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Abstract

In this work, we introduce new direct-search schemes for the solution of bilevel optimiza-
tion (BO) problems. Our methods rely on a fixed accuracy blackbox oracle for the lower-level
problem, and deal both with smooth and potentially nonsmooth true objectives. We thus
analyze for the first time in the literature direct-search schemes in these settings, giving con-
vergence guarantees to approximate stationary points, as well as complexity bounds in the
smooth case. We also propose the first adaptation of mesh adaptive direct-search schemes for
BO. Some preliminary numerical results on a standard set of bilevel optimization problems
show the effectiveness of our new approaches.

1 Introduction

Bilevel optimization (see, e.g., [6, 9, 12, 13, 24] and references therein for a complete overview on
the topic) has been subject of increasing interest, thanks to its application to hyperparameter
tuning for machine learning algorithms and meta-learning (see, e.g., [17] and references therein).
In this work, we are interested in the following bilevel optimization problem

min
(x,y)∈Rnx×ny

f(x, y), s.t. y ∈ arg min
z∈Z

g(x, z). (1)

wherein we assume that the upper-level function f(x, y) : Rnx×ny → R is continuous, and
g(x, z) : Rnx×ny → R is such that the lower-level problem minz∈Z g(x, z) has a unique solution
y(x) for every x ∈ Rnx , and Z ⊂ Rny . Uniqueness of the lower-level problem solution, also
known as the Low-Level Singleton (LLS) assumption, is a quite common assumption in many
real world applications, such as hyperparameter optimization, meta-learning, pruning, semi-
supervised learning on multilayer graphs (see, e.g., [17, 20, 42, 45]). While for simplicity we
focus on the setting described above, it is important to point out that our analysis still holds,
for a specific class of BO problems, even when dropping the LLS assumption (see Remark 2.1).

The algorithms we study here are derivative free optimization (DFO) methods, which do not
use derivatives of the upper-level objective function, but rather only the objective value itself.
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Importantly, in this setting we also assume the availability of some blackbox oracle generating
an approximation ỹ(x) of y(x) for any given x ∈ Rn

x. Among DFO methods, we are interested
in particular in direct-search methods (see, e.g., [2, 26]), which sample the objective in suitably
chosen tentative points without building a model for it. These algorithmic schemes allow us to
prove convergence guarantees under very mild assumptions on our bilevel optimization problem.

1.1 Previous Work

Several gradient-based methods have been proposed in the literature to tackle bilevel optimiza-
tion problems. Those methods usually require the computation of the true objective gradi-
ent, called “hypergradient”, and rely on the LLS and suitable smoothness assumptions (see,
e.g., [17, 18, 23, 27, 29] and references therein). In another line of research, some asymptotic
results based on relaxations of the LLS assumption were also analyzed (see, e.g., [30, 31, 32] and
references therein). Calculating the hypergradients can be however a notoriously challenging
and time consuming task. It indeed requires the handling of ∇xy(x), which in turns involves
the calculation of the Hessian matrix related to the g function via the implicit differentiation
theorem. In some contexts, the hypergradients might not be available at all due to the blackbox
nature of the functions describing the problem. These are the reasons why the development of
new and efficient zeroth-order/derivative-free approaches is crucial in the BO context.

As for derivative free approaches, classic direct-search (see, e.g., [2, 10, 26]) and trust-region
methods (see, e.g.,[10, 26]) have been applied to BO in [11, 15, 37, 44]. In [37], a direct-search
method for BO assuming the availability of the true objective is described. More specifically,
their analysis does not allow for approximation errors in the solution of the lower-level problem,
and relies on suitable assumptions making the true objective directionally differentiable. In [44],
the analysis from [37] is extended considering lower-level inexact solutions with a stepsize-based
adaptive error. In [11], an algorithm applying trust-region methods both in the inner level
and on the true objective is described, with an adaptive estimation error for the true objective
depending on the trust-region radius; in that work, a strategy to recycle function evaluations
for the lower-level problem is described as well. In [15], the analysis of another trust-region
method with adaptive error for bilevel optimization is carried out. The authors report worst-
case complexity estimates both in terms of upper-level iterations and computational work from
the lower-level problem, when considering a strongly convex lower-level problem solved by a
suitable gradient descent approach. In the more recent works [8, 35], zeroth-order methods
based on smoothing strategies [39] are analyzed. These studies, drawing inspiration from the
complexity results provided in [21] for zeroth-order methods that handle nonsmooth and non-
convex objectives, offer complexity estimates tailored for the BO setting. They rely on the
assumptions that the lower-level problem can be solved with fixed precision, and that gradient
descent on the lower level converges either polinomially or exponentially, respectively.

Finally, min-max DFO problems (which can be seen as a particular instance of BO) are also
recently tackled in the literature [1, 36]. Relevant to our work are also direct-search methods
under the presence of noise. While previous works analyze direct-search methods with adaptive
deterministic [34] and stochastic noise [1, 4, 41], we are not aware of previous analyses of direct-
search methods with bounded but non adaptive noise.

1.2 Contributions

Our contributions can be summarized as follows.
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• We define and analyze the first inexact direct-search schemes for BO problems with general
potentially nonsmooth true objectives. Those methods indeed never require exact lower-
level problem solutions, but instead assume access to approximate solutions with fixed
accuracy, a reasonable assumption in practice. We therefore operate in a different setting
than the one considered in previous works on direct-search for BO, where true objectives
are directionally differentiable [37, 44] and lower-level solutions are exact [37] or require
an adaptive precision [44].

