
from a candidate pool”’ (MMIP). In the experimental section, we show that our strat-
egy, when compared with some of the state-of-the-art UCB–based batch approaches,
outperforms the results or obtains very similar results depending on the properties of
the objective function considered.

For some objective functions, the UCB single-point reference strategy is outper-
formed by some of the batch strategies tested. In these cases, all the batch algorithms
that rely blindly on the UCB behaviour (B-UCB, Pred-UCB and Lambda-UCB) can-
not avoid its bad performance. It seems that the mean and uncertainty balance selected
by the UCB parameter, even if it is adapted as the number of observations increases,
give more weight to the mean before the GP process is mature enough. In general the
strategies that apply a more exploratory approach into the batch selection are capa-
ble of escaping from this behaviour. For the strategies that we propose, all of them
escape from the UCB behaviour, and the MMIP strategy improves the results as the
dimensionality, and therefore the complexity, of the problem increases.

Moreover, from the experiments performed with the GP initialization, we conclude
that, when the initial GP hyperparameters are not good enough due to the ignorance
about the problem properties it could be better to apply strategies that could avoid
relying blindly on the UCB balance used. In this work the mean and kernel hyperpa-
rameters are fixed at the beginning of the process. An interesting problem would be
to adapt these hyperparameters online, see for instance Roman et al. (2016a).

In our approach, the batch size is fixed at the beginning and is constant along the
optimization steps. As future work, designing an adaptive batch strategy where the
batch size is modified would be interesting. See for instance Azimi, Jalali, and Fern
(2012); Ginsbourger et al. (2011); Marmin, Chevalier, and Ginsbourger (2015); Snoek,
Larochelle, and Adams (2012).

In Desautels, Krause, and Burdick (2014), the authors introduce, to complement
the B-UCB algorithm, the notion of lazy variance calculations. As the authors state,
applying the lazy variance computation instead of the traditional one will accelerate
the computation of some UCB-based algorithms without any loss of performance. The
key idea is that, instead of recomputing σt(xxx) for all the candidate points at every
step t, an upper bound can be maintained recomputing its value only at some points.
We have not implemented this feature yet, but it would be interesting to apply this
in the future and compare the computing times.

In this paper, we assume that the computing time of the objective function is very
expensive compared with any of the computing times of the batch algorithms. However,
note that different algorithms could reach the same final value but have a different
speed in terms of number of evaluations. That is, the number of observations required
to obtain a particular result depends on the algorithm. Therefore, depending on the
computing time available we might prefer to use one algorithm or another.
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