• We analyze mesh based direct-search schemes for BO, extending in particular the classic
mesh adaptive direct-search (MADS) scheme from [3]. This is, to the best of our knowledge,
the first analysis of this scheme that considers both inexact objective evaluation and the
simple decrease condition for new iterates used originally in [3].

• We give the first convergence results for direct-search schemes with bounded and non-
adaptive noise on the objective.

• We give the first convergence guarantees to (δ, ϵ)-Goldstein stationary points for direct-
search schemes applied to general nonsmooth objectives. With respect to classic analyses
considering Clarke stationary points (see, e.g., [5]), these are the first results for direct-
search scheme involving some quantitative measure of approximate nonsmooth stationarity.

2 Background and Preliminaries

We now introduce the main assumptions considered in the paper, along with a set of helpful
preliminary results that will support the subsequent convergence theory. As anticipated in the
introduction, we will always assume the existence of a unique minimizer y(x) for the lower-level
problem, i.e., that the LLS assumption holds.

Assumption 2.1 For any x ∈ Rnx, we have that argminz∈Z g(x, z) = {y(x)}.

Under Assumption 2.1, the bilevel optimization problem (1) can then be rewritten as

min
x∈Rnx

F (x) := f (x, y(x)) . (2)

However, in practical applications, it is usually necessary to employ an iterative method to
compute y(x). Therefore, one cannot expect to obtain an exact value of y(x), but rather some
approximation. We will hance make use of the following assumption.

Assumption 2.2 For all x ∈ Rnx we can compute an approximation ỹ(x) of y(x) such that:

∥ỹ(x) − y(x)∥ ≤ ε . (3)

While the remaining assumptions introduced in this section are not always needed, in the rest
of this manuscript we always assume that Assumptions 2.1 and 2.2 hold.

Remark 2.1 Our analysis extends to the case where argminz∈Z g(x, z) is not a singleton, but
an approximate solution ỹ(x) of the simple bilevel problem

min
y∈Rny

f(x, y), s.t. y ∈ arg min
z∈Z

g(x, z). (4)

3



is available for every x ∈ Rnx. In fact our convergence proofs rely on (3) rather than the
singleton assumption. We refer the reader to the recent work [8] for a detailed discussion on the
complexity and regularity properties of the simple bilevel problem (4).

In the next proposition, we show how condition (3) can be satisfied, by applying gradient
descent to g(x, ·), under a suitable error bound condition on ∇yg(x, y) generalizing strong con-
vexity (see, e.g, [22] for a detailed comparison with other conditions). We also give an explicit
bound on the number of iterations needed to satisfy (3).

Proposition 2.1 Assume that there exists cg > 0 such that for all y ∈ Z ,

cg∥y − y(x)∥ ≤ ∥∇yg(x, y)∥ . (5)

Furthermore, let ∇yg be Lg Lipschitz continuous in y, uniformly in x. Define y0(x) to be
any arbitrary initialization mapping onto the domain of g(x, ·). Then consider the sequence,

yk+1(x) = yk(x) − 1

Lg
∇yg(x, yk(x)) . (6)

Define the solution estimate to be:

ỹ(x) = argmink∈[0:K(x)] ∥∇yg(x, yk(x))∥ (7)

It holds that ỹ(x) satisfies (3), for

K(x) =

⌈
2Lg(g(x, y0(x)) − g(x, y(x)))

ε2c2g

⌉
. (8)

Proof. This follows from the well known iteration complexity of gradient descent for smooth
non convex objectives.

We introduce now some technical assumptions on the objective function needed in our anal-
ysis.

Assumption 2.3 The function f is lower bounded by flow.

Assumption 2.4 The function f is Lipschitz continuous with respect to y with Lipschitz con-
stant Lf (independent of x).

We remark that these assumptions are an adaptation to our bilevel setting of standard assump-
tions made in the analysis of direct-search methods [10, 34]. Assumption 2.2 together with
Assumption 2.4 imply that F̃ (x) := f(x, ỹ(x)) is an approximation of F (x) with accuracy Lfε.
Indeed,

|F̃ (x) − F (x)| = |f(x, ỹ(x)) − f(x, y(x))| ≤ Lf∥ỹ(x) − y(x)∥ ≤ Lfε . (9)

Some regularity on the true objective F (x) will always be necessary for our analyses. We
consider both the differentiable and the potentially non differentiable setting.

Assumption 2.5 F (x) is Lipschitz continuous with constant LF .

Assumption 2.6 The function F is continuously differentiable with Lipschitz continuous gra-
dient, of Lipschitz constant L.

Note that if f is Lipschitz with respect to x, and y(x) Lipschitz continuous with respect to x,
then Assumption 2.5 is satisfied. Furthermore, in the strongly convex lower-level setting there is
an explicit expression for ∇F (see, e.g., [8, Equation (3)]), implying that its Lipschitz continuity
follows from that of y(x) together with suitable regularity assumptions on f and g.
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2.1 Algorithm

In this section, we introduce a general direct-search algorithm for bilevel optimization that
embeds both directional direct-search methods with sufficient decrease and mesh adaptive direct-
search methods with simple decrease, as defined in [10]. The methods in the first class sample
tentative points along a suitable set of descent directions and then select as the new iterate a
point satisfying a sufficient decrease condition. The methods in the second class sample the
points in a suitably defined mesh, and then select the new iterate according to a simple decrease
condition. A tentative point t is hence accepted if the decrease condition

f(t, ỹ(t)) < f(xk, yk) − ρ(αk) (10)

is satisfied, for ρ nonnegative function. We have a sufficient decrease when ρ(t) > 0 with
limt→0+ ρ(t)/t = 0, and a simple decrease in case ρ(t) = 0. These two classes of decrease condi-
tions lead to significant differences in convergence properties and consequently require different
choices in the algorithm parameters. They will therefore be analyzed separately in Sections 3
and 4 respectively.

Algorithm 1: DS for bilevel optimization

1: Initialization: Choose x0 ∈ Rnx , α0 initial stepsize, ρ : R>0 → R≥0. Let y0 = ỹ(x0) be
an approximate minimizer for the lower-level problem in x0. Optional: Let ∆0 = α0

be the initial frame size parameter.
2: for k = 0, 1, 2, . . . do
3: Let Mk ⊂ Rnx be a mesh depending on αk and xk. Let Sk be a finite

subset of Mk.
4: if f(t, ỹ(t)) < f(xk, yk) − ρ(αk) for some t ∈ Sk then
5: Set xk+1 = t, declare the iteration successful, and go to step 13.
6: end if
7: Choose a set of descent directions Dk, possibly depending on ∆k and such that

{xk + αkd | d ∈ Dk} ⊂ Mk. For a given d ∈ Dk, compute the approximate minimizer
yαkd
k = ỹ(xk + αkdk) for the lower problem. Evaluate f at the poll points belonging

to {(xk + αkd, y
αkd
k ) : d ∈ Dk}.

8: if there exists dk ∈ Dk such that f(xk + αkdk, y
αkdk
k ) < f(xk, yk) − ρ(αk) then

9: Declare the iteration as successful. Set xk+1 = xk + αkdk and yk+1 = yαkdk
k .

10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk.
12: end if
13: Update the frame size parameter ∆k and the stepsize αk.
14: Optional: If some approximate stationarity condition is satisfied, terminate the

algorithm.
15: end for

The detailed scheme (see Algorithm 1) follows the lines of the general schemes proposed
in [10] and [26], with the addition of calls to the lower-level oracle ỹ(x), and an explicit reference
to the mesh used in mesh-based schemes. At Step 1, the algorithm searches for a new iterate
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by testing the upper level objective in (t, ỹ(t)) for t in Sk subset of the mesh Mk. In case Step
1 is not successful, the method generates, at Step 2, a new iterate by selecting a set of descent
directions Dk and testing the upper level objective in (t, ỹ(t)) for t chosen along the descent
directions using a stepsize αk. Step 3 and Step 4 perform updates on the algorithm iterate and
parameters based on the outcome of Step 1 and 2. For the set of directions Dk, we require in
some cases a positive cosine measure, that is

cm(Dk)
d
= min

v ̸=0Rnx

max
d∈Dk

d⊤v

∥d∥∥v∥
≥ κ , (11)

for some κ > 0.

3 Sufficient decrease condition

In this section, we analyze directional direct-search methods using a sufficient decrease condition
with ρ(t) = c

2 t
2. We first focus on potentially nonsmooth objectives, and then on smooth ones.

In both cases we consider the scheme presented in Algorithm 2, which can be viewed as an
adaption to BO of classic generating set of search directions (GSS) schemes (see, e.g., [25,
Algorithm 3.2]). In order to handle the error introduced by the approximate solution in the
lower level, we lower bound the stepsize with a constant αmin. We further notice that, thanks to
the sufficient decrease condition, maintaining a mesh is not necessary, and therefore we simply
set Mk = Rnx .

3.1 Nonsmooth objectives

First, we present convergence guarantees and proofs thereof for a variant of Algorithm 2 de-
signed for the case of Lipschitz continuous true objectives, i.e., under Assumption 2.5. With
respect to the general scheme presented as Algorithm 2, here Dk = {gk} with gk generated
in the unit sphere. We remark that this is a standard choice for direct-search algorithms ap-
plied to nonsmooth objectives (see, e.g., [16, Algorithm DFNsimple]). The stepsize lower bound
here must be strictly positive (i.e. αmin > 0).This together with the sufficient decrease condi-
tions ensures that the sequence generated by the algorithm is eventually constant, as proved
in Lemma 3.1. We then use a novel argument to prove that the limit point of the sequence is
a (δ, ϵ)-Goldstein stationary point. Although such a notion of stationarity has recently gained
attention in the analysis of zeroth-order smoothing-based approaches [21, 28, 40], including ex-
tensions to BO [8, 35], to the best of our knowledge, it has never been used for the analysis of
direct-search methods.It is further important to notice that convergence of directional direct-
search methods to (δ, ϵ)−Goldstein stationary points in the nonsmooth case is a novel result also
for classic optimization problems. We now recall some useful definitions. If Bδ(x) is the ball of
radius δ centered in x, then the δ-Goldstein subdifferential (see, e.g., [28]) is defined as

∂δF (x) = conv

 ⋃
y∈Bδ(x)

∂F (y)

 , (12)

and x is an (δ, ϵ)-Goldstein stationary point for the function F if, for some g ∈ ∂δF (x), we have
∥g∥ ≤ ϵ.
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Algorithm 2: Inexact directional DS for bilevel optimization

1: Initialization: Choose starting point x0 ∈ Rnx , stepsize lower bound αmin ≥ 0, initial
stepsize α0 ≥ αmin, coefficient for stepsize contraction 0 < θ < 1, coefficient for stepsize
expansion γ ≥ 1, sufficient decrease condition coefficient c. Let y0 = ỹ(x0) be an
approximate minimizer for the lower-level problem at x0.

2: for k = 0, 1, 2, . . . do
3: Let Sk ⊂ Rnx with |Sk| < +∞.
4: if f(t, ỹ(t)) < f(xk, yk) − c

2α
2
k for some t ∈ Sk then

5: Set xk+1 = t, declare the iteration successful, and go to step 13.
6: end if
7: Choose a set of descent directions Dk. For a given d ∈ Dk, compute the approximate

minimizer yαkd
k = ỹ(xk + αkdk) for the lower problem. Evaluate f at the poll points

belonging to {(xk + αkd, y
αkd
k ) : d ∈ Dk}.

8: if for some dk ∈ Dk, f(xk + αkdk, y
αkdk
k ) < f(xk, yk) − c

2α
2
k then

9: Declare the iteration as successful. Set xk+1 = xk + αkdk for dk satisfying the
condition and yk+1 = yαkdk

k .
10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk.
12: end if
13: If the iteration was successful then maintain or increase the corresponding stepsize

parameter – set αk+1 ∈ [αk, γαk]. Else decrease the stepsize parameter, by choosing
αk+1 = max{αmin, θαk}.

14: [Optional] If some approximate stationarity condition is satisfied, terminate the
algorithm.

15: end for
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We can now proceed with our convergence analysis. As anticipated, we start by proving that
the sequence of iterates generated by our method is eventually constant.

Lemma 3.1 Let Assumptions 2.3 and 2.4 hold. Then there exists k̄ ∈ N0 such that the sequence
{xk} generated by Algorithm 2 is constant for k ≥ k̄.

Proof. Notice that {F̃ (xk)} is non-increasing, with F̃ (xk) = F̃ (xk+1) after an unsuccessful
step, and

F̃ (xk+1) < F̃ (xk) − c

2
α2
k ≤ F̃ (xk) − c

2
α2
min (13)

after a successful step. Thus there can be at most

2
(
F̃ (x0) − infx∈Rn F̃ (x)

)
cα2

min

≤
2
(
F̃ (x0) − flow + Lfε

)
cα2

min

(14)

successful steps, where we used F̃ (x) ≥ F (x) − Lfε ≥ flow − Lfε in the inequality. Since this
quantity is finite, this implies that {xk} is eventually constant.

We now prove convergence of our algorithm to (δ, ϵ)-Goldstein stationary points. In order
to get our convergence result, we need to assume that the sequence {gk} is dense in the unit
sphere. We remark that such a dense sequence can be generated using a suitable quasirandom
sequence (see, e.g., [19, 33]).

Theorem 3.1 Let Assumptions 2.3, 2.4 and 2.5 hold. Assume that {gk} is dense in the unite
sphere. Then the sequence {xk} generated by Algorithm 2 is eventually constant, with the unique
limit point (δ, ϵ)-Goldstein stationary, for

ϵ =
4Lfε

αmin
+ cαmin and δ = αmin . (15)

Proof. First, {xk} is eventually constant as seen in Lemma 3.1. Let x̄ be the unique limit
point. By the stepsize updating rule, we have that every iteration must be unsuccessful with
αk = αmin for k large enough. Then, there exists k̄ ∈ N large enough such that for every k ≥ k̄

F̃ (x̄) < F̃ (x̄ + αkgk) +
c

2
α2
min = F̃ (x̄ + αmingk) +

c

2
α2
min (16)

implying

F (x̄) < F (x̄ + αmingk) +
c

2
α2
min + 2Lfε . (17)

By the density of {gk} it follows

F (x̄) < F (x̄ + d) +
c

2
α2
min + 2Lfε (18)

for every d such that ∥d∥ = αmin.

We now define the function F̄x̄(d) := F (x̄ + d) + ( c2 +
2Lf ε

α2
min

)∥d∥2. Since

F̄x̄(0) < F̄x̄(d) (19)
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for every d such that ∥d∥ = αmin by (18), there must be a d̃ ∈ argmin∥d∥≤αmin
F̄x̄(d) with

∥d̃∥ < αmin. We can conclude

0 ∈ ∂F̄x̄(d̃) = ∂F (x + d̃) −
(
c +

4Lfε

α2
min

)
d̃ (20)

Equivalently, g = (c +
4Lf ε

α2
min

)d̃ ∈ ∂F (x + d̃) and since ∂F (x + d̃) ⊂ ∂αminF (x̄) we have g ∈

∂αminF (x̄). To conclude, observe ∥g∥ < cαmin +
4Lf ε
αmin

.

As a corollary of Theorem 3.1, for αmin ∝
√
ε we are able to get a (O(

√
ε),O(

√
ε))−Goldstein

stationary point. Interestingly, the order of magnitude O(
√
ε) of the approximation error coin-

cides with that of typical gradient approximation methods [7], as well as with that of direct-search
in the smooth setting, as we shall see in the next section.

Corollary 3.1 Let Assumptions 2.3, 2.4 and 2.5 hold. Assume that {gk} is dense in the unite

sphere. Then the sequence {xk} generated by Algorithm 2 with αmin = 2

√
Lf ε
c is eventually

constant, with the unique limit point (δ, ϵ)-Goldstein stationary, for

ϵ = 4
√
Lfεc and δ = 2

√
Lfε

c
. (21)

3.2 Smooth objectives

We now focus on the case where the objective F is smooth, in particular under Assumption 2.6.
We consider here a variant of Algorithm 2 with Dk positive spanning set. When the stepsize
lower bound is strictly positive we set as termination criterion αk = αk+1 = αmin. Our scheme
can hence be seen as a variant of classic direct-search methods for smooth objectives [10, 25].
It is important to highlight that this is the first analysis of direct-search methods for smooth
objectives under bounded noise. The only analysis of direct-search methods we are aware of in
the smooth case is the one given in [14] under stochastic noise, where, however, the author only
focuses on classic optimization problems.

We first extend to our bounded error setting a standard result that allows to get an upper
bound on the gradient norm for unsuccessful iterations (see, e.g., [25, Theorem 3.3]).

Lemma 3.2 Let Assumptions 2.4 and 2.6 hold, together with (11). Let {xk} be a sequence
generated by Algorithm 2. If the iteration k is unsuccessful, then

∥∇F (xk)∥ ≤ 1

κ

(
(L + c)αk

2
+

2Lfε

αk

)
. (22)

Proof. Let d ∈ Dk be such that

−∇F (xk)⊤d ≥ κ∥∇F (xk)∥∥d∥ . (23)

We have

καk∥∇F (xk)∥∥d∥ − α2
k

L

2
∥d∥2 ≤ −αk∇F (xk)⊤d− α2

k

L

2
∥d∥2

≤ F (xk) − F (xk + αkd) ≤ F̃ (xk) − F̃ (xk + αkd) + 2Lfε ≤
c

2
α2
k + 2Lfε ,

(24)
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where we used (23) in the first inequality, the standard descent lemma in the second inequal-
ity, (9) in the third inequality, and that the step is unsuccessful in the last inequality. Therefore,
since by assumption ∥d∥ = 1

καk∥∇F (xk)∥ = καk∥∇F (xk)∥∥d∥ ≤ c

2
α2
k + 2Lfεα

2
k

L

2
∥d∥2 =

c

2
α2
k + 2Lfε + α2

k

L

2
, (25)

implying the thesis.

We now prove convergence and complexity bounds when αmin > 0, extending those given
in [43] for the exact oracle case, and αmin = 0. We notice that in this second case we lose finite
convergence and our guarantees are thus somewhat weaker, i.e., we are only able to prove that
the stepsize converges to 0 and that at some point the gradient norm is O(

√
ε).

Theorem 3.2 Let Assumptions 2.3, 2.4 and 2.6 hold, together with (11) for every k ∈ N0. Let
{xk} be a sequence generated by Algorithm 2.

1. If αmin > 0, then the algorithm terminates after k̄ iterations, with

k̄ < 1 +
2

α2
minc

(F̃ (x0) − flow + 2Lfε)

(
1 − ln γ

ln θ

)
+

lnαmin − lnα0

ln θ
, (26)

and its last iterate xk̄ is such that

∥∇F (xk̄)∥ ≤ 1

κ

(
(L + c)αmin

2
+

2Lfε

αmin

)
. (27)

2. If, furthermore, it holds that αmin = 2
√

Lf ε
L+c , then

∥∇F (xk̄)∥ ≤ 2

κ

√
(c + L)Lfε . (28)

3. If αmin = 0, then αk → 0, and if additionally α0 ≥ ᾱmin = 2
√

Lf ε
L+c , for some k̄ ∈ N0 we

have

∥∇F (xk̄)∥ ≤ 1

θκ

(
(L + c)ᾱmin

2
+

2Lfε

ᾱmin

)
, (29)

and
F (xk) ≤ F (xk̄) + 2Lfε for all k ≥ k̄ . (30)

Proof. 1. Let ks and kns be the number of successful and unsuccessful steps, so that ks+kns = k.
Reasoning as in Lemma 3.1, we obtain by (14)

ks <
2

α2
minc

(F (x0) − flow + 2Lfε) . (31)

Furthermore, since
αmin ≤ αk ≤ α0γ

ksθkns−1 , (32)
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we get

kns ≤ 1 − 1

ln(θ)
(ln(α0) − ln(αmin) + ks ln(γ))

≤ 1 − 1

ln(θ)
(ln(α0) − ln(αmin) +

2

α2
minc

(F̃ (x0) − flow + 2Lfε) ln(γ)) ,
(33)

where we applied (31) in the second inequality. Combining the bounds on the successful and
unsuccessful steps (31) and (33), we have

k = ks + kns < 1 +
2

α2
minc

(F̃ (x0) − flow + 2Lfε)

(
1 − ln γ

ln θ

)
+

lnαmin − lnα0

ln θ
, (34)

as desired.
2. Follows from a direct application of the first result.
3. Reasoning as in the first result, the number of successful steps with stepsize above a certain
threshold is bounded, hence αk → 0. Furthermore, for any k̄ ∈ N0, if k ≥ k̄

F (xk) ≤ F̃ (xk) + Lfε ≤ F̃ (xk̄) + Lfε ≤ F (xk̄) + 2Lfε , (35)

which proves (30). Let ᾱmin = 2
√

Lf ε
L+c . Since α0 ≥ ᾱmin, and αk → 0 with contraction factor θ,

we must have αk̄ ∈ [θᾱmin, ᾱmin] for some k̄ ∈ N0. Then (29) follows from (22) for αk = αk̄.

We now extend to our setting the O(n2/ϵ2) complexity result given in [43, Corollary 2].
For a fixed precision ϵ, an approximation error ε = O(ϵ2) is required, as for classic gradient
approximation schemes [7].

Corollary 3.2 Let Assumptions 2.3, 2.4 and 2.6 hold, together with (11) for every k ∈ N0.
Let {xk} be a sequence generated by Algorithm 2. Assume also ε ≤ ϵ2κ2, that at every it-
erations there are at most d1n function evaluations and that κ ≥ d2/

√
n, for d1, d2 > 0.

Then if αmin = 2
√

Lf ε
L+c , the algorithm terminates after O(n2/ϵ2) function evaluations with

∥∇f(xk̄)∥ ≤ d3ϵ, for d3 > 0 depending only on c, L and Lf .

Proof. Follows from point 1 and 2 of Theorem 3.2, plugging in the parameters specified in the
assumptions.

4 Simple decrease condition

In this section, we analyze two methods based on simple decrease condition (i.e., with ρ(t) = 0,
in (10)), one for potentially nonsmooth objectives and one for smooth objectives. Both methods
follow the scheme presented in Algorithm 3, which is an adaptation to the BO setting of the
mesh adaptive direct-search algorithm (MADS, see [2] and references therein). Again we lower
bound the stepsize by a constant αmin. The stepsize updating rule we use to handle unsuc-
cessful iterations depends on the mesh size parameter ∆k and the contraction coefficient θ, and
smoothness of the true objective (i.e., update varies between the smooth and the nonsmooth
case).

It is a standard assumption in the analysis of MADS that all the iterates lie in a compact
set (see, e.g., [3, Section 3]). In our framework, this can be ensured if the following boundedness
assumption is satisfied.
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Assumption 4.1 The set

Lε = {x ∈ Rnx | F (x) ≤ F (x0) + 2Lfε} (36)

is bounded.

The mesh, as defined in the literature (see,e.g., [5, 10] and references therein for further
details), is a discrete set of points from which the algorithm selects candidate trial points. Its
coarseness is parameterised by the mesh size parameter δ. The goal of each algorithm iteration
is to get a mesh point whose objective function value improves with respect to the incumbent
value. Given a positive spanning set D and a center x the related mesh is formally defined as
follows:

M = {x + δDy | y ∈ Np} , (37)

where, with a slight abuse of notation, we use D also for the matrix D ∈ Rn×p with columns
corresponding to the elements of the set D. We notice that the mesh is just a conceptual tool,
and is never actually constructed.

Algorithm 3: Inexact mesh based DS for bilevel optimization

1: Initialization: Choose starting point x0 ∈ Rnx , stepsize lower bound αmin ≥ 0, initial
mesh size parameter α0 = αminθ

−µ0 , with µ0 ∈ N0, starting frame parameter ∆0 = α0,
stepsize contraction/expansion parameter θ ∈ (0, 1) ∩Q, G ∈ Rn×n invertible and
Z ∈ Zn×p with columns forming a positive spanning set. Let D = GZ. Let y0 = ỹ(x0)
be an approximate minimizer for the lower-level problem in x0.

2: for k = 0, 1, 2, . . . do
3: [Optional] Let Mk be the mesh with size parameter αk, positive spanning set D

and center xk. Select a finite subset Sk of Mk.
4: if f(t, ỹ(t)) < f(xk, yk) for some t ∈ Sk then
5: Set xk+1 = t, declare the iteration successful, and go to step 7.
6: end if
7: Choose a positive spanning set Dk such that {xk + αkd | d ∈ Dk} ⊂ Mk. Compute

the approximate minimizer yαkd
k = ỹ(xk + αkdk) for the lower problem. Evaluate f

at the poll points belonging to {(xk + αkd, y
αkd
k ) : d ∈ Dk}.

8: if there exists dk ∈ Dk such that f(xk + αkdk, y
αkdk
k ) < f(xk, yk) then

9: Declare the iteration as successful. Set xk+1 = xk + αkdk and yk+1 = yαkdk
k .

10: else
11: Declare the iteration as unsuccessful. Set xk+1 = xk and yk+1 = yk.
12: end if
13: If the iteration was successful then set ∆k+1 = θ−1∆k and αk = min(∆k,∆

2
k).

Else set ∆k+1 = max{αmin, θ∆k} and αk+1 = αu(αk,∆k, θ).
14: [Optional] If some approximate stationarity condition is satisfied, terminate the

algorithm.
15: end for
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4.1 Nonsmooth objectives

With respect to the general scheme presented in Algorithm 3, here the stepsize updating rule for
unsuccessful iterations is given by αu(αk,∆k, θ) = min(∆k,∆

2
k, θαk), ensuring that αk → 0 and

the mesh gets infinitely dense if the algorithm gets stuck in a certain point. The set of search
directions Dk must be such that

∆k

αk
b1(αk) ≤ ∥d∥ ≤ ∆k

αk
b2(αk) (38)

for all d ∈ Dk, with bi : R>0 → R>0 such that limt→0 bi(t) = 1 for i ∈ {1, 2}. Thus with respect
to the classic MADS scheme here the frame size ∆k defines also a lower bound and not only an
upper bound on the distance between the current iterate and tentative points selected in the poll
step. This adjustment is necessary due to the error on the true objective evaluation. As shown
in the next lemma, Condition (38) ensures that as the stepsize converges to 0 the tentative steps
get closer and closer the boundary of a ball of radius αmin.

Lemma 4.1 Assume that αmin > 0 and that (38) holds. Then if limk∈K αk = 0, the set of limit
points of {αkDk}k∈K is contained in Snx−1(αmin).

Proof. If limk∈K αk = 0 then it holds that, for k ∈ K large enough, ∆k = αmin. Consider
{dk} = Dk. It holds that, for all dk,

lim sup
k∈K

∥αkdk∥ ≤ lim sup
k∈K

∆kb2(αk) = αmin , (39)

where we applied (38) in the inequality. Analogously, we can prove lim infk∈K ∥αkdk∥ ≥ ∆k,
whence limk∈K ∥αkdk∥ = αmin, which implies the thesis.

We now extend to this scheme the (δ, ϵ)-Goldstein stationarity result proved under the suffi-
cient decrease condition in Section 3.1. Also in this case we are not aware of any analogous result
for the standard MADS scheme, which is instead known to convergence to Clarke stationary
points [3].
We start with a lemma that extends a well known property of MADS (see, e.g., [3, Proposi-
tion 3.1]) to our bilevel setting.

Lemma 4.2 Let Assumptions 2.4, 2.5 and 4.1 hold. Then the sequence {αk} generated by
Algorithm ?? is such that lim inf αk = 0.

Proof. Since {F̃ (xk)} is non-increasing (and strictly decreasing for successful iterations), {xk}
is contained in the set Lε, which is compact by Assumptions 2.5 and 4.1. Thus lim inf αk = 0
follows from the finiteness of feasible points generated in Lε when keeping the parameter αk lower
bounded, which can be proved with the same arguments used for MADS in [3, Proposition 3.1].

We can now state our main result.

Theorem 4.1 Let Assumptions 2.4, 2.5 and 4.1 hold. Let K be a subset of unsuccessful iteration
indices related to Algorithm ??. Let us further assume that:

• limk∈K xk = x̄;
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• limk∈K αk = 0;

• {D̂k}k∈K is dense in the unit sphere, with D̂k = { d
∥d∥ | d ∈ Dk};

• Condition (38) holds.

Then, the limit point x̄ of {xk}k∈K is (δ, ϵ)-Goldstein stationary, for

ϵ =
4Lfε

αmin
and δ = αmin. (40)

Proof. Let d̄ ∈ Rn with ∥d̄∥ = 1, and let L ⊂ K be such that limk∈L
dk

∥dk∥ → d̄, with dk ∈ Dk.

Then αkdk → αmind̄ by Lemma 4.1. Now, for every k ∈ L

F (xk) − F (xk + αkdk) ≤ F̃ (xk) − F̃ (xk + αkdk) + 2Lfε ≤ 2Lfε , (41)

where the first inequality follows from (9), and we used that the step k is unsuccessful in the
second inequality. Passing to the limit, we obtain

F (x̄) ≤ F (x̄ + αmind̄) + 2Lfε . (42)

Now let F̄x̄(d) = F (x̄ + d) +
2Lf ε

α2
min

∥d∥2. By applying (41) we get

F̄x̄(0) ≤ F̄x̄(αmind̄) ,

and given that d̄ is arbitrary, this holds for any d such that ∥d∥ = αmin. The thesis then follows
as in the proof of Theorem 3.1.

As in Section 3.1, here we also have a corollary showing that for αmin ∝
√
ε we are able to

get a (O(
√
ε),O(

√
ε))-Goldstein stationary point.

Corollary 4.1 Under the assumptions of Theorem 4.1, the limit point x̄ of the sequence {xk}
generated by Algorithm ?? with αmin = 2

√
Lfε is (δ, ϵ)-Goldstein stationary, for

ϵ = δ = 2
√
Lfε . (43)

4.2 Smooth objectives

Now we consider the case where the true objective is smooth, i.e., Assumption 2.6 holds. With
respect to the general scheme reported in Algorithm 3, we have αu(αk,∆k, θ) = min(∆k,∆

2
k),

and the algorithm terminates if αk = αk+1 = αmin. As for Dk, it must always satisfy cm(Dk) ≥ κ
for some positive κ independent from k, as well as

∆k

αk
b1 ≤ ∥d∥ ≤ ∆k

αk
b2 (44)

for every d ∈ Dk.
We remark that convergence of mesh based schemes for smooth objectives is well understood
(see, e.g., [5, Chapter 7]), so that once again our main contribution here is the adaptation to
the bilevel setting. We begin our analysis by extending Lemma 3.2 under the simple decrease
condition and condition (44) on the descent directions.
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Lemma 4.3 Let Assumptions 2.4 and 2.6 hold, together with (11). Let {xk} be a sequence
generated by Algorithm ??. If the step k is unsuccessful, then

∥∇F (xk)∥ ≤ 1

κ

(
b2∆kL

2
+

2Lfε

b1∆k

)
. (45)

Proof. Since the step is unsuccessful, by considering d ∈ Dk such that

−∇F (xk)⊤d ≥ κ∥∇F (xk)∥∥d∥ (46)

we have, reasoning as in (24) with c = 0

καk∥∇F (xk)∥∥d∥ − α2
k

L

2
∥d∥2 ≤ 2Lfε . (47)

Finally, we get

∥∇F (xk)∥ ≤ 1

κ

(
αkL∥dk∥

2
+

2Lfε

αk∥dk∥

)
≤ 1

κ

(
b2∆kL

2
+

2Lfε

b1∆k

)
. (48)

We now extend Theorem 3.2 to our mesh based scheme. The main difference is the absence
of complexity estimates, which to our knowledge are not available for MADS schemes.

Theorem 4.2 Let Assumptions 2.4, 2.5 and 4.1 hold. Let {xk} be a sequence generated by
Algorithm ??.

1. If αmin > 0, then the algorithm terminates in a finite number of iterations, with the last
iterate xk̄ satisfying,

∥∇F (xk̄)∥ ≤ 1

κ

(
b2αminL

2
+

2Lfε

αminb1

)
. (49)

2. If, furthermore, it holds that αmin = 2
√

Lf ε
b1b2L

, then

∥∇F (xk̄)∥ ≤ 1

κ

√
Lb2Lfε/b1 . (50)

3. If αmin = 0, then lim inf αk = 0, and if additionally α0 ≥ ᾱmin = 2
√

Lf ε
b1b2L

, for some

k̄ ∈ N0 we have

∥∇F (xk̄)∥ ≤ 1

θκ

(
Lαminb2

2
+

2Lfε

b1αmin

)
, (51)

and
F (xk) ≤ F (xk̄) + 2Lfε for all k ≥ k̄ . (52)

Proof. 1. Since the frame parameter ∆k is lower bounded, the mesh parameter αk is lower
bounded as well, and, by the subsequent finiteness of

⋃
k∈N0

Mk, the algorithm terminates in
a finite number of iterations. By the termination criterion, at the last iteration k̄ we have
∆k̄ = αmin. Since the last iteration is unsuccessful, we hence get

∥∇F (xk̄)∥ ≤ 1

κ

(
b2∆kL

2
+

2Lfε

b1∆k

)
=

1

κ

(
b2αminL

2
+

2Lfε

b1αmin

)
, (53)
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where we applied Lemma 4.3 in the second inequality.
2. Follows from the previous point replacing αmin with the given value in (49).
3. The property lim inf αk = 0 follows from standard arguments used in the analysis of MADS
schemes, already mentioned in the proof of Lemma 4.1. The result then follows from point 1
and 2 (similarly to point 3 in Theorem 3.2).

5 Numerical illustration

In this section, we evaluate the performance of the proposed algorithms on a large collection of
nonlinear bilevel optimization problems.

Three direct-search solvers derived from Algorithm 2 and Algorithm 3 were implemented in
Matlab: Mesh-DS (related to Algorithm 3) with the mesh defined as in [5, Algorithm 8.2],
Coordinate-DS (related to Algorithm 2) with Dk = [B⊕,−B⊕] (where B⊕ is the canonical
basis of Rn), and Random-DS (related to Algorithm 2) with Dk = [ v

∥v∥ ,−
v

∥v∥ ], where v ∈ Rn

is a uniformly generated vector.
In our tests, the parameters used for Algorithm 2 and Algorithm 3 were set as follows:

αmin = 10−6, θ = 1
2 , α0 = 1, c = 10−3, and γ = 2. For all the tested approaches, the optional

search step (Step 1) was not included. Instead, in the poll step, when we observed a decrease
along a specific direction, we further explored it by using a simple extrapolation strategy (i.e.,
we multiplied the step-size αk by γ and re-evaluated the function).

In our implementation, the lower-level problem is solved using the fmincon Matlab proce-
dure. To quantify the impact of inexact lower-level solutions on the performances, we used 2
different accuracies when solving the lower-level problem (i.e., LL tol ∈ {10−3, 10−6}). The rest
of the fmincon default parameters were kept unchanged. A feasibility tolerance of 10−6 for
constraints violation was used in the solution of the lower-level problem.

The three solvers, Mesh-DS, Coordinate-DS, and Random-DS, were evaluated using
33 small-scale bilevel optimization problems from the BOLIB Matlab library [46]. This library
consists of a collection of academic and real-world problems. The dimensions of the tested
instances, with respect to the upper-level problem, do not exceed 10 variables. Since an initial
point is not provided, we generated five problem instances by randomly selecting five different
initial points, thus getting a total of 175 problem instances.

The computational analysis is carried out by using well-known tools from the literature, that
is data and performance profiles (see,e.g., [38] for further details). We briefly recall here their
definitions. Given a set S of algorithms and a set P of problems, for s ∈ S and p ∈ P , let
tp,s be the number of function evaluations required by algorithm s on problem p to satisfy the
condition

F̃ (xk) ≤ F̃low + α(F̃ (x0) − F̃low) , (54)

where γp ∈ (0, 1) and F̃low is the best objective function value achieved by any solver on
problem p. Then, the performance and data profiles of solver s are defined by

ρs(γ) =
1

|P |

∣∣∣∣{p ∈ P :
tp,s

min{tp,s′ : s′ ∈ S}
≤ γ

}∣∣∣∣ ,
ds(κ) =

1

|P |
|{p ∈ P : tp,s ≤ κ(np + 1)}| ,
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where np is the dimension of problem p. We used a budget of 500 upper level function evaluations
in our experiments.
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Figure 1: Data profiles using two type of tolerances to get an approximate minimizer for the
lower-level problem.
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Figure 2: Performance profiles using two type of tolerances to get an approximate minimizer for
the lower-level problem.

Figures 1-2 depict the resulting performance and data profiles, respectively, considering two
levels of accuracy α: 10−3 and 10−6. From Figure 2, it can be observed that the Coordinate-DS
approach performs the best in terms of both efficiency (i.e., τ = 1) and robustness (i.e., larger τ),
particularly when the lower problem is solved accurately (i.e., LL tol=10−6). The data profiles
(see Figure 2) indicate that all the direct-search approaches perform similarly for small budgets.
However, as the budget increases, the accuracy of the lower problem becomes impactful on the
solver’s performance. Overall, on the tested problems, the directional direct-search approaches
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seem to outperform the mesh-based direct-search approach.

6 Conclusion

In this work, we proposed an inexact direct-search based algorithmic framework for bilevel op-
timization, under the assumption that the lower-level problem can be solved within a fixed
accuracy. We then proved convergence of two different classes of methods fitting our scheme,
that is directional direct-search methods with sufficient decrease and mesh based schemes with
simple decrease. Our results include complexity estimates for a directional direct-search scheme
tailored for BO with smooth true objective, which extends previously known complexity esti-
mates for the single level case. We also considered the nonsmooth case and gave convergence
guarantees to (δ, ϵ)-Goldstein stationary points for both classes, thus nicely extending the known
Clarke stationary point convergence properties of analogous schemes in the single level case. A
lower bound on the stepsize allows these method to convergence to a point with the desired sta-
tionarity properties in a finite number of iterations. Preliminary numerical results suggest that
directional direct-search methods might lead to better performance than mesh based strategies
in this context.
Future developments include the extensions of our algorithms to constrained and stochastic ob-
jectives, as well as numerical comparisons with recent zeroth order smoothing based approaches
for BO.

Data availability. The data analysed during the current study are available in the BOLIB
library and the code will be made available by the authors upon reasonable request.
